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Abstract

In multi-agent systems, most commonly, consensus consists in all agents converg-
ing to a common equilibrium point. For nonholonomic vehicles, which move on
a Cartesian plane and occupy a physical space, it is more appropriate to speak of
consensus-based formation, which implies that the vehicles are required to converge
to a relative position in a given formation while, distributively, agreeing on the cen-
ter of such formation and on their orientation. In this paper we solve such a problem
via a smooth, time-varying, output-feedback control; more precisely, without veloc-
ity measurements. In addition, and this is our main contribution, the controller is
designed to satisfy pre-imposed bounds to avoid input saturation. To the best of the
authors’ knowledge this is the first controller of its kind in the context described.

KEYWORDS:
Nonholonomic vehicles; consensus; output-feedback control

1 INTRODUCTION

The control objective in the consensus of multiple dynamical agents is to ensure that the states of all agents converge to a
common value by sharing (part of) their state with their corresponding neighbors [1, 2, 3]. For nonholonomic vehicles, which
obviously cannot occupy the same physical space, the consensus-based formation problem consists in making the positions of
all robots converge to a common value, modulo an offset, i.e., a vector originating at the formation’s center which determines a
predefined position of the robot with respect to that center, while also agreeing on their final orientation value—see Figure 1 for
an illustration. This is the problem addressed in this paper. Now, consensus being intrinsically a set-point control problem, the
nonholonomic restriction prevents the use of smooth autonomous controllers to solve a consensus problem [4]. In fact, set-point
stabilization is not a particular case of tracking control [5]. Consensus of nonholonomic mobile robots has been studied, for
instance, in [6] where a decentralized feedback control that drives a system of multiple nonholonomic unicycles to a rendezvous
point in terms of both position and orientation is proposed, the control law is discontinuous and time-invariant. In [7] necessary
and sufficient conditions for the feasibility of a class of position formations are laid. In [8] the position/orientation formation
control problem for multiple nonholonomic agents using a time-varying controller that leads the agents to a given formation
using only their orientation is proposed. In [9] a consensus control law for a network of nonholonomic agents in the presence of
bounded disturbances with unknown dynamics in all inputs channels is presented. In [10] a smooth formation control law using
a consensus-based approach to drive a group of agents to a desired geometric pattern is proposed. The latter result is extended in
[11] by introducing a proportional derivative controller for the velocity dynamics. We remark that the controllers proposed in all
of these works rely on velocity measurements, which are often contaminated by noise or affected by sensor defects. Therefore,
it is desirable to design controllers that rely only on position and orientation measurements [12].
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FIGURE 1 Control goal: for the vehicles to reach a
consensus-based formation, that is, to meet around an
a priori unknown rendezvous set-point and acquire a
common orientation

Even though there is an abundant literature on formation control of autonomous vehicles, there are only a few works that pro-
pose output-feedback controllers. For instance, in [13] a discontinuous leader-follower formation-tracking controller is designed,
but the problem addressed therein is fundamentally different to that of consensus-based formation since a reference trajectory
is pre-imposed. In [14] an output-feedback consensus-based formation controller is proposed, but the proposed scheme is prone
to saturate the vehicle’s actuators (motors).
In concrete applications, however, the actuators are prone to saturation, which may seriously downgrade the overall perfor-

mance and put the actuators at risk of thermal and mechanical failure. Hence, saturation of the actuators must be always avoided
[15]. For instance, in [16, 17] consensus problems are solved considering actuator saturation without requiring velocities to be
measurable. However, none of the results in the latter references apply to nonholonomic vehicles.
The main contribution of our work is a novel decentralized output-feedback controller under input constraints that solves the

consensus-based formation problem in undirected networks of nonholonomic vehicles. The controller is dynamic, it is designed
by mimicking a mechanical mass-spring-damper system that is interconnected to the plant through virtual springs. Through
the latter, the controller steers the second-order plant’s positions and also injects damping into the plant. In that regard, it is
remarked that the control technique is similar to the one proposed in [18] and as in the latter, our controller is smooth time-
varying and relies on persistency of excitation to overcome the restrictions imposed by the nonholonomic constraints—see also
[19]. Thus, our work extends previous results in [11, 18, 14] by solving the consensus-based formation control problem under
input saturation and without velocity measurements. To the best of the authors’ knowledge this is the first article in which such
a controller is proposed.
The rest of the paper is organized as follows. In the next section we describe the model and formulate the consensus-based

formation control problem. In section 3 we present our main result. Numerical simulation tests are provided in Section 4 and
the paper is wrapped up with concluding remarks in Section 5.
Throughout the paper, the following notation is employed. ℝ ∶= (−∞,∞), ℝ≥0 ∶= [0,∞). 1N is a vector of all elements

equal to one of size N . ⊗ is the standard Kronecker product. For any absolutely continuous function f ∶ ℝ≥0 → ℝn, the ∞-
norm is defined as ‖f‖∞ ∶= esssup

t≥0
|f (t)|, and the square of the 2-norm as ‖f‖22 ∶= ∫ ∞

0 |f (t)|2dt. The ∞ and 2 spaces
are defined as the sets {f ∶ ℝ≥0 → ℝn ∶ ‖f‖∞ < ∞} and {f ∶ ℝ≥0 → ℝn ∶ ‖f‖2 < ∞}, respectively. The subscript
i ∈ N̄ ∶= {1, 2, ..., N}.

2 DYNAMIC MODEL AND PROBLEM FORMULATION

We consider a group ofN nonholonomic vehicles under the assumption that there is no slippage. For each vehicle, the kinematics
model is given by

żi = '
(

�i
)

vi, '(�i) ∶= [cos(�i) sin(�i)]⊤ (1a)
�̇i = !i, (1b)
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where, zi = [xi yi]⊤ ∈ ℝ2 denotes the Cartesian coordinates of the ith vehicle on the plane and �i ∈ ℝ denotes its orientation;
vi ∈ ℝ and !i ∈ ℝ are the linear and the angular velocity, respectively.
The vehicles’ dynamic behavior follows a torque-controlled second-order system of the form

[

mi 0
0 Ii

] [

v̇i
!̇i

]

+
[

fvi 0
0 f!i

] [

vi
!i

]

= 1
ri

[

1 1
2Ri −2Ri

] [

�li
�ri

]

, (2)

where Ii is the robot inertia, mi is the mass, fvi, f!i are the friction coefficients, �li and �ri are the left and right wheel torques,
respectively, ri is the wheel radius, and Ri is the wheel axle length.
Regarding the input torques, we assume the following.

Assumption 1. The left and right wheel torques �li, �ri may saturate and thus they satisfy |�li| ≤ �̄li and |�ri| ≤ �̄ri, with known
strictly positive saturation bounds �̄li > 0 and �̄li > 0. ⊲

We also assume that only the Cartesian coordinates and the orientation of the vehicles are available for measurement. Thus
the following assumption.

Assumption 2. The linear and angular velocities, vi and !i respectively, are not measurable. ⊲

It is required that the vehicles meet in formation around a non-predefined rendezvous point on the plane, denoted zc ∶=
(xc , yc), and acquire a non-predefined common orientation, denoted �c , modulo a given offset �i = [�xi �yi]⊤, with i ∈ N̄ , which
determines the position of the ith vehicle relative to the unknown center of the formation—see Figure 1. In other words, defining,
z̄i ∶= zi − �i as the relative position of the vehicles with regards to the center of the formation (correspondingly, x̄i ∶= xi − �xi
and ȳi ∶= yi − �yi) the control goal is to make

lim
t→∞

vi(t) = 0, lim
t→∞

z̄i(t) = zc , (3)

lim
t→∞

!i(t) = 0, lim
t→∞

�i(t) = �c ∀ i ∈ N̄, (4)

for all initial conditions.
In contrast to the leader-follower formation control problem the control goal defined above is leaderless, since there is no

pre-specified reference. That is, neither the coordinates (xc , yc) nor the angle �c are imposed a priori, but they depend on the
initial postures, on the systems’ nonlinear dynamics, and on network features. This consensus-based formation problem has
been successfully solved under different conditions, but the originality of this paper resides in considering the realistic scenario
determined by Assumptions 1 and 2 above.
In order to solve the aforementioned problem, it is also assumed that each vehicle exchanges its position (xi, yi) and its

orientation �i—see Fig. 1—with a set of neighbours, which we denote byi. It is naturally assumed that once a communication
is set between two vehicles i and j ∈i, the flow of information is bidirectional and is never lost. Whence the following.

Assumption 3. The network interconnection is static and it is modeled as an undirected and connected graph. ⊲

Remark 1. In graph theory, a graph is undirected if the nodes exchange information in both directions, it is static if the inter-
connection is constant, and it is connected if any node is reachable from any other node. The latter is a necessary condition to
achieve consensus [20].

In order to establish the proof of our result, it is convenient to define the Laplacian matrix L ∶= [lij] ∈ ℝN×N , where

lij =

⎧

⎪

⎨

⎪

⎩

∑

k∈i

aik i = j

−aij i ≠ j,
(5)

additionally aij > 0 if j ∈ i and aij = 0 otherwise. Defining 1N ∶= [1 ⋯ 1]⊤ then, by construction, L1N = 0 and,
after Assumption 3, L is symmetric, it has a unique zero-eigenvalue, and all of its other eigenvalues are strictly positive. Thus,
rank(L) = N − 1.
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3 MAIN RESULT

The proposed scheme contains an inner control-loop that is designed as
[

�ri
�li

]

=
ri
2

[

1 1
2Ri

1 − 1
2Ri

]

[

uvi
u!i

]

. (6)

Then, replacing (6) in (2), we obtain

v̇i =
1
mi
(uvi − fvivi), (7a)

!̇i =
1
Ii
(u!i − f!i!i). (7b)

The control design exploits the fact that the model of the nonholonomic system consists, essentially, in two interconnected
second-order systems given by Eqs. (1a)-(7a) and (1b)-(7b). The former set of equations corresponds to the linear-motion
dynamics while the latter corresponds to the angular-motion dynamics. Hence, we design a controller of each part of the plant
separately. Then, since the velocities vi and !i are not measurable by assumption, we implement a dynamic controller to inject
damping into the system. The controller mimics a mass-spring-damper system and its design follows up the ideas first laid in [3]
for Euler-Lagrange systems with holonomic constraints and used, also, in [18]. With this in mind, the controller for the linear
part is given by

uvi = −kvi'(�i)⊤ tanh(z̄i − #vi)
#̈vi = −dvi#̇vi − kvi tanh(#vi − z̄i) − pvievi,

(8)

where evi is given by
evi ∶=

∑

j∈i

aij
(

#vi − #vj
)

,

and tanh(z̄i − #vi) ∶= [tanh(x̄i − #vix) tanh(ȳi − #viy)]⊤.
Then, the bounded controller of the angular part is designed as

u!i = −k!i tanh (�i − #!i)
#̈!i = −d!i#̇!i − k!i tanh (#!i − �i) − p!ie!i + �i,

(9)

where
e!i ∶=

∑

j∈i

aij
(

#!i − #!j
)

.

All constant gains kki, dki and pki, with k ∈ {v, !} and i ∈ N̄ , are strictly positive. In addition, �i is a function defined as

�i(t, �i, #vi, z̄i) ∶= k�i i(t)'(�i)⟂⊤ tanh(#vi − z̄i), (10)

where k�i > 0, '(�i)⟂ ∶= [− sin(�i) cos(�i)]⊤ is the annihilator of '(�i), so '(�i)⟂⊤'(�i) = '(�i)⊤'(�i)⟂ = 0. The function
 i is twice differentiable, bounded, with bounded derivatives and, such that  ̇i is persistently exciting, that is, there exist T and
� > 0 such that

t+T

∫
t

 ̇i(s)2ds ≥ �, ∀ t ≥ 0. (11)

At this point we are ready to state the main result of this work.

Proposition 1. The controller defined in (6), (8), (9) and (10) ensures that the consensus-based formation objective (3)–(4) holds
globally for any strictly positive gains kki, dki and pki, with k ∈ {v, !} and i ∈ N̄ . Additionally, if gains kvi and k!i are set as

4Ri
ri
min{ �̄ri, �̄li } > 2

√

2Rikvi + k!i, (12)

the controller never saturates the actuators and thus |�ki| < �̄ki, for k ∈ {l, r}. △

Proof. We start by showing that the actuators do not saturate if (12) holds. To that end, note that from the properties of tanh( ⋅ )
we have |uvi| ≤

√

2kvi and |u!i| ≤ k!i. Therefore, from (6) we have

max{ |�ri|, |�ri| } ≤
ri
2

[
√

2kvi +
1
2Ri

k!i
]

.
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Hence, setting kvi and k!i such that (12) holds, it follows that |�ri| < �̄ri and |�li| < �̄li.
Next, we write the linear- and angular-motion closed-loop equations,

Σvi

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇̄zi ='(�i)vi,

v̇i = −
1
mi

(

fvivi + kvi'(�i)⊤ tanh(z̄i − #vi)
)

,

#̈vi = − dvi#̇vi − kvi tanh(#vi − z̄i) − pvievi,

(13)

and

Σ!i

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̇i =!i,

!̇i = −
1
Ii

(

f!i!i + k!i tanh (�i − #!i)
)

,

#̈!i = − d!i#̇!i − k!i tanh (#!i − �i) − p!ie!i + �i.

(14)

Then, the rest of the proof is divided in two steps. In Step 1 we show boundedness of trajectories; in Step 2 we show that all
errors converge asymptotically to zero.
Step 1. Consider the candidate Lyapunov function in the space of the consensus errors,

V =
N
∑

i=1

⎡

⎢

⎢

⎣

1
2pvi

vi +
1
4
∑

j∈i

aij|#vi − #vj|2
⎤

⎥

⎥

⎦

, (15)

where
vi ∶=

1
mi
v2i + |#̇vi|

2 + 2kvi ln
(

cosh(x̄i − #vix)
)

+ 2kvi ln
(

cosh(ȳi − #viy)
)

,

x̄i ∶= xi − �xi and ȳi ∶= yi − �yi. Evaluating V̇ along the trajectories of (13) yields

V̇ = −
N
∑

i=1

1
pvi

[

dvi|#̇vi|
2 + fviv2i

]

≤ 0, (16)

so V̇ ≤ 0 and, since V is positive definite and radially unbounded with respect to vi, #̇vi, ||#vi − z̄i|| , and
|

|

|

#vi − #vj
|

|

|

, it follows by
integrating on both sides of V̇ ≤ 0 that vi, #̇vi, ||#vi − z̄i|| , and

|

|

|

#vi − #vj
|

|

|

are bounded. Furthermore, integrating on both sides
of the first inequality in (16) we conclude that #̇vi, vi ∈ 2.
Next, let

W ∶=
N
∑

i=1

⎡

⎢

⎢

⎣

1
2p!i

!i +
1
4
∑

j∈i

aij
(

#!i − #!j
)2
⎤

⎥

⎥

⎦

,

with
!i ∶=

1
Ii
!2i + #̇

2
!i + 2k!i ln cosh

(

#!i − �i
)

.

Evaluating Ẇ along the trajectories of (14) results

Ẇ ≤ −
N
∑

i=1

1
p!i

[

f!i!
2
i + d!i#̇

2
!i − #̇!i�i

]

(17)

SinceW is positive definite and radially unbounded in!i, #̇!i, e!i, and |#!i−�i| then (17) implies that Σ!i is an output strictly
passive map [21] from the input �i to the output #̇!i. Furthermore, the closed-loop system Σ!i has a property reminiscent of zero-
state observability, in the sense that if the input and the output are equal to zero, i.e., �i = 0 and #̇!i = 0 respectively, then there
exists �c ∈ ℝ such that the consensus errors satisfy (�i−�c , !i, #!i−�c) = (0, 0, 0). This last is established invoking Barbashin-
Krasovskı̆i’s theorem with the fact that, when �i = 0, Σ!i is autonomous, W is positive definite and radially unbounded, Ẇ
is negative semi-definite, and Ẇ = 0 ⇒ (#̇!i, !i) = 0. Hence, #̈!i = 0 and !̇i = 0 so, from the second equation in (14),
tanh(�i −#!i) = 0. Furthermore, from the third equation in (14), it follows that e!i = 0, so using the properties of the Laplacian
matrix this implies that L#! = 0, i.e., there exists �c ∈ ℝ such that #! = 1N�c .
Now, the time-varying function t →  i(t) admits the upper bound  ̄i, so we have that, for all trajectories,

|�i| ≤
√

2 ̄ik�i.
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Therefore it holds that

Ẇ ≤ −
N
∑

i=1

1
p!i

[

f!i!
2
i +

(

d!i|#̇!i| −
√

2 ̄ik�i
)

|#̇!i|
]

. (18)

Note that if |#̇!i| ≥
√

2
d!i
 ̄ik�i then, by integration of Ẇ ≤ 0, we obtain that !i, #̇!i ∈ ∞. In turn, from (14), we also conclude

that !̇i, #̈!i ∈ ∞.
Step 2. From the second equation in (13) note that v̇i ∈ ∞ because '(�i) and tanh(z̄−#vi) are uniformly bounded. Moreover,

since vi ∈ 2 ∩ ∞ then, by Barbalǎt’s Lemma, lim
t→∞

vi(t) = 0. Additionally, since #̈vi, #̇vi ∈ ∞ and #̇vi ∈ 2 it follows also,
from Barbalǎt’s Lemma, that lim

t→∞
#̇vi(t) = 0.

Note also that vi ∈ ∞ implies that ̇̄zi ∈ ∞, from (13). Hence,

#(3)vi = −dvi#̈vi − kvi

[

sech2(#vix − x̄i)(#̇vix − ̇̄xi)
sech2(#viy − ȳi)(#̇viy − ̇̄yi)

]

− pviėvi (19)

is also bounded. The latter and the fact that

lim
t→∞

t

∫
0

#̈vi(�) d� = lim
t→∞

#̇vi(t) − #̇vi(0) = −#̇vi(0)

imply together, by Barbalǎt’s Lemma, that lim
t→∞

#̈vi(t) = 0.
Since all signals on the right-hand side of

v̈i = −
1
mi

(

fvivi + kvi!i'(�i)⟂⊤ tanh(z̄i − #vi) + kvi

[

sech2(#vix − x̄i)(#̇vix − ̇̄xi)
sech2(#viy − ȳi)(#̇viy − ̇̄yi)

])

(20)

are bounded, then v̈i ∈ ∞. Note, moreover, that

lim
t→∞

t

∫
0

v̇i(�) d� = lim
t→∞

vi(t) − vi(0) = −vi(0),

which by Barbalǎt’s Lemma implies that lim
t→∞

v̇i(t) = 0. Proceeding as above, we also conclude that limt→∞ v̈i(t) = 0.
Now, convergence to zero of v̇i, v̈i, #̇vi, and of vi, implies that

'(�i)⊤ tanh(z̄i − #vi)→ 0, !i'(�i)⟂⊤ tanh(z̄i − #vi)→ 0.

On the other hand, the solutions of the equation

'(�i)⊤ tanh(z̄i − #vi) = 0, (21)

are of the form tanh(z̄i − #vi) = c1'(�i)⟂ with c1 ∈ ℝ while the solutions of the equation

!i'(�i)⟂⊤ tanh(z̄i − #vi) = 0, (22)

are of the form tanh(z̄i − #vi) = c2!i'(�i) with c2 ∈ ℝ. Therefore, (21) and (22) hold together if and only if c!i'(�i) = '(�i)⟂
with c ∶= c1∕c2. In turn, the latter may hold only if either c = 0 or !i = 0.
If (21) and (22) hold simultaneously because c = 0, then lim

t→∞
tanh(z̄i(t) − #vi(t)) = 0, hence from the last equation in (13),

we have that
lim
t→∞

evi(t) = 0,

which in turn implies that lim
t→∞

(L ⊗ I2)#v(t) = 0. In view of the properties of L, supports the existence of z̄c ∈ ℝ2 such that
#v = 1N ⊗ z̄c , or #vi = z̄c for all i ∈ N̄ . Therefore

lim
t→∞

z̄i(t) = lim
t→∞

#vi(t) = z̄c .

Another consequence of lim
t→∞

tanh(z̄i(t) − #vi(t)) = 0 is that �i also converges to zero. Thus, it can be seen as a vanishing
perturbation of (14) and, in view of the attractivity of

{

(�i − �c , !i, #!i − �c) = (0, 0, 0)
}

subject to �i = 0 for all i ∈ N̄ , ti
follows that the equilibrium (!i, �i, #!i, #̇!i) = (0, �c , �c , 0) is asymptotically stable. Convergence holds globally because the
energy-like functionW is radially unbounded. Since �i is globally bounded —by construction— and it vanishes, then standard
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theory for nonlinear systems with vanishing perturbations ensures that the equilibrium (!i, �i, #!i, #̇!i) = (0, �c , �c , 0) is globally
asymptotically stable.
If, alternatively, (21) and (22) hold simultaneously in the limit because lim

t→∞
!i(t) = 0, then

lim
t→∞

t

∫
0

!̇i(�)d� = −!i(0).

Then, because

!̈i = −
1
Ii

[

f!i!i + k!isech2(�i − #!i)(!i − #̇!i)
]

(23)

is bounded—in view of the boundedness of !i and #̇—it follows that, also, !̈i ∈ ∞. Therefore, limt→∞ !̇i(t) = 0 and

lim
t→∞

t

∫
0

!̈i(�)d� = −!̇i(0).

In turn, all the functions on the right-hand side of

!(3)i = − 1
Ii

(

f!i!̈i − 2k!isech
2(�i − #!i) tanh(�i − #!i)(!i − #̇!i)2 + k!isech

2(�i − #!i)(!̇i − #̈!i)
)

(24)

are bounded, so !(3)i ∈ ∞. After Barbalǎt’s Lemma, lim
t→∞

!̈i(t) = 0, so, from (23), lim
t→∞

#̇!i(t) = 0. Proceeding as before and
invoking systematically Barbalǎt’s Lemma it follows that lim

t→∞
#̈!i(t) = 0 and that limt→∞ #

(3)
!i (t) = 0.

Now, from the third equation of (14) we get

#(3)!i = −d!i#̈!i − k!isech
2(#!i − �i)(#̇!i − !i) − p!iė!i + �̇i, (25)

with

�̇i = k�i ̇i(t)'(�)⟂⊤ tanh(#vi − z̄i) − k�i i(t)!i'(�i)⊤ tanh(#vi − z̄i) + k�i i(t)'(�i)⟂⊤
[

sech2(#vix − x̄i)(#̇vix − ̇̄xi)
sech2(#viy − ȳi)(#̇viy − ̇̄yi)

]

. (26)

Convergence to zero of #̇!i, #̈!i, #
(3)
!i and of !i, vi imply that

lim
t→∞

 ̇i(t)'(�(t))⟂⊤ tanh(#vi(t) − z̄i(t)) = 0.

The fact that  ̇i(t) is persistently exciting ensures that

lim
t→∞

'(�(t))⟂⊤ tanh(#vi(t) − z̄i(t)) = 0.

This last, with the fact that (21) holds, implies that lim
t→∞

tanh(z̄i(t) − #vi(t)) = 0. Therefore, proceeding as in the previous
case, we conclude that lim

t→∞
z̄i(t) = z̄c . Furthermore, �i converges to zero and thus, because #̇!i and #̈!i also converge to zero,

lim
t→∞

e!i(t) = 0, which by the properties of the Laplacian matrix establishes the result.

4 NUMERICAL SIMULATIONS

In this section we present some numerical simulations that illustrate the performance of the controller proposed in Section 3
and we compare it to the unsaturated controller reported in [18]. In the simulation case-study, we consider a group of vehicles
composed of six differential-drive mobile robots belonging with three different sets of physical parameters—see Table 1. For all
the robots we have considered that the friction coefficients are equal to one. The robots are required to converge to a triangular
formation, defined by offsets appropriately chosen and from varied initial postures—see Table 2.
The controller gains are set to kvi = 1, k!i = 1, dvi = 50, pvi = 5, d!i = 30, p!i = 6, k�i = 10, and the persistence of

excitation function is defined as  i(t) ∶= 1.25+
4
�
sin(0.5t) + 4

3�
sin(1.5t) + 4

5�
sin(2.5t) + 4

7pi
sin(3.5t) + 4

9�
sin(4.5t). The robots

are assumed to be interconnected over an undirected graph, whose Laplacian matrix is given by
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TABLE 1 Physical parameters

index mi [Kg] Ii [Kgm2] Ri [m] ri [m]
1, 2 10 3 0.3 0.05
3, 4 15 3 1.0 0.03
5, 6 12 4 0.7 0.10

TABLE 2 Initial conditions

index xi(0) yi(0) �i(0) �xi �yi
1 4 10 −3�∕4 5 5
2 10 10 −�∕2 7.5 10
3 19 10 3�∕4 10 15
4 7 10 �∕2 12.5 10
5 16 10 −�∕4 15 5
6 13 10 �∕4 10 5

L =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3 −1 0 −1 0 −1
−1 2 −1 0 0 0
0 −1 3 −1 0 −1
−1 0 −1 3 −1 0
0 0 0 −1 2 −1
−1 0 −1 0 −1 3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

4.1 Comparison Between the Novel Bounded and the Unbounded Scheme
The consensus-based formation objective, both in position and orientation, is achieved under both controllers, with and without
saturation. The systems’ responses are shown in Figures 2 and 3. As shown in Figures 4 and 5, under the bounded controller
the transient is longer, consensus takes more time to be reached, than under the action of the unbounded controller. However,
the latter is expected, as so is the fact that the unbounded controller demands higher torque values—see Fig. 6. It is to be noted
that under the effect of saturation, the torques are upper-bounded by 0.075 [N], 0.08 [N], and 0.068 [N], depending on the set
of robots—see Table 2. Clearly, the bounded controller proposed in this paper does not saturate the actuators.

4.2 Robustness with Regards to Neglected Dynamics
In order to test the robustness of our controller with respect to neglected dynamics, another simulation was performed. In this
case, it is assumed that the center of mass does not lay on the wheels axle. Such displacement induces Coriolis terms in the
dynamic model that have not been considered in (2)—see, [22], so Eqs. (7) become

v̇i + fvivi +
ri
3
!2i =

1
mi
uvi

!̇i + f!i!i −
rimi
3Ii

!ivi =
1
Ii
u!i.

The systems’ responses under both controllers, with and without input saturation, are shown in Figures 7 and 8. The bounded
scheme exhibits a more consistent trajectories than the unbounded scheme. Nevertheless, as shown in Figures 9 and 10 the latter
scheme achieves consensus faster than the bounded scheme. This is an expected behavior, due to the input torques shown in Fig.
11, each box corresponds to a subset of robots and each subset has the same saturation bound as the former simulation.
After observing the different simulations reported here, the control objective is fulfilled with the novel control scheme and

maintains the actuator forces under the limit imposed in the design. Furthermore, the last simulation successfully illustrates the
robustness with respect to neglected dynamic.
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FIGURE 2 Paths followed by the agents reaching the desired formation with orientation consensus with the novel bounded
scheme (final orientation is represented with an arrow).

5 CONCLUSIONS

In this work we solve the consensus-based formation problem in networks of nonholonomic vehicles. We consider the realistic
scenario where the robots are modeled by second order dynamics and where input saturation arises and it must be avoided. The
proposed dynamic controller is smooth and time-varying and it does not rely on velocity measurements. The controller injects
damping through its second-order dynamics and this damping back-propagates to the plant.
A potential inconvenience of the controller, which is appreciated from the numerical simulations, is that the transient may be

long and appear erratic. This is due to the use of persistency of excitation in the controller, which nevertheless is necessary to
ensure stabilization. Further simulation tests are needed to characterize the relation of the controller’s persistency of excitation
to the convergence rate and the oscillatory transient.
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FIGURE 3 Paths followed by the agents reaching the desired formation with orientation consensus with the unbounded scheme
(final orientation is represented with an arrow).

FIGURE 4 Pose consensus for the novel bounded scheme.
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FIGURE 5 Pose consensus for the unbounded scheme.

FIGURE 6 Comparison of torque results for both schemes
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FIGURE 7 Position trajectories in the Cartesian xy-plane for the novel bounded scheme with Coriolis neglected dynamics.
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FIGURE 8 Position trajectories in the Cartesian xy-plane for the unbounded scheme with Coriolis neglected dynamics.
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FIGURE 9 Pose consensus for the novel bounded scheme with Coriolis terms.

FIGURE 10 Pose consensus for the unbounded scheme with Coriolis terms.

FIGURE 11 Comparison of torque results for both schemes.
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