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Localization and tracking control of autonomous
vehicles in time-varying bearing formation

Zhiqi Tang Antonio Lorı́a

Abstract— This letter proposes an observer-based for-
mation tracking control approach for multi-agent velocity-
controlled vehicles under the assumption that either rela-
tive or global position measurements are unavailable for
all the vehicles. It is assumed that only some vehicles (at
least one) have access to their own global position, and
all vehicles are equipped with sensors capable of sensing
the bearings relative to neighboring vehicles. Each vehicle
estimates its global position using relative bearing mea-
surements and estimates of neighboring vehicles received
over a communications network. Then, a distributed output-
feedback observer-based controller is designed relying on
bearing measurements and the estimated global positions.
In contrast with the literature on bearing-based localization
and control, we relax the common assumption of so-called
bearing rigidity, and, in addition, we do not assume that the
interconnections are constant. To the best of our knowl-
edge, the bearing-based localization-and-tracking control
problem under such assumptions remains open. In support
of our theoretical findings, some simulation results are
presented to illustrate the performance of the proposed
observer-based tracking controllers.

Index Terms— Multi-agent localization, autonomous ve-
hicles, nonlinear observer design, bearing formation track-
ing, time-varying graph topologies

I. INTRODUCTION

MULTI-VEHICLE systems are in demand to accomplish
missions in different challenging scenarios, such as

infrastructure inspection, surveillance, precision agriculture,
exploration of deep waters, land, and space, etc. [1]. During
these coordinated tasks, it is always essential for a multi-agent
system to have the ability to localize the position and track
desired trajectories in a decentralized fashion. The different
kinds of sensors and measurements gives, as a matter of
fact, one of many ways to classify controllers for cooperative
vehicles [2]. Two of the most common methods to acquire
the localization information rely either on global positioning
systems or on on-board proximity sensors. The former are
particularly useful in outdoor environments, specifically when
the vehicles in the swarm are too far apart for on-board sensors
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to work. The latter, however, are preferred in indoor and
congested environments. There are many different sensors that
deliver measurements of different kinds. For instance, vision
sensors provide simple visual cues such as relative bearing
(direction) measurements, which are robust to noise. Other
sensors, such as ultra-wide band [3] deliver accurate relative
distance measurements through radio communication. Thanks
to the passive property of cameras, follower vehicles that see
a leader may be able to estimate their location using their
inter-agent bearing with respect to the said leader.

The main body of work on bearing-based localization [4],
[5] relies on so-called bearing rigidity theory [6] (also termed
parallel rigidity [7]), which establishes the conditions on the
graph’s topology and the agents’ physical configuration that
ensure the unique shape of the latter up to a translational and
a scaling factors using constant inter-agent bearing measure-
ments. Provided that the formation is bearing rigid, and at least
two agents have access to their positions, distributed localiza-
tion algorithms using bearing measurements are developed in
[8] and [4]. These works mainly focus on formations with
constant bearing measurements and under fixed interaction
graph topologies. Multi-agent coordination, however, typically
evolves in time with dynamic configuration and involves time-
varying interaction topology among agents. This interaction
may change dynamically because the visible neighbors may
not always be the same. Some other works only consider
specific dynamic formations or time-varying graph topologies.
For instance, the bearing-based localization algorithm in [9] is
limited to a three-agent formation, for which each agent has to
perform a circular motion. In [10] and [11] the bearing-based
observability under time-varying graph topologies is analyzed
for the particular case of a group of agents defined in a two-
dimensional space.

In this letter we address the bearing-based localization
and the formation-tracking control problems for multi-agent
systems defined in two and three dimensions. In particular,
we consider that a set of inter-agent bearings can be time-
varying, so the fundamental conditions of bearing-rigidity
theory are not satisfied. Moreover, we relax the classical
bearing-rigidity assumption and we lift the scale ambiguity
of bearing formation. At any given instant, a given pair of
bearings with respect to two neighbors may yield different
estimates of the follower’s position, as in the instance of a
square configuration without a diagonal connection [4]. That
is, the fundamental condition of localizability does not hold.



This condition, however, is not necessary; it may be replaced
with the relaxed property that a multi-agent system’s formation
be Bearing Persistently Exciting (BPE) [12]. Persistency of
excitation (PE) is a concept that originated in the 1960s
in the literature on adaptive control, but has also proved
useful in control of autonomous vehicles. For instance, in
smooth stabilization of nonholonomic vehicles [13], in the
simultaneous localization and mapping problem [14], or in
target localization and enclosed control of a group of agents
in two-dimensional space [15].

We investigate the use of persistency of excitation in relation
to the time-varying Bearing Laplacian matrix of multi-agent
systems under any jointly connected undirected switching
graphs. Based on the BPE property, we design a distributed
localization algorithm using inter-agent bearings measures and
the position measure of a single agent (the leader). Then,
we use the estimated position to design the velocity control
input to track desired time-varying trajectories for a multi-
agent system under single-integrator dynamics. We show that
both the estimation and position tracking errors converge
asymptotically to zero, provided the desired formation is BPE.

The key advantages of the proposed approach are that
the distributed observer-based formation tracking controller
i) can be applied to multi-agent systems under any jointly
connected undirected switching graph topologies and hence
loosens the constraints on the graph topology often required
in the classical bearing-based localization algorithms based
on bearing rigidity [8] and [4], ii) needs only one leader
with known position (instead of two as described in the
existing literature [4], [8], [10]) to localize the formation’s
configuration using inter-agent bearings, and iii) achieves any
BPE d-dimensional trajectory whereas only translational and
scaling maneuvering can be realized in the existing literature
on bearing-based formation maneuver control [16]. Relative
to [12], we generalize the BPE property to encompass time-
varying graph topologies, used to design desired trajectories of
the formation. Furthermore, we stress that in [12] only the for-
mation control problem is addressed, but not the localization
problem nor tracking maneuvers.

The remainder of this letter is organized in six sections.
In Section II we provide some mathematical preliminaries
on graph theory. In Section III we formulate the bearing
based estimation and tracking control problem that we address.
In Section IV we provide the concepts of BPE formation
under switching graph topologies. In Section V we present
the integrated distributed bearing-based localization algorithm
and the formation tracking controller. Simulation results are
presented in Section VI and the letter is wrapped up with
some final comments in Section VII.

II. MATHEMATICAL PRELIMINARIES

Notation: We denote by Sd−1 := {y ∈ Rd : ‖y‖ = 1}
the d − 1-Sphere (d ≥ 2); ‖ · ‖ denotes the Euclidean
norm. The null space and rank of a matrix are denoted by
null(·) and rank(·), respectively. The operator diag(Ai) =
blkdiag{A1, . . . , An} ∈ Rnd×nd indicates the block diago-
nal matrix with elements given by Ai ∈ Rd×d, with i ∈
{1, 2, . . . , n}.

On graph theory: The interaction topology of a n-agent
system can be modeled as an undirected graph G := (V, E),
where V = {1, . . . , n} (n ≥ 2) is the set of vertices and
E ⊆ V × V is the set of undirected edges. Two vertices i and
j are called adjacent (or neighbors) when (i, j) ∈ E . The set of
neighbors of agent i is denoted by Ni := {j ∈ V|(i, j) ∈ E}.
If j ∈ Ni, it follows that i ∈ Nj , since the edge set in
an undirected graph consists of unordered vertex pairs. An
undirected graph G is connected if there exists a path between
every pair of vertices in G and in that case m ≥ n − 1. An
undirected spanning tree is a connected subgraph of G without
circuits and involving all the vertices of G. An oriented graph
is an undirected graph together with an orientation which is the
assignment of a direction to each edge. The incidence matrix
H ∈ Rm×n of an oriented graph is the {0,±1}-matrix with
rows indexed by edges and columns by vertices: [H]ki = 1
if vertex i is the head of the edge k, [H]ki = −1 if it is
the tail, and [H]ki = 0 otherwise. Note that one always has
H1n = 0, where 1n = [1, . . . , 1]T ∈ Rn. For a connected
graph, or equivalently a graph which has a spanning tree,
rank(H) = n− 1. The graph Laplacian matrix is defined as

L := H̄>H̄, with H̄ = H ⊗ Id, (1)

where ⊗ denotes the Kronecker product, Id the identity matrix
of dimension d, and null(L) = span(U) with U = 1n ⊗ Id.
If the graph is connected, one has rank(L) = rank(H̄) =
dn− d, null(L) = span(U) and hence, by adopting λi as the
ith eigenvalue of L under a non-increasing order, one ensures
that λdn−d is the smallest positive eigenvalue of L.

For graphs with time-varying interaction topology we use
Gσ to denote the corresponding time-dependent graph with
σ : [0,+∞) → P a piece-wise constant function. The
set P represents the set of indexes for all possible graphs,
including non-connected ones, defined on vertices {1, . . . , n},
with |P| = 2

n(n−1)
2 , where |P| denotes the cardinality of P .

We assume hereafter that there exists a switching sequence
{tι}, ι ∈ N at which the index of the interaction topology
σ(tι) changes. The time intervals [tι, tι+1) are assumed to
be uniformly bounded and non-overlapping. We assume that
tι+1 − tι ≥ τ0 > 0, where τ0 is the dwell time during
which σ(t) is constant and the interaction topology keeps
fixed. Define Eσ and N i

σ as the corresponding edge set and
neighbors set of agent i, respectively, at t.

III. PROBLEM FORMULATION

Consider a group of n vehicles modeled by the equation

ṗi = vi, i ∈ {1, 2, . . . , n}. (2)

The position of the ith vehicle with respect to a common
inertial frame is given by the vector pi ∈ Rd and the velocity
vi ∈ Rd is assumed to be the control input. It is required for
these vehicles, to move in formation in a d-dimensional space
(d ∈ {2, 3}), under the following standing hypothesis.

Assumption 1: At least, and possibly only, one agent in the
formation can measure its own position pi, without error. Such
agent is referred to as the leader.



Without global position measurements, the position pi is
unknown to the follower vehicles. However, relative bearing
measurements are obtained through onboard sensors. More
precisely, for the ith vehicle that “sees” the jth neighbor agent,
with j ∈ Ni, we denote by

pij := pj − pi, (3)

the position vector of the jth vehicle relative to the ith and,
if ‖pij‖ 6= 0, we denote by

gij := pij/‖pij‖ ∈ Sd−1 (4)

the bearing of agent j relative to agent i. Then, it is assumed
that a bidirectional interconnection between adjacent nodes
exists as described below.

Assumption 2: Each agent i ∈ V can measure the relative
bearing vectors gij , with respect to its neighbors j ∈ Ni,
in a common inertial frame. In addition, each agent can
communicate its position estimation to its neighbor agents.
Assumption 2 implies that each agent knows its orientation
matrix relative to a common inertial frame, so the relative
bearing measured in its local frame can be represented in the
inertial frame.

Under the latter assumption, defining the configuration
p := [p>1 , ..., p

>
n ]> ∈ Rdn, the vehicles define a system of n

connected agents, represented by a formation denoted G(p).
Then, the bearing-based formation tracking control problem is
posed as follows. By assigning one leader in the formation, 1)
design a distributed localization algorithm using the velocity
control input of each agent and the inter-agent bearings to
estimate the agents’ positions and 2) design an observer-based
distributed controller relying on the estimated positions to
asymptotically track any feasible desired formation.

Stated in such generic form, the bearing-based localization
and formation tracking control problems have been addressed
in a number of works—see the Introduction—but not neces-
sarily simultaneously, as we do here. For instance, in [4] only
the localization problem is addressed. Furthermore, a recurring
assumption in the literature on bearing-based control is that the
interconnections are constant—see e.g, [8], [12], [16]. In this
letter we consider that the graph’s topology changes with time,
as a consequence of interconnections persistently switching on
and off—see Figure 1 and Assumption 3 next.

Assumption 3: The group’s topology is time-varying, rep-
resented by a switching graph Gσ , as defined in Section II.

In our preliminary work [17], graphs with switching topolo-
gies are considered, but the localization problem is disre-
garded.

IV. BEARING PERSISTENTLY EXCITING FORMATION
UNDER SWITCHING GRAPH TOPOLOGIES

Given a group of interconnected agents in a configuration p,
the underlying formation G(p) is composed of nodes labeled
i ∈ V and edges (i, j) ∈ E , to this formation corresponds a so-
called bearing Laplacian matrix LB , defined as follows—cf.
[4]. Consider an arbitrary orientation of the graph and denote

p̄k := pij , k ∈ {1, 2, . . . ,m}, (i, j) ∈ E (5)

(c1) (c2)

(d1) (d2) (d3)

(a1) (a2)

(b1) (b2) (b3)

Fig. 1. Union of the graphs ∪
(t,t+T )

Gσ(t) of BPE formations in two (a1-

b3) and three-dimensional space (c1-d3). Red lines represent edges for
which the corresponding bearing vector are PE and blue lines represent
edges for which the corresponding bearing vectors are not necessarily
PE. These are instances of time-varying formations covered by our main
results.

as the edge vector with assigned direction such that i and j are,
respectively, the initial and the terminal nodes of p̄k. Denote
the corresponding bearing vector by

ḡk :=
p̄k
‖p̄k‖

∈ Sd−1, k ∈ {1, 2, . . . ,m}.

Then, the bearing Laplacian matrix is denoted as

LB(p) := H̄>Π(p)H̄, Π(p) = diag(πḡk), (6)

where, for any y ∈ Sd−1,

πy := I − yy> ≥ 0

denotes the operator that projects y onto its orthogonal plane.
Since span{U,p} ⊆ null(LB(p)), it follows that

rank(LB) ≤ dn− d− 1. According to [4], if the formation is
Infinitesimal Bearing Rigid (IBR) then rank(LB) = dn−d−1
and null(LB(p)) = span{U,p} for each fixed configuration
p. Then, it is possible to reconstruct the positions of follower
agents, pi, provided that two leaders know their global posi-
tions and all the bearing measurements and interconnections
remain constant.

In this letter, we allow for only one leader know its global
position and assume that some of the inter-agent bearings are
time-varying such that the formation is Bearing Persistently
Exciting (BPE) [12]. Besides, we consider the scenario in
which the topology undergoes persistent switches. A BPE
formation is a type of time-varying bearing formation, in-
troduced first in [12], whose configuration can be uniquely
determined up to a translation using only inter-agent bearings
and velocity of each agents. The property defined in [12], for
fixed topologies, is recalled below.

Definition 1 (BPE): A formation G(p) is called Bearing
Persistently Exciting (BPE) if G is connected and the bearing
Laplacian matrix is persistently exciting, i.e., there exists
T > 0 and µ > 0 such that

1

T

∫ t+T

t

LB(p(τ))dτ ≥ µL ∀ t ≥ 0. (7)



Remark 1: There is an obvious abuse of terminology in the
previous definition since (7) does not imply that the bearing
Laplacian is persistently exciting [18] along the trajectories,
i.e., that there exist T > 0 and µ > 0 such that

1

T

∫ t+T

t

LB(p(τ))dτ ≥ µI ∀ t ≥ 0 (8)

which cannot hold because L is not full rank. •
Note that Π(p) being persistently exciting along the trajec-
tories implies (7), but not viceversa. For detailed properties
of BPE formation under fixed graph topologies (including
necessary conditions and sufficient and necessary conditions
to guarantee a BPE formation), please refer to [12] and [19].

To provide a generalization of Definition 1 that encompasses
switching-graph topologies Gσ , we assume that there exists
T > τ0 such that, for all τ ∈ [t, t + T ] and any t ≥ 0,
the corresponding incidence matrix is H̄σ(t) = W (t)H̄ . In
the latter H̄ is the constant incidence matrix of the joint
graph G̊ = ∪τ∈(t,t+T )Gσ(τ) and W (t) = diag(w̄k(t)). In
turn, w̄k(t) is a binary valued-function that equals to 1 if
the corresponding edge is connected and to 0 if otherwise.
Then, we define the Laplacian Lσ(t) := H̄σ(t)>H̄σ(t) and
the bearing Laplacian LBσ (p, t) := H̄>Πσ(p, t)H̄ , where
Πσ(p, t) = W (t)Π(p)W (t) = W (t)Π(p) = Π(p)W (t).

Under a fixed graph topology, one can verify that W = Idn,
hence Lσ = L and LBσ = LB . For time-varying topologies,
we have the following useful statement.

Lemma 1: Consider a formation Gσ(p), with σ ∈ P . If the
formation G̊(p) under the joint graph is BPE with parameters
T and µ̄ > 0 and

1

T

∫ t+T

t

Πσ(p(τ), τ)dτ ≥ µ̄
∫ t+T

t

Π(p(τ))dτ,

then the formation Gσ(p) is also BPE. That is, ∀t ≥ 0

1

T

∫ t+T

t

LBσ (p(τ), τ)dτ ≥ µ̄

T

∫ t+T

t

LB(p(τ))dτ.
�

The statement follows from the observation that

LBσ (p, t) = H̄>W (t)Π(p)W (t)H̄. (9)

The formation being BPE implies that some of the bearings
between pairs of agents belonging to the formation are PE
[19], i.e., the shape of the multi-agent system may be time-
varying or fixed. An illustration of a BPE formation is pro-
vided in Figure 2 below.

It shows an example of a 4-agent BPE formation with time-
varying shape in which p1, p2 and p3 are static while p4 is
oscillating along the black dashed line. Inter-agent bearings
g21 and g23 are constant and g41 and g43 are PE during
time interval [t1,t3]. For each time instant, the graph topology
is not necessarily connected, and the time-varying sensing
graph topology indicates that each bearing is measured by
corresponding agents during a time interval greater than the
dwell time τ0 but may not be measured all the time from t1
to t3.

(b) 𝐺𝜎 𝑡1 (𝒑(𝑡1)) (c) 𝐺𝜎 𝑡2 (𝒑(𝑡2)) (d) 𝐺𝜎 𝑡3 (𝒑(𝑡3))

2

1

3

4 1

2 3

4
1

2 3

4

2

1

3

4

(a) ∪𝑡∈(𝑡1,𝑡3) 𝐺𝜎 𝑡

Fig. 2. An example of a BPE formation Gσ(p(t)) under a switching
graph topology. Sub-figure (a) shows the union of the graphs during
time t1 to t3. Sub-figures (b), (c), and (d) show three selected frames of
the physical configuration p(t) and connections Gσ(t) of the formation
under a timed sequence such that t1 < t2 < t3, t2 − t1 > τ0
and 2τ0 < t3 − t1 < T . The color blue/red on the connections
indicates that the corresponding bearings are constant/PE, respectively.
The dashed line indicates the trajectory of agent 4.

When the shape of a BPE formation is fixed, a similarity
transformation involving a time-varying rotation has to be
imposed on the whole system so that (7) hold. This particular
case of BPE formation is defined as follows.

Definition 2: A formation Gσ(p) (σ ∈ P) is called Relaxed
Bearing Rigid if it is BPE and subject to a similarity trans-
formation, i.e., a rigid motion together with a rescaling: for
each t ≥ 0 and i ∈ V , pi(t) = s(t)R(t)>pi(0) + c(t) where
s(t) ∈ R+ is a scaling factor, c(t) ∈ Rd is a translational
factor, and R(t) ∈ SO(d) is a time-varying rotation matrix1.

(b) 𝐺𝜎 𝑡1 (𝒑(𝑡1)) (c) 𝐺𝜎 𝑡2 (𝒑(𝑡2))

1 1

22

3 31

2

3

(a) ∪𝑡∈(𝑡1,𝑡2) 𝐺𝜎 𝑡

Fig. 3. An example of a RBR formation under a switching graph
topology. Sub-figure (a) shows the union of the graphs during time t1
to t2. Sub-figures (b) and (c) show two selected frames of the physical
configuration p(t) and connections Gσ(t) of the multi-agent system
under a timed sequence such that t1 < t2 and τ0 < t2 − t1 < T .
Connections in red represent PE bearings. The dashed line indicates
the trajectory of agent 3.

Figure 3 shows an example of 3-agent RBR formation in
three-dimensional space. The system is subject to a time-
varying rotation motion around the z-axis. Agents 1 and 2
are static on the z-axis and agent 3 rotates around z-axis, as
indicated by the black dashed line. Note that the corresponding
inter-agent bearings g31 and g32 are both PE and ∪

t∈(t1,t2)
Gσ(t)

is as presented as in Figure 3a.

V. BEARING-BASED LOCALIZATION AND FORMATION
TRACKING CONTROL UNDER SWITCHING GRAPH

TOPOLOGIES

Without loss of generality, we consider a formation in
which agent 1 is the leader, the unique agent in the formation
that measures its own position p1—cf. Assumption 1. The
following hypothesis defines feasible desired BPE formations.

1SO(d) stands for Special Orthogonal group of dimension d.



Assumption 4: The desired velocities v∗i (t) := ṗ∗i (t) and
desired positions p∗i (t) (i ∈ V) are chosen such that, for all
t, v∗i (t) are bounded, the resulting desired bearings g∗ij(t)
are well-defined and the desired formation Gσ(p∗(t)) under
switching graph topologies is BPE.

Now, let p̂i ∈ Rd denote the estimate of pi. Then, the
observers of the leader’s and each follower’s positions are
defined by the equations

˙̂p1 = v1 − ko
n∑
j=1

w1j(t)πg1j (p̂1 − p̂j)− ko(p̂1 − p1) (10a)

˙̂pi = vi − ko
n∑
j=1

wij(t)πgij (p̂i − p̂j), i ∈ V\{1}, (10b)

where ko > 0, wij(t) := w̄k(t) = 1, j ∈ N i
σ(t) and wij(t) =

0 otherwise. Then, using the estimated position p̂i, let the
velocity control input of the system (2) be defined as

vi = −kc(p̂i − p∗i ) + v∗i , i ∈ V. (11)

Let v = [v>1 , . . . , v
>
n ]> and define the error variables δ :=

p̂ − p and p̃ = p − p∗ with p̂ = [p̂>1 , . . . , p̂
>
n ] and p∗ =

[p∗>1 , . . . , p∗>n ]>. From (10), one has ˙̂p = −ko[LBσ (p, t)p̂+
Aδ ] + v with A = diag(Id, 0, . . . , 0) ∈ Rdn×dn. Since
span(p) ⊆ null(LBσ ), we have p>LBσ (p, t)p ≡ 0, so it is
straightforward to verify that:

δ̇ = −ko(LBσ (p, t) +A)δ (12)
˙̃p = −kc(p̃+ δ). (13)

Proposition 1: Consider a n-agent system Gσ(p(t)) defined
in Rd under Assumptions 1–4. Then, for any initial condition
satisfying

‖p̃(0)‖ < min(i,j)∈E ‖p∗ij(t)‖/2, (14a)
‖δ(0)‖ < min(i,j)∈E ‖p∗ij(t)‖/2, (14b)

the observer (10) is well defined and the localization and
formation-tracking errors δ and p̃ converge to zero.

Proof: First, we show that δ and p̃ are bounded and the
bearing information gij(t),∀(i, j) ∈ E is well defined ∀t ≥ 0.
Define the candidate Lyapunov function for δ-system (12),
W1 = 1

2‖δ‖
2, which satisfies

Ẇ1 = −koδ>(LBσ (p, t) +A)δ ≤ 0, (15)

since LBσ (p, t) + A ≥ 0 for all t ≥ 0. Hence, δ(t) ≤ δ(0)
for all t ≥ 0.

Next, to analyze the trajectories of the p̃-system (13), we
use W2 = 1

2‖p̃‖
2, whose total derivative yields

Ẇ2 = −kcp̃>(p̃+ δ) ≤ −kc‖p̃‖(‖p̃‖ − ‖δ‖). (16)

We see that Ẇ2 is negative definite for all ‖p̃‖ ≥ ‖δ‖.
Since ‖δ(t)‖ ≤ ‖δ(0)‖, one concludes that ‖p̃(t)‖ ≤
max{‖p̃(0)‖, ‖δ(0)‖),∀t ≥ 0.

To show that gij(t),∀(i, j) ∈ E is well defined ∀t ≥ 0,
which in turn implies that (10) is well defined under the
proposed initial condition, we have to prove that pij ,∀(i, j) ∈
E never crosses zero. Using the fact that pij = p̃j − p̃i + p∗ij ,
one gets

‖pij(t)‖ ≥ ‖p∗ij(t)‖−‖p̃i(t)‖−‖p̃j(t)‖ ≥ ‖p∗ij(t)‖−2‖p̃(t)‖.

Combining this with (14) and the fact that ‖p̃(t)‖ ≤
max{‖p̃(0)‖, ‖δ(0)‖),∀t ≥ 0, one concludes that ‖p̃(t)‖ <
‖p∗ij(t)‖/2 and hence pij(t) 6= 0 for all t ≥ 0.

To show convergence to the equilibrium (δ, p̃)= (0, 0), we
first show that Ẇ1 is uniformly continuous and converges to
0. To that end, we use Barbălat’s Lemma [20, Lemma 9] , so
we compute

Ẅ1 = −2δ̇
>

(koLBσ (p, t) +A)δ − δ>koH̄> diag(π̇ḡk)H̄δ.

Now, the fact that π̇ḡk = − 1
‖p̄k‖ (πḡk v̄kḡ

>
k + ḡkv̄

>
k πḡk) is

bounded—since v̄k = ˙̄pk = vj − vi, (i, j) ∈ E is bounded and
p̄k (5) never crosses zero—implies that Ẅ1 is also bounded,
so Ẇ1 is uniformly continuous. It follows that Ẇ1 converges
to zero which implies ‖δ‖ converges to a constant. From there,
one ensures that δ converges to a constant vector. Hence, from
(13), one deduces that p̃+ δ converges to 0, which indicates
that p̂ converges to p∗. Now, integrating by parts on both sides
of

Ẇ1 = −koδ>(LBσ (p, t) +A)δ → 0, (17)

from t to t+ T , we obtain[
δ(s)>

(∫ s

t

(LBσ (p(τ), τ) +A)dτ

)
δ(s)

]∣∣∣∣t+T
t

−

tr

[∫ t+T

t

[∫ s

t

(LBσ (p(τ), τ) +A)dτ

] [
δ̇δ> + δδ̇

>]
ds

]
.

Note that the inner integral on the last line of this expression
is bounded since LBσ is bounded and the length of the
integration interval T is bounded. Using the fact that Ẇ1 and
δ̇ → 0, one ensures that:

δ>

[∫ t+T

t

(LBσ (p(τ), τ) +A)dτ

]
δ → 0.

Combining (17) and (9) with the fact that p̂ converges to p∗,
one verifies that p̂(t)>H̄>W (t)Π(p(t))H̄p̂(t)→ 0 as t→∞
and hence p∗(t)>H̄>W (t)Π(p(t))H̄p∗(t) → 0. This latter
ensures that gij → g∗ij . From there, and since LBσ (p∗) is PE
one concludes that LBσ (p) is also PE. This, in turn, implies
that

∫ t+T
t

(LBσ (p(τ), τ)+A)dτ > 0 and hence one concludes
that δ → 0 and, in turn, p̃→ 0.

Remark 2: In the special case when all the bearings are
constant and the formation is Persistently Bearing Rigid [17]
(i.e., not necessarily IBR for each instant but the formation
under the joint graph is IBR), Proposition 1 still hold provided
two leaders knowing their own positions. •

VI. SIMULATION RESULTS

In this section, simulation results are provided to illustrate
the effectiveness of the proposed distributed observer-based
formation tracking controller (10) (11). We consider a 4-
agent system tracking the smooth time-varying trajectories
with agent 1 as a leader. As we can see from Fig. 4, the
formation first form a fixed pyramid shape rotating around the
z-axis while translating along y-axis. Then, it tracks a time-
varying shape which transforms from a pyramid shape to a
square in the xy-plane. In the end, it continues maintaining as
the square shape while following circular trajectories.



Figure 5 shows the evolution of the estimation and po-
sition errors, which converge to zero asymptotically under
the switching graph topologies. Note that the graph is not
necessarily instantaneously connected. The gains are chosen
as ko = 5 and kc = 10.

-1

0

1

-2
100 8

62 4
24 0

p1

p2

p3

p4

Fig. 4. 3D evolution of the formation. The stars and void circles
represent initial estimates and initial positions, respectively. The colorful
lines represent the trajectories of the formation. The filled circles indicate
the configuration of the formation at t = 6.2, t = 15, and t = 18.1.
The black lines are connections of the joint graph ∪τ∈(t,t+T )Gσ(τ).

0

1

2

3

0

2

4

0

0.5

1

0

0.5

1

0 5 10 15 20 25

0

0.5

1

Fig. 5. The first subplot shows the time evolution of the norm of the
estimation error ‖δ‖ and the second subplot indicates the time evolution
of the norm of the position error ‖p̃‖. The remaining subplots show
the intermittent interconnections; from these plots the topology at any
instant can be inferred.

VII. CONCLUSION

This paper solves an observer-based formation tracking
problem for multi-agent systems defined in two and three-
dimensional spaces. A distributed output-feedback observer-
based tracking controller is designed for the system using
inter-agent bearing measurements, the estimated global posi-
tion of each agent, and the global position of at least one leader
agent. The key distinction of the proposed method is that the
estimation and tracking errors achieve asymptotically to zero
under time-varying graph topologies without common assump-
tions of bearing rigidity. It also enables the multi-agent system

to track a larger set of feasible desired formations, including
rotational maneuvers and formations with time-varying shapes.
Future work includes extending the observer design for multi-
agent systems with each agent under a second-order system
to estimate both velocity and position vectors for each agent.
Attitude synchronization will also be considered to deal with
the practical issue that the relative bearings are only measured
in each agent’s local frame without knowing its orientation
matrix with respect to a common inertial frame.
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