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FACTOR-BALANCED S-ADIC LANGUAGES

LÉO POIRIER AND WOLFGANG STEINER

Abstract. A set of words, also called a language, is letter-balanced if the number of occur-
rences of each letter only depends on the length of the word, up to a constant. Similarly, a
language is factor-balanced if the difference of the number of occurrences of any given factor
in words of the same length is bounded. The most prominent example of a letter-balanced
but not factor-balanced language is given by the Thue–Morse sequence. We establish connec-
tions between the two notions, in particular for languages given by substitutions and, more
generally, by sequences of substitutions. We show that the two notions essentially coincide
when the sequence of substitutions is proper. For the example of Thue–Morse–Sturmian
languages, we give a full characterisation of factor-balancedness.

1. Introduction

The study of balancedness of languages goes back at least to Morse and Hedlund [MH40]
who proved that each block of length n in a Sturmian sequence of slope α has ⌊nα⌋ or ⌈nα⌉
occurrences of the letter that has frequency α (and thus ⌊n(1−α)⌋ or ⌈n(1−α)⌉ occurrences
of the other letter). In other words, the difference between the number of occurrences of
a letter in blocks of the same length is at most 1; we call this property letter-1-balanced,
previously it has often been simply called balanced. More generally, a language is letter-
balanced if the number of occurrences of a letter only depends on the length of a word in
the language, up to an additive constant. We do not only consider the occurrence of letters
but also of longer blocks, and we say that a language is factor-balanced if the number of
occurrences of each block in a word of the language only depends on the length of the word,
up to a constant that can depend on the block. Usually, languages coming from a symbolic
dynamical system (or subshift) are considered; we use the slightly weaker property of being
factorial. For infinite sequences, balancedness is equivalent to bounded symbolic discrepancy,
as studied in [Ada04]. These concepts have applications in operations research, for optimal
routing and scheduling and are related to Fraenkel’s conjecture; see [BCB19] for references.

Some relations between letter-balancedness and factor-balancedness have been studied in
[Ada03, Que10], and more recently in [BCB19]. Here, we improve on these results and show
that factor-balancedness is preserved by the application of a substitution. We consider lan-
guages (or subshifts) given by a sequence of substitutions, also called S-adic languages. When
the substitutions are left or right proper, i.e., the image of each letter starts or ends with
the same letter, we show that letter-balancedness (on all levels) implies factor-balancedness;
this was previously known only under the assumption that the substitutions have unimod-
ular incidence matrices [BCBD+21]. A particular case is that of a substitutive shift with a
proper substitution. Here, we cannot remove the assumption of properness, as for example

Date: November 24, 2022.
This work was supported by the Agence Nationale de la Recherche through the project CODYS (ANR-

18-CE40-0007).
1



the Thue–Morse shift is not factor-balanced [BCB19]; we give a short proof in Section 5.
For non-proper substitutions, we have to require balancedness for all factors of length 2, not
only for letters, in order to get factor-balancedness.

In Section 2, we define most of the notions and give a characterisation of letter-balancedness
in terms of the distance to a frequency vector. The effect of substitutions on balancedness
is studied in Section 3. Section 4 contains our main results, on sequences of substitutions.
Finally, we consider the balancedness of a particular class of S-adic languages in Section 5.

2. Balancedness

For a finite alphabet A, let A∗ be the set of finite words over A. A language is a subset
L ⊆ A∗. A word v ∈ A∗ is a factor of w ∈ A∗ if there exist p, s ∈ A∗ such that w = pvs;
here, p is a prefix and s is a suffix of w. We denote the set of factors of w by F(w), and the
set of factors of elements of L by F(L). A langage L is factorial if F(L) = L. The length of
a word w ∈ A∗ is denoted by |w|, i.e., |w| = n if w ∈ An. We denote the prefix (resp. suffix)
of length n of a word w by prefn(w) (resp. suffn(w)). The number of occurrences of a word v
in w, i.e., the number of different decompositions w = pvs, is denoted by |w|v. A language L
is called C-balanced w.r.t. v if

∣

∣|w|v − |w′|v
∣

∣ ≤ C for all w,w′ ∈ L with |w| = |w′|.

It is called C-balanced for length n if it is C-balanced for all v ∈ An. We often omit the C and
say that a language is balanced for length n if it is C-balanced for length n for some C ≥ 0.
Instead of “(C-)balanced for length 1”, we also say letter-(C-)balanced ; other papers use
the term “balanced” instead of letter-1-balanced or instead of letter-balanced, and a letter-
balanced language is sometimes called “finitely balanced”. A language is factor-(C-)balanced
if it is (C-)balanced for all lengths n ≥ 1. Note that factor-C-balancedness is a strong
property that is satisfied for certain Sturmian languages [FV02], but we do not study this
property here. We are only interested in factor-balancedness, which means that for each n
there exists Cn such that L is Cn-balanced for length n; equivalently, for each v ∈ F(L) there
exists Cv such that L is Cv-balanced w.r.t. v. (Note that |w|v = 0 for all w ∈ L, v /∈ F(L).)
We first show that balancedness for length n is the same as balancedness for lengths up to n.

Lemma 2.1. If a language is balanced for length n, then it is balanced for all lengths k ≤ n.

Proof. Let L ⊂ A∗ be C-balanced for length n, k < n. For all v ∈ Ak, w ∈ A∗, we have
|w|v =

∑

s∈An−k |w|vs+|suffn−1(w)|v, thus
∣

∣|w|v−|w′|v
∣

∣ ≤ (#A)n−kC+n−1 for w′ ∈ A|w|. �

We will also use the following characterisation of letter-balancedness in terms of distance
from the line defined by a frequency vector, cf. [BT02, Ada03].

Proposition 2.2. Let L ⊂ A∗ be an infinite letter-C-balanced factorial language. Then there
exists a (frequency) vector (fa)a∈A such that ||w|a − fa|w|| ≤ C for all a ∈ A, w ∈ L.

Proof. Since [0, 1]#A is compact, there exists a vector (fa)a∈A and a sequence of words vn ∈ L
such that limn→∞ |vn| = ∞ and limn→∞ |vn|a/|vn| = fa for all a ∈ A. For arbitrary but fixed
w ∈ L, set kn = ⌊|vn|/|w|⌋, and decompose vn = vn,1 · · · vn,knvn,kn+1 with |vn,i| = |w| for all
1 ≤ i ≤ kn. Since vn,i ∈ L, L is letter-C-balanced, and |vn,kn+1| < |w|, we obtain that
∣

∣

∣

∣

|w|a−
|vn|a
|vn|

|w|

∣

∣

∣

∣

=
|w|

|vn|

∣

∣

∣

∣

|vn|a−
|vn|

|w|
|w|a

∣

∣

∣

∣

<
|w|

|vn|

(

|w|+
kn
∑

i=1

∣

∣|vn,i|a−|w|a
∣

∣

)

≤
|w|2

|vn|
+

kn|w|

|vn|
C
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for all a ∈ A. Letting n → ∞, this gives that ||w|a − fa|w|| ≤ C. �

Lemma 2.3. Let L ⊂ A∗ and (fa)a∈A such that ||w|a − fa|w|| ≤ C for all a ∈ A, w ∈ L.
Then L is letter-(2C)-balanced.

Proof. We have ||w|a|−|w′|a| ≤ ||w|a−fa|w||+ |fa|w|−fa|w
′|| ≤ 2C for all w,w′ ∈ L, a ∈ A,

such that |w| = |w′|. �

3. Substitutions

In this section, we study how the application of a substitution influences balancedness.
Here, a substitution σ is a morphism from A∗ to B∗, with the operation of concatenation,
i.e., σ(vw) = σ(v)σ(w) for all v, w ∈ A∗. We use the notation

‖σ‖ := max
a∈A

|σ(a)|, 〈σ〉 := min
a∈A

|σ(a)|,

and call a substitution non-erasing if all images of letters are non-empty, i.e., 〈σ〉 ≥ 1. It is
left (resp. right) proper when all letter images start (resp. end) with the same letter.

To show that substitutions preserve balancedness, we use the following lemma.

Lemma 3.1. Let L ⊂ A∗ be a letter-C-balanced factorial language and σ : A∗ → B∗ a
substitution. Then, for all w,w′ ∈ F(σ(L)) with |w| = |w′|, there exist x, x′, z, z′ ∈ B∗,
y, y′ ∈ L, such that

w = xσ(y) z, w′ = x′ σ(y′) z′, |y| = |y′|, max{|x z|, |x′z′|} ≤ (2 + C#A) ‖σ‖ − 2.

Proof. Since w,w′ ∈ F(σ(L)) and L is factorial, we can write w = xσ(v) u and w = x′σ(v′) u′

with v, v′ ∈ L, u, u′, x, x′ ∈ A∗ such that |u|, |u′|, |x|, |x′| < ‖σ‖. Assume w.l.o.g. that
|v| ≤ |v′|, let y = v, v′ = y′s′ with |y′| = |y|, z = u, z′ = σ(s′) u′. Since L is factorial, we
have y, y′ ∈ L. Since L is letter-C-balanced, we have

∣

∣|σ(y)| − |σ(y′)|
∣

∣ ≤
∑

a∈A

|σ(a)|
∣

∣|y|a − |y′|a
∣

∣ ≤ (#A)C ‖σ‖,

thus

|x′z′| = |w′| − |σ(y′)| ≤ |w| − |σ(y)|+ (#A)C ‖σ‖ ≤ 2 (‖σ‖ − 1) + (#A)C ‖σ‖.

Therefore, w = xσ(y) z and w′ = x′ σ(y′) z′ satisfy all the required properties. �

Proposition 3.2. Let L ⊂ A∗ be a factorial language and σ : A∗ → B∗ a substitution. If L
is letter-balanced, then F(σ(L)) is letter-balanced.

Proof. Suppose that L is C-letter-balanced, and let w = xσ(y) z, w′ = x′ σ(y′) z′ be as in
Lemma 3.1. Then, for all b ∈ B,
∣

∣|w|b − |w′|b
∣

∣ ≤
∣

∣|xz|b − |x′z′|b
∣

∣+
∣

∣|σ(y)|b − |σ(y′)|b
∣

∣

≤ (2 + C#A) ‖σ‖ − 2 +
∑

a∈A

∣

∣|y|a − |y′|a
∣

∣ |σ(a)|b ≤ 2 (1 + C#A) ‖σ‖ − 2. �

To study balancedness for length n, we use the n-coding of a word a1a2 · · · aN ∈ AN ,
N ≥ 0, which is the word over the alphabet An defined by

(a1a2 · · ·aN )
(n) = (a1a2 · · · an)(a2a3 · · · an+1) · · · (aN−n+1aN−n+2 · · · aN) ∈ (An)N−n+1
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if N ≥ n, the empty word if N < n. Note that |w|v = |w(n)|v for all v ∈ An; in particular,
a language L is C-balanced for length n if and only if {w(n) : w ∈ L} is letter-C-balanced
(over the alphabet An).

Proposition 3.3. Let L ⊂ A∗ be a factorial language that is balanced for length n, σ :A∗→B∗

a substitution, and u ∈ B∗ a (possibly empty) word that is a prefix of σ(a)u for all a ∈ A or a
suffix of uσ(a) for all a ∈ A. Then F(σ(L)) is balanced for length minw∈L∩An−1 |σ(w)|+|u|+1.
In particular,

• F(σ(L)) is balanced for length n if σ is non-erasing,
• F(σ(L)) is balanced for length n+1 if σ is left or right proper.

Proof. Let L ⊂ A∗, σ : A∗ → B∗, u ∈ B∗ be as in the statement of the lemma, 1 ≤ m ≤
minw∈L∩An−1 |σ(w)|+|u|+1. Assume w.l.o.g. that u is a prefix of σ(a)u for all a ∈ A, the
suffix case being symmetric. We define a substitution σ̂ : (An ∩ L)∗ → (Bm)∗ by setting

σ̂(a1a2 · · · an) :=
(

σ(a1)prefm−1(σ(a2 · · · an)u)
)(m)

for a1 · · · an ∈ An ∩ L.

(Here, the alphabet is An ∩ L). Then we have, for all w ∈ L,

(3.1)
(

σ(w)u
)(m)

= σ̂
(

w(n)
) (

σ(suffn−1(w))u
)(m)

.

Let Cn be such that L is Cn-balanced for length n. By Lemma 2.1, L is letter-C1-balanced
for some C1 ≥ 0. Let w,w′ ∈ F(σ(L)) with |w| = |w′|, and write w = xσ(y) z, w′ = x′ σ(y′) z′

as in Lemma 3.1. By (3.1), we have

(wu)(m) =
(

x prefm−1(σ(y)u)
)(m)

σ̂
(

y(n)
) (

σ(suffn−1(y))z)u
)(m)

.

Using a similar decomposition for (w′u)(m), we obtain for v ∈ Bm that
∣

∣|w|v − |w′|v
∣

∣ ≤ max
{

|xz|, |x′z′|
}

+ (n− 1)‖σ‖+
∑

t∈An∩L

∣

∣|y|t − |y′|t
∣

∣

∣

∣σ̂(t)
∣

∣

v

≤ ((#A)C1 + 2)‖σ‖ − 2 + (n− 1)‖σ‖+ (#A)n−1Cn ‖σ‖.

Here, we have used that |w|v = |w(m)|v, that L is Cn-balanced for length n, and that
|σ̂(a1 · · · an)| = |σ(a1)| for a1 · · · an ∈ An ∩ L. This proves that F(σ(L)) is balanced for
length minw∈L∩An−1 |σ(w)|+|u|+1. If σ is non-erasing, then |σ(w)| ≥ n− 1 for all w ∈ An−1,
thus F(σ(L)) is balanced for length n. If σ is left or right proper, then σ is non-erasing and
|u| ≥ 1, thus F(σ(L)) is balanced for length n+1. �

Theorem 3.4. Let L ⊂ A∗ be a factorial language and σ : A∗ → B∗ a substitution. If L is
factor-balanced, then F(σ(L)) is factor-balanced.

Proof. For non-erasing σ, the theorem is a direct consequence of Proposition 3.3. If F(σ(L))
is finite, then it is also factor-balanced. If F(σ(L)) is infinite, then there exists a ∈ A
such that |σ(a)| ≥ 1 and {|w|a : w ∈ L} is unbounded. If L is letter-C-balanced, then
Proposition 2.2 gives some fa ≥ 0 such that |w|a ≥ fa|w| − C and thus |σ(w)| ≥ fa|w| − C
for all w ∈ L. By Proposition 3.3, balancedness of L for length n implies balancedness of
F(σ(L)) for length fa (n−1)−C+1. Note that fa > 0 since |w|a ≤ fa|w| + C and |w|a is
unbounded. Therefore, factor-balancedness of L implies that of F(σ(L)). �
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Sometimes it is also possible to infer letter-balancedness of L from that of F(σ(L)). Here,
the incidence matrix of a substitution σ : A∗ → B∗ is

Mσ := (|σ(a)|b)b∈B,a∈A.

Proposition 3.5. Let L ⊂ A∗ be a factorial language, σ : A∗ → B∗ a substitution with
invertible incidence matrix Mσ. If F(σ(L)) is letter-balanced, then L is letter-balanced.

Proof. If F(σ(L)) is letter-C-balanced, then Proposition 2.2 gives a vector (fb)b∈B such that
||σ(w)|b − fb |σ(w)|| ≤ C for all b ∈ B, w ∈ L. Since Mσ is invertible, we can set (f ′

a)a∈A :=
M−1

σ (fb)b∈B. As |σ(w)|b =
∑

a∈A |w|a |σ(a)|b, we obtain that
∣

∣

∑

a∈A |σ(a)|b (|w|a− |w|f ′
a)
∣

∣ ≤
C for all b ∈ B, w ∈ L. Then the invertibility of Mσ implies that there exists C ′ such that
||w|a−f ′

a|w|| ≤ C ′ for all w ∈ L, a ∈ A. Hence, by Lemma 2.3, L is letter-(2C ′)-balanced. �

4. S-adic languages

Now, we consider sequences of substitutions σ = (σk)k≥0, σk : A∗
k+1 → A∗

k. We set

σ[k,n) := σk ◦ σk+1 ◦ · · · ◦ σn−1,

for n ≥ k ≥ 0; then σ[k,n) is a substitution from A∗
n to A∗

k. The language of σ at level k is
defined by

L(k)
σ

:=
{

w ∈ A∗
k : w ∈ F(σ[k,n)(An)) for infinitely many n > k

}

,

and Lσ := L
(0)
σ . In other papers, the requirement for infinitely many n > k is replaced by

“some n > k”; this can change the language only if a letter of Am does not occur in σm. Our
definition ensures that

F
(

σ[k,n)(L
(n)
σ

)
)

= L(k)
σ

for all n ≥ k ≥ 0.

A sequence of substitutions (σk)k≥0 is everywhere growing if limk→∞〈σ[0,k)〉 = ∞. It is
left (resp. right) proper when for each k ≥ 0 there exists n > k such that σ[k,n) is left
(resp. right) proper. The following theorem was proved in [BCBD+21, Corollary 5.5] for
unimodular incidence matrices, i.e., |detMσk

| = 1 for all k ≥ 0.

Theorem 4.1. Let σ be a left or right proper sequence of substitutions. If L
(k)
σ is letter-

balanced for infinitely many k, then Lσ is factor-balanced.

Proof. Assume that L
(k)
σ is letter-balanced for infinitely many k, which implies that it is

letter-balanced for all k by Proposition 3.2. Since σ is left or right proper, there exist
0 = k0 < k1 < k2 < · · · such that σ[ki,ki+1) is left or right proper for all i ≥ 0. Therefore, by
Proposition 3.3, Lσ is balanced for all lengths n ≥ 1. �

The following corollary is the particular case of Theorem 4.1 with constant sequence σ =
(σ, σ, . . . ) for some substitution σ : A∗ → A∗; we write σ∞ for (σ, σ, . . . ). The language of a
substitution is Lσ := Lσ∞ (and consists of those w ∈ A∗ that are in F(σn(A)) infinitely often).

Corollary 4.2. Let σ : A∗ → A∗ be a substitution such that σk is left or right proper for
some k ≥ 1. If Lσ is letter-balanced, then Lσ is factor-balanced.

For invertible incidence matrices, letter-balancedness at level 0 implies letter-balancedness
at all levels by Proposition 3.5, which gives the following corollary of Theorem 4.1.
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Corollary 4.3. Let σ = (σk)k≥0 be a left or right proper sequence of substitutions with invert-
ible incidence matrix Mσk

for all k ≥ 0. If Lσ is letter-balanced, then Lσ is factor-balanced.

If σ is not proper, then we need balancedness for length 2 to infer factor-balancedness.

Theorem 4.4. Let σ be an everywhere growing sequence of substitutions such that L
(k)
σ is

balanced for length 2 for infinitely many k. Then Lσ is factor-balanced.

Proof. By Proposition 3.3, balancedness of L
(k)
σ for length 2 implies balancedness of Lσ for

length 〈σ[0,k)〉+1. Since σ is everywhere growing, this implies that Lσ is factor-balanced. �

For primitive substitutions σ, a sufficient condition for balancedness for length n of Lσ is
given in [Ada03, Theorem 22], and it indicates that balancedness for length 2 and factor-
balancedness are closely related; see also [Que10, Section 5.4.3]. We prove that balancedness
for length 2 implies factor-balancedness for most substitutions.

Corollary 4.5. Let σ : A∗ → A∗ be an everywhere growing substitution. If Lσ is balanced
for length 2, then Lσ is factor-balanced.

We remark that, in Theorem 4.1, Corollary 4.3 and Theorem 4.4, factor-balancedness

holds not only for Lσ but for all L
(k)
σ , k ≥ 0.

5. Thue–Morse–Sturmian languages

We conclude the paper by studying a special class of sequences of substitutions that occurs
naturally in [Ste20, KSZ22]. A language Lσ, σ ∈ {L,M,R}∞, with substitutions

L : 0 7→ 0, M : 0 7→ 01, R : 0 7→ 01,

1 7→ 10, 1 7→ 10, 1 7→ 1,

is Thue–Morse–Sturmian if σ is primitive. Recall that a sequence of substitutions (σn)n≥0

is primitive if, for each k ≥ 0, there exists n > k such that |σ[k,n)(a)|b ≥ 1 for all a ∈ An,
b ∈ Bk; in the case of σ ∈ {L,M,R}∞, this means that σ does not end with the constant
sequence L∞ or R∞. However, the following results also hold for non-primitive sequences.

Proposition 5.1. For all σ ∈ {L,M,R}∞, Lσ is letter-2-balanced.

Proof. For σ = (σk)k≥0 ∈ {L,M,R}∞ \ {L,R}∞, let n ≥ 1 be minimal such that σn = M .
We claim that F(σ[0,n)({01, 10}

∗)) is letter-2-balanced. Indeed, we have σ[0,n)(01) = 01w
and σ[0,n)(10) = 10w for some w ∈ {0, 1}∗. (This property is trivial for σ[n,n) and can be
shown inductively for σ[k,n), 0 ≤ k < n, since σk ∈ {L,R}.) Let v, v′ ∈ F(σ[0,n)({01, 10}

∗))
with |v| = |v′|. If |v| ≥ |w|+3 then we can write v = pus, v′ = p′u′s′ such that |u|0 =
|u′|0 = |w|0+1, |u|1 = |u′|1 = |w|1+1 and ps, p′s′ ∈ F(σ[0,n)({01, 10}

∗)). Since |ps| = |p′s′|
and |ps|0 − |p′s′|0 = |v|0 − |v′|0, it is sufficient to consider |v| ≤ |w|+2. If |v| ≤ |w|+1,
then v, v′ ∈ F(σ[0,n)({01}

∗)), and it is well known that this language is letter-1-balanced; see
[Lot02, Chapter 2]. For |v| = |w|+2, we have |v|0 = |w|0+1 or v ∈ {0w0, 1w1}. Therefore,
F(σ[0,n)({01, 10}

∗)) and thus Lσ are letter-2-balanced.
Let now σ ∈ {L,R}∞. If σ contains infinitely many L’s and R’s, then Lσ is Sturmian and

thus letter-2-balanced; see e.g. [Lot02, Chapter 2]. Since Ln(0)= 0, Ln(1)=10n, Rn(0)=01n,
Rn(1)= 1, for all n≥ 0, the languages LL∞ and LR∞ are also letter-1-balanced. Finally, if
σn = L, σk = R for all k > n, or σn = R, σk = L for all k > n, then Lσ = F(σ[0,n)({01}

∗)),
which is again letter-1-balanced. �
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For a characterisation of factor-balancedness of Thue–Morse–Sturmian languages, we need
the following lemma in order to show that applying any composition of substitutions L,M,R
to the Thue–Morse language, which is not factor-balanced, does not create a factor-balanced
language. More precisely, we show for σ ∈ {L,M,R}∗ that σ(011) occurs only trivially in
σ(w), w ∈ LM∞ . Here, {L,M,R}∗ is the set of compositions of substitutions in L,M,R.

Lemma 5.2. Let σ ∈ {L,M,R}∗, a, b ∈ {0, 1}, p, s, v ∈ {0, 1}∗, k ≥ 1, such that

σ(avb) = p σ(01k) s,

p is a strict prefix of σ(a) and s is a strict suffix of σ(b). Then avb = 01k (and p, s are empty)
or avb = 1k+1 (and s is empty).

Proof. The statement is clearly true when σ is the identity. For σ = σ0 ◦ σ1 ◦ · · · ◦ σn,
σi ∈ {L,M,R}, we prove the statement by induction on n.

Let first σn = L. Then we have

σ[0,n)(L(avb)) = p σ[0,n)(0(10)
n) s and 11 /∈ F(L(avb)).

If p is a strict prefix of σ[0,n)(a), in particular if a = 0, then σ[0,n)(av
′b′) = p σ[0,n)(01) s

′ for a
prefix av′b′ of L(avb) and a strict suffix s′ of σ[0,n)(b

′). By the induction hypothesis and since
11 6∈ F(L(av′b′)), this implies that p is empty. Since σ[0,n)(0) starts with 0 and σ[0,n)(1) starts
with 1, we obtain that L(avb) = 0(10)n and thus avb = 01n. If a = 1 and p = σ[0,n)(1) p

′, then
σ[0,n)(0v

′b′) = p′σ[0,n)(01) s
′ for a prefix 10v′b′ of L(1vb) and a strict suffix s′ of σ[0,n)(b

′). Now,
the induction hypothesis implies that p′ is empty, thus L(avb) = (10)n+1, i.e., avb = 1n+1.

Let now σn = M . Then we have

σ[0,n)(M(avb)) = p σ[0,n)(01(10)
n) s and 111 /∈ F(M(avb)).

If p is a strict prefix of σ[0,n)(a), then σ[0,n)(av
′b′) = p σ[0,n)(011) s

′, hence p is empty, and
avb = 01n. If a = 1 and p = σ[0,n)(1) p

′, then we obtain that avb = 1n+1. If a = 0 and
p = σ[0,n)(0) p

′, then σ[0,n)(1v
′b′) = p′σ[0,n)(011) s

′, hence p′ is empty, which contradicts that
σ[0,n)(1) and σ[0,n)(0) start with different letters.

Finally, let σn = R. Then we have

σ[0,n)(R(avb)) = p σ[0,n)(01
n+1) s and 1n+2 /∈ F(R(avb)).

If p is a strict prefix of σ[0,n)(a), then R(avb) = 01n+1, thus avb = 01n. Otherwise, we have
a = 0 and p = σ[0,n)(0) p

′, thus σ[0,n)(1v
′b′) = p′σ[0,n)(01

n+1) s′, hence p′ is empty, which
contradicts that σ[0,n)(1) and σ[0,n)(0) start with different letters. �

Theorem 5.3. Let σ = (σk)k≥0 ∈ {L,M,R}∞. Then Lσ is factor-balanced if and only if
σk 6= M for infinitely many k.

Proof. By Proposition 5.1, L
(k)
σ is letter-balanced for all k ≥ 0. If σ does not end with M∞,

then it is right proper. If σ also does not end with L∞ or R∞, then it is everywhere growing,
and we can apply Theorem 4.1. If σ ends with LR∞ or RL∞, then we have seen in the proof
of Proposition 5.1 that Lσ = F(σ({01}∗)) for some σ ∈ {L,M,R}∗, which is factor-balanced.
The case of LL∞ and LR∞ is similar.

Consider now σ ending with M∞. We first give a short direct proof that the Thue–Morse
language LM∞ is not balanced for length 2; a more general proof was given in [BCB19]. To
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this end, define recursively words wn, w
′
n ∈ LM∞ of length (4n+2)/3 by

w1 = 00, M2(w2n−1) = 0w2n 0, M2(w2n) = 1w2n+1 1,

w′
1 = 01, M2(w′

2n−1) = w′
2n 01, M2(w′

2n) = w′
2n+1 10.

Then we have (w1)
(2) = (00), (w′

1)
(2) = (01),

M2
2 ((w2n−1)

(2)) (01)(11) = (01) (w2n)
(2), M2

2 ((w2n)
(2)) (10)(00) = (10) (w2n+1)

(2),

M2
2 ((w

′
2n−1)

(2)) (10) = (w′
2n)

(2), M2
2 ((w

′
2n)

(2)) (01) = (w′
2n+1)

(2),

with the substitution

M2 : ({0, 1}
2)∗ → ({0, 1}2)∗,

(00) 7→ (01)(10), (01) 7→ (01)(11),
(10) 7→ (10)(00), (11) 7→ (10)(01).

Using the abelianizations

ℓ2(w) =









|w|00
|w|01
|w|10
|w|11









, MM2
=

(

|M2(cd)|ab)ab,cd∈{00,01,10,11} =









0 0 1 0
1 1 0 1
1 0 1 1
0 1 0 0









,

we obtain that

ℓ2(w2n) = M2
M2

ℓ2(w2n−1) + ℓ2(11), ℓ2(w2n+1) = M2
M2

ℓ2(w2n) + ℓ2(00),

ℓ2(w
′
2n) = M2

M2
ℓ2(w

′
2n−1) + ℓ2(10), ℓ2(w

′
2n+1) = M2

M2
ℓ2(w

′
2n) + ℓ2(00).

The right eigenvectors of MM2
(to the eigenvalues 2,−1, 0, 1) are

v2 =









1
2
2
1









, v−1 =









1
−1
−1
1









, v0 =









1
0
0
−1









, v1 =









1
−1
1
−1









,

thus

ℓ2(w2n) =
42n − 1

18
v2 +

2n

3
v−1 −

1

2
v0 and ℓ2(w

′
2n) =

42n − 1

18
v2 −

2n

6
v−1 −

1

2
v0,

hence ℓ2(w2n)− ℓ2(w
′
2n) = nv−1, i.e.,

|w2n|00 − |w′
2n|00 = |w′

2n|01 − |w2n|01 = |w′
2n|10 − |w2n|10 = |w2n|11 − |w′

2n|11 = n.

To finish the proof of the theorem, we have to show that F(σ(LM∞)) is not factor-balanced
for all σ ∈ {L,M,R}∗. Since 111 /∈ LM∞ , Lemma 5.2 implies that |σ(w)|σ(011) = |w|011 for
all w ∈ LM∞, and we clearly have 0 ≤ |w|11 − |w|011 ≤ 1. Therefore, we have

∣

∣|σ(w)|σ(011) − |σ(w′)|σ(011)
∣

∣ ≥
∣

∣|w|11 − |w′|11
∣

∣− 1

for all w,w′ ∈ LM∞ . Since |w|11 − |w′|11 is unbounded for w,w′ ∈ LM∞ with |w| = |w′|, it is
also unbounded when we restrict to w,w′ with |w|0 = |w′|0 (and |w|1 = |w|′1). Then we have
|σ(w)| = |σ(w′)|, thus σ(LM∞) is not balanced for length |σ(011)|. �

We remark that, by Proposition 3.3, F(σ ◦ L(LM∞)) is balanced for length |σ(0)| + 1
for any substitution σ. On the other hand, we have seen in the proof of Theorem 5.3 that
F(σ ◦ L(LM∞)) is not balanced for length |σ(01010)| for any substitution σ ∈ {L,M,R}∗.
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[BT02] V. Berthé and R. Tijdeman, Balance properties of multi-dimensional words, Theoret. Comput.

Sci. 273 (2002), no. 1-2, 197–224.
[FV02] I. Fagnot and L. Vuillon, Generalized balances in Sturmian words, Discrete Appl. Math. 121

(2002), no. 1-3, 83–101.
[KSZ22] V. Komornik, W. Steiner, and Y. Zou, Unique double base expansions, 2022, arXiv:2209.02373.
[Lot02] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applica-

tions, vol. 90, Cambridge University Press, Cambridge, 2002.
[MH40] M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62

(1940), 1–42.
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