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Exponential Bipartite Containment Tracking over Multi-leader
Coopetition Networks

Pelin Sekercioglu Elena Panteley Ioannis Sarras Antonio Lorı́a Julien Marzat

Abstract— This paper addresses the distributed bipartite
containment tracking-control problem for autonomous vehicles
steered by multiple leaders. Some leaders are cooperative
and others are competitive, so the vehicles form a so-called
coopetition network; in which the interaction links may be
negative or positive. The presence of cooperative and antag-
onistic leaders does not enable the system to achieve consensus.
Instead, the followers’ states converge to a residual compact set,
not predefined, but depending only on the leaders’ states. We
establish global exponential stability for this so-called bipartite
containment set, and we compute the exact equilibria to which
all agents converge inside of it. Our proofs are constructive,
that is, we provide strict Lyapunov functions, which also allow
us to establish robustness with respect to external disturbances.
Numerical simulations illustrate our theoretical findings.

I. INTRODUCTION

Coordination of multi-agent networks has received consid-
erable attention due to multiple potential applications in engi-
neering and social sciences [1]. A large number of consensus
problems have been extensively studied, e.g., for first-order,
second-order, and for linear high-order dynamics [2]. In
particular, when the network contains a leader, all followers
converge to the leader’s states and achieve consensus. On the
other hand, when the network contains more than one leader,
it is impossible to achieve classical consensus and it appears
more appropriate to speak of containment control [3]. The
latter consists in making all followers’ states converge to the
convex hull determined only by leaders’ initial conditions.

There are various studies on distributed containment con-
trol, e.g., for social networks [4] or for networks of single-
integrators [5], double-integrators [6], and general linear
autonomous systems [7]. Yet, most of the current research
on the consensus or containment problems for multi-agent
systems focus on cooperative networks, i.e., the interactions
between nodes are characterised only by non-negative edge
weights, although there are many scenarii in which agents
may compete. These may appear, e.g., in robotics, in the
context of herding control [8], in aerospace applications
involving control of multiple satellites that must face debris
represented as non-cooperative agents, or in the context
of social networks that include trust/distrust relationship
between agents [9]. The latter reference extends the notion of
consensus to networks containing antagonistic interactions,
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and provides a general graph-theory-based framework to deal
with signed networks, also called coopetition networks [10].
In this case, the edge weights may be either positive or
negative and at least two consensus equilibria appear—we
speak of bipartite consensus [9]. In the case of networks with
multiple cooperative and antagonistic leaders, the overall
behavior is even more complex [11] and more than two
consensus equilibria may appear [12].

To analyse the complex behavior of multi-leader coopeti-
tion networks, in [13] the notion of containment control is
extended to bipartite containment tracking-control. The latter
consists in making all followers converge to the geometric
space spanned by all the leaders’ trajectories and their
mirrored counterparts. Bipartite containment has been also
studied in [14], [15], where the followers converge asymp-
totically into the convex hull, determined by leaders’ initial
conditions, but only in [13] limit points for the followers’
states are given explicitly. In [14], only cooperative leaders
are considered, so they do not apply to scenarii involving,
for example, obstacle avoidance, where an obstacle may be
considered as a competitive leader.

In this paper, we study the bipartite containment tracking
problem presented in [13] over structurally balanced multi-
leader coopetition networks described by first-order systems,
and we provide the exact equilibrium points for the followers.
Our main contribution is to establish exponential stability of
the containment set, and ensure robustness with respect to
additive perturbations. On the other hand, in contrast to all
references mentioned previously, our proofs are constructive;
we provide a strict Lyapunov function. Exponential stability
is a stronger property than the convergence to the interior of
a containment set and provides a basis to establish input-to-
state stability (ISS).

Our contributions are based on the framework introduced
in [16]. We recast the bipartite containment problem into a
problem of stability of a set of the appropriately defined
errors. Then, we extend the main results of [17] which
provides a Lyapunov characterisation for matrices admitting
one zero eigenvalue and others having negative real part. We
extend this result to the case of matrices admitting multiple
zero eigenvalues and by that we establish global exponential
stability of the bipartite containment set. Furthermore, we
give the explicit limit values of followers by constructing a
matrix determined by all eigenvectors associated to the zero
eigenvalues.



II. PROBLEM FORMULATION

Consider a group of n dynamical systems modeled by

ẋi = ui, xi, ui ∈ R, i ∈ IN (1)

where IN := {1, 2, . . . , n} and, for notational simplicity and
without loss of generality, we assume that xi ∈ R. It is well-
known that under the distributed control law

ui = −
n∑
j=1

aij(xi − xj), (2)

where aij ∈ R≥0 is the adjacency weight between the nodes
i and j, the consensus problem, that is,

lim
t→∞

[xj(t)− xi(t)] = 0 ∀ i, j ≤ n, (3)

is solved if and only if the underlying graph contains a
directed spanning tree. More precisely, aij > 0 if there is
a directed interconnection from the ith node to the jth node,
aij = 0 if there is not, and there exists at least one node
from which any other node may be reached. Moreover, the
consensus equilibrium may be computed explicitly. Indeed, if
there exists a directed spanning tree, the resulting Laplacian
matrix, L := [`ij ] ∈ RN×N , where

`ij =

{ ∑
k∈IN

aik i = j

−aij i 6= j,
(4)

has exactly one zero eigenvalue. Thus, the consensus equi-
librium xm is uniquely calculated by the left eigenvector vl
associated to that eigenvalue, xm := v>l x(0). Furthermore,
a strict Lyapunov function can be constructed to establish
exponential stability of the origin in the space of the syn-
chronisation errors e := x− vrxm [17], where vr is the right
eigenvector associated to the zero eigenvalue.

In the case of a network containing nodes with interactions
that can be either cooperative, such that aij > 0 for some i,
j ≤ n or competitive, such that, aij < 0 for some i, j ≤ n,
the distributed consensus control law (2) becomes

ui = −
n∑
j=1

|aij |(xi − sgn(aij)xj), (5)

and the elements of the associated Laplacian matrix are

`ij =

{ ∑
k∈IN

|aik| i = j

−aij . i 6= j.
(6)

Agents on a directed coopetition network with a leader or a
directed spanning tree achieve bipartite consensus, under the
distributed control law (5), if and only if the underlying graph
is structurally balanced [9]. A signed graph is structurally
balanced if it may be split into two disjoint sets of vertices
V1 and V2, where V1 ∪ V2 = V,V1 ∩ V2 = 0 such that
for every i, j ∈ Vp, p ∈ [1, 2] if aij ≥ 0 while for every
i ∈ Vp, j ∈ Vq, p, q ∈ [1, 2], p 6= q if aij ≤ 0. It is
structurally unbalanced, otherwise. The Laplacian matrix of
a structurally balanced graph has a unique zero eigenvalue
[9] and the associated right eigenvector has all entries

equal to ±1, thereby agents converge to the same state in
modulus but different in signs. In such networks, moreover,
several antagonistic agents, described as competitive leaders,
that inject disinformation into the network may appear. In
this particular case, agents can no longer achieve bipartite
consensus. Instead, they can achieve bipartite containment
[13], where followers converge to the convex hull spanned by
all cooperative leaders’ trajectories and competitive leaders’
mirrored trajectories. More precisely, the achievable objec-
tive is bipartite containment tracking, that is,

lim
t→∞

[|xj(t)| −max
i∈L
|xi(t)|] ≤ 0, j ∈ F , (7)

which is the problem solved, e.g., in [13]– [15], where L
and F are sets of leader and follower nodes respectively.

In this paper we analyse the behavior of the networked
systems (1) in closed loop with the distributed control law (5)
and under the assumption that multiple leaders (cooperative
and competitive) interfere. Beyond the inequality in (7),
commonly found in the literature—cf. [13], we give the
explicit limit values of the followers’ states depending only
on the initial conditions of the leaders. To that end, we pose
the following

Standing Assumption:
1) the signed graph is structurally balanced;
2) there are m leaders such that 1 ≤ m ≤ n;
3) given each follower νj ,∀j ∈ F with
F := {m+ 1,m+ 2, . . . , n}, there exists at least one
leader νi,∀i ∈ L with L := {1, 2, . . . ,m}, such that
there exists at least one path from νi to νj —cf. [13,
Condition 1].

In the case of a network containing only one leader, the
Standing Assumption boils down to the necessary condi-
tion for consensus that requires the existence of a directed
spanning tree. As the networks considered here contain, a
priori, more than one leader, the resulting Laplacian matrix
has as many zero eigenvalues and associated eigenvectors
as the number of leaders [18]. This also results in multiple
convergence points for the agents. Therefore, in contrast to
the consensus equilibrium xm = v>l x(0) for networks with
one leader, the final states of the agents, for multi-leader
networks, are determined by all eigenvectors associated to
the zero eigenvalues. One of this paper’s contributions is
to show that under the control law (5) and the Standing
Assumption, the limit-values of the agents are given by

xm := Vx, (8)

in which V is a matrix determined by all the eigenvectors
associated to the m zero eigenvalues of the Laplacian matrix.
More precisely, the matrix V is given by

V :=

m∑
i=1


vri,1
vri,2

...
vri,n

 [vli,1 vli,2 . . . vli,n
]
, (9)

where for each j ∈ IN , vri,j and vli,j denote, respectively,
the jth element of the ith right and left eigenvector of



the Laplacian matrix corresponding to the ith 0 eigenvalue.
We will demonstrate further below, the properties of the
terms of the right and left eigenvectors. Considering these,
we establish bipartite containment of the system and, more
significantly, that x→ xm exponentially.

III. ANALYSIS APPROACH

Our main results are based on original technical statements
for networks having an associated Laplacian matrix with
multiple null eigenvalues. These are of two kinds. First, we
follow the framework brought in [16], and we show how
to construct the matrix V in (8), which defines the average
states of the agents. Then, we extend the method of [17]
on constructing strict Lyapunov functions for linear systems
with a simple zero eigenvalue, to the case of multiple zero
eigenvalues. To that end, we recall the following definition
from [18] to introduce some useful sets of vertices in a graph.

Definition 1: A set R of vertices in a graph is called a
reach if it is a maximal reachable set that consists in a leader
and its followers. For each reach Ri of a graph, we define
the exclusive part of Ri to be the set Hi = Ri\

⋃
j 6=iRj ,

that is, the set of followers influenced only by the leader i,
and the common part of Ri to be the set Ci = Ri\Hi, that
is, the set of followers influenced by other leaders than the
ith one.

The following statement, which is an original contribution
of this paper, extends Corollary 4.2 of [18] to the case
of structurally balanced signed networks and leads to the
construction of the matrix V.

Lemma 1: Let G denote a structurally balanced directed
signed graph, and let L denote the associated Laplacian
matrix. Suppose G has n vertices and m reaches. Then the
algebraic and geometric multiplicity of the eigenvalue 0 is
equal to m. Furthermore, the associated eigenspace in Rn
has as basis {vr1 , vr2 , . . . , vrm}, where

1) vri,j = 0 for j /∈ Ri,

2) vri,j =

{
1, if (νj , νi) ∈ V1
−1, if νj ∈ V1, νi ∈ V2

for j ∈ Hi,

3) vri,j ∈

{
(0, 1), if (νj , νi) ∈ V1
(−1, 0), if νj ∈ V1, νi ∈ V2

for j ∈ Ci,

4)
∑
j |vri | = 1n,

V1 and V2 are the two disjoint sets of vertices, i ∈ IM :=
{1, 2, . . . ,m}, j ∈ IN , and vri,j denotes the jth element of
vri .

Sketch of Proof: The statement follows by applying
a gauge transformation, which consists in a change of
coordinates performed by the matrix D = diag(σ), where
σ = [σ1, ..., σn], σj ∈ {1,−1}, j ∈ IN [9], on structurally
balanced signed networks, to transform them into unsigned
graphs and following along the lines of the proof in [18]. �

As the m leaders have no incoming edges, the Laplacian
matrix has all entries equal to 0 for its first m rows. Then,
we obtain the following form for the m left eigenvectors
associated to the zero eigenvalues:

vli,j =

{
1 i = j
0 i 6= j

∀i ∈ IM,∀j ∈ IN . (10)

Hence, we can split V in four block as follows:

V =

m∑
i=1

vriv
>
li =

[
Vl V01
Vf V02

]
, (11)

where Vl ∈ Rm×m represents the leaders’ interactions,
Vf ∈ R(n−m)×m represents the leader-follower interactions
and V01 ∈ Rm×(n−m) and V02 ∈ R(n−m)×(n−m) are null.
More precisely, from (10), we have

Vl =

 vr1,1vl1,1
. . .

vrm,m
vlm,m

 = Im×m, (12a)

Vf =

vr1,m+1
. . . vrm,m+1

...
...

...
vr1,n . . . vrm,n

 , (12b)

so V has the following particular form

V =

[
Im×m 0m×(n−m)

Vf 0(n−m)×(n−m)

]
. (13)

Notice that in view of (12b) the elements of Vf have the
same properties as the basis defined in Lemma 1. This is
significant because Vf is the matrix that defines the limit
points of the followers as x → xm, where xm is defined
by (8). Moreover, the followers’ states may be influenced by
other followers’ states during their trajectories depending on
the network’s topology, but it follows from (8) that the final
states of the followers are defined only by the leaders’ states.

Now, similarly to the case of networks with one
leader, where the error is defined as e := x− vrxm, with
xm := v>l x, for multi-leader coopetition networks, we define
the consensus errors as

e := [I − V]x. (14)

Then, to establish that x→ xm and, consequently, the bipar-
tite containment objective defined by (7), we will prove the
stronger property of global exponential stability of the set
{e = 0}. For that, we shall show how to construct strict—in
the space of e— Lyapunov functions, based on the following
proposition, which is another original contribution of this
paper and extends Proposition 1 of [17] to the case of signed
networks with multiple leaders.

Proposition 1: Let G be a structurally balanced directed
signed network containing multiple leaders. Then, the fol-
lowing are equivalent:

(i) the graph has m leaders, and given each follower
νj ,∀j ∈ F , there exists at least one leader νi,∀i ∈ L
such that there exists at least one path from νi to νj ,

(ii) for any Q ∈ RN×N , Q = Q> > 0 and for any αi > 0,
there exists a matrix P (αi) ∈ RN×N , P = P> > 0
such that

PL+ L>P = Q−
m∑
i=1

αi(Pvriv
>
li + vliv

>
riP ), (15)

where vri, vli ∈ R are the right and left eigenvectors
of L associated with the ith 0 eigenvalue.



Proof: (i) ⇒ (ii): By assumption, the graph G has
m leaders. Then, from Lemma 1, it follows that L has m
zero eigenvalues: 0 = λ1 = · · · = λm < <e(λm+1) ≤
· · · ≤ <e(λn). Following the lines the proof of Lemma
2 of [17], we write the Jordan decomposition of L as
L = UΛU−1 =

∑m
i=1 λi(L)vriv

>
li + U1Λ1U

†
1 with Λ1 ∈

Cn−m×n−m, U =
[
vr1 . . . vrm U1

]
∈ Cn×n, and

U−1 =
[
v>l1 . . . v>lm U†1

]>
∈ Cn×n. For any αi > 0

define R(αi) = L+
∑m
i=1 αivriv

>
li . From this decomposition

and the properties of Λ1, <e{λj(R)} > 0 for all j ≤ n.
−R(αi) is Hurwitz, therefore for any Q = Q> > 0 and
αi > 0, i ≤ m, there exists P = P> > 0 such that

− P (L+

m∑
i=1

αivriv
>
li )− (L+

m∑
i=1

αivriv
>
li )
>P = −Q.

Then, we obtain the equation in (15).
(ii) ⇒ (i): Let statement (ii) hold and and assume

that the Laplacian matrix has m + 1 zero eigenvalues.
In view of Lemma 1, the assumption that the system
has m leaders does not hold. Now, the Jordan decom-
position of L has the form L =

∑m+1
i=1 λi(L)vriv

>
li +

U1Λ1U
†
1 with U =

[
vr1 . . . vrm+1

U1

]
and U−1 =[

v>l1 . . . v>lm+1
U†1

]>
. Next let us consider R(αi) =

L+
∑m
i=1 αivriv

>
li which admits the Jordan decomposition

R := UΛRU
−1, where

ΛR :=


α1

. . .
αm

0
Λ1

 .
Clearly, R is not positive definite beause one of its eigen-

values is equal to zero. Then, there exists a matrix Q = Q>

for which there does not exist a matrix P = P> such that
−PR−R>P = −Q, which contradicts statement (ii).

IV. MAIN RESULTS

In this section, we will present our main results on
first-order systems and we will establish robustness of the
bipartite containment tracking in the sense of ISS, with
respect to external bounded perturbations.

A. Exponential Stability

Consider the system (1), interconnected with the bipartite
containment control law (5). We analyse the dynamics of the
errors (14). Differentiating the latter on both sides, to obtain

ė = [I − V]ẋ (16)

and using (1) and (5), we obtain the closed-loop dynamical
equations

ė = −Le. (17)

The bipartite containment problem is now recast as a problem
of stability analysis of the dynamical system (17). Thus, re-
lying on Proposition 1, our next statement provides sufficient
conditions to achieve global exponential stability of the set

{e = 0}, which is equivalent to the bipartite containment
tracking objective (7).

Proposition 2: Consider the system (1) with the bipartite
containment control law (5). Under the standing assumption,
for any Q = Q> > 0 there exists P = P> > 0 such that

V (e) = e>Pe, V̇ (e) = −e>Qe. (18)

Then, the consensus set {e = 0} is exponentially stable for
all initial state x ∈ RnN .

Proof: Let Q = Q> > 0 and α > 0 be arbitrarily
fixed. Since by the standing assumption, by Proposition 1,
∃P = P> > 0 such that (15) holds. Then, consider the
Lyapunov function candidate V (e) := e>Pe. The total time
derivative of V along the trajectories yields

V̇ (e) = −e>Qe+ e>
m∑
i=1

αi(Pvriv
>
li + vliv

>
riP )e.

On the other hand, replacing (14) we obtain
m∑
i=1

αiPvriv
>
li e =

m∑
i=1

αiPvriv
>
li [I −

m∑
i=1

vriv
>
li ]x

=

m∑
i=1

αi(Pvriv
>
li − Pvriv>li )x = 0

for which we used the identity v>li vri = 1, i ≤ m. Similarly,
we obtain e>

∑m
i=1 αivliv

>
riP = 0. In consequence,

V̇ (e) = −e>Qe ≤ −qm|e|2, (19)

where qm > 0 is the smallest eigenvalue of Q, so the
statement of the proposition follows.

The following statement provides explicit expressions for
the limit values of the followers states.

Proposition 3: Consider the system (1) with the bipartite
containment control law (5). Under the standing assumption,
the bipartite containment objective is achieved, that is the
inequality (7) holds. Furthermore, if the leaders are static,
the final states of the followers satisfy

lim
t→∞

xf (t) = Vfxl, (20)

where xl and xf are the leaders’ and the followers’ states
respectively and Vf is given in (12b).

Proof: Differentiating the weighted average of the
system (8), we obtain the dynamical equation below

ẋm = Vẋ = −VLx = 0, (21)

with v>liL = 0 for each i ≤ m. Its solution
gives xm(t) = xm(0). From Proposition 2, we have
limt→∞ e(t) = 0, which gives limt→∞ x(t) = xm(t) =
xm(0). Then, using (13), we obtain the relation in (20).
Under the Standing assumption and from Item 4 of Lemma 1,
we have

lim
t→∞
|xfj (t)| = |

m∑
i=1

vri,m+j
xli | ≤

m∑
i=1

|vri,m+j
| max
1≤i≤m

|xli |

≤ max
1≤i≤m

|xli |

Then, the bipartite containment objective in (7) is achieved.



B. Robustness Analysis

Consider the perturbed first-order systems

ẋi = ui + di(t), (22)

where the disturbances di : R≥0 → Rn are assumed to be
essentially bounded locally integrable functions. Under the
control law (5), the system (22) becomes

ẋ = −Lx+ d(t). (23)

Differentiating the errors in (16) on both sides, and using
(23) we obtain

ė = −Le+ [I − V]d(t). (24)

Then, we have the following.
Proposition 4: The closed-loop system (24), under the

Standing Assumption, is ISS with respect to an essentially
bounded, locally integrable external disturbance.

Proof: Consider the Lyapunov function candidate in
(18). Its derivative gives

V̇ (e) =
∂V

∂e
(−Le) +

∂V

∂e
[I − V]d.

From (19), we have

V̇ (e) ≤ −e>Qe+
∂V

∂e
[I − V]d

≤ −qm|e|2 + 2λP |e||[I − V]||d|.

We know that 0 ≤ |[I − V]| ≤ |I|+ |V| ≤ 2, because all
eigenvalues of I are equal to 1 and all eigenvalues of |V| are
either 1 or 0. Let δ > 0 be such that c := qm − 2λP

δ > 0.
Then,

V̇ (e) ≤ −c|e|2 + 2δ|d|2.

The statement follows.

V. SIMULATION RESULTS

To illustrate our theoretical findings we present a numer-
ical example on a system of multi-wheeled mobile robots
modeled as unicycles. Let

[
rxi

ryi
]> ∈ R2 be the position

of the center of the ith robot, θi ∈ R the orientation of
the ith robot, and vi ∈ R and ωi ∈ R the linear and angular
velocities of the ith robot. Then, the dynamics of the wheeled
mobile robots can be modeled as

ṙxi = vi cos(θi), ṙyi = vi sin(θi), θ̇i = ωi. (25)

To apply the consensus control law (5)—designed for (1)—
on this system we apply a preliminary feedback linearizing
control. To that end, we rewrite the system’s dynamics in
terms of the position of a point located at a distance δ off the
axis joining the wheels. That is, the point pi =

[
pxi

pyi
]>

,
where pxi = rxi + δi cos(θi) and pyi = ryi + δi sin(θi). For
the purpose of simulation, we use δi = 0.1m. Differentiating
pi with respect to time and by letting[

vi
ωi

]
=

[
cos(θi) sin(θi)
− 1
δi

sin(θi)
1
δi

cos(θi)

] [
uxi

uyi

]
, (26)

we get
[
ṗxi ṗyi

]>
=
[
uxi uyi

]>
, which is a simplified

kinematic equation in the form of first-order dynamics. For
the simulations examples, we implemented (26) with ui as
in (5), where xi = [pxi

pyi ].
We consider a coopetition network containing three leaders

xi, i ≤ 3 and four followers xj , 4 ≤ j ≤ 7, communicating
over a directed graph as the one depicted in Figure 1. The
competitive leader x3 represents an obstacle in the system.

x4 x5

x7x6

x1

x2 x3

1

11
1

3

5 -3

Fig. 1. A network of seven mobile robots with 2 cooperative and 1
competitive leaders.

The Laplacian matrix corresponding to the graph is

L =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−3 0 0 5 −1 −1 0
0 0 0 −1 2 0 −1
0 −5 0 −1 0 7 −1
0 0 3 0 −1 −1 5


and its eigenvalues are λL = {0, 0, 0, 1.38, 4.80, 7.81, 5}.

The network may be bipartitioned into two subgroups as
V1 = {x1, x2, x4, x5, x6, x7}, V2 = {x3} so is structurally
balanced. The matrix Vf in (12b) is calculated as below.

Vf =

 0.7038 0.1923 −0.1038
0.4038 0.1923 −0.4038
0.1154 0.7692 −0.1154
0.1038 0.1923 −0.7038

 .
We notice that Vf has the properties stated on Items 1–4

of Lemma 1. Since each follower is influenced by the three
leaders, 0 is not an element of Vf (Item 1). Moreover, none
of the followers corresponds to the exclusive part of a reach,
so Vf does not have an element equal to ±1 (Item 2). From
the structural-balance property, all elements corresponding to
leaders x1 and x2 (the first two columns) are positive and
less than one, whereas the elements corresponding to leader
x3 (on the last column) are negative and greater than −1
(Item 3). We also remark that the sum of the absolute value
of the terms on each row is equal to 1 (Item 4).

Let P be generated by (15) with Q = IN and α = 20, then
we obtain λP = 0.6247. Consider the system (25) and the
bipartite containment law (5). The respective initial states
of the robots are rx(0) = [3.5, 4,−2,−6.5, 5.5,−3.5, 6]>,
ry(0) = [2, 3.5,−3,−1,−3,−3,−2.5]>, θi(0) = π

2 for all
i ∈ IN . Figure 2 depicts the simulation results. The
followers converge to the convex hull spanned by co-
operative leaders states and competitive leaders x3 mir-
rored state. Using (20) and the coordinate transformation,
we obtain the following limit values for the followers’
states: limt→∞ rxf

(t) =
[
3.44 2.99 3.69 2.54

]>
and

limt→∞ ryf (t) =
[
2.37 2.61 3.25 2.85

]>
.



-6 -4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

Fig. 2. Bipartite containment tracking of (25) with (5). The filled dots
are the final states of the mobile robots and the dotted lines represent the
trajectory of the four followers. The yellow diamond represents the mirrored
state of the antagonistic leader x3.

We now perform simulations for the system (25) with the
bipartite containment law (5), with di(t) = σi(t)

[
1 1

]>
where σi(t) is given as below

σi(t) =


tanh(t− 10)− 1 + 1

(t+10) i ∈ {5, 6}
− tanh(t− 10) + 1− 1

(t+10) i = 4

0 i ∈ {1, 2, 3, 7}.
(27)

Figure 3 depicts the simulation results. During the first 10s,
the perturbation d(t) prevents the achievement of bipar-
tite containment tracking and the followers reach a stable
state with a steady-state error. However, as the perturbation
vahishes, after 10s, the trajectories of the followers move
towards the convex hull, spanned by cooperative leaders’
states and antagonistic leader’s mirrored state. We obtain the
same limit values as before for the followers.
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Fig. 3. Bipartite containment tracking of (25) with perturbation.

VI. CONCLUSIONS

We presented a Lyapunov approach to analyse the expo-
nential stability of the bipartite containment tracking problem
of simple-integrators over structurally balanced multi-leader
coopetition networks. Via a change of coordinates, we have
shown a bound for the convergence of the followers. More-
over, we have generalised the Lyapunov equation charac-
terisation of the Hurwitz property of a matrix to matrices
having more than one zero eigenvalue, which allowed us
to construct strict Lyapunov functions. Disposing of strict
Lyapunov functions allowed us to establish the robustness
of the system with a bounded disturbance. Further research
is focused on extending these results to more general classes
of dynamical systems and industrial deployment of multi-
robot systems.
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