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We address the problem of formation-tracking control of velocity-controlled unicycles in a leader-follower configuration, both with known and unknown leader velocities. The controller design is based on relative measurements: distances and line-of-sight angles. This type of measurements are provided by onboard sensors rather than global positioning systems. We assume that a virtual leader generates a desired reference trajectory for the whole swarm, that is once continuously differentiable, bounded and with bounded derivative. We propose two controllers, one for which it is assumed that the leader velocities are known and one in which they are unknown.

I. INTRODUCTION

The formation control problem of nonholonomic vehicles consists in controlling a group of robots to perform a desired formation around a given point or follow a trajectory [START_REF] Yang | Tunable formation realization for nonholonomic mobile robots using the stress matrix[END_REF], [START_REF] Wang | A graph based formation control of nonholonomic wheeled robots using a novel edge-weight function[END_REF]. Such problem has been addressed in the literature via time-varying controls [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] [START_REF] Maghenem | Lyapunov-based formation-tracking control of nonholonomic systems under persistency of excitation[END_REF], or time-invariant discontinuous controls [START_REF] Fan | An approach to formation maneuvers of multiple nonholonomic agents using passivity techniques[END_REF].

The time-varying control laws often rely on persistency-ofexcitation and are attractive since they often ensure uniform convergence properties, thereby implying robustness [START_REF] Maghenem | Cascades-based leaderfollower formation-tracking and stabilization of multiple nonholonomic vehicles[END_REF].

In [START_REF] Li | Time-varying formation control of nonholonomic multi-agent systems[END_REF], the leader-follower time-varying formation control problem is considered using bearing measurements; the proposed control law consists of two parts, a proportional part that is used to stabilize the agents to the target formation and an integral part that is used to eliminate static errors when the leader's velocity is time-varying. An inconvenience of persistency-of-excitation-based controllers, however, is that they are difficult to tune since they may present oscillatory transients [START_REF] Maghenem | Lyapunov-based formation-tracking control of nonholonomic systems under persistency of excitation[END_REF]. The bearing-based formation control is also used in [START_REF] Wang | Bearing-only nonlinear formation control for nonholonomic unicycles[END_REF] in the case of discontinuous control. This problem can also be encountered in the case of discontinuous control; in [START_REF] Fan | An approach to formation maneuvers of multiple nonholonomic agents using passivity techniques[END_REF] an inter-agent damping injection technique based on passivity proposed to eliminate the relative motion oscillatory and steady formation error.
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This work was supported by CEFIPRA under the grant number 6001-A. The work of A. Loría was also supported by the French ANR via project HANDY, contract number ANR-18-CE40-0010. laws and is suitable for steering and path following. It is also important to note that many polar-coordinate models are equivalent. In [START_REF] Shen | Second-order sliding mode control for nonholonomic mobile robots formation[END_REF] decentralized second-order sliding-mode control laws are proposed to solve the formation-control problem in a leader-follower scheme. On the other hand, in [START_REF] Dai | Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance[END_REF], a polar-coordinates model with two variables is used, and a control law that ensures the formation tracking using Barrier Lyapunov functions is proposed. Another equivalent polar-coordinates model is used in [START_REF] Wang | Formation regulation and tracking control for nonholonomic mobile robot networks using polar coordinates[END_REF], which allows solving the formation problem with a time-invariant controller that is continuous along trajectories and does not require global position measurements. Now, in many works, it is assumed that the follower robots have access to their leaders' velocities [START_REF] Dai | Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance[END_REF] [START_REF] Wang | Formation regulation and tracking control for nonholonomic mobile robot networks using polar coordinates[END_REF]. However, this may appear conservative in some cases. Hence one can instead rely on certainty-equivalence controllers and velocity estimation. In [START_REF] Miao | Distributed estimation and control for leader-following formations of nonholonomic mobile robots[END_REF] a sliding-mode-based estimation and a formation tracking controller are proposed for the error dynamics based on the Cartesian model of the system. See also [START_REF] Liang | Leader-following formation control of nonholonomic mobile robots with velocity observers[END_REF], where an adaptive control technique is proposed for estimating the leader's velocities to solve a leader-follower formation problem. A way to solve the velocity estimation problem for the polar-coordinates model used in [START_REF] Wang | Formation regulation and tracking control for nonholonomic mobile robot networks using polar coordinates[END_REF] was proposed in [START_REF] Poonawala | Formation control of wheeled robots with vision-based position measurement[END_REF]. The latter addresses the formation control of nonholonomic mobile robots with visual servoing. The proposed controller requires pose estimation, but not velocity mesurements.

In this paper we propose a polar-coordinates-based, timeinvariant, formation-tracking controller and a linear and angular velocity observer which relies only on relative measurements. Compared to the literature, we consider the polarcoordinates model used in [START_REF] Restrepo | Leader-follower consensus of unicycle-type vehicles via smooth time-invariant feedback[END_REF], but we emphasize that [START_REF] Restrepo | Leader-follower consensus of unicycle-type vehicles via smooth time-invariant feedback[END_REF] is devoted to the formation-consensus problem. We assume the robots advance in a leader-follower configuration, forming a multi-agent system with an underlying directed spanningtree topology. We address both cases in which the leaders' velocities are known and unknown to the follower.

The remainder of this paper is organized as follows.

In Section II, we present the problem formulation. Our results are presented in Section III. Section IV contains an illustrative example, and concluding remarks are given in Section V.

II. MODEL AND PROBLEM FORMULATION

Autonomous nonholonomic vehicles may be modelled using the kinematics equations

ẋj = v j cos(θ j ) (1a) ẏj = v j sin(θ j ) (1b) θj = ω j , j ∈ {1, 2, . . . , N }, (1c) 
where p j = [x j y j ] ⊤ ∈ R 2 denotes the position in Cartesian coordinates coordinates of the vehicle's center of mass on the plane and θ j ∈ [-π, π] denotes its orientation with respect to the axis of the abscissae. If the vehicle is velocitycontrolled (which is often the case), the forward and angular velocities, v j and ω j , constitute the control inputs. When absolute position and orientation measurements with respect to a fixed frame, (p j , θ j ), are available, the model above is most appropriate. Then, the leader-follower tracking control problem consists in making a robot, modelled by the kinematics equations above, follow a leader robot. In many applications, however, absolute measurements are unavailable. Instead, the robot is equipped with relativemeasurement sensors, which deliver the distance separating the leader from the follower, they can also deliver the relative orientation with respect to the line of sight. We use ρ k to denote such distance, β k to denote the angle of the leader robot relative to the follower's line of sight and α k to denote the orientation of the follower relative to the same line. See Figure 1. It is assumed that for a swarm of robots each vehicle follows one and only one leader. For instance, in Figure 1 the vehicle 'Rj' follows the vehicle 'Ri', while 'R1'called swarm leader-follows the virtual reference robot 'R0', which moves freely with forward and angular velocities v 0 and ω 0 respectively.
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In general, for a swarm of N robots, the leader-follower interaction among all the robots may be modelled by a spanning-tree graph with N -1 edges -see Figure 2. The multi-agent system, modelled as a spanning tree consists in a collection of open chains of leader-follower robots which, in turn, consists in a series of pairs of robots (Rj,Ri). R0 :
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Graph interconnections in a Leader-follower formation configuration with relative measurements

In function of the relative Cartesian coordinates and the absolute orientations of each robot of the pair k = (i, j), we have for each k ∈ {0, 1, . . . , N -1}.

ρ k = |p i -p j |, (2a) 
β k = arctan y i -y j x i -x j -θ i ∀ρ k > 0 (2b) α k = arctan y i -y j x i -x j -θ j ∀ρ k > 0. (2c)
Differentiating on both sides of ( 2)

ρk = v i cos(β k ) -v j cos(α k ) (3a) βk = 1 ρ k [-v i sin(β k ) + v j sin(α k )] -ω i (3b) αk = 1 ρ k [-v i sin(β k ) + v j sin(α k )] -ω j , (3c) 
In the latter, v i and ω i are the velocities of the leader for a leader-follower pair (i, j), which are considered as external reference signals, and v j and ω j are the control inputs. Equations (3) model the dynamics of the relative distance and orientations of any pair of robots.

Note that the relative angles are defined only for all ρ k > 0, which is meaningful because ρ k = 0 means that two robots occupy the same physical space, which is impossible. Therefore, for a swarm of N robots we define the leaderfollower formation tracking problem as that of making for each k (for as many pairs of leader-follower robots existing in the swarm),

lim t→+∞ ρ k (t) = ρ * k (4a) lim t→+∞ β k (t) = β * k , (4b) 
for any given constant relative distance ρ * k and any desired constant relative orientation β * k . From a control viewpoint, the leader-follower formation tracking control problem may be cast as that of stabilizing (ρ * k , β * k ) for the dynamical system (3).

III. MAIN RESULTS

The control design consists in finding control laws v j and ω j for the system (3) to stabilize (ρ * k , β * k ) for all k ≤ N -we consider that there are N physical vehicles and one virtual leader R0, so the tree contains N edges.

The controller approach, on one hand, is based on Backstepping and barrier functions to guarantee collision avoidance. On the other hand, we design a leader-velocity observer. Then, we implement a certainty-equivalence outputfeedback controller. For clarity of exposition, in section II-A we present first a state-feedback controller and in section II-B, we present our controller without leader velocity estimation.

A. Control design with known leader velocities

Assume that v i and ω i are known. Then, the backstepping controller is designed as follows. For the sake of argument, consider Eq. (3a) and let u ρ (v j , α k ) := v j cos(α k ) be a virtual control input. Clearly, if

u ρ (v j , α k ) = v i cos(β k ) + ν ρ k , ρk := ρ k -ρ * k (5)
with ν ρ k := -λ 1 ρk , we obtain the closed-loop equation

ρk = -λ 1 ρk , (6) 
for which the origin {ρ k = 0} is exponentially stable, so (4a) holds. However, even if such control action may be implemented, it carries two disadvantages. First, ρ k may approach or be equal to zero, which not only means that the robots Ri and Rj collide, but it also renders the dynamical system (3) ill-posed. Therefore, we redefine ν ρ k as a gradient control law, derived from a Barrier function ρk

→ B k (ρ k ), that is, we set ν ρ k := -λ 1 ∇B k (ρ k ). (7) 
The Barrier function B k is to be designed to take values in

D k := (-ρ * k , ρ * k )
to produce image points in the right orthant of the Euclidean space, R ≥0 . By construction, it is required that B k (ρ k ) → ∞ as ρk → ∂D k . We see that

B k (ρ k ) := 1 2 ln ρ * 2 k ρ * 2 k -ρ2 k + ρ2 k (8) 
satisfies such requirements. Moreover,

B k (ρ k -ρ * k ) → ∞ as ρ k → 0 or ρ k → 2ρ * k . Under these conditions, Eq. (6) becomes ρk = -λ 1 ∇B k (ρ k ) (9) 
and a direct computation using B k as a (Barrier) Lyapunov function for the latter, establishes that the origin {ρ k = 0} is asymptotically stable for all initial conditions in the domain of definition

D k . Moreover, because B k (ρ k ) → ∞ as ρk → ∂D k it follows that ρ k (t) ∈ (0, 2ρ * ) for all t ≥ 0. Since, by definition, u ρ (v j , α k ) := v j cos(α k ), it is left to find α * k and v j such that v j cos(α * k ) = v i cos(β k ) + ν ρ k (10) 
for any given ν ρ k . The obvious choice for v j is

v j := v i cos(β k ) + ν ρ k cos(α * k ) , (11) 
which is well-defined for all α * k ∈ (-π/2, π/2). We pose

α * k := arctan(ψ k ). ( 12 
)
We recall that

cos arctan(ψ k ) := 1 1 + ψ 2 k , (13) 
so ( 11) is equivalent to

v j := [ 1 + ψ 2 k ] 1/2 [v i cos(β k ) + ν ρ k ], (14) 
which is well-defined for any finite ψ k .

It is left to design ψ k such that α k = α * k , with α * k as in (12) stabilizes β * k for (3b). In other words, we consider α k as a virtual control input in the latter equation. Hence, setting α k = α * k in (3b), and using

sin(arctan(ψ k )) = ψ k 1 + ψ 2 k ( 15 
)
and ( 14), we obtain

βk = 1 ρ k -v i sin(β k ) + ψ k [v i cos(β k ) + ν ρ k ] -ω i , (16) 
so we define

ψ k (t, e k ) = v i sin(β k ) -[λ 2 βk -ω i ]ρ k v i cos(β k ) + λ 1 ∇B k (ρ k ) , (17) 
where λ 2 > 0 and e k := [ ρk βk αk ] ⊤ and, to avoid a cumbersome notation, we replaced (ρ k + ρ * k ) with ρ k , ( βk + β * k ) with β k and the leader velocity v i is considered as a function of time. Strictly speaking, however, it is a function of the leader's states, so v i (t) is considered as a functional of the leader's trajectories.

Finally, we use the second control input, ω j to steer α k → α * k . Therefore, after (3c), we define

ω j := 1 ρ k -v i sin(β k ) + v j sin(α * k ) -α * k + λ 3 αk , (18) 
with αk = α k -α * k so that in closed loop we obtain αk = -λ 3 αk ,

which is exponentially stable. Thus, the previous reasoning leads to a nonlinear controller defined by

v j := [ 1 + ψ 2 k ] 1/2 [v i cos(β k ) -λ 1 ∇B k (ρ k )] (20a) ω j := 1 ρ k -v i sin(β k ) + v j sin(α k ) -α * k + λ 3 αk + ν ω k , (20b) 
where ψ k is defined in [START_REF] Restrepo | Robust consensus of high-order systems under output constraints: Application to rendezvous of underactuated UAVs[END_REF], B k is defined in (8) and ν ω k is a redesign control input to be defined. As before, we made the choice of avoiding a cumbersome notation, but it is worth remarking that the terms on the respective right-hand sides of (20a) and (20b) are functions of time, through the leader's velocities v i (t) and ω i (t) and of the errors e k . Remark 1: For the purpose of implementation without the exact derivative α * k , one can use command filtered backstepping [START_REF] Restrepo | Robust consensus of high-order systems under output constraints: Application to rendezvous of underactuated UAVs[END_REF], [START_REF] Farrell | Command filtered backstepping[END_REF] or a simple approximate differentiator-cf. [START_REF] Burkov | Mechanical system stabilization via differential observers[END_REF], [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF],

H(s) = bs s + a . ( 21 
)
With α * k as input, in state space form, we define αkf = -aα kf + bα * k ,

and we use αkf in place of α * k .

• We have the following.

Proposition 1: Consider N -1 pairs of autonomous vehicles in a leader-follower configuration, each modelled as in (3) and forming a directed spanning tree -cf. Figure 2. For each vehicle, labeled j with j ∈ N ≤N , consider the controller defined by Eqs. ( 20), ( 8), [START_REF] Restrepo | Robust consensus of high-order systems under output constraints: Application to rendezvous of underactuated UAVs[END_REF] and

ν ω k := v j αk βk ρ k sin(α k ) -sin(α * k ) -∇B k (ρ k ) cos(α k ) -cos(α * k ) , ( 23 
)
for each k ≤ N -1. Then, the limits in (4) hold and the vehicles achieve formation tracking control of the leader robot R0. Moreover, ρ k (t) ∈ (0, 2ρ * k ) for all t > 0, provided that ρ k (0) ∈ (0, 2ρ * k ).

• Proof: We start by writing the closed-loop equations in a suitable form, in terms of the errors (ρ k , βk , αk ). To that end, consider Eqs. (3a) and (3b),

ρk = v i cos β k -v j cos α * k + v j cos α * k -v j cos α k (24) βk = 1 ρ k -v i sin(β k ) + v j sin(α k ) -v j sin(α * k ) + v j sin(α * k ) -ω i . (25) 
Then, we use ( 12), ( 13), [START_REF] Liang | Leader-following formation control of nonholonomic mobile robots with velocity observers[END_REF], and ( 17) in the second term in (24) to obtain

ρk = -λ 1 ∇B k (ρ k ) -v j [cos( αk + α * k ) -cos(α * k )].
(26) The arguments of α * k , i.e., ρk and βk , are omitted to avoid a cumbersome notation.

On the other hand, proceeding as shown above to obtain [START_REF] Burkov | Mechanical system stabilization via differential observers[END_REF], we see that in view of ( 12), ( 14) and [START_REF] Poonawala | Formation control of wheeled robots with vision-based position measurement[END_REF],

-v i sin(β k ) + v j sin(α * k ) = -λ 2 βk . It follows that the error equation for βk becomes βk = -λ 2 βk + v j ρ k sin(α k + α * k ) -sin(α * k ) . (27) 
Finally, using (20b) in (3c) we obtain, by direct computation,

αk = -λ 3 αk -ν ω k . (28) 
Next, consider the Barrier Lyapunov function

V 1k : D k × R 2 → R ≥0 defined as V 1k (e k ) := B k (ρ k ) + 1 2 β2 k + α2 k , (29) 
which is positive definite and radially unbounded in its domain of definition. The total derivative of V 1k along the trajectories of the closed-loop dynamics (26), (27), and (28), yields

V1k (e k ) = -λ 2 β2 k + βk v j ρ k [sin(α k + α * k ) -sin(α * k )] -λ 1 ∇B k (ρ k ) 2 -∇B k (ρ k )v j [cos( αk + α * k ) -cos(α * k )] -λ 3 α2 k -αk ν ω k . (30) 
Using (23) above we obtain that

V1k (e k ) = -λ 1 ∇B k (ρ k ) 2 -λ 2 β2 k -λ 3 α2 k . (31) 
That is, V1k is negative definite on its domain of definition, so we conclude that the origin {(ρ k , βk , αk ) = 0}, for the closed-loop system, is asymptotically stable. In particular, the limits in (4) hold for any k ≤ N -1. Also, since by design

B k (ρ k (t)) → ∞ as |ρ k (t)| → ρ * k it follows that |ρ k (t)| ≤ ρ * k
for all t > 0 and, consequently, ρ k (t) ∈ (0, 2ρ * k ) for all t > 0 as required.

B. Control design with unknown leader velocities

To relax the assumption that the leader velocities are known to the followers, we redesign the controller from the previous section using the certainty-equivalence principle and a simple passivity-based adaptation law. Let vi and ωi denote estimates of the forward and angular leader velocities respectively and let vi := vi -v i and ωi := ωi -ω i denote the estimation errors.

Inspired by [START_REF] Liang | Leader-following formation control of nonholonomic mobile robots with velocity observers[END_REF], we introduce the following observer:

ωi := -λ 5 ωi - 1 K 2 βk (32a) vi := -λ 4 vi + 1 K 1 ∇B k (ρ k ) cos( βk + β * k ) - sin β k ρ k ( βk + αk ), (32b) 
that we use with the certainty-equivalence control:

v j := [ 1 + ψ2 k ] 1/2 [v i cos(β k ) + λ 1 ∇B k (ρ k )] (33a) ω j := 1 ρ k [-v i sin(β k ) + v j sin(α k )] -α * k +λ 3 αk + ν ω k , ( 33b 
)
where ψk is equivalent to [START_REF] Restrepo | Robust consensus of high-order systems under output constraints: Application to rendezvous of underactuated UAVs[END_REF] replacing ω i by ωi . We have the following. Proposition 2: Consider N -1 pairs of autonomous vehicles in a leader-follower configuration, each modelled as in (3) and forming a directed spanning tree -cf. Figure 2. Assume that the leader velocities are bounded, that is,

|v i | < a 1 , | vi | < a 2 , |ω i | < a 3 , | ωi | < a 4 , (34) 
for all i ∈ {0, 1, . . . , N }. Then, for each vehicle, labeled j with j ∈ N ≤N , consider the controller defined by Eqs. (33a), (33b) with the observer (32a) (32b) for each k ≤ N -1. Then, the closed-loop trajectories corresponding to the formation errors ρk , βk and the velocity estimation errors vi , ωi are uniformly ultimately bounded.

• Proof: Let e 2k = [ρ k βk αk vi ωi ] ⊤ and consider the barrier Lyapunov function

V 2k : D k × R 4 → R ≥0 defined as V 2k (e 2k ) := K 1 2 vi 2 + K 1 2 ω2 i + V 1k (ρ k , βk , αk ), (35) 
which is positive definite and radially unbounded in its domain of definition. The total derivative of V 2k along the trajectories of the closed-loop dynamics yields

V2k (e 2k ) = -λ 1 ρk + ρk [ρ * 2 k -ρ2 k ] 2 2 -λ 2 β2 k (36) -λ 3 α2 k -λ 4 K 1 v2 i -λ 5 K 2 ω2 i -K 2 vi [λ 4 v i + vi ] -K 2 ωi [λ 5 ω i + ωi ].
Then, by simplifying the first term on the right-hand side of the previous inequality, we get

V2k (e 2k ) ≤ -λ 1 ρ2 k -λ 2 β2 k -λ 3 α2 k -λ 4 K 1 v2 i (37) -λ 5 K 2 ω2 i -K 1 vi [λ 4 v i + vi ] -K 2 ωi [λ 5 ω i + ωi ].
Using (34), we obtain

V2k (e 2k ) ≤ -λ 1 ρ2 k -λ 2 β2 k -λ 3 α2 k -λ 4 K 1 vi 2 (38) -λ 5 K 2 ωi 2 + λ 4 K 1 | vi |[a 1 + a 2 λ 4 ] +λ 5 K 2 | ωi |[a 3 + a 4 λ 5 ],
which in turn implies

V2k (e 2k ) ≤ -λ 1 ρ2 k -λ 2 β2 k -λ 3 α2 k (39) - λ 4 K 1 2 vi 2 - λ 5 K 2 2 ωi 2 + b i , where b i = λ 4 K 1 2 [a 1 + a 2 λ 4 ] 2 + λ 5 K 2 2 [a 3 + a 4 λ 5 ] 2 . (40) 
Therefore, V2k is negative definite as long as,

∥e 2k ∥ > ϵ := b i min{λ 1 , λ 2 , λ 3 , λ4K1 2 , λ5K2 2 } (41) 
where ϵ represent the bounds of e 2k , the observer-closedloop systems error. Finally, V2k (e 2k ) < 0 holds outside a compact set and the GUUB of the solutions follows.

IV. SIMULATIONS

We carried out some numerical simulations using Simulink The controllers' gains are set to λ 1 = λ 2 = λ 3 = 1 and the observers' gains λ 4 = λ 5 = 5, K 1 = K 2 = 20. As initial conditions, we choose β 1 (0) = -0.2 rad, β 2 (0) = β 3 (0) = β 4 (0) = 1 rad, for the angle β k . Moreover, the inter-vehicular distances are chosen ρ 1 (0) = 1.5 m, ρ 2 (0) = 1.7 m, ρ 3 (0) = 1.8 m, ρ 3 (0) = 1.9 m.

In Figures 4 we show the relative distances ρ k converging to their respective references ρ * k ; in Figure 5 are depicted the desired relative orientations β k also convergent to the desired values. The paths followed by the robots are shown in Figure 6. In a second test we assume the leader's velocities to be unknown and we use the observer (32a), (32b). We notice in Figures 7,8 representing the variables vi , ωi that these last ones converge towards a neighborhood of the origin, in other words, we see that these errors are bounded. Figure 9 presents the trajectories of the agents. The proposed control law ensures that a desired formation is achieved while simultaneously tracking a desired trajectory for a group of unicycles interconnected in a leader-follower configuration. For this purpose, we used a polar-coordinates model because of the advantages it offers, namely the ability to achieve the objective via smooth time-invariant feedback.

The control methodology is based on barrier Lyapunov functions and a polar-coordinates-based model that allowed us to transform the consensus-based formation problem into a stabilization problem that is more suited to be studied using Lyapunov theory. Then we used a certainty-equivalence controller to allow each agent to estimate the linear and angular velocity of its leader, which brings the proposed solution closer to reality. Current research is aimed at improving the performance by considering additional requirements for collision avoidance. In addition, further work is carried out to enforce convergence of the estimation errors.
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 1 Fig. 1. Leader-follower formation with relative measurements (in polar coordinates)
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  The example consists in four unicycles following in diamond formation a fictitious leader vehicle-see Figure3. The desired formation is defined by setting the desired orientations (in rad)β * k to β * 1 = 0, β * 2 = β * 4 = π/6, β * 4 = -π/6, and the desired distances to ρ * k = 1 m for all k ∈ {1, 2, 3, 4}.
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 3 Fig. 3. Scematics of the desired physical formation of four robots following a fictitious leader vehicle (in blue) and the interconnections graph representation (links shown in red)
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 45 Fig. 4. Behavior of ρ k

Fig. 7 .Fig. 8 .Fig. 9 .

 789 Fig. 7. Evolution of convergence errors vi (t)