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Robust leader-follower formation control of autonomous vehicles with
unknown leader velocities

Anes Lazri Esteban Restrepo Antonio Lorı́a

Abstract— We address the problem of formation-tracking
control of velocity-controlled unicycles in a leader-follower
configuration, both with known and unknown leader velocities.
The controller design is based on relative measurements:
distances and line-of-sight angles. This type of measurements
are provided by onboard sensors rather than global positioning
systems. We assume that a virtual leader generates a desired
reference trajectory for the whole swarm, that is once continu-
ously differentiable, bounded and with bounded derivative. We
propose two controllers, one for which it is assumed that the
leader velocities are known and one in which they are unknown.

Index Terms— Nonholonomic multi-agent systems, formation
control, output feedback

I. INTRODUCTION

The formation control problem of nonholonomic vehicles
consists in controlling a group of robots so that they per-
form a desired formation around a given point or follow a
trajectory [1], [2]. Such a problem has been adressed in the
litterature via time-varying controls [3], [4] or time-invariant
discontinuous controls [5].

The time-varying control laws often rely on persistency-of-
excitation and are attractive since they often ensure uniform
convergence properties, which in turn imply robustness [6].
In [7] the leader-follower time-varying formation control
problem is considered using bearing measurements; the pro-
posed control law consists of two parts, a proportional part
that is used to stabilize the agents to the target formation
and an integral part that is used to eliminate static errors
when the leader’s velocity is time-varying. An inconvenience
of persistency-of-excitation-based controllers is that they are
difficult to tune since they present oscillatory transients [4].
The bearing-based formation control is also used in [8] in
the case of discontinuous control. This problem can also be
encountered in the case of discontinuous control, in [5] an
inter-agent damping injection technique based on passivity
proposed to eliminate the relative motion oscillatory and
steady formation error.

An alternative approach, which allows to use time-
invariant controllers, relies on a polar-coordinates based
model. In [9] a controller is proposed for unicycles modeled
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in polar-coordinates, which leads to smooth closed control
laws and is suitable for steering and path following. It is also
important to note that many polar-coordinates models are
equivalent. In [10], decentralized non-holonomic algorithms
via second-order sliding mode control are proposed to solve
the formation control in a leader-follower scheme. On the
other hand, in [11], a polar-coordinates model with two
variables is used and a control law that ensures the forma-
tion tracking using Barrier Lyapunov functions is proposed.
Another equivalent polar-coordinates model is used in [12]
which allows to solve the formation problem with a time-
invariant controller that is continuous along trajectories and
does not require global position measurements.

Now, in many works it is assumed that the follower robots
have access to their leaders’ velocities [11],[12]. However,
this may appear conservative in some cases. Hence one
can instead rely on certainty-equivalence controllers and
velocity estimation. In [13] a sliding-mode-based estimation
and a formation tracking controller are proposed for the error
dynamics based on the Cartesian model of the system. See
also [14], where an adaptive control technique is proposed for
estimating the leader’s velocities in order to solve a leader-
follower formation problem. A way to solve the velocity
estimation problem for the polar-coordinates model used in
[12], was proposed in [15]. The latter addresses formation
control of nonholonomic mobile robots with visual servoing.
The proposed controller requires pose estimation, avoiding
measurement of velocities.

In this paper, we propose a polar-coordinates-based, time-
invariant, formation-tracking controller, with a linear and
angular velocity observer which relies only on relative
measurements. In comparison to the literature, we consider
the polar-coordinates model used in [16] for our formation
tracking problem, but we emphasize that [16] is devoted to
the formation-consensus problem. We assume that the robots
advance in a leader follower configuration, so they form a
multi-agent system with an underlying directed spanning-
tree topology. We address both cases, in which the leaders’
velocities are known and unknown to the follower.

The remainder of this paper is organized as follows. In
Section II we present the problem formulation. Our results
are presented in Section III. Section IV contains an illustra-
tive example, and concluding remarks are given in Section
V.



II. MODEL AND PROBLEM FORMULATION

Autonomous nonholonomic vehicles may be modelled
using the kinematics equations

ẋj = vj cos(θj) (1a)
ẏj = vj sin(θj) (1b)

θ̇j = ωj , j ∈ {1, 2, . . . , N} (1c)

where pj = [xj yj ]
⊤ ∈ R2 denotes the position in Cartesian

coordinates coordinates of the vehicle’s center of mass on
the plane and θj ∈ [−π, π] denotes its orientation with
respect to the axis of the abscissae. If the vehicle is velocity-
controlled (which is often the case), the forward and angular
velocities, vj and ωj , constitute the control inputs. When
absolute position and orientation measurements with respect
to a fixed frame, (pj , θj), are available, the model above is
most appropriate. Then, the leader-follower tracking control
problem consists in making a robot, modelled by the kine-
matics equations above, follow a leader robot.

In many applications, however, absolute measurements are
unavailable. Instead, the robot is equipped with relative-
measurement sensors, which deliver the distance separating
the leader form the follower, they can also deliver the relative
orientation with respect to the line of sight. We use ρk to
denote such distance, βk to denote the angle of the leader
robot relative to the follower’s line of sight and αk to denote
the orientation of the follower relative to the same line. See
Figure 1. It is assumed that for a swarm of robots each
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Fig. 1. Leader-follower formation with relative measurements (in polar
coordinates)

vehicle follows one and only one leader. For instance, in
Figure 1 the vehicle ‘Rj’ follows the vehicle ‘Ri’, while ‘R1’
—called swarm leader— follows the virtual reference robot
‘R0’, which moves freely with forward and angular velocities
v0 and ω0 respectively.

In general, for a swarm of N robots, the leader-follower
interaction among all the robots may be modelled by a
spanning-tree graph with N − 1 edges –see Figure 2.

The multi-agent system, modelled as a spanning tree
consists in a collection of open chains of leader-follower

robots which, in turn, consists in a series of pairs of robots
(Rj,Ri).

R0

: : :
i

j
: : :

· · · · · ·

ek

Fig. 2. Graph interconnections in a Leader-follower formation configura-
tion with relative measurements

In function of the relative Cartesian coordinates and the
absolute orientations of each robot of the pair k = (i, j), we
have for each k ∈ {0, 1, . . . , N − 1}.

ρk = |pi − pj |, (2a)

βk = arctan

(
yi − yj
xi − xj

)
− θi ∀ρk > 0 (2b)

αk = arctan

(
yi − yj
xi − xj

)
− θj ∀ρk > 0. (2c)

Differentiating on both sides of (2)

ρ̇k = vi cos(βk)− vj cos(αk) (3a)

β̇k =
1

ρk
[−vi sin(βk) + vj sin(αk)]− ωi (3b)

α̇k =
1

ρk
[−vi sin(βk) + vj sin(αk)]− ωj , (3c)

In the latter, vi and ωi are velocities of the leader for a
leader-follower pair (i, j), which are considered as external
reference signals and vj and ωj are the control inputs.
Equations (3) model the dynamics of the relative distance
and orientations of any pair of robots.

Note that the relative angles are defined only for all
ρk > 0, which is meaningful because ρk = 0 means that two
robots occupy the same physical space, which is impossible.
Therefore, for a swarm of N robots we define the leader-
follower formation tracking problem as that of making for
each k (for as many pairs of leader-follower robots existing
in the swarm),

lim
t→+∞

ρk(t) = ρ∗k (4a)

lim
t→+∞

βk(t) = β∗
k , (4b)

for any given constant relative distance ρ∗k and any desired
constant relative orientation β∗

k .
From a control viewpoint, the leader-follower formation

tracking control problem may be cast as that of stabilizing
(ρ∗k, β

∗
k) for the dynamical system (3).

III. MAIN RESULTS

The control design consists in finding control laws vj and
ωj for the system (3) to stabilize (ρ∗k, β

∗
k) for all k ≤ N

—we consider that there are N physical vehicles and one
virtual leader R0, so the tree contains N edges.



The controller approach, on one hand, is based on Back-
stepping and barrier functions to guarantee collision avoid-
ance. On the other hand, we design a leader-velocity ob-
server. Then, we implement a certainty-equivalence output-
feedback controller. For clarity of exposition, in II-A we
present first a state-feedback controller and in section II-B,
we present our controller without leader velocity estimation.

A. Control design with known leader velocities

Assume that vi and ωi are known. Then, the backstepping
controller is designed as follows. For the sake of argument,
consider Eq. (3a) and let uρ(vj , αk) := vj cos(αk) be a
virtual control input. Clearly, if

uρ(vj , αk) = vi cos(βk) + νρk
, ρ̃k := ρk − ρ∗k (5)

with νρk
:= −λ1ρ̃k, we obtain the closed-loop equation

˙̃ρk = −λ1ρ̃k, (6)

for which the origin {ρ̃k = 0} is exponentially stable, so
(4a) holds. However, even if such control action may be
implemented, it carries two disadvantages. First, ρk may
approach or be equal to zero which not only means that the
robots Ri and Rj collide, but it also renders the dynamical
system (3) ill-posed. Therefore, we redefine νρk

as a gradient
control law, derived from a Barrier function ρ̃k 7→ Bk(ρ̃k),
that is, we set

νρk
:= −λ1∇Bk(ρ̃k). (7)

The Barrier function Bk is to be designed to take values in
Dk := (−ρ∗k, ρ∗k) to produce image points in the right orthant
of the Euclidean space, R≥0. By construction, it is required
that Bk(ρ̃k) → ∞ as ρ̃k → ∂Dk. We see that

Bk(ρ̃k) :=
1

2
ln

[
ρ∗2k

ρ∗2k − ρ̃2k

]
+ ρ̃2k (8)

satisfies such requirements. Moreover, Bk(ρk − ρ∗k) → ∞
as ρk → 0 or ρk → 2ρ∗k. Under these conditions, Eq. (6)
becomes

˙̃ρk = −λ1∇Bk(ρ̃k) (9)

and a direct computation using Bk as a (Barrier) Lyapunov
function for the latter, establishes that the origin {ρ̃k = 0} is
asymptotically stable for all initial conditions in the domain
of definition Dk. Moreover, because Bk(ρ̃k) → ∞ as ρ̃k →
∂Dk it follows that ρk(t) ∈ (0, 2ρ∗) for all t ≥ 0. Since, by
definition, uρ(vj , αk) := vj cos(αk), it is left to find α∗

k and
vj such that

vj cos(α
∗
k) = vi cos(βk) + νρk

(10)

for any given νρk
. The obvious choice for vj is

vj :=
vi cos(βk) + νρk

cos(α∗
k)

, (11)

which is well-defined for all α∗
k ∈ (−π/2, π/2). We pose

α∗
k := arctan(ψk). (12)

We recall that

cos
(
arctan(ψk)

)
:=

1√
1 + ψ2

k

, (13)

so (11) is equivalent to

vj := [ 1 + ψ2
k ]

1/2[vi cos(βk) + νρk
], (14)

which is well-defined for any finite ψk.
It is left to design ψk such that αk = α∗

k, with α∗
k as in

(12) stabilizes β∗
k for (3b). In other words, we consider αk as

a virtual control input in the latter equation. Hence, setting
αk = α∗

k in (3b), and using

sin(arctan(ψk)) =
ψk√
1 + ψ2

k

(15)

and (14), we obtain

β̇k =
1

ρk

[
− vi sin(βk)+ψk[vi cos(βk)+ νρk

]
]
−ωi, (16)

so we define

ψk(t, ek) =
vi sin(βk)− [λ2β̃k − ωi]ρk
vi cos(βk) + λ1∇Bk(ρ̃k)

(17)

where λ2 > 0 and ek := [ ρ̃k β̃k α̃k]
⊤ and, to avoid a

cumbersome notation, we replaced (ρ̃k+ρ
∗
k) with ρk, (β̃k+

β∗
k) with βk and the leader velocity vi is considered as a

function of time. Strictly speaking, however, it is a function
of the leader’s states, so vi(t) is considered as a functional
of the leader’s trajectories.

Finally, we use the second control input, ωj to steer αk →
α∗
k. Therefore, after (3c), we define

ωj :=
1

ρk

[
− vi sin(βk) + vj sin(α

∗
k)

]
− α̇∗

k + λ3α̃k, (18)

with α̃k = αk − α∗
k so that in closed loop we obtain

˙̃αk = −λ3α̃k, (19)

which is exponentially stable.
Thus, the previous reasoning leads to a nonlinear controller

defined by

vj := [ 1 + ψ2
k ]

1/2[vi cos(βk)− λ1∇Bk(ρ̃k)] (20a)

ωj :=
1

ρk

[
− vi sin(βk) + vj sin(αk)

]
−α̇∗

k + λ3α̃k + νωk
, (20b)

where ψk is defined in (17), Bk is defined in (8) and νωk
is a

redesign control input to be defined. As before, we made the
choice of avoiding a cumbersome notation, but it is worth
remarking that the terms on the respective right-hand sides
of (20a) and (20b) are functions of time, through the leader’s
velocities vi(t) and ωi(t) and of the errors ek.

Remark 1: For the purpose of implementation without the
exact derivative α̇∗

k, one can use command filtered backstep-
ping [17], [18] or a simple approximate differentiator—cf.
[19], [20],

H(s) =
bs

s+ a
. (21)



With α∗
k as input, in state space form, we define

α̇kf = −aαkf + bα∗
k, (22)

and we use α̇kf in place of α̇∗
k. •

We have the following.
Proposition 1: Consider N−1 pairs of autonomous vehi-

cles in a leader-follower configuration, each modelled as in
(3) and forming a directed spanning tree —cf. Figure 2. For
each vehicle, labeled j with j ∈ N≤N , consider the controller
defined by Eqs. (20), (8), (17) and

νωk
:=

vj
α̃k

[ β̃k
ρk

[
sin(αk)− sin(α∗

k)
]

−∇Bk(ρ̃k)
[
cos(αk)− cos(α∗

k)
] ]
, (23)

for each k ≤ N − 1. Then, the limits in (4) hold and the
vehicles achieve formation tracking control of the leader
robot R0. Moreover, ρk(t) ∈ (0, 2ρ∗k) for all t > 0, provided
that ρk(0) ∈ (0, 2ρ∗k). •

Proof: We start by writing the closed-loop equations in
a suitable form, in terms of the errors (ρ̃k, β̃k, α̃k). To that
end, consider Eqs. (3a) and (3b),

˙̃ρk = vi cosβk − vj cosα
∗
k + vj cosα

∗
k − vj cosαk (24)

˙̃
βk =

1

ρk

[
− vi sin(βk) + vj sin(αk)

−vj sin(α∗
k) + vj sin(α

∗
k)

]
− ωi. (25)

Then, we use (12), (13), (14), and (17) in the second term
in (24) to obtain

˙̃ρk = −λ1∇Bk(ρ̃k)− vj [cos(α̃k + α∗
k)− cos(α∗

k)]. (26)

Remark 2: The arguments of α∗
k, which is a function of

the closed-loop states ρ̃k and β̃k, are omitted to avoid a
cumbersome notation. •

On the other hand, proceeding as shown above to obtain
(19), we see that in view of (12), (14) and (15),

−vi sin(βk) + vj sin(α
∗
k) = −λ2β̃k.

It follows that the error equation for β̃k becomes

˙̃
βk = −λ2β̃k +

vj
ρk

[
sin(α̃k + α∗

k)− sin(α∗
k)

]
. (27)

Finally, using (20b) in (3c) we obtain, by direct computation,

˙̃αk = −λ3α̃k − νωk
. (28)

Next, consider the Barrier Lyapunov function V1k : Dk ×
R2 → R≥0 defined as

V1k(ek) := Bk(ρ̃k) +
1

2

[
β̃2
k + α̃2

k

]
, (29)

which is positive definite and radially unbounded in its
domain of definition. The total derivative of V1k along the
trajectories of the closed-loop dynamics (26), (27), and (28),
yields

V̇1k(ek) = −λ2β̃2
k + β̃k

vj
ρk

[sin(α̃k + α∗
k)− sin(α∗

k)]

−λ1∇Bk(ρ̃k)
2 −∇Bk(ρ̃k)vj [cos(α̃k + α∗

k)− cos(α∗
k)]

−λ3α̃2
k − α̃kνωk

. (30)

Using (23) above we obtain that

V̇1k(ek) = −λ1∇Bk(ρ̃k)
2 − λ2β̃

2
k − λ3α̃

2
k. (31)

That is, V̇1k is negative definite on its domain of definition,
so we conclude that the origin {(ρ̃k, β̃k, α̃k) = 0}, for the
closed-loop system, is asymptotically stable. In particular, the
limits in (4) hold for any k ≤ N − 1. Also, since by design
Bk(ρ̃k(t)) → ∞ as |ρ̃k(t)| → ρ∗k it follows that |ρ̃k(t)| ≤ ρ∗k
for all t > 0 and, consequently, ρk(t) ∈ (0, 2ρ∗k) for all t > 0
as required.

B. Control design with unknown leader velocities

To relax the assumption that the leader velocities are
known to the followers, we redesign the controller from
the previous section using the certainty-equivalence principle
and a simple passivity-based adaptation law. Let v̂i and ω̂i

denote estimates of the forward and angular leader velocities
respectively and let v̄i := v̂i − vi and ω̄i := ω̂i − ωi denote
the estimation errors.

Inspired by [14], we introduce the following observer:

˙̂ωi := −λ5ω̂i −K2β̃k (32a)
˙̂vi := −λ4v̂i +K1∇Bk(ρ̃k) cos(β̃k + β∗

k)

− sinβk
ρk

(β̃k + α̃k), (32b)

that we use in the certainty-equivalence control:

vj := [ 1 + ψ̂2
k ]

1/2[v̂i cos(βk) + λ1∇Bk(ρ̃k)] (33a)

ωj :=
1

ρk
[−v̂i sin(βk) + vj sin(αk)]− α̇∗

k

+λ3α̃k + νωk
, (33b)

where ψ̂k is equivalent to (17) replacing ωi by ω̂i. We have
the following.

Proposition 2: Consider N − 1 pairs of autonomous ve-
hicles in a leader-follower configuration, each modelled as
in (3) and forming a directed spanning tree —cf. Figure 2.
Assume that the leader velocities are bounded, that is,

|vi| < a1, |v̇i| < a2, |ωi| < a3, |ω̇i| < a4, (34)

for all i ∈ {0, 1, . . . , N}. Then, for each vehicle, labeled j
with j ∈ N≤N , consider the controller defined by Eqs. (33a),
(33b) with the observer (32a) (32b) for each k ≤ N−1. Then,
the closed-loop trajectories corresponding to the formation
errors ρ̃k, β̃k and the velocity estimation errors v̄i, ω̄i are
uniformly ultimately bounded. •

Proof: Let e2k = [ρ̃k β̃k α̃k v̄
⊤
i ω̄i ]

⊤ and consider the
barrier Lyapunov function V2k : Dk ×R4 → R≥0 defined as

V2k(e2k) :=
1

2

[ v̄i2
K1

+
ω̄i

2

K2

]
+ V1k(ρ̃k, β̃k, α̃k), (35)

which is positive definite and radially unbounded in its
domain of definition. The total derivative of V2k along the
trajectories of the closed-loop dynamics yields

V̇2k(e2k) = −λ1
[
ρ̃k +

ρ̃k
[ρ∗2k − ρ̃2k]

2

]2
− λ2β̃

2
k (36)



−λ3α̃2
k − λ4K1v̄

2
i − λ5K2ω̄

2
i

−K2v̄i[λ4vi + v̇i]−K2ω̄i[λ5ωi + ω̇i].

Then, by simplifying the first term on the right-hand side of
the previous inequality, we get

V̇2k(e2k) ≤ −λ1ρ̃2k − λ2β̃
2
k − λ3α̃

2
k − λ4K1v̄

2
i (37)

−λ5K2ω̄
2
i −K2v̄i[λ4vi + v̇i]

−K2ω̄i[λ5ωi + ω̇i].

Using (34), we obtain

V̇2k(e2k) ≤ −λ1ρ̃2k − λ2β̃
2
k − λ3α̃

2
k − λ4v̄i

2 (38)
−λ5ω̄i

2 + λ4|v̄i|[λ4a1 + a2]

+λ5|ω̄i|[λ5a3 + a4],

which in turn implies that

V̇2k(e2k) ≤ −λ1ρ̃2k − λ2β̃
2
k − λ3α̃

2
k (39)

−λ4K1

[
|v̄i| −

a1 +
a2

λ4

2

]2
−

λ5K2

[
|ω̄i| −

a3 +
a4

λ5

2

]2
+ bi,

where

bi =
λ4K1

4
[a1 +

a2
λ4

]2 +
λ5K2

4
[a3 +

a4
λ5

]2. (40)

Therefore, V̇2k is negative definite for all ek, v̄i and ω̄i) such
that

∥ek∥ > ϵγ :=

√
bi

min{λ1, λ2, λ3}
(41a)

|v̄i| > ϵv :=

√
bi

λ4K1
+

1

2
[a1 +

a2
λ4

] (41b)

|ω̄i| > ϵω :=

√
bi

λ5K2
+

1

2
[a3 +

a4
λ5

] (41c)

The result follows.

IV. SIMULATIONS

We carried out some numerical simulations using
Simulink

™
of Matlab

™
. The example consists in four uni-

cycles following in diamond formation a fictitious leader
vehicle—see Figure 3. The desired formation is defined by
setting the desired orientations (in rad) β∗

k to β∗
1 = 0,

β∗
2 = β∗

4 = π/6, β∗
4 = −π/6, and the desired distances

to ρ∗k = 1 m for all k ∈ {1, 2, 3, 4}.
The controllers’ gains are taken λ1 = λ2 = λ3 = 1 and

the observers’ gains λ4 = λ5 = 5, K1 = K2 = 20. As
initial conditions, we choose β1(0) = −0.2 rad, β2(0) =
β3(0) = β4(0) = 1 rad, for the angle βk. Moreover, the
inter-vehicular distances are chosen ρ1(0) = 1.5 m, ρ2(0) =
1.7 m, ρ3(0) = 1.8 m, ρ3(0) = 1.9 m.

In Figures 4 we show the relative distances ρk converging
to their respective references ρ∗k; in Figure 5 are depicted
the desired relative orientations βk also convergent to the
desired values. The paths followed by the robots are showed
in Figure 6.

1

2

3

4

Fig. 3. Scematics of the desired physical formation of four robots fol-
lowing a fictitious leader vehicle (in blue) and the interconnections graph
representation (links showed in red)
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Fig. 4. Behavior of ρk
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Fig. 5. Behavior of βk
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Fig. 6. Trajectories of the agents on the (x, y)-axis

In a second test we assume the leader’s velocities to be
unknown and we use the observer (32a), (32b). We notice
in Figures 7, 8 representing the variables v̄i, ω̄i that these
last ones converge towards a neighborhood of the origin, in
other words, we see that these errors are bounded.



In Figure 9 it is represented the trajectory followed by the
agents in this case.
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Fig. 9. Trajectories of the agents with velocities observer on the (x, y)-
axis

V. CONCLUSION

The proposed control law ensures that a desired formation
is achieved while simultaneously tracking a desired trajectory
for a group of unicycles interconnected in a leader-follower
configuration. For this purpose, we used a polar-coordinates
model because of the advantages it offers, namely the ability
to achieve the objective via smooth time-invariant feedback.

The control methodology is based on barrier Lyapunov
functions and a polar-coordinates-based model that allowed
us to transform the consensus-based formation problem into
a stabilization problem that is more suited to be studied using
Lyapunov theory. Then we used a certainty-equivalence con-
troller to allow each agent to estimate the linear and angular
velocity of its leader, which brings the proposed solution
closer to reality. Current research is aimed at improving the
performance of the barrier function by considering additional
requirements for collision avoidance. In addition, further

work is carried out to enforce convergence of the estimation
errors.
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