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Abstract: In this paper, we propose an advanced scripting approach using Python and R for satellite
image processing and modelling terrain in Côte d’Ivoire, West Africa. Data include Landsat 9
OLI/TIRS C2 L1 and the SRTM digital elevation model (DEM). The EarthPy library of Python and
‘raster’ and ‘terra’ packages of R are used as tools for data processing. The methodology includes
computing vegetation indices to derive information on vegetation coverage and terrain modelling.
Four vegetation indices were computed and visualised using R: the Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index 2 (EVI2), Soil-Adjusted Vegetation Index (SAVI) and
Atmospherically Resistant Vegetation Index 2 (ARVI2). The SAVI index is demonstrated to be more
suitable and better adjusted to the vegetation analysis, which is beneficial for agricultural monitoring
in Côte d’Ivoire. The terrain analysis is performed using Python and includes slope, aspect, hillshade
and relief modelling with changed parameters for the sun azimuth and angle. The vegetation pattern
in Côte d’Ivoire is heterogeneous, which reflects the complexity of the terrain structure. Therefore, the
terrain and vegetation data modelling is aimed at the analysis of the relationship between the regional
topography and environmental setting in the study area. The upscaled mapping is performed as
regional environmental analysis of the Yamoussoukro surroundings and local topographic modelling
of the Kossou Lake. The algorithms of the data processing include image resampling, band composition,
statistical analysis and map algebra used for calculation of the vegetation indices in Côte d’Ivoire.
This study demonstrates the effective application of the advanced programming algorithms in Python
and R for satellite image processing.

Keywords: image processing; remote sensing; programming; Python; R; satellite image; digital
terrain model; cartography; mapping; spatial analysis
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1. Introduction
1.1. Background

Remote sensing (RS) data have great potential for geosciences as an important source of
spatial information. The RS data can be used in a variety of applications, including geologic
studies, land cover mapping, climate change detection and environmental monitoring.
Semantic information obtained from satellite images is widely used in thematic mapping for
analysis of the diverse phenomena and processes on Earth. Examples include mapping land
cover fractions [1] and vegetation types [2–6], hydrologic and geomorphic modelling [7],
urban sprawl and geological exploration [8,9]. Aside from satellite images, another source
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of RS data is provided by airborne images [10,11] and light detection and ranging (LiDAR)
data for three-dimensional (3D) terrain analysis [12–18].

The general idea in image processing is that geospatial information can be derived
from the interpreted RS data. For instance, repeated structures representing similar objects
on the Earth’s surface are commonly depicted on satellite images, represented by pixels
comprising the matrix of the image scene with a comparable range of values. These data can
be visualised using the properties of the digital numbers (DN) of the pixels, which depend
on the texture, composition and fabric of the objects shaping the face of the Earth [19].
Different land cover types which comprise the mosaic of the diverse landscapes can be
detected on the images. Identifying and recognising these features is possible using the
contrasting parameters of pixels in the satellite images: brightness, resolution [20–22],
intensity [23,24] and texture [25–27]. Accurate and robust techniques of satellite image
processing are essential for effective image interpretation in many approaches developed
recently. These include diverse algorithms of image classification and processing.

The existing algorithms of image classification aim at reading the information from
pixels through reading the values of raster cells. The analysis of this information enables
mapping diverse phenomena, processes and objects based on the interpretation of RS
data [28–32]. The main objective of image processing is obtaining this information from
the RS data. In this context, the search for effective methods of image processing resulted
in the variety of existing Geographic Information System (GIS) software designed for RS
data processing. However, in many practical situations, the GIS presents limitations, either
due to the commercial licencing of software with an associated high cost (ArcGIS, Erdas
Imagine and eCognition) or functional restrictions (QGIS and the System for Automated
Geoscientific Analyses (SAGA) GIS). Moreover, the traditional manual methods of image
processing are time-consuming, which make them ineffective for big data processing and
require automation.

1.2. Related Work

Programming languages present effective solutions for processing satellite images.
This is achieved through the advanced methods of machine learning (ML) [33–36]. Among
them, scripting techniques enable handling RS data effectively and accurately [37–42]. An
essential advantage of the programming languages consists of automation of the RS data
processing. A second advantage consists of the compatibility of data formats. In contrast
to the stand-alone GIS software, scripting libraries can be integrated with other GISs via
modules, plugins and toolkits [43–45]. A variety of existing programming languages
can be used as optimal and effective tools for image processing and RS data analysis in
environmental modelling, among which Python and R are the most advanced and widely
used.

Python is undoubtedly one of the most successful high-level programming lan-
guages [46]. It has become one of the most powerful tools that can be used for data science.
Python enables performing various tasks of image processing and spatial analysis through
integration of libraries [47–49]. Recent examples include image interpolation, calibration
and correlation [50], compressed sensing and image reconstruction [51], identifying and
extracting vertical features [52] and meteorological modelling [53] with resulting images in
compatible formats.

A collection of Python libraries [54,55] has recently built up with EarthPy that is
specially tailored for geo-information processing [56]. Aside from general applications
in diverse branches of data science and ML [57–60], Python can be applied for RS data
processing using its spatial libraries [61]. Image and signal processing by its object-oriented
algorithms of Python are pervasive in geosciences and provide solutions to a wide range of
problems. Examples of using Python have been reported in a variety of domains, including
geodetic studies [62], topographic analysis [63], hydrogeological modelling [64], modelling
air pollution and land use [65], batch spatial data processing [66], creating panorama
images [67] and tunneling microscopy [68], to mention a few.
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R is a fundamental programming tool for statistical and spatial data processing [69].
It includes a variety of packages with extended graphical functionality and advanced
statistical components [70]. The packages of R have long been used for data retrieval,
analysis, modelling and visualisation in various industries including robotics, engineering
and GIS [71–75]. R demonstrates superiority in statistical computing, graphical plotting and
data analysis compared with graphical user interface (GUI) software. Moreover, R excels in
big data analysis [76–78], data mining [79] and visualisation [80] modelling, plotting and
image processing, which are supported through the variety of its built-in packages.

Compared with Python, R has a richer collection of libraries due to the long history
of stable development. They contain a wide variety of mathematical statistical tools,
from the very basic functions to the highly sophisticated algorithms of data analysis [81].
Recent advances in geospatial data processing [82] and image classification [83,84] have
made R successful for remote sensing data processing, including image classification and
segmentation. This poses a new way to process and model satellite images and derive
spatially structured information from complex scenes. In this regard, the ’terra’ and ’raster’
libraries of R present essential tools for modelling geospatial data. The functionality of
these libraries includes essential options for image classification, such as reading spatial
dimensions from raster images, supporting spectral bands of Landsat scenes, evaluating
the similarity between the values of pixels and extracting features from variables such as
vegetation types and variations in landscape structure and topography.

1.3. Contribution

The goal of this paper is to present the application of Python and R algorithms for image
processing. This work is motivated by the idea of using advanced programming methods
to visualise object features and classes on the Earth’s surface. The specific objectives include
the following tasks: (1) plotting the colour composite of a Landsat Operational Land Imager
and Thermal Infrared (OLI/TIRS) image by combinations of the three channel sensor bands
to display the image; (2) computing the selected vegetation indices using the principles of
map algebra based on the DN of reflectance value of the pixels in the selected spectral bands
of near infrared (NIR) and red; and (3) terrain modelling with geomorphic visualisation of
the slope, aspect, hillshade and elevation for relief analysis using the data derived from the
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM).

We propose two approaches to satellite image processing by Python and R. In the first
approach, we use R packages ‘terra’ and ‘raster’ for calculation of the vegetation indices of
Landsat bands and creating colour band composites. For the second approach, we present
an application of the Python library EarthPy for terrain analysis supported by auxiliary
libraries (Matplotlib, NumPy, Rasterio and Plotly) for data processing and visualisation.
The combination of several libraries has been demonstrated to be effective in utilising the
properties and functionality of each to achieve effective image processing for geospatial
analysis using the Python syntax.

The objectives of our study are to use the advanced functionality of R and Python
for satellite image analysis aimed at the environmental assessment and mapping of Côte
d’Ivoire using broadband multispectral images. Here, the goals are to identify the vegetation
conditions by computing four vegetation indices—NDVI, SAVI, EVI2 and ARVI2—and
to model the terrain in the surroundings of Kossou Lake to the north of Yamoussoukro.
Several libraries are used in scripts for terrain modelling, computing the vegetation indices
and creating colour composites using a combination of Landsat bands. In contrast to the
existing approaches, which use the traditional GIS software with restricted functionality,
our method applies flexible algorithms of scripting languages using the syntax of Python
and R and extended functionality of their libraries.

We find that the advanced libraries of Python and R are effective for processing high-
resolution satellite images. This motivates us to introduce an efficient scripting method to
environmental monitoring. To the best of our knowledge, no attempts have been made
to integrate high-level languages, such as Python and R, for mapping Côte d’Ivoire, for
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terrain modelling or for vegetation analysis by scripts. Works related to ours include some
previous studies on Côte d’Ivoire [85–89], in which traditional GIS methods were applied
to process spatiotemporal information for environmental mapping. The key difference
between our work and theirs is that our method integrates programming algorithms for
processing multispectral satellite images using scripts.

Our main contributions can be summarised as follows: (1) environmental mapping
of Côte d’Ivoire based on modelling and visualisation of several vegetation indices using
the ‘terra’ package; (2) an R-based approach to processing satellite images for automatic
processing of raster data in spectral bands and computing cell values aimed at spatial
analysis of the heterogeneous landscapes of Côte d’Ivoire; (3) EarthPy-based algorithms
for deriving topographic information of the Kossou Lake region to model the terrain
parameters of the slope, aspect, hillslopes and stream channels of the hydrological network
system; and (4) mapping spatial data with scripting libraries for automatic data processing,
which outperforms the traditional approaches for cartographic visualisation and image
analysis.

2. Study Area

The study area was focused on the central part of Côte d’Ivoire, West Africa (Figure 1).
In particular, we selected the region of Kossou Lake as an enlarged fragment of the study
area for terrain analysis. This lake was formed artificially by a constructed dam on the
Bandama River. Kossou Lake forms one of the most important inland water bodies of Côte
d’Ivoire and plays an essential role in the environment of Sub-Saharan Africa [90]. It has
functional aspects as a habitat for dominant biotas and supports food chains in ecosystems.

Figure 1. Topographic map of Côte d’Ivoire. Mapping software: Generic Mapping Tools (GMT)
scripting toolset. Data source: GEBCO/SRTM. Cartography: authors.
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Côte d’Ivoire is notable for a diverse terrain structure which has two distinct parts: a
coastal region formed by the alluvium and marine sands and a continental region with hilly
relief [91]. The land cover types are associated with two major ecosystem types: forests
distributed in the southern part of the country and savannah to the north off Bouaké [92].
The vegetation types are largely controlled by the equatorial or subequatorial rainfall
regime. A long dry season is typical for the northern half of Côte d’Ivoire with dominating
savannahs, while a tropical regime characterises the southern part of the country with
prevailing forests [93]. A favourable climatic and environmental setting maintains the
farming and agricultural activities of the local population. This makes Côte d’Ivoire the
largest cocoa producer in the world [94–97] and an active exporter of food-producing
crops [98], such as coffee, bananas, pineapples and palm oil [99]. Aside from agriculture,
the activities of population include exploration, mining [100–102] and limited fishing along
the narrow continental shelf of the Atlantic Ocean [103].

Recently, Côte d’Ivoire experienced environmental changes typical for other countries
of humid West Africa. These include deforestation and fragmentation of ecosystems [104],
a decrease in species richness in the savannah biomes [105] and an increase in habitat
heterogeneity, which affects biodiversity and the species community structure [106]. The
triggers for the environmental changes include climate effects and urban sprawl, which has
been exceptional for Côte d’Ivoire since the 1950s, due to the natural demographic growth
and the increase in industrial agglomerations [107–110]. Geographically, the acceleration
of the population leads to increased city areas and modified transport networks [111].
Other environmental problems include water supply issues and pollution caused by
agro-industrial plantations [112].

3. Materials and Methods
3.1. Data

The data were collected from the United States Geological Survey (USGS)’s Global
Visualization Viewer (GloVis), a satellite image repository with publicly available open
access to remotely sensed data (Figure 2).

(a)

(b)
Figure 2. Data captured from the USGS Global Visualization Viewer (GloVis)’s satellite image
repository, accessing remote sensing data from Landsat 9 OLI/TIRS C2 L1 and SRTM DEM for terrain
analysis. (a) Collected from Landsat 9 OLI/TIRS C2 L1. (b) Collected from SRTM void-filled DEM.
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The data used in this study included the satellite imaging of Landsat 9 OLI/TIRS C2
L1 and the SRTM DEM for terrain modelling. The satellite image covers the central part
of Côte d’Ivoire. It has the following technical parameters: a LC91970552022011LGN01
scene identified; Landsat product ID of LC09_L1TP_197055_20220111_20220122_02_T1
and land cloud coverage of 1.29, acquired on 11 January 2022. The image was obtained
from the Landsat 9 Earth observation satellite, which has two remote sensing instruments
for optical and thermal sensors onboard: the Operational Land Imager (OLI-2) sensor
and the Thermal Infrared Sensor (TIRS-2) along with nine spectral bands [113,114]. More
technical information is available online from Landsat 9. The data used for terrain analysis
included the SRTM void-filled DEM, obtained from the SRTM3 NASA/NGA. It has a
resolution of 3 arc-seconds (90 m) and the following technical parameters: an entity ID of
SRTM3N07W006V2 and tile coordinates: of 5–6° W, 7–8° N, with an acquisition date of 11
February 2000. The general map showing the study area was plotted based on the General
Bathymetric Chart of the Oceans (GEBCO) [115] using GMT scripting [116] and following
the existing methodology [117,118].

3.2. Image Processing in R

The R packages ‘terra’ [119] and ‘raster’ [120] were used for computing the vegetation
indices and image processing. The colour scheme resource of the RColorBrewer package
was used for visualisation and plotting [121].

3.2.1. Information Retrieval and Spatial Statistics

To cope with a series of Landsat bands and search for metadata, we examined the
image parameters using regular expression with the command line utilities of Unix as a
combination of grep, the Geospatial Data Abstraction Library (GDAL) and echo (Listing 1).
Here, grep searches for text in a file according to a given pattern of characters, the GDAL
filters spatial information in the dataset, and echo outputs the strings using the defined
arguments.

Listing 1: Unix shell script by GDAL and echo-grep utilities to inspect the geometry of Landsat TIFs.

1 for f in *tif ; do echo $f; gdalinfo $f | grep Size; done

The spatial resolution, corresponding to the pixel size, was 30 m for Bands 1–7, 9 and
10, while it was 15 m for Band 8 (panchromatic) (Figure 3a). The spatial information of the
Landsat channels (bands) is presented in metadata, as shown in Figure 3b, and inspected
by R. It indicates the number and location of the spectral measurements, spatial extent,
geodetic information (coordinate reference system (CRS), ellipsoid and datum obtained
by the global positioning system (GPS) of the spacecraft and the spatial and radiometric
resolutions of the image. Each image corresponding to a given band of the Landsat scene
was read into the R SpatRaster object class, which represents the equalised area of the
rectangular cells with regard to the units of the CRS (Figure 3b).
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(a) Using grep and echo Unix utilities with
’gdalinfo’ module to scan the metadata.

(b) Creating SpatRaster objects and checking
spatial data: projection, datum and ellipsoid.

Figure 3. Inspecting the geometry of Landsat bands with (a) 30-pixel resolution for all the bands,
except for Band 8 (panchromatic) with a 15-pixel resolution, checking image properties in R package
’terra’ and (b) for single Landsat-8 OLI/TIRS C1 bands (1:11).

3.2.2. Spectral Bands for Colour Composites

The properties of the image were evaluated using a SpatRaster object by the R
commands presented in Listing 2. Here, we inspected the CRS, the geometry of the image
(number of cells, rows and columns) and extent, resolution and origin of the bands. The
panchromatic channel (Band 8) had a higher resolution (15 m) compared with the set of the
multispectral bands in the visible and thermal bands of the spectra (30 m). To ignore this
difference in the matrix of the image, the raster in Band 8 (panchromatic) was resampled
to the structure of the same number of rows and columns as in other bands (Here, target
Band 1 is in Ultra Blue) by creating the RasterBrick multi-layer object as demonstarted in
Listing 2.

Listing 2: R code used for inspecting the information and statistics on the Landsat 8-9 OLI bands.

1 library(terra)
2 ## terra version 1.2.11
3 # Change working directory
4 setwd("/Users/polinalemenkova/Documents/R/Image_Processing/LC09_L1TP_197055_

20220111_20220122_02_T1")
5 b2 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B2.TIF’) # Blue
6 b3 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B3.TIF’) # Green
7 b4 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B4.TIF’) # Red
8 b5 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF’) # Near Infrared (NIR

)
9 # Checking metadata by printing the variables

10 b2
11 # Checking coordinate reference system (CRS)
12 crs(b2)
13 # Number of cells
14 ncell(b2)
15 # Number of rows & columns
16 dim(b2)
17 # Image information and statistics spatial resolution
18 res(b2)
19 # Number of bands
20 nlyr(b2)
21 # Comparing bands extent, number of rows and columns, projection , resolution and

origin
22 compareGeom(b5, b4)
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23 # Creating a SpatRaster with multiple layers from the existing SpatRaster (single
layer) objects.

24 s <- c(b5, b4, b3)
25 # Checking properties of the multi-band image
26 s
27 # Creating a list of raster layers to use
28 filenames <- paste0(’LC09_L1TP_197055_20220111_20220122_02_T1_B’, 1:11, ".tif")
29 filenames
30 # Resampling raster in Band 8 (panchromatic) to the structure of Band 1:
31 library(raster)
32 r1 = raster::brick("LC09_L1TP_197055_20220111_20220122_02_T1_B8.tif")
33 r2 = raster::brick("LC09_L1TP_197055_20220111_20220122_02_T1_B1.tif")
34 r1 <- resample(r1, r2, method="bilinear")
35 s <- stack(r1, r2)
36 # Creating the multi-layer SpatRaster using the filenames
37 landsat <- rast(filenames)
38 landsat

Afterwards, the layers were read in the ‘landsat’ object class of R, where they were
represented by the bands of the Landsat-9 OLI image. The reflection intensity had the
following wavelengths: Ultra Blue or coastal aerosol (Band 1), blue (Band 2), green (Band 3),
red (Band 4), near infrared (NIR) (Band 5), Shortwave Infrared (SWIR) 1 (Band 6), Shortwave
Infrared (SWIR) 2 (Band 7), panchromatic (Band 8), cirrus (Band 9), Thermal Infrared (TIRS)
1 (Band 10) and Thermal Infrared (TIRS) 2 (Band 11). The visualisation of single bands was
performed using Listing 3 and is presented as a subplot of grayscale scenes in Figure 4.

Listing 3: R code for plotting the 11 original individual layers (raw bands) of the Landsat-9 multi-
spectral images as grayscale bitmap images.

1 library(terra)
2 ## terra version 1.2.11
3 # Change working directory
4 setwd("/Users/polinalemenkova/Documents/R/Image_Processing/LC09_L1TP_197055_

20220111_20220122_02_T1")
5 b1 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B1.TIF’) # Ultra Blue
6 b2 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B2.TIF’) # Blue
7 b3 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B3.TIF’) # Green
8 b4 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B4.TIF’) # Red
9 b5 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF’) # NIR

10 b6 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B6.TIF’) # Green
11 b7 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B7.TIF’) # Red
12 b8 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B8.TIF’) # Panchrom.
13 b9 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B9.TIF’) # Cirrus
14 b10 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B10.TIF’) # TIRS 1
15 b11 <- rast(’LC09_L1TP_197055_20220111_20220122_02_T1_B11.TIF’) # TIRS 2.
16 # Plotting natural color composite from bands B4, B3 and B2.
17 landsatRGB <- c(b4, b3, b2)
18 plotRGB(landsatRGB , stretch = "lin")
19 # Plotting 11 original individual layers as raw bands of the Landsat -9 OLI.
20 par(mfrow = c(4, 3))
21 plot(b1, main = "Ultra Blue (Band 1)", col = gray(0:100 / 100), legend=FALSE)
22 plot(b2, main = "Blue (Band 2)", col = gray(0:100 / 100), legend=FALSE)
23 plot(b3, main = "Green (Band 3)", col = gray(0:100 / 100), legend=FALSE)
24 plot(b4, main = "Red (Band 4)", col = gray(0:100 / 100), legend=FALSE)
25 plot(b5, main = "NIR (Band 5)", col = gray(0:100 / 100), legend=FALSE)
26 plot(b6, main = "SWIR (Band 6)", col = gray(0:100 / 100), legend=FALSE)
27 plot(b7, main = "NIR (Band 7)", col = gray(0:100 / 100), legend=FALSE)
28 plot(b8, main = "Panchrom. (Band 8)", col = gray(0:100 / 100), legend=FALSE)
29 plot(b9, main = "Cirrus (Band 9)", col = gray(0:100 / 100), legend=FALSE)
30 plot(b10, main = "TIRS 1 (Band 10)", col = gray(0:100 / 100), legend=FALSE)
31 plot(b11, main = "TIRS 2 (Band 11)", col = gray(0:100 / 100), legend=TRUE)
32 landsatRGB <- c(b4, b3, b2)
33 plotRGB(landsatRGB , stretch = "lin")

There was a difference in nuance between the grey corresponds and the numerical
values and range of pixel values in diverse channels of Landsat. This is explained by the
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spectral reflectance that differs in various bands for objects on the Earth’s surface. Due to the
individual reflectance of solar radiation by these features, the values differed accordingly.
Such effects from spectral reflectance enabled us to use combinations of various bands to
better represent the diverse phenomena and objects on Earth. For instance, the particular
applications of Landsat bands are for geology (SWIR (Band 7), NIR (Band 5) and red
(Band 4)) [122], mineralogical identification of soil and rock (SWIR (Band 7), red (Band 4)
and green (Band 2)) and identifying the difference between soil and vegetation (green in
Band 3) [123,124]. Aside from that, the reflectance data from the selected bands of the
Landsat images were used in the calculation of four vegetation indices for the study area
using the interactions of pixels in the raster.

Subsetting large files, such as multispectral Landsat images, was performed using the
SpatRaster object and ’subset’ function, which enabled processing the necessary bands of
the Landsat image. In this respect, it enabled ignoring the cirrus, TIRS and other bands
that were not relevant for a given task and to leave only the visible spectra. In this way, a
subset of the target layers was selected from the SpatRaster object, while other bands were
removed from the dataset using Listing 4.

Listing 4: R code for subsetting the large files using SpatRaster object.

1 library(terra)
2 setwd("/Users/polinalemenkova/Documents/R/Image_Processing/LC09_L1TP_197055_

20220111_20220122_02_T1")
3 filenames <- paste0(’LC09_L1TP_197055_20220111_20220122_02_T1_B’, 1:11, ".tif")
4 filenames
5 landsat <- rast(filenames)
6 landsat
7 # Removing the unnecessary four bands: Panchromatic , Cirrus, TIRS1, TIRS2.
8 landsatsub <- subset(landsat, 1:7)
9 names(landsatsub)

10 # Checking Nnumber of bands in the original and new data
11 nlyr(landsatsub)
12 # Renaming the bands
13 names(landsatsub) <- c("ultra-blue", "blue", "green", "red", "NIR", "SWIR1", "

SWIR2")
14 names(landsatsub)

Visual inspection of the satellite image product built from the monochrome image
data (Figure 4) was useful for extracting general information on the large-scale features,
such as river systems, lakes, mountains, fracture patterns, large geological lineaments or
the extent of the city with notable objects such as highways. These objects are visible and
can be identified by their shape and size and interpreted using spatial properties related to
the pixel brightness values.

To more thoroughly investigate the relationship between the spectral responses of
various land cover types in different wavelength diapasons, we examined the pairwise
correlation between the selected bands of the Landsat image. To this end, we compared the
bands in pairwise combinations (Band 1 against Band 2 and Band 4 against Band 5) in the
selected parts of the spectrum. The images were plotted pixel by pixel against those from
the corresponding bands using Listing 5. The resulting plot showed a narrow correlation
ellipse and a histogram representing a strong positive correlation between the two bands of
green and blue as well as red to NIR (Figure 5).

The cells with low spectral reflectance in a target band generally had low reflectance
in the remaining bands, which was caused by the albedo of the Earth’s surface. However, a
visible correlation between Bands 1 and 2 showed more similarity between these bands, as
all the pixels were located almost along the same line (Figure 5a). In contrast, the NIR and
red bands demonstrated more differences in spectral reflectance for the selected objects,
which resulted in a scattered cloud of points representing the pixels of the image (Figure 5b).
The brightness of the pixels in each layer indicates the amount of incident solar radiation,
which is reflected by the Earth’s surface in a given wavelength diapason. As a result, this
causes a similarity or difference in the spectral bands of the Landsat scene.
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Figure 4. Original individual 11 layers (raw bands) of the multi-spectral image Landsat-9 OLI/TIRS
C1 ‘LC09_L1TP_197055_20220111_20220122_02_T1’ in greyscale mode: ultra blue (Band 1), blue
(Band 2), green (Band 3), red (Band 4), near infrared (NIR) (Band 5), Shortwave Infrared (SWIR) 1
(Band 6), Shortwave Infrared (SWIR) 2 (Band 7), panchromatic (Band 8), cirrus (Band 9), Thermal
Infrared (TIRS) 1 (Band 10) and Thermal Infrared (TIRS) 2 (Band 11), plotted with R.

Listing 5: R code for inspecting the correlation between the selected Landsat bands.

1 # Relation between bands
2 library(terra)
3 pairs(landsatsub[[1:2]], hist=TRUE, cor=TRUE, use="pairwise.complete.obs",

maxcells=100000, main = "Correlation of Band 1 (Ultra-blue) against Blue (
Band 2)")

4 pairs(landsatsub[[4:5]], hist=TRUE, cor=TRUE, maxcells=100000, main = "Correlation
of Band 4 (Red) against NIR (Band 5)")

Since there was not much information in the monochrome bands of the Landsat
OLI/TIRS image, they were combined into colour composites to create more representative
images. Plotting of the colour composites was based on the combinations of the three
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bands used as elements of the matrix scene. The three bands assigned to each of the three
primary colours (red, green and blue (RGB)) were displayed with images using Listing 6.

(a) (b)
Figure 5. Correlation between the selected Landsat-8 OLI/TIRS C1 bands in a multispectral image
LC09_L1TP_197055_20220111_20220122_02_T1_B. (a) Band 1 against Band 2. (b) Band 4 against
Band 5.

Listing 6: R code used for plotting the color composites for bands of the satellite image.

1 library(raster)
2 blue = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B2.TIF")
3 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B3.TIF")
4 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B4.TIF")
5 rgb = stack(red, green, blue)
6 plotRGB(rgb, scale=65535)
7 plotRGB(rgb, stretch="lin")
8 plotRGB(rgb, stretch="hist")
9 # False color composites

10 # Color Infrared: colors near-infrared (band 5) as red, red (band 4) as green, and
green (band 3) as blue

11 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B3.TIF")
12 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B4.TIF")
13 near.infrared = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF")
14 rgb = stack(near.infrared, red, green)
15 plotRGB(rgb, scale=65535, stretch="lin")
16 # Landsat 9 OLI/TIRS colour composite image, RGB=753
17 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B7.TIF")
18 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF")
19 near.infrared = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B3.TIF")
20 rgb = stack(near.infrared, red, green)
21 plotRGB(rgb, scale=65535, stretch="hist")
22 # Landsat 9 OLI/TIRS colour composite image, RGB=765.
23 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B7.TIF")
24 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B6.TIF")
25 blue = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF")
26 rgb = stack(red, green, blue)
27 plotRGB(rgb, scale=65535, stretch="hist")
28 # Landsat 9 OLI/TIRS colour composite image, RGB=742.
29 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B7.TIF")
30 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B4.TIF")
31 blue = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B2.TIF")
32 rgb = stack(red, green, blue)
33 plotRGB(rgb, scale=65535, stretch="hist")
34 # Landsat 9 OLI/TIRS colour composite image, RGB=573.
35 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF")
36 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B7.TIF")
37 blue = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B3.TIF")
38 rgb = stack(red, green, blue)
39 plotRGB(rgb, scale=65535, stretch="hist")
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40 # Landsat 9 OLI/TIRS colour composite image, Color Infrared: RGB=543
41 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF")
42 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B4.TIF")
43 near.infrared = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B3.TIF")
44 rgb = stack(near.infrared, red, green)
45 plotRGB(rgb, scale=65535, stretch="hist")
46 # Landsat 9 OLI/TIRS colour composite image, Color Infrared: RGB=654
47 green = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B6.TIF")
48 red = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B5.TIF")
49 near.infrared = raster("LC09_L1TP_197055_20220111_20220122_02_T1_B4.TIF")
50 rgb = stack(near.infrared, red, green)
51 plotRGB(rgb, scale=65535, stretch="hist")

The vegetation indices were computed based on the arithmetically transformed
combination of Landsat OLI/TIRS bands. This resulted from the existing formulae for
band computations using mathematical operations with bands. The map algebra included
addition, subtraction and division of the brightness in cells of the NIR and red bands of
the Landsat image. The differences in the bands highlight the regions of the enhanced and
more healthy vegetation in the target area of the image, which presents information for
environmental monitoring. The resultant image shows brightness values of vegetation
modified by colour palettes made using arithmetic operations on the composite bands.

The most widely used and well-known vegetation index is the Normalised Difference
Vegetation Index (NDVI), which applies the ratio of the difference in values between
the red and NIR bands and their sum. Similar to the NDVI, the Enhanced Vegetation
Index (EVI) quantifies vegetation greenness with added corrections for the atmospheric
conditions and canopy background noise. Aside from that, the EVI is more sensitive in
forest areas with more dense canopies and vegetation coverage, which is useful for the
forest regions of Côte d’Ivoire. The Soil-Adjusted Vegetation Index (SAVI) is built up
by using the NDVI and correcting for the effects of soil brightness in the regions where
vegetative cover is low, namely deforested areas and the fragmented savannahs of Côte
d’Ivoire. The Atmospherically Resistant Vegetation Index 2 (ARVI2) is the most applicable
index in regions with high atmospheric aerosol contents. Examples of other environmental
indices include the Normalized Difference Water Index (NDWI), modified Normalized
Difference Water Index (MNDWI) and Water Ratio Index (WRI) [125].

Computing the vegetation indices is an important environmental tool which is based
on information from the DN values of pixels, indicating the spectral reflectance of the red
and NIR bands as measured by the sensor. It is commonly computed with the spatial
statistics and algebra of the bands using the cell values of the image as shown in Listing 7.
The reason for selecting the NIR and red bands for computing the vegetation indices is
vegetation appearing brighter in these bands, since it reflects more energy in the NIR and
red bands compared with other wavelengths. Contrarily, water absorbs most of the energy
in the NIR band and is therefore represented by black to very dark brown colours. Through
a series of interactions among the elements of an image, they are allocated to the classes
based on the weighted values of their relative proportions.

Listing 7: R code used for computing vegetation indices from bands of the satellite image.

1 # Computing vegetation indices
2 library(terra)
3 library(RColorBrewer)
4 setwd("/Users/polinalemenkova/Documents/R/Image_Processing/LC09_L1TP_197055_

20220111_20220122_02_T1")
5 # 1. Normalized Difference Vegetation Index (NDVI) = (NIR - R) / (NIR + R) NDVI =

(Band 5 - Band 4) / (Band 5 + Band 4).
6 vi <- function(img, k, i) {
7 bk <- img[[k]]
8 bi <- img[[i]]
9 vi <- (bk - bi) / (bk + bi)

10 return(vi)
11 }
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12 # For Landsat NIR = 5, red = 4.
13 ndvi <- vi(landsat, 5, 4)
14 plot(ndvi, col=rev(terrain.colors(20)), font.main = 1, main = "NDVI for Landsat -9

OLI/TIRS C1 image LC09_L1TP_197055_20220111_20220122_02_T1: Yamassoukro ,
central C\^ote d’Ivoire", cex.main=0.9)

15 # Plotting histogram of the NDVI
16 hist(ndvi, font.main = 1, main = "NDVI values for Landsat -9 OLI/TIRS C1 image \n

LC09_L1TP_197055_20220111_20220122_02_T1, Yamassoukro , central C\^ote d’
Ivoire", xlab = "NDVI", ylab= "Frequency",

17 col = "darkolivegreen1", xlim = c(-0.5, 1), breaks = 30, xaxt = "n")
18 axis(side=1, at = seq(-0.6, 1, 0.1), labels = seq(-0.6, 1, 0.1))
19 #
20 # 2. Soil Adjusted Vegetation Index (SAVI) corrects NDVI for the influence of soil

brightness in areas where vegetative cover is low
21 # SAVI = ((Band 5 - Band 4) / (Band 5 + Band 4 + 0.5)) * (1.5).
22 savi_fun = function(nir, red){
23 ((nir - red) / (nir + red + 0.5)) * 1.5
24 }
25 savi = lapp(landsat[[c(4, 3)]],
26 fun = savi_fun)
27 #plot(savi, col = topo.colors(30), font.main = 2, main = "Soil Adjusted Vegetation

Index (SAVI) for Landsat -9 OLI/TIRS C1 image \nLC09_L1TP_197055_20220111_
20220122_02_T1: Yamassoukro , central C\^ote d’Ivoire", cex.main=1.0)

28 plot(savi, col = brewer.pal(11, "Accent"), font.main = 2, main = "Soil Adjusted
Vegetation Index (SAVI) for Landsat -9 OLI/TIRS C1 image \nLC09_L1TP_197055_
20220111_20220122_02_T1: Yamassoukro , central C\^ote d’Ivoire", cex.main=1.0)

29 # Computing histogram for SAVI
30 hist(savi, font.main = 1, main = "SAVI values for Landsat -9 OLI/TIRS C1 image \n

LC09_L1TP_197055_20220111_20220122_02_T1, Yamassoukro , central C\^ote d’
Ivoire", xlab = "SAVI", ylab= "Frequency",

31 col = "darkgoldenrod1", xlim = c(-0.4, 0.4), breaks = 30, xaxt = "n")
32 axis(side=1, at = seq(-0.4, 0.4, 0.1), labels = seq(-0.4, 0.4, 0.1))
33 #
34 # 3. Enhanced Vegetation Index 2
35 # EVI2 = 2.4 * (Band 5 - Band 4) / (Band 5 + Band 4 + 1).
36 evi2_fun = function(nir, red){
37 2.4 * ((nir - red) / (nir + red + 1))
38 }
39 evi2 = lapp(landsat[[c(4, 3)]],
40 fun = evi2_fun)
41 plot(evi2, col = brewer.pal(9, "Set1"), font.main = 2, main = "Enhanced Vegetation

Index 2 (EVI2) for Landsat -9 OLI/TIRS C1 image \nLC09_L1TP_197055_20220111_
20220122_02_T1: Yamassoukro , central C\^ote d’Ivoire", cex.main=0.9)

42 # Computing histogram for EVI2
43 hist(evi2, font.main = 1, main = "EVI2 values for Landsat -9 OLI/TIRS C1 image \n

LC09_L1TP_197055_20220111_20220122_02_T1, Yamassoukro , central C\^ote d’
Ivoire", xlab = "SAVI", ylab= "Frequency",

44 col = "darkorchid1", xlim = c(-0.4, 0.4), breaks = 30, xaxt = "n")
45 axis(side=1, at = seq(-0.4, 0.4, 0.1), labels = seq(-0.4, 0.4, 0.1))
46 #
47 # 4. Atmospherically Resistant Vegetation Index 2 (ARVI2)
48 # ARVI2 = -0.18 + 1.17 ((nir - red) / (nir + red))
49 arvi_fun = function(nir, red){
50 ((nir - red) / (nir + red)) * 1.17 - 0.18
51 }
52 arvi = lapp(landsat[[c(4, 3)]],
53 fun = arvi_fun)
54 plot(arvi, col = brewer.pal(12, "Paired"), font.main = 1, main = "Atmospherically

Resistant Vegetation Index 2 (ARVI2) for Landsat -9 OLI/TIRS C1 \nimage LC09_
L1TP_197055_20220111_20220122_02_T1: Yamassoukro , C\^ote d’Ivoire", cex.main
=0.9)

55 # Computing histogram for ARVI2
56 hist(arvi, font.main = 1, main = "ARVI2 values for Landsat -9 OLI/TIRS C1 image \n

LC09_L1TP_197055_20220111_20220122_02_T1, Yamassoukro , C\^ote d’Ivoire", xlab
= "ARVI2", ylab= "Frequency",

57 col = "cyan1", xlim = c(-0.4, 0.1), breaks = 30, xaxt = "n")
58 axis(side=1, at = seq(-0.4, 0.1, 0.1), labels = seq(-0.4, 0.1, 0.1))
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3.3. Terrain Analysis in Python

To model the relationship between the topographic variables and appearance, we
applied Python algorithms for processing SRTM data by the 3D approach. Two different
types of local features were computed for the SRTM image, namely the DTM and hillshade,
with artificial light imitating the Sun’s illumination. The 3D visualisation of the terrain
surface is changed by varied azimuth and altitude of sun. Technically, the terrain analysis
has been performed using integration of several libraries of Python: EarthPy [56] for
modelling, Matplotlib for data visualisation [126], Rasterio for processing gridded raster
datasets [127]. The auxiliary packages include NumPy [128] which operates with arrays of
raster cells presenting the elements of the matrix of image, arranged in regular rows and
columns, and Plotly [129], which is used as an additional graphical and plotting library.

The geospatial TIFF was visualised for modelling the DEM as GeoTIFF using the
Rasterio library, which imported the dataset as a raster array of cells, read the GeoTIFF
format and stored a gridded raster as a digital terrain model (DTM) or satellite images
(Listing 8). The elevation data were imported by Rasterio as height values that were
contained in the cells of the corresponding raster. The structure of the data presented a
NumPy array in the form of a matrix with the DNs of pixels. The terrain was plotted as an
array of cells representing the land surface according to the elevation values, as shown in
Listing 8. Plotting of the bands was performed using the ep.plot_bands() function using
the spatial dimensions of the raster file.

Listing 8: Python code (1) used for plotting DEM in Figure 2.

1 python3.10
2 # Set home directory
3 import os
4 os.chdir(’/Users/polinalemenkova/Documents/Python/Image_Processing’)
5 os. getcwd()
6 # Set data source
7 dtm = "n07_w006_3arc_v2.tif"
8 # Load libraries
9 from glob import glob

10 import earthpy as et
11 import earthpy.spatial as es
12 import earthpy.plot as ep
13 import rasterio as rio
14 import matplotlib.pyplot as plt
15 import numpy as np
16 from matplotlib.colors import ListedColormap
17 import plotly.graph_objects as go
18 np.seterr(divide=’ignore’, invalid=’ignore’)
19 # Open DEM by Rasterio
20 with rio.open(dtm) as src:
21 elevation = src.read(1)
22 # Plot the data
23 fig, ax = plt.subplots(figsize=(10, 10))
24 ep.plot_bands(
25 elevation ,
26 ax=ax,
27 cmap="terrain",
28 title="Ditigal Terrain Model (DTM) of Kossou Lake, C\^ote d’Ivoire. \n Data

source: SRTM3 (3 arc-second resolution , 90 m), NASA/NGA. \nEntity ID:
SRTM3N07W006V2. Aquisition date: 2000-02-11. cpt: ’terrain’",

29 figsize=(10, 6),
30 )
31 plt.show()
32 # Save figure with 300 dpi resolution
33 plt.savefig(’Figure_2_DEM_Kossou_1609.jpg’, dpi=300)

The hillshade was calculated using the altitude of the Sun as a light source at the
zenith and azimuth of the illumination source (Listing 9). The functions to compute the
variations between the exemplar locations of artificial illumination of the terrain resulted in
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the visualised details of the terrain in the Kossou Lake surroundings. The slope and aspect
of the terrain were used as auxiliary variables for the terrain modelling. The hillshade
modelling was inherently related to static cartographic representations of the Earth’s
topography, and thus hillshade was used for the geomorphometric representation of the
terrain of Côte d’Ivoire.

Listing 9: Python code (2) used for plotting hillshade in Figure 3.

1 python3.10
2 # Set home directory
3 import os
4 os.chdir(’/Users/polinalemenkova/Documents/Python/Image_Processing’)
5 os. getcwd()
6 # Set data source
7 dtm = "n07_w006_3arc_v2.tif"
8 # Load libraries
9 from glob import glob

10 import earthpy as et
11 import earthpy.spatial as es
12 import earthpy.plot as ep
13 import rasterio as rio
14 import matplotlib.pyplot as plt
15 import numpy as np
16 from matplotlib.colors import ListedColormap
17 import plotly.graph_objects as go
18 np.seterr(divide=’ignore’, invalid=’ignore’)
19 # Generate hillshade from DTM
20 hillshade = es.hillshade(elevation)
21 # Plot the data
22 fig, ax = plt.subplots(figsize=(10, 10))
23 ep.plot_bands(
24 hillshade ,
25 ax=ax,
26 cbar=True,
27 cmap="cividis",
28 title="Hillshade from DTM of Kossou Lake, C\^ote d’Ivoire. \n Data source:

SRTM3 (3 arc-second resolution , 90 m), NASA/NGA. \nEntity ID: SRTM3N07W006V2.
Aquisition date: 2000-02-11. cmap=cividis",

29 figsize=(10, 10),
30 )
31 plt.show()
32 plt.savefig(’Figure_3_Hillshade_Kossou_1609.png’, dpi=300)

Hillshade represents the terrain with a hypothetical illumination value in the monochrome
scale (0–255) with cells on the raster scene showing the terrain surface with a given specified
light source. The illumination was changed to 10◦and 230◦ (in radians) to better represent a
geospatial model of the topographic relief of Côte d’Ivoire (Listing 10). Assume that the
orientation differences between the angle and azimuth of artificial illumination in modelling
the topography of Kossou Lake are independent and identically distributed according
to the time and seasonal parameters. To visualise the characteristics of the relief in the
topographic model based on the DEM, raster data were sampled to estimate the variations
in distribution of the parameters. In our case, we selected azimuths of 10◦and 230◦. We
observed that the effects from the contrasting variations in relief approximately followed
the changes in the Sun’s azimuth and angle altitude.

Listing 10: Python code used for plotting the hillshade with changed azimuth and Sun angle values
for Figures 4 and 5.

1 python3.10
2 # Set home directory
3 import os
4 os.chdir(’/Users/polinalemenkova/Documents/Python/Image_Processing’)
5 os. getcwd()
6 # Set data source
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7 dtm = "n07_w006_3arc_v2.tif"
8 # Load libraries
9 from glob import glob

10 import earthpy as et
11 import earthpy.spatial as es
12 import earthpy.plot as ep
13 import rasterio as rio
14 import matplotlib.pyplot as plt
15 import numpy as np
16 from matplotlib.colors import ListedColormap
17 import plotly.graph_objects as go
18 np.seterr(divide=’ignore’, invalid=’ignore’)
19 # Open DEM by Rasterio which reads GeoTIFF format and stores gridded raster

datasets of digital terrain models (DTMs) and satellite images
20 with rio.open(dtm) as src:
21 elevation = src.read(1)
22 # Changing the azimuth of the sun of the hillshade layer to 210 degrees
23 hillshade_azimuth_230 = es.hillshade(elevation , azimuth=230)
24 # Plotting the hillshade layer with the modified azimuth
25 fig, ax = plt.subplots(figsize=(10, 10))
26 ep.plot_bands(
27 hillshade_azimuth_230 ,
28 ax=ax,
29 cbar=True,
30 cmap="plasma",
31 title="Hillshade from DTM of Kossou Lake, C\^ote d’Ivoire. Azimuth of sun is

adjusted to 230 \N{DEGREE SIGN}",
32 figsize=(10, 10),
33 )
34 plt.show()
35 plt.savefig(’Figure_4_Azimuth_hillshade_Kossou.jpg’, dpi=300)
36 # Changing the angle altitude of sun
37 hillshade_angle_10 = es.hillshade(elevation , altitude=10)
38 # Plotting the hillshade layer with the modified angle altitude
39 fig, ax = plt.subplots(figsize=(10, 10))
40 ep.plot_bands(
41 hillshade_angle_10 ,
42 ax=ax,
43 cbar=True,
44 cmap="magma",
45 title="Hillshade from DTM of Kossou Lake, C\^ote d’Ivoire. Angle altitude is

defined as 10 \N{DEGREE SIGN}",
46 figsize=(10, 10),
47 )
48 plt.show()
49 plt.savefig(’Figure_5_Angle_hillshade_Kossou.jpg’, dpi=300)

We assumed the data to be of a high resolution, which may have presented our current
limitations. However, the precision may affect the resulting topographic model through
coarser resolution data (i.e., lesser meters in one pixel will give a rough representation
of the Earth’s surface and miss smaller landforms in the landscape). Regarding this, it is
strongly recommended to apply very high-resolution data for a precise representation of
the Earth. Another point of concern consists of selecting the correct view shed and azimuth
for modelling the aspect, slope and elevation, which is especially true for mountainous
regions and rugged reliefs. Although the Python-based method of terrain modelling can
potentially handle materials with coarser or unknown resolutions for the original data, the
results may hide the selected structures on the Earth’s surface. The same issue concerns the
applications of R for image processing, where the precision of the output data corresponds
to to the original resolution of the input data. In our future works, we are very interested
in extending our study to handle higher-resolution imagery, such as Sentinel 2A at a 10 m
resolution or Satellite pour l’Observation de la Terre (SPOT) with up to a 1.5 m spatial
resolution in the panchromatic and multispectral channels.

In the presented methodology, we applied Python and R algorithms which process
and model the terrain characteristics of the Earth using the spatial parameters of the
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remote sensing data. By exploiting the spectral reflectance characteristics of the satellite
bands, we used information from the Landsat channels from the corresponding cells which
represent objects located on the Earth. Interpretation of these values is based on their spectral
reflectance in various wavebands, which provides information on the characteristics of
typical land cover types. This was possible through the analysis of the different brightness
of each land cover type (e.g., forests, rivers, lakes and other water bodies or urban spaces).
In turn, the geomorphometric models formed using Python scripts enabled predicting
the distribution of various soil properties and associated vegetation types which were
related to the specific slope steepness and regional topographic features. Examples of the
application of terrain models include hazard risk assessment in applied geology for erosion,
landslides and avalanches in mountainous regions. The major advantage of using Python
and R scripts for environmental modelling is that it reduces the time of data processing and
increases the precision of models through automation of data processing, because scripts
are repeatable for other regions and can be applied in similar studies.

4. Results and Discussion
4.1. Color Composites

Colour image maps were created by different combinations of the recorded Landsat
OLI/TIRS bands. In the sequence from top to bottom, they are displayed as natural and
false composites, respectively (Figure 6). The use of natural (or true) colour composites
was widely applied for general environmental monitoring, since it exposed characteristics
regarding the landscape and land cover types compared to the monochrome images. Thus,
band combinations 4-3-2 (red-green-blue) and 2-3-4 (blue-green-red) represented natural
colour composites well. Since its appearance is similar to the normal aerial photograph,
this composite is advantageous for mapping vegetation and agricultural coverage and
discriminating the vegetation from bare soil and growing crops (Figure 6a,b).

In Figure 6c, Bands 3,4 and 5 were taken in the inverse way, where Band 5 (NIR)
represented red, Band 4 (red) was green and Band 3 (green) was blue. The improvement of
the image was performed using linear and histogram stretching, which consisted of the
adjustment of the contrast in the colour tones of the images. In this band composite, the
broadleaf healthy vegetation had a deeper reddish hue, while lighter hues were related to
the grasslands, savannahs or sparsely vegetated areas. Soil was represented by various
hues, depending on the soil type, from dark to light browns. The populated urban areas
were shown in light grey to white spots.

The false colour composite was represented by the mix of bands 3, 4 and 5, where
the NIR, red, and green bands were used. This printed the optical data, with vegetation
dominating through the bright red hues due to the chlorophyll reflection, while agricultural
lands were depicted in cyan. The bare soils in this combination appeared as shades of white
to light grey and blueish or green in the agricultural regions, depending on the crop type. The
darker shades of each colour generally indicated moister soil and cities with hues of steel
grey (Figure 6c). The combination of Bands 7,6 and 5 showed the mix of SWIR 2, SWIR 1 and
NIR. Here, the crop lands were coloured yellow, while vegetation areas were shown as bright
ultramarine blue colour (Figure 6d).
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(a) Bands 2,3 and 4 with stretch improvement: ‘linear’ (b) Bands 2, 3 and 4 with stretch improvement: ‘histogram’

(c) Bands 3, 4 and 5 (d) Bands 7, 6 and 5

Figure 6. Natural color composites (a,b). False color composites (c,d). Landsat 9 OLI image of Kossou
Lake region and Yamoussoukro, Côte d’Ivoire. Mapping: RStudio. Source: authors.

Figure 7 shows different cases of false colour composites mixed using NIR, SWIR2 and
green (a), SWIR 2, red and blue (b), NIR, red and green (c) and SWIR 1, red and green (d).
Since NIR light is reflected from the surfaces with higher levels of vegetation but absorbed
by water, such band combinations are useful for vegetation and agriculture applications
(e.g., mapping forests and crops).
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(a) (b)

(c) (d)

Figure 7. False color composite visualisation of Landsat 8 OLI image of Kossou Lake surroundings
in Côte d’Ivoire. Mapping: RStudio. Source: authors. (a) Bands 5, 7 and 3. (b) Bands 7, 4 and 2.
(c) Bands 5, 4 and 3 (color infrared). (d) Bands 6, 5 and 4.

4.2. Computing Vegetation Indices
4.2.1. Normalized Difference Vegetation Index (NDVI)

The NDVI aims at quantifying the concentrations of the green leaf canopy. It indicates
healthy, vigourous vegetation by using the arithmetic of the red and NIR bands as shown
in Equation (1) [130]:

NDVI =
(NIR−Red)
(NIR + Red)

(1)

Originally tested in 1974 [130], the NDVI received wide recognition in image processing
for environmental modelling. Nowadays, the NDVI is the most famous and most used
vegetation index. The selection of the red and NIR bands in the NDVI is explained by the
specific certain abilities of plants to selectively absorb, reflect or transmit the frequencies in
the wavebands; plants absorb red and strongly reflect NIR waves. Practically, the NDVI
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enables indicating the green vegetation density covering the terrain surface and identifying
where plants are thriving and where they are under stress (i.e., due to a lack of water).

Due to this fundamental property, the NDVI was used to evaluate vegetation health
and assess the vigour of plants in agricultural regions. The general NDVI lies in the
diapason from −1 to +1, but the majority of the values are restricted by a range from −0.1 to
0.5 (Figure 8). Negative values for the NDVI correspond to water or very moist soil areas,
as shown by the beige-to-white colours in Figure 8, while higher NDVI values signify a
dense vegetation canopy, which is depicted by the bright green colour in Figure 8.

(a) (b)

Figure 8. NDVI computed for multispectral Landsat-9 OLI/TIRS image. (a) NDVI ratio-based
vegetation index. (b) Data distribution within the computed NDVI.

4.2.2. Soil-Adjusted Vegetation Index (SAVI)

The Soil-Adjusted Vegetation Index (SAVI) is a distance-based vegetation index which
is based on the NDVI but includes an adjustment factor to reduce the noise from the NDVI
by eliminating the effects from the canopy background and atmospheric conditions. Thus,
it adjusts the NDVI for soil brightness where vegetation coverage is low in urban, densely
built up areas and bare soil using the arithmetic expression in Equation (2), proposed
in [131]:

SAVI =
(NIR−Red)

(NIR + Red + L)
× (1 + L) (2)

where L is a soil brightness correction factor, which is defined as 0.5 to adjust to most land
cover types. Compared with the NDVI, the SAVI is a finer indicator, which enables it to
be used for the assessment of if land coverage contains healthy green vegetation with
correction for brightness, with the majority of values lying in the diapason from −0.1 to 0.1
(Figure 9). Thus, the main advantage of the SAVI is the emphasised colour of the vegetation
canopy corrected for the soil brightness, because the SAVI excludes the atmospheric or
meteorological effects and those from soil.

Compared with the NDVI and EVI, which were affected by the soil brightness, the
SAVI demonstrated better results in differentiating between vegetation and soil. Thus,
the SAVI index was more suitable and better adjusted to agricultural monitoring. At the
same time, because Côte d’Ivoire is a highly productive agricultural region, being the
world’s most important cocoa producer, the agricultural monitoring of its landscapes is of
high importance. Therefore, analysis of the vegetation indices is valuable for sustainable
development and environmental planning in Côte d’Ivoire.
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(a) (b)

Figure 9. SAVI computed for multispectral image LC09_L1TP_197055_20220111_20220122_02_T1_B.
(a) SAVI ratio-based vegetation index. (b) Data distribution within the computed SAVI.

4.2.3. Enhanced Vegetation Index 2 (EVI2)

The EVI (Figure 10) is an optimised spectral imaging transformation of the NIR and
red image bands aimed at enhancing the contribution of vegetation properties. Computing
this index is performed using Equation (4), originally proposed by [132].

(a) (b)

Figure 10. EVI2, computed for multispectral image LC09_L1TP_197055_20220111_20220122_02_T1_B.
(a) EVI2 ratio-based vegetation index. (b) Data distribution within the computed EVI2.

EVI2 was developed as an updated and adjusted formula of the EVI. In this form,
it was developed as a satellite vegetation index for the Moderate Resolution Imaging
Spectroradiometers (MODIS) and adopted for the Landsat Thematic Mapper (TM) or
Landsat Enhanced Thematic Mapper Plus (ETM+) series. The expression is defined as
follows in Equation (3), which was optimised in [132]:

EVI2 = 2.4×
(NIR−Red)

(NIR + Red + 1)
(3)



J. Imaging 2022, 8, 317 22 of 33

This allows a robust spatial and temporal correlation of the terrestrial chlorophyll
and photosynthetic activity, which affects the structure of the canopy in various types of
vegetation, including savannahs and forests. The ratios of the NIR and red spectral bands
in the image enable decreasing the topographic effects from the Earth’s relief. Therefore, the
visualised EVI highlights and stresses smaller differences in the characteristics of spectral
reflectance between vegetation and all other land cover types. The range of the values
normally lies in the diapason between −0.2 and 0.2, as can be also seen in Figure 10:

EVI =
(NIR−Red)

(NIR + C1×Red−C2× Blue + L)
(4)

4.2.4. Atmospherically Resistant Vegetation Index 2 (ARVI2)

ARVI2 is adjusted to be resistant to atmospheric effects. At the same time, it is more
sensitive to a wider spectrum of concentrations of chlorophyll in leaves. Specifically, for
Côte d’Ivoire, the values of the ARVI ranged from −0.28 to −0.1 (Figure 11), although in
general, the diapason of the ARVI values may vary from −1 to 1 by following Equation (5),
which was originally developed in [133]:

ARVI =
(NIR−Red− y(Red− Blue))
(NIR + Red− y(Red− Blue))

(5)

where y is the quotient derived from the components of atmospheric reflectance in the blue
and red channel. The equation for the adjusted ARVI (ARVI2), which is more sensitive to
vegetation fraction, is presented in Equation (6), which was originally developed in [133]:

ARVI2 =
(NIR−Red)
(NIR + Red)

× 1.17− 0.18 (6)

This shows the regions of high atmospheric aerosol contents with higher moisture.
Compared with the NDVI, the ARVI adjusts and minimises the atmospheric scattering
effects due to the blue light reflectance values, which also affects the reflectance in the red
light [133].

Similar to the NDVI, ARVI2 is also sensitive to the vegetation ratio in the landscape
and useful in climate and environmental studies. Specifically, it can be applied to evaluate
the absorption of solar radiation, which is highly applicable in tropical African regions such
as Côte d’Ivoire.

(a) (b)

Figure 11. Atmospherically Resistant Vegetation Index 2 (ARVI2) computed for multispectral image
LC09_L1TP_197055_20220111_20220122_02_T1_B. (a) ARVI2 ratio-based vegetation index. (b) Data
distribution within the computed EVI2.
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4.3. Terrain Analysis

Cartographic visualisation is an essential application of satellite image analysis as a
geospatial dataset. In this regard, terrain mapping was performed using remote sensing
data and the integrated approach of Python and R (Figure 12).

(a) (b)
Figure 12. (a): Landsat OLI/TIRS image with enlarged fragment of Kossou Lake, using grayscale
visualisation of Band 6 (SWIR). Mapping: R. (b) Enlarged fragment of the cropped SRTM3 void-filled
DEM overlayed on top of the hillshade. Cmaps: ‘turbo’ and ‘gist_yarg’. Mapping: Python.

The data were linked with the digital elevation model (DEM) to demonstrate the
effective approach of both languages to modelling Earth observation data. We selected
a DEM with a high spatial resolution for terrain modelling because it is one of the most
crucial base layer factors for environmental modelling [134]. The advances in cartographic
modelling using programming scripts in recent years changed the terrain visualisation from
GUI-based GIS mapping to dynamic scripts with automatic representation of the output
images. Processing the DEM from the SRTM using Python scripts based on the EarthPy
library demonstrated the advantages and flexibility of the workflow, aimed at deriving
topographic information for spatial analysis (Figure 13). The DEM developed from the
SRTM of rugged terrain in Côte d’Ivoire had a spatial resolution of 3 arc seconds, which
corresponds to ±90 m.

The topographic variation was modelled with the Python library EarthPy, based on
the processing of fields (raster layers), spatial entities (elevated objects with 3D coordinates
as attributes) and the network (topology of spatial links among the geographic objects).
This approach uses relational data modelling with height as the primary identifier in a
dataset. The DEM data are modelled by EarthPy using a raster data structure as a square
grid matrix, with the topography defined by the sampled points and with XYZ dimensions
indicating the continuous field of the spatial altitudes.

Spatial modelling continues topographic representation using discrete boundaries
(Figure 13). It is based on the topographic attributes derived from the DEM and aims
to define the geomorphic and hydrological features as environmental gradients. These
derivatives include such attributes as the slope, aspect, upslope drainage and catchment
areas, tangential, plan and profile curvature of the cross-sections, upslope and flow path
length and hillshade. Determining the drainage direction and connectivity of the raster
points from the DEM depends on the surface attributes of the topographic hillslopes
and stream channels which comprise the hydrological network system. In this regard,
morphometric modelling contributes to landscape analysis through visual representation
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of spatial variability and connectivity of the primary terrain attributes distributed on the
surface of the Earth.

(a) (b)

(c) (d)

Figure 13. Terrain modelling for Kossou Lake area, Côte d’Ivoire. Mapping: Python. Source: authors.
(a) DTM of Kossou Lake, Côte d’Ivoire; (b) Hillshade from DTM of Kossou Lake, Côte d’Ivoire.
(c) Azimuth of Sun: 230°. Hillshade from DTM. (d) Sun angle altitude: 10°. Hillshade from DTM.

Numerous applications of topographic modelling in Earth and environmental studies
motivated the development of Python programming approaches aimed at calculating the
terrain. This is especially advantageous for the topographically diverse landscapes with
interspersed forest and savannah areas which are typical for West Africa. The principal
advantages of the EarthPy library consist of straightforward and robust topographic
modelling, which presents the visualised series of the topographic attributes derived from a
square grid DEM. These include the slope, aspect and topographic relief shading with their
attributes (i.e., hillshade with varied Sun azimuths and angle altitudes), as demonstrated in
Figure 13.

The environmental effects from the terrain landforms are reflected in the soil char-
acteristics, as its formation is regulated by a variety of factors: the geologic substrate,
direction of stream flow and susceptibility of hillslopes to soil erosion. In turn, this depends
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on the slope steepness and relief curvature. Application of the terrain model includes
analysis of the sediment transport, which is controlled by the terrain type and contributes
to soil erosion. That aside, the morphometric aspects, differences in topographic heights,
disposition of the slope and aspect and topographic horizon affect the distribution of solar
radiation. The latter controls the soil vegetation system through the biophysical processes
of evapotranspiration and photosynthesis. Thus, the disposition of a hill slopes towards the
sun angle, as the slope aspect contributes to the distribution of vegetation types through
the effects of microclimate. For instance, more sensitive plants grow on the southern flanks
of the hill slopes to benefit the solar energy. Thus, spatial continuity of the environmental
processes is deeply linked to the regional topographic properties of the terrain. Therefore,
modelling the topographic attributes computed by the Python library EarthPy, applied to
a high-resolution DEM, reveals the variability of the terrain as a complex heterogeneous
structure and contributes to the environmental analysis of Côte d’Ivoire, West Africa.

5. Conclusions

In this paper, we proposed two scripting approaches to satellite image processing
to compute several vegetation indices and to perform terrain modelling. The scripting
techniques of the ’raster’ and ’terra’ packages of R for computing vegetation indices
demonstrated great potential for using map algebra and calculation techniques with the
Landsat OLI/TIRS for monitoring vegetation health and environmental mapping. Moreover,
this technique is also useful for agricultural applications where deteriorated sites may
require remediation or close monitoring. To model terrain variables, we proposed a
Python-based approach where the topographic data are derived from the SRTM DEM using
the EarthPy library.

The problem of the terrain analysis in image processing can be referred to as spatial data
modelling, with classification of cells according to the elevation values. The derived variables
are essential for visualisation of the slope, aspect and hillshade using the parameters of
the Sun’s angle and azimuth. Mapping the topographic data using terrain analysis by
Python highlighted their fundamental importance in Earth modelling. Thus, the relief of
the Earth’s surface has notable effects on various components of the ecosystems, including
geological, climatic and hydrologic processes as well as the soil vegetation parameters.
Moreover, topography regulates and controls climate processes such as precipitation, wind
direction and strength. Therefore, it plays a crucial role in the environmental dynamics and
ecosystem functioning, which includes the uneven distribution of the diverse landscapes
with contrasting types of vegetation in the hilly and coastal areas of Côte d’Ivoire.

The integrated use of regional environmental resources presents the potential for
sustainable development of Côte-d’Ivoire. This requires regular monitoring of the environ-
mental conditions of the country using satellite images. In data science, processing satellite
images using advanced programming methods is a challenge which consists of adaptation
and optimisation of the programming algorithms towards spatial data modelling and
analysis. In this study, we presented a solution to this problem with a straightforward
yet effective approach which combines libraries of Python and R for processing RS data
in a scripting framework. The use of both programming languages allowed us to use the
best packages for topographic and environmental modelling separately when handling
the satellite images. It also demonstrated the integration of the spatial libraries of the two
scripting languages for terrain mapping and image processing aimed at environmental
data analysis.

The techniques of R enabled image processing using information derived from pixels
in the image scene. Spatial data were differentiated by the RGB triplet colours through
plotting the colour composite of the Landsat 8 OLI/TIRS image using the R library ’raster’,
which adapts the general syntax of R for spatial data processing. The colours corresponded
to the composites of the RGB signals scattered from the natural and built-up environment,
which resulted in various DN values for the pixel cells in a raster matrix of the image. The
combinations of the three channels were tested by the R library ’terra’ as sensor bands,
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which displayed the image and visualised the appearance of various terrain objects using
the distinct colours. We compared the correlation between the selected bands of Landsat-8
OLI/TIRS C1 in a multispectral image for Bands 1 and 2 (blue and green) and 4 and 5 (red
and NIR). We then computed four selected vegetation indices—NDVI, SAVI, EVI2 and
ARVI2—using the principles of map algebra based on the DNs of the reflectance values
of the pixels in the selected spectral bands (NIR and red). The major effect of spectral
reflectance from healthy green vegetation was visible in the NIR region of the image
spectrum, with a strong NIR response rising sharply for healthy vegetation. Conversely,
the areas with poor or damaged vegetation were represented by a low NIR response, which
notably decreased as shown by the vegetation indices and with corresponding lower values
for the NDVI.

The algorithms of the EarthPy library of Python were used for terrain modelling
based on the high-resolution SRTM DEM. The upscaled mapping was shown at the two
hierarchical levels: regional environmental analysis of the Yamoussoukro surroundings
and local topographic modelling of the Kossou Lake. Processing the topographic data
for visualisation of the slope, aspect, hillshade and elevation was based on interpolation
of the cell values in a raster matrix grid to spatial polygons that corresponded to the
diverse terrain structures. We showed these methods in a series of scripts with detailed
explanations of their functionality and the effects of changed parameters on the image. The
main advantage of Python for spatial modelling consists of the machine-based automation
of data processing. Specifically, it derives information from the satellite images in an
efficient way using a straightforward syntax, which enables handling complex RS data. The
nonlinear environmental and topographic links among the near-surface processes could be
depicted from raster matrices of the satellite images using programming algorithms. This
enabled us to highlight the complex relationships between the objects forming the terrain
shape and the diverse landscapes on Earth.

A wide variety of Earth’s features can be mapped using satellite images: climate change,
urban sprawl, degradation of vegetation, deforestation, topographic variations or land
cover change. At the same time, the analysis of the complexity of a particular phenomenon
requires advanced methods of data processing to reveal the links and correlations among
the objects and to map spatial patterns. For instance, topographic variations may be
caused by geologic effects and anthropogenic activities, or the environmental dynamics of
the Earth’s landscapes may involve nonlinear long-term and short-term variations. The
comprehensive analysis of such processes requires advanced automatic processing of large
datasets, where a conventional GIS is not effective enough. At the same time, due to the
high level of spatial detail, high-resolution satellite images require efficient algorithms for
data handling, including image resampling, band composition, statistical processing and
map algebra for calculation of the vegetation indices. This requires the advanced methods
for image processing made possible by programming languages.

As we demonstrated, the effective way to handle this issue includes the use of high-
level programming languages such as Python and R. Scripting libraries are effective for
automatic image processing and retrieval of spatial information from satellite images.
The advanced algorithms of Python and R can be successfully used for processing Earth
observation data and geospatial modelling in a robust, automatic and effective way. The
application of programming approaches for terrain analysis and environmental monitoring
is successful in dealing with multispectral RS data. The advantages of Python and R
in image processing include scripting algorithms which ensure automation of RS data
processing. Compared with GISs, the functionality of Python and R were proven to have
robust handling of the geospatial data due to the high speed and effectiveness of code and
repeatability of the scripts, which outperformed the existing state-of-the-art approaches of
the traditional software.

In future works, we plan to use combinations of other libraries of Python and R for
higher-resolution images, such as Sentinel-2A or SAR data for environmental mapping of
the tropical forest regions of Africa. Specifically, we intend to focus on the long-term analysis
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of the environmental dynamics using time series of satellite images. Spatial modelling of
the large series of RS data involves challenging problems with regard of their processing.
For example, it is computationally challenging to deal with big data and requires complex
methods of data handling. To this end, we plan to develop effective approaches to process
large spatiotemporal datasets using scripting languages. Our next work will continue the
development of the advanced cartographic methods for processing satellite images with
programming languages.
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Abbreviations
The following abbreviations are used in this manuscript:

ARVI Atmospherically Resistant Vegetation Index
CPT Colour palette table
CRS Coordinate reference system
DCW Digital Chart of the World
DEM Digital elevation model
DN Digital number
DTM Digital terrain model
EVI Enhanced Vegetation Index
GEBCO General Bathymetric Chart of the Oceans
GDAL Geospatial Data Abstraction Library
GIS Geographic information system
GloVis Global Visualization Viewer
GMT Generic Mapping Tools
GPS Global positioning system
GUI Graphical User Interface
Landsat 8-9 OLI/TIRS Landsat 8-9 Operational Land Imager and Thermal Infrared Sensor
Landsat TM Landsat Thematic Mapper
Landsat ETM+ Landsat Enhanced Thematic Mapper Plus
LiDAR Light Detection and Ranging
ML Machine Learning
MODIS Moderate Resolution Imaging Spectroradiometers
MNDWI Modified Normalized Difference Water Index
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NGA National Geospatial-Intelligence Agency
NIR Near Infrared
RGB Red Green Blue
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RS Remote sensing
SAGA System for Automated Geoscientific Analyses
SAVI Soil-Adjusted Vegetation Index
SPOT Satellite pour l’Observation de la Terre
SRTM Shuttle Radar Topography Mission
SWIR Short-wave infrared
3D Three-dimensional
TIFF Tagged Image File Format
USGS United States Geological Survey
WRI Water Ratio Index
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