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Distributed Bipartite Containment Tracking over Signed Networks with Multiple Leaders
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Abstract-We address the distributed bipartite containment tracking-control problem for second-order systems steered by multiple cooperative and antagonistic leaders. The influence of the former is represented via positive links, while negative interconnections are used for the latter, thereby generating a signed network. Because of the presence of diverse leaders, having positive or negative influence on the followers, complete consensus is impossible. Instead, the followers' respective states may only converge to a residual compact set, not predefined, but resulting from the agents' initial conditions and the network's topology. For this set, which is called bipartite containment set, we establish global exponential stability and we compute the specific equilibria to which all agents converge inside the containment set (this is called multiconsensus). In addition, we provide strict Lyapunov functions for signed-graph networks and establish robustness of the bipartite containment tracking control. Finally, we illustrate our theoretical findings via numerical simulations. Index Terms-Multiconsensus, bipartite containment tracking, containment, autonomous vehicles, signed graphs

I. INTRODUCTION

In the study of coordination of multiagent networks, a large number of problems have been extensively addressed, such as consensus for first-order [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], second-order [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF] and linear high-order dynamics [START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF]. In particular, when there is a leader in the network, all followers converge to the leader's state [START_REF] Ni | Leader-following consensus of multi-agent systems under fixed and switching topologies[END_REF]. However, this so-called leader-follower consensus does not occur when the network contains more than one leader. For this case, in which multiple consensus equilibria may appear, it appears more appropriate to speak of containment control [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF]. This problem consists in making all the followers' states converge to a convex hull that is determined by the leaders' initial conditions and is solvable if for each follower there exists at least one leader that has a directed path to that follower.

There are multiple studies on distributed containment control, e.g., for social networks [START_REF] Kan | Containment control for a social network with state-dependent connectivity[END_REF] or for networks of singleintegrators [START_REF] Cao | Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks[END_REF], [START_REF] Ji | Containment control in mobile networks[END_REF], double-integrators [START_REF] Cao | Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments[END_REF], [START_REF] Liu | Necessary and sufficient conditions for containment control of networked multi-agent systems[END_REF], and general linear autonomous systems [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF]. However, most of the current research on the consensus or containment problems for multiagent systems is on cooperative networks, i.e., the coordination of nodes is achieved only by cooperative interactions. Yet, there are many scenarii in which agents may be competitive or even disruptive. These may appear, e.g., in robotics applications, in the context of herding control [START_REF] Sebastián | Adaptive multirobot implicit control of heterogeneous herds[END_REF], in aerospace applications involving control of multiple satellites that must avoid face debris represented as non-cooperative leaders, and in the context of social networks that include deceiving influencers injecting disinformation [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], to mention a few. In this case, the interconnections may be either positive or negative and at least two consensus equilibria appear-we speak of bipartite consensus [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF], [START_REF] Valcher | On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions[END_REF]. In the case that multiple leaders (cooperative and/or antagonistic) appear, moreover, the overall behavior is even more complex [START_REF] Meng | Extended structural balance theory and method for cooperative-antagonistic networks[END_REF] and more than two consensus equilibria may appear [START_REF] Monaco | On multi-consensus and almost equitable graph partitions[END_REF]- [START_REF] Hu | Emergent collective behaviors on coopetition networks[END_REF]. Thus, signed interconnections and leader multiplicity are distinct aspects that may appear in a number of usual scenarios involving networked systems.

To analyze directed signed networks containing multiple leaders, in [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF] the notion of containment control is extended to bipartite containment tracking-control. Succeeding [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF], bipartite containment has been also studied in [START_REF] Zhang | Cooperative bipartite containment control for multiagent systems based on adaptive distributed observer[END_REF], [START_REF] Meng | High-order bipartite containment control in multiagent systems over time-varying cooperation-competition networks[END_REF] and [START_REF] Wang | Fixed-time bipartite containment of multi-agent systems subject to disturbance[END_REF]. In general, it consists in having all the followers' states converge to a convex hull determined by the network's topology and the initial conditions of the leaders and the mirror leaders. Moreover, in [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF] and [START_REF] Wang | Fixed-time bipartite containment of multi-agent systems subject to disturbance[END_REF] limit points for the followers states are given explicitly. It is also important to mention that in [START_REF] Zhang | Cooperative bipartite containment control for multiagent systems based on adaptive distributed observer[END_REF]- [START_REF] Wang | Fixed-time bipartite containment of multi-agent systems subject to disturbance[END_REF] only structurally balanced networks are considered. Roughly speaking, these are networks whose representing graph contains positive-only cycles or none at all-see Section III and [START_REF] Zhang | Bipartite consensus of multi-agent systems over signed graphs: state feedback and output feedback control approaches[END_REF] for details. Such networks exclude important cases, such as certain agents capable of being friends with the enemies of their friends. Furthermore, in [START_REF] Zhang | Cooperative bipartite containment control for multiagent systems based on adaptive distributed observer[END_REF], only cooperative leaders are considered and in [START_REF] Wang | Fixed-time bipartite containment of multi-agent systems subject to disturbance[END_REF] interconnections between the followers are assumed to be only undirected.

As in [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF], in this paper we study the bipartite containment tracking problem over structurally balanced and unbalanced signed networks with multiple cooperative or competitive leaders. Also, as in [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF], we allow leaders to have neighbors. In contrast to the latter reference, however, our results apply to second-order systems, which better describe mechanical systems and a variety of (feedback linearizable) autonomous vehicles [START_REF] Tzafestas | Introduction to mobile robot control[END_REF]. In contrast to [START_REF] Zhang | Cooperative bipartite containment control for multiagent systems based on adaptive distributed observer[END_REF]- [START_REF] Wang | Fixed-time bipartite containment of multi-agent systems subject to disturbance[END_REF] our main statements hold for the general case of structurally unbalanced networks and, beyond bipartite containment tracking, we provide explicit estimates of the limit points of the followers. Furthermore, we give sufficient conditions for exponential stability of the containment set and, in contrast to all references mentioned previously, our proofs are constructive; we provide a strict Lyapunov function regardless of whether the network is structurally balanced or unbalanced. Exponential stability is important because it covers the much weaker property of mere convergence to the limit points (or to the interior of a convex hull); providing strict Lyapunov functions is significant because they are a basis to establish, in addition, input-to-state stability. Thus, our main results guarantee robustness of the containment set with respect to additive perturbations.

From a technical viewpoint, our main results are based on the framework introduced in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF]. We recast the bipartite containment problem into one of stability of a set of the appropriately defined errors. Then, we generalize a statement in [START_REF] Panteley | Strict Lyapunov functions for consensus under directed connected graphs[END_REF] on the Lyapunov characterization of exponential stability of sets, for linear systems with one pole at zero and others having negative real part. The technical result we provide here applies to systems with several poles at the origin. Then, in addition to exponential stability of the containment set, we provide the explicit limit values of the followers by a matrix determined by all eigenvectors associated to the zero eigenvalues. In particular, when the considered graph is a traditional cooperative network, the bipartite containment tracking results stay valid for containment tracking.

The remainder of the paper is organized as follows. In the next section, we describe the bipartite containment-tracking control problem and how it may be recast as one of stability analysis. In Section III we present the technical statements described above. In Section IV we present our main results. Some numerical examples are presented in Section V, and we wrap up the paper with some closing remarks in Section VI.

II. PROBLEM FORMULATION

Consider a group of n second-order dynamical systems modeled by ẋ1i

= x 2i , x 1i , x 2i ∈ R (1a) ẋ2i = u i , u i ∈ R, i ∈ I N (1b) 
where I N := {1, 2, . . . , n}.

Remark 1: The system (1) is a basic representation of (feedback-linearizable) mechanical systems; it is for notational simplicity, and without loss of generality, that we assume that x 1i ∈ R, but the contents of this paper apply to systems of higher dimension-see Section V.

• The consensus problem for [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], that is, to ensure that

lim t→∞ [x j (t) -x i (t)] = 0, ∀ i, j ≤ n, (2) 
where x i = x 1i x 2i , via distributed control, is completely solved under various conditions on the interconnections and the resulting network's topology. For instance, for static directed networks, it is well-known that under the consensuscontrol law,

u i = -k 1 n j=1 a ij (x 1i -x 1j ) -k 2 n j=1 a ij (x 2i -x 2j ), (3) 
where a ij ∈ R is the adjacency weight between nodes i and j, with k 1 , k 2 > 0, the expressions in (2) hold if and only if the underlying graph contains a directed spanning tree [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]. Moreover, the consensus equilibrium may be computed exactly. Indeed, if there exists a directed spanning tree, the resulting Laplacian matrix,

L := [ ij ] ∈ R n×n , where ij = k∈I N a ik i = j -a ij i = j, (4) 
has exactly one eigenvalue equal to zero. Therefore, the consensus equilibrium is uniquely determined by the left eigenvector v l corresponding to that eigenvalue, x 1m := v l x 1 (0) [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF]. Furthermore, one can construct a strict Lyapunov function to establish exponential stability of the origin in the space of the synchronization errors e := x 1 -v r x 1m [START_REF] Panteley | Strict Lyapunov functions for consensus under directed connected graphs[END_REF], where v r is the right eigenvector corresponding to zero eigenvalue. Such is the case, at least, when all nodes in the network are cooperative, that is, if a ij ≥ 0 for all i, j ≤ n. For networks in which some of the nodes are competitive, we have a ij < 0 for some i, j ≤ n. In such scenario, the distributed consensus control law (3) becomes

u i = -k 1 n j=1 |a ij |(x 1i -sgn(a ij )x 1j ) -k 2 n j=1 |a ij |(x 2i -sgn(a ij )x 2j ) -k 3 x 2i , (5) 
where k 1 , k 2 > 0, and k 3 ≥ 0. If k 3 = 0, bipartite containment is reached but the system's trajectories may grow unbounded.

In the case that k 3 > 0, in addition to bipartite containment, the velocities tend to zero. Under the distributed control law [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF], agents on a directed signed network containing a directed spanning tree or a leader achieve bipartite consensus if and only if the underlying graph is structurally balanced [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. If the signed network is structurally balanced, the associated Laplacian matrix has a simple zero eigenvalue [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF] and its associated right eigenvector has all entries equal to ±1, which results in agents converging to the same state in modulus but different in signs. In such networks, moreover, it appears natural to encounter several competitive leader nodes that inject disinformation into the network. In this particular case, bipartite consensus can no longer be achieved due to the existence of multiple leaders and antagonistic interactions in the network. Agents can then achieve bipartite containment [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF], where followers converge to the convex hull spanned by all leaders' trajectories and their mirrored trajectories, in order to avoid competitive leaders in the system.

In this paper we analyze the behavior of the networked systems (1) in closed loop with the distributed control law [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF] and under the assumption that several cooperative or competitive leaders interfere. Since consensus is unattainable, the control goal is set to achieving bipartite containment tracking, that is,

lim t→∞ [|x j (t)| -max i∈L |x i (t)|] ≤ 0, j ∈ F, (6) 
where L and F are the sets of leaders and followers respectively-see the Standing Assumption below. This is the problem solved, e.g., in [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF]- [START_REF] Wang | Fixed-time bipartite containment of multi-agent systems subject to disturbance[END_REF]. Beyond the inequality in (6), we give the explicit limit value of the followers' states and establish exponential stability of the containment set. This is significant because it allows to give a tight bound depending only on the initial conditions of the leaders. This is done under the following Standing Assumption:

1) The network contains m leaders, which can be organized into k groups of p i leaders included in a strongly connected subgraph, where 1 ≤ k ≤ m ≤ n, i ∈ I K , and

k i=1 p i = m -cf. [19, Definition 1]. 2)
Given each follower ν j , i.e., with j ∈ F with F := {m + 1, m + 2, . . . , n}, there exists at least one leader ν i i.e., with i ∈ L := {1, 2, . . . , m}, such that there exists at least one path from

ν i to ν j -cf. [19, Condition 1].
The Standing Assumption is mild; in the case that there exists no more than one leader group, it boils down to the necessary condition for consensus that imposes the existence of a spanning tree. As the networks considered here contain, a priori, multiple leaders, the resulting Laplacian matrix has as many zero eigenvalues and associated eigenvectors as the number of groups of leaders [START_REF] Caughman | Kernels of directed graph Laplacians[END_REF]. This also results in multiple convergence points for the agents. Therefore, in contrast to the consensus equilibrium x 1m = v l x 1 (0) for single-leader networks, the final states of the agents are determined by all eigenvectors associated to the zero eigenvalues. One of this paper's contributions is to show that under the control law [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF] and the Standing Assumption, the limit-values of the agents are given by

x m := (V ⊗ I 2 )x, (7) 
where V is a matrix determined by all the eigenvectors associated to the k null eigenvalues of the Laplacian. More precisely, the matrix V is given by,

V := k i=1      v ri,1 v ri,2 . . . v ri,n      v li,1 v li,2 . . . v li,n , (8) 
where v ri and v li denote, respectively, the right and left eigenvectors of the matrix L corresponding to the ith 0 eigenvalue, and, for each j ≤ n, v ri,j and v li,j denote, respectively, the jth element of the ith right and left eigenvectors. In particular, as we demonstrate further below, a possible form of the right and left eigenvectors associated with the zero eigenvalues is

v r1 =        1 p1 0 p2 . . . 0 p k ξ 1        , v r2 =        0 p1 1 p2 . . . 0 p k ξ 2        , . . . , v r k =        0 p1 0 p2 . . . 1 p k ξ k        , (9a) 
v l1 =        ρ p1 0 p2 . . . 0 p k 0 n-m        , v l2 =        0 p1 ρ p2 . . . 0 p k 0 n-m        , . . . , v l k =        0 p1 0 p2 . . . ρ p k 0 n-m        , (9b) 
where

ξ i ∈ R n-m is defined in Lemma 1 farther below, 1 pi ∈ R pi is a vector of ones, 0 pi ∈ R pi and 0 n-m ∈ R n-m
are vectors of zeros, and

ρ pi ∈ R pi . If p i = 1
, where i ≤ k, we have ρ pi = 1, so the corresponding left eigenvector v li has a unique non-zero element equal to 1.

If p i > 1, v li has p i elements belonging to (-1, 1), where pi l=1 |ρ l | = 1.
The definition of the eigenvectors given in [START_REF] Cao | Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments[END_REF] covers that of [START_REF] Caughman | Kernels of directed graph Laplacians[END_REF]Corollary 4.2] and [16, Proposition 3], which are restricted to unsigned networks. With this under consideration, we establish bipartite containment of the system (1) and, more significantly, that x → x m -as defined in (7)-exponentially.

III. ANALYSIS APPROACH

Our main results are based on original statements for networks with an associated Laplacian having multiple zero eigenvalues. First, following the framework laid in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], we show how to construct the matrix V in ( 7)-( 8), to define the average states of the agents. Then, we extend the method of [START_REF] Panteley | Strict Lyapunov functions for consensus under directed connected graphs[END_REF], to construct strict Lyapunov functions for linear systems with one zero eigenvalue, to the case of multiple null eigenvalues.

To that end, we first recall certain notations and definitions that will be used later. A signed graph is said to be structurally balanced if it may be split into two disjoint sets of vertices

V 1 and V 2 , where V 1 ∪ V 2 = V, V 1 ∩ V 2 = 0 such that for every i, j ∈ V p , p ∈ [1, 2] if [a ij ] ≥ 0 while for every i ∈ V p , j ∈ V q , p, q ∈ [1, 2], p = q if [a ij ] ≤ 0. It is structurally unbalanced, otherwise.
The following definition is also recalled from [START_REF] Caughman | Kernels of directed graph Laplacians[END_REF] to introduce some useful sets of vertices in a graph. Definition 1: A set R of vertices is called a reach if it is a maximal reachable set that consists of a leader group and its followers. For each reach R i of a graph, we define the exclusive part of R i as the set H i = R i \ j =i R j , i.e., the set of followers influenced only by the leader group i, and the common part of R i as the set C i = R i \H i , i.e., the set of followers influenced by leaders other than the ith leader group.

The following statement, which leads to the construction of the matrix V, is an original contribution of this paper and extends Corollary 4.2 of [START_REF] Caughman | Kernels of directed graph Laplacians[END_REF] to the case of signed networks.

Lemma 1: Let G denote a directed signed graph and let L denote the associated Laplacian matrix. Suppose G has n vertices and k reaches. Then, the algebraic and geometric multiplicity of the eigenvalue 0 is equal to k.

Furthermore, if G is structurally unbalanced, the eigenspace generated by the eigenvectors associated to the null eigenvalues, has a basis defined by the vectors γ i ∈ R n , with i ≤ k, whose elements satisfy the following:

1) γ i,j = 0 for j / ∈ R i , 2) |γ i,j | = 1 for j ∈ H i , 3) |γ i,j | ≤ 1 for j ∈ C i , 4) j |γ i | ≤ 1 n . On the other hand, in the more restrictive case that G is structurally balanced, 1') γ i,j = 0 for j / ∈ R i 2') γ i,j = 1, if (ν j , ν i ) ∈ V 1 -1, if ν j ∈ V 1 , ν i ∈ V 2 for j ∈ H i 3') γ i,j ∈ (0, 1), if (ν j , ν i ) ∈ V 1 (-1, 0), if ν j ∈ V 1 , ν i ∈ V 2 for j ∈ C i 4') j |γ i | = 1 n
, where V 1 and V 2 are the two disjoint sets of vertices, i ∈ I K , j ∈ I N , and γ i,j denotes the jth element of γ i .

Proof: Let L + := D -|A| denote the associated Laplacian matrix of G + , where D is the in-degree matrix and A is the adjacency matrix of G. G + and G have identical reaches. Then, the fact that the algebraic and geometric multiplicity of 0 equals k follows from [START_REF] Caughman | Kernels of directed graph Laplacians[END_REF]Theorem 3.2]. Now, for structurally-balanced graphs, Items 1) and 2), follow from Definition 1, under the Standing Assumption. Item 3) follows from [START_REF] Meng | Extended structural balance theory and method for cooperative-antagonistic networks[END_REF], while Item 4) results from computing the null space of L, which is generated by γ i ∈ R n such that Lγ i = 0 for each i ≤ k. This gives L k i=1 γ i = 0. Then, under the Standing Assumption, the Laplacian matrix being equal to

L = 0 0 -A lf L f + ∆ |A lf | ,
where [START_REF] Cao | Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments[END_REF]. The sum of the remaining rows of γ i s gives the following, [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF]. Thus, we conclude that

A lf ∈ R (n-m)×m and L f + ∆ |A lf | ∈ R (n-m)×(n-m) , we have -A lf k i=1 γ im + (L f + ∆ |A lf | ) k i=1 γ in-m = 0. This gives us (L f + ∆ |A lf | ) k i=1 γ in-m = A lf k i=1 γ im , where k i=1 γ im = 1 m from
k i=1 γ in-m = (L nr + ∆ |Arnr| ) -1 A rnr 1 m and it follows that j |γ in-m | ≤ 1 n-m from Lemma 6 of
γ i,j = 0 for j / ∈ R i , |γ i,j | = 1 for j ∈ H i , |γ i,j | ≤ 1 for j ∈ C i , and j |γ i | ≤ 1 n .
On the other hand, if the graph is structurally balanced, we may apply the gauge transformation, which consists in a change of coordinates performed by the matrix D = diag(σ), where σ = [σ 1 , ..., σ n ], σ j ∈ {1, -1}, j ∈ I N [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Let , we obtain the following for a structurally balanced signed network: γ i,j = σ j γ Di,j = 0 for j / ∈ R i , γ i,j = σ j γ Di,j = σ j for i ∈ H i , γ i,j = σ j γ Di,j ∈ σ j (0, 1) for j ∈ C i and j γ i = j Dγ Di = D1 n , which gives j |γ i | = 1 n . Items 1') to 4') follow. From Lemma 1, setting v ri,j = γ i,j , we obtain the form given in (9a) for the k right eigenvectors associated to the zero eigenvalues, such that for each j ≤ m, v ri,j is either equal to 1 or to 0, because the jth leader can only be in the exclusive part of its corresponding reach. The remaining rows ξ i,j of v ri belong, either to {-1, 1} or to (-1, 1), depending on network's topology and signs of the interconnections. Moreover, under the Standing Assumption and the given form in (9a) for right eigenvectors, as the Laplacian matrix has all entries equal to 0 for its first m rows, we obtain (9b) for k left eigenvectors associated to zero eigenvalues. Notice that, because of the form of the left eigenvectors, each column of the matrix V has the same properties as the basis defined in Lemma 1. Therefore, we may split V in four blocks, as follows:

V = k i=1 v ri v li = V l 0 m×(n-m) V f 0 (n-m)×(n-m) , (10) 
where V l ∈ R m×m represents leaders' interactions and V f ∈ R (n-m)×m represents leader-follower interactions.

It is important to remark that the elements of V f have the properties stated in Lemma 1. This is significant because, owing to the fact that x → x m where x m is defined by [START_REF] Cao | Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks[END_REF], it is clear that V f is the matrix that defines the limit point for the followers. Notice that even if during their trajectories, depending on network's topology, followers' states may be influenced by other followers' states, it follows from (10) that the final states of the followers are defined only by leaders' states. Now, akin to the case of networks containing one leader, in which case the error is defined as e = x 1 -v r x 1m , with x 1m := v l x 1 , for multi-leader networks we define the consensus errors as

e := ([I -V] ⊗ I 2 )x, (11) 
where e = e 1 e 2 . Then, to establish beyond the convergence statements that x 1 → x 1m and x 2 → x 2m and, consequently, the bipartite containment objectives defined by (6), we will prove the stronger property of global exponential stability of the set {(e 1 , e 2 ) = (0, 0)}. For that, we shall show how to construct strict-in the space of (e 1 , e 2 )-Lyapunov functions, based on the following proposition, which is another original contribution of this paper and extends Proposition 1 of [START_REF] Panteley | Strict Lyapunov functions for consensus under directed connected graphs[END_REF] to the case of signed networks with multiple leaders. Proposition 1: Let G be a directed signed network with multiple leaders. Then the following are equivalent:

(i) the graph has k groups of leaders and m leaders, and given each follower ν j , ∀j ∈ F, there exists at least one leader ν i , ∀i ∈ L, such that there exists at least one path from ν i to ν j , (ii) for any Q ∈ R n×n , Q = Q > 0 and for any α i > 0, there exists a matrix P (α i ) ∈ R n×n , P = P > 0 such that

P L + L P = Q - k i=1 α i (P v ri v li + v li v ri P ), (12) 
where v ri , v li ∈ R are the right and left eigenvectors of L associated with the ith 0 eigenvalue. Remark 2: Note that the Proposition provides a Lyapunov characterization of the second part of the Standing Assumption.

• Proof: (i) ⇒ (ii): By assumption, the graph G has k leader groups and is connected. Then, from Lemma 1, it follows that L has k zero eigenvalues, and the rest of its eigenvalues have positive real parts:

0 = λ 1 = • • • = λ k < e(λ k+1 ) ≤ • • • ≤ e(λ n ).
Following the lines of proof as for Lemma 2 in [START_REF] Panteley | Strict Lyapunov functions for consensus under directed connected graphs[END_REF], we can write the Jordan decomposition of L as

L = U ΛU -1 = k i=1 λ i (L)v ri v li + U 1 Λ 1 U † 1 with Λ 1 ∈ C n-k×n-k , U = v r1 . . . v r k U 1 ∈ C n×n and U -1 = v l1 . . . v l k U † 1 ∈ C n×n . For any α i > 0 define R(α i ) = L + k i=1 α i v ri v li .
From this decomposition and the properties of Λ 1 , e{λ j (R)} > 0 for all j ≤ n.

-R(α i ) is Hurwitz, therefore for any Q = Q > 0 and α i > 0, i ≤ m, there exists P = P > 0 such that

-P R(α i ) -R(α i ) P = -Q, -P (L + k i=1 α i v ri v li ) -(L + k i=1 α i v ri v li ) P = -Q, P L + L P = Q - k i=1 α i (P v ri v li + v li v ri P ).
(ii) ⇒ (i): Let statement (ii) hold and assume that the Laplacian matrix has k + 1 zero eigenvalues and the rest of its eigenvalues have positive real parts. In view of Lemma 1, the assumption that the system has k groups of leaders does not hold. Now, the Jordan decomposition of L has the form

L = U ΛU -1 = k+1 i=1 λ i (L)v ri v li + U 1 Λ 1 U † 1 with U = v r1 . . . v r k+1 U 1 and U -1 = v l1 . . . v l k+1 U † 1 . Next let us consider R(α i ) = L + k i=1 α i v ri v li which admits the Jordan decomposition R := U Λ R U -1 , where Λ R :=        α 1 . . . α k 0 Λ 1        .
Clearly, R is not positive definite because one of its eigenvalues is equal to zero. Then, there exists a matrix Q = Q for which there does not exist a matrix P = P such that -P R -R P = -Q, which contradicts statement (ii).

IV. BIPARTITE CONTAINMENT OF SECOND-ORDER SYSTEMS

In this section, we present our main results. We will consider bipartite containment protocols for second-order systems, with and without absolute velocity damping. Furthermore, we establish robustness of the bipartite containment tracking in the sense of input-to-state stability with respect to external bounded perturbations.

A. Exponential stability

Consider the system (1), interconnected with the bipartite containment control law [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF]. We analyze the dynamics of the errors in [START_REF] Li | Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[END_REF]. Differentiating the latter on both sides, to obtain

ė = ([I -V] ⊗ I 2 ) ẋ
and using ( 1) and ( 5), we obtain the closed-loop dynamical equations

ė1 = e 2 (13a) ė2 = -k 1 Le 1 -k 2 Le 2 -k 3 e 2 . ( 13b 
)
Guaranteeing the bipartite containment problem is now recast as a problem of stability analysis of the dynamical system [START_REF] Altafini | Consensus problems on networks with antagonistic interactions[END_REF]. Thus, relying on Proposition 1, our next statement provides sufficient conditions on the controller gains to achieve global exponential stability of the set {(e 1 , e 2 ) = (0, 0)}, which covers the bipartite containment tracking objective (6). Proposition 2: Consider the system (13) and let P be generated by [START_REF] Sebastián | Adaptive multirobot implicit control of heterogeneous herds[END_REF] with Q = I n . Then, under the Standing Assumption, the set {(e 1 , e 2 ) = (0, 0)} is exponentially stable if

k 1 > 0, ( 14a 
)
k 2 > 2 k 1 λ P , (14b) k 2 k 3 ≥ λ P , k 3 ≥ 0, (14c) 
where λ P ≥ |P | is the largest eigenvalue of P . Remark 3: For conciseness, we consider in one statement two interesting and distinct cases, in which k 3 > 0 and in which k 3 = 0. Even though the value of k 3 ≥ 0 is inconsequential for exponential stability statement to hold, it plays a role on performance and the solutions' behavior. Indeed, k 3 > 0 implies the injection of velocity damping, hence, it guarantees that the agents states x 1i converge to constant values, while x 2i → 0. In the case that k 3 = 0, containment is achieved in both variables x 1i and x 2i but the solutions grow unbounded. In the particular case of vehicles moving on a plane, these cases are tantamount to the vehicles converging to a rendezvous zone or permanently moving in formation and in containment, steered by the leaders. See Proposition 3 further below.

• Proof of Proposition 2: Let Q = Q > 0 and α > 0 be arbitrarily fixed. Since by the Standing Assumption and Proposition 1, ∃P = P > 0 such that (12) holds. Then, consider the following Lyapunov function candidate

V (e) = 1 2 |e 1 | 2 + e 1 P e 2 + µe 2 P e 2 , ( 15 
)
which is positive definite (for all e as in ( 11)), under the condition ≤ 2µ |P | , µ > 0. The total time derivative of V along the trajectories yields

V (e) = -k 1 e 1 P Le 1 -e 2 [k 2 µ(P L + L P ) + 2k 3 µP -P ]e 2 + e 1 (I -k 2 P L -2k 1 µL P -k 3 P )e 2 .
Let µ > 0 be such that 2k 1 µ = k 2 = 1. Using [START_REF] Sebastián | Adaptive multirobot implicit control of heterogeneous herds[END_REF] with Q = I n and the identity P Hence, in compact form, we have

V (e) = - 1 2 e 1 2 k 1 I k 3 P k 3 P 4k 3 µP e - 1 4 k 1 |e 1 | 2 -e 2 [k 2 µI -P ]e 2 , ( 16 
)
so V is negative definite if the matrix in ( 16) is positive semidefinite and [k 2 µI -P ] is positive definite, which, using 2k 1 µ = k 2 = 1 we see that it is so if and only if

k 2 I -2 k 1 k 2 λ P I > 0,
which, in turn, holds if k 2 > 2k 1 λ P , that is, under condition (14b). Then, computing the Schur complement, the condition for the matrix in ( 16) to be positive semi-definite, is 4k 3 µP -(k 3 P ) 2 k1 k 3 P ≥ 0. If k 3 = 0 the latter holds trivially. Otherwise, considering k 3 > 0, and using 2 k1 k2 = µ , we see that the latter inequality is equivalent to

2 µ µ I - k 3 k 1 µ P = 2 µ µ I - k 3 k 1 2k 1 k 2 P = 1 - k 3 k 2 λ P ≥ 0,
which is satisfied under (14c). We conclude that

V (e) ≤ - 1 4 k 1 |e 1 | 2 + [k 2 µ -λ P ]|e 2 | 2 , ( 17 
)
so the statement of the proposition follows.

The following statement provides explicit expressions for the limit values of the followers' states and emphasizes the role of the gain k 3 .

Proposition 3: Consider the system (1) and the bipartite containment control law [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF]. Under the Standing Assumptions, the bipartite containment objective is achieved, that is, the inequalities (6) hold. Furthermore, if k 3 > 0, the final states of the followers satisfy

lim t→∞ x 1 f (t) = V f x 1 l (0) + 1 k 3 V f x 2 l (0), ( 18a 
)
lim t→∞ x 2 f (t) = 0. ( 18b 
)
On the other hand, if

k 3 = 0, lim t→∞ x 1 f (t) = V f x 1 l (0) + tV f x 2 l , ( 19a 
)
lim t→∞ x 2 f (t) = V f x 2 l , (19b) 
where x l and x f are leaders' and followers' states respectively and V f ∈ R (n-m)×m is given in [START_REF] Liu | Necessary and sufficient conditions for containment control of networked multi-agent systems[END_REF]. Proof: Differentiating the weighted average of the system (7), we obtain the dynamical equations below

ẋ1m = V ẋ1 = Vx 2 = x 2m , (20a) ẋ2m = V ẋ2 = V(-k 1 Lx 1 -k 2 Lx 2 -k 3 x 2 ) = -k 3 x 2m , (20b)
with v li L = 0 for i ≤ k. Their solutions give the following

x 2m (t) = x 2m (0)e -k3t , (21a) 
x 1m (t) = x 1m (0) + x 2m (0) t 0 e -k3s ds. (21b) 
From Proposition 2, we have lim t→∞ e(t) = 0, which results in lim t→∞ x(t) = x m (t). From ( 21), we obtain lim t→∞ x 2 (t) = 0 and lim t→∞ x 1 (t) = x 1m (0) + 1 k3 x 2m (0). Then, using [START_REF] Liu | Necessary and sufficient conditions for containment control of networked multi-agent systems[END_REF], we obtain the relations in [START_REF] Hu | Emergent collective behaviors on coopetition networks[END_REF]. Under the Standing Assumption and from items 4) and 4') of Lemma 1, we can write

lim t→∞ |x 1 f j (t)| = m i=1 |v i,m+j x 1 li (0) + 1 k 3 v i,m+j x 2 li (0)| ≤ m i=1 |v i,m+j ||x 1 li (0) + 1 k 3 x 2 li (0)| ≤ m i=1 |v i,m+j ||x 1 li (t)| ≤ max 1≤i≤m |x 1 li (t)|,
where v i,j are the elements of the matrix V in [START_REF] Liu | Necessary and sufficient conditions for containment control of networked multi-agent systems[END_REF]. In the case when k 3 = 0, (20) becomes

ẋ1m = x 2m , ẋ2m = 0, so x 2m (t) = x 2m (0), (22a) x 1m (t) = x 1m (0) + tx 2m (0). (22b) 
From [START_REF] Wang | Fixed-time bipartite containment of multi-agent systems subject to disturbance[END_REF], we obtain lim t→∞ x 2 (t) = x 2m (0) and lim t→∞ x 1 (t) = x 1m (0) + x 2m (0)t. Then using [START_REF] Liu | Necessary and sufficient conditions for containment control of networked multi-agent systems[END_REF], we obtain the relations in [START_REF] Meng | Bipartite containment tracking of signed networks[END_REF]. Under the Standing Assumption and from items 4) and 4') of Lemma 1, we have

lim t→∞ |x 2 f j (t)| = m i=1 |v i,m+j x 2 li | ≤ m i=1 |v i,m+j | max 1≤i≤m |x 2 li | ≤ max 1≤i≤m |x 2 li |, lim t→∞ |x 1 f j (t)| = m i=1 |v i,m+j x 1 li (0) + tv i,m+j x 2 li | ≤ max 1≤i≤m |x 1 li (0)| + t max 1≤i≤m |x 2 li | ≤ max 1≤i≤m |x 1 li (t)|, so (6) follows. 
It is worth noting that for unsigned networks, the achievable objective is containment [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF], that is,

lim t→∞ [x j (t) -max i∈L x i (t)][x j (t) -min i∈L x i (t)] ≤ 0. (23) 
Then, for such networks, we recover the following statement from Proposition 3. Corollary 1: Consider the system (1) with the containment control law [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF] and let the associated digraph be unsigned. Under the Standing Assumption, the containment objective is achieved, that is the inequality (23) holds.

For structurally balanced signed networks, the bipartite containment set is refined so that the achievable objective is

lim t→∞ [x j (t) -max i∈L (σ i σ j x i (t))][x j (t) -min i∈L (σ i σ j x i (t))] ≤ 0, (24) 
where j ∈ F and σ = [σ 1 , σ 2 , . . . , σ n ] with

σ i = 1 if (i, j) ∈ V 1 or σ i = -1 if i ∈ V 1 , j ∈ V 2 . See Section V- A for an example.
In the next section, we use the strict Lyapunov functions provided in this section in order to conduct a robustness analysis of the control law [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF], in the sense of input-to-state stability of the bipartite containment tracking.

B. Robustness Analysis

Consider the perturbed second-order systems

ẋ1i = x 2i (25a) ẋ2i = u i + d i (t), (25b) 
where the disturbances d i : R ≥0 → R n are assumed to be essentially bounded locally integrable functions. Under the action of the control law (5), the system (25) becomes

ẋ1 = x 2 (26a) ẋ2 = -k 1 Lx 1 -k 2 Lx 2 -k 3 x 2 + d(t), (26b) 
where

d := [d i ] ∈ R n .
Differentiating the errors in (11) on both sides and using [START_REF] Panteley | Strict Lyapunov functions for consensus under directed connected graphs[END_REF] we obtain

ė1 = e 2 (27a) ė2 = -k 1 Le 1 -k 2 Le 2 -k 3 e 2 + [I -V]d(t). (27b) 
Then, we have the following. Proposition 4: The closed-loop system [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], under the Standing Assumption, is input-to-state stable with respect to essentially bounded, locally integrable external disturbances if the conditions in ( 14) hold.

Proof: Consider the Lyapunov function [START_REF] Meng | Extended structural balance theory and method for cooperative-antagonistic networks[END_REF] which is positive definite, under the condition ≤ 2µ |P | , µ > 0. The total time derivative of V along the trajectories of (27) yields

V (e) = ∂V ∂e 1 e 2 + ∂V ∂e 2 (-k 1 Le 1 -k 2 Le 2 -k 3 e 2 ) + ∂V ∂e 2 [I -V]d. (28) 
Then, from [START_REF] Meng | Interval bipartite consensus of networked agents associated with signed digraphs[END_REF], we obtain

V (e) ≤ - 1 4 [ k 1 |e 1 | 2 + (k 2 µ -λ P )|e 2 | 2 ] + ∂V ∂e 2 |[I -V]||d| ≤ - 1 4 k 1 |e 1 | 2 - 1 4 (k 2 µ -λ P )|e 2 | 2 + λ P e 1 |[I -V]|d + 2µλ P e 2 |[I -V]||d|.
We know that 0 ≤ |[I -V]| ≤ |I| + |V| ≤ 2, because all eigenvalues of I are equal to 1 and all eigenvalues of |V| are either 1 or 0. Let δ > 0 such that c 1 := 1 4 ( k 1 -4 δ λ P ) > 0 and c 2 := 1 4 (k 2 µ -λ P -8 δ µλ P ) > 0. Then,

V (e) ≤ -c 1 |e 1 | 2 -c 2 |e 2 | 2 + c 3 |d| 2 ,
with c 3 = λ P δ( + 2µ) > 0. Thus, the system ( 27) is inputto-state stable with respect to the bounded external input.

Corollary 2: The system [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], under the Standing Assumption and over an unsigned network, is input-to-state stable with respect to an essentially bounded, locally integrable external disturbance if the conditions in ( 14) hold.

V. SIMULATION RESULTS

We provide some numerical examples on a system of nonholonomic unicycle mobile robots over both structurally balanced and unbalanced networks. Let r i = [r xi r yi ] be the inertial position, θ i the orientation, s i the linear speed, ω i the angular speed, m i the mass, J i the moment of inertia, F i the applied force and τ i the applied torque. Each robot has the dynamical equation

      ṙxi ṙyi θ ṡi ω       =         s i cos θ i s i sin θ i ω i 0 0 0         +       0 0 0 0 0 0 1 mi 0 0 1 Ji       η i , (29) 
where η i := F i τ i . We choose a reference point p i = r i + δ i cos θ i sin θ i located at a distance δ i = 0.1m along the line that is perpendicular to the wheels' axis and we define

ζ :=       r xi + δ i cos θ i r yi + δ i sin θ i s i cos θ i -δ i ω i sin θ i s i sin θ i + δ i ω i cos θ i θ i       . (30) 
In transformed coordinates, with

p i = [ζ 1i ζ 2i ] , we have ζ1i ζ2i = ζ 3i ζ 4i , ( 31a 
) ζ3i ζ4i = -s i ω i sin θ i -L i ω 2 i cos θ i s i ω i cos θ i -L i ω 2 i sin θ i + 1 mi cos θ i -Li Ji sin θ i 1 mi sin θ i Li Ji cos(θ i ) η i , ( 31b 
) ζ5i = - 1 2δ i ζ 3i sin ζ 5i + 1 2δ i ζ 4 I cos ζ 5i . (31c) 
The feedback linearizing control η i is given by

η i = 1 mi cos θ i -Li Ji sin θ i 1 mi sin θ i Li Ji cos(θ i ) -1 × u i - -s i ω i sin θ i -L i ω 2 i cos θ i s i ω i cos θ i -L i ω 2 i sin θ i , (32) 
which gives

[ ζ1i ζ2i ] = [ζ 3i ζ 4i
] and [ ζ3i ζ4i ] = u i . Thus, we implemented (32) with u i as in [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF],

x 1i = [ζ 1i ζ 2i ] , x 2i = [ζ 3i ζ 4i ]
, m i = 8kg and J i = 0.12kg/m 2 for each i ∈ I N .

A. Structurally Balanced Networks

Consider a network with five leaders ν i , i ≤ 5, organized in three leader groups {ν 1 , ν 2 , ν 3 }, {ν 4 }, {ν 5 }, and four followers ν j , 6 ≤ j ≤ 9, communicating over a directed graph as the one depicted in Figure 1, below. The Laplacian matrix corresponding to the graph is

ν 1 ν 3 ν 6 ν 8 ν 2 ν 4 ν 9 ν 5 ν 7 1 1 1 3 1 -1 1 -1 5 -3
L =               1 0 -1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 4 0 1 0 0 0 0 0 0 -1 2 0 1 0 0 0 -5 0 1 0 6 0 0 0 0 0 3 0 -1 0 4              
and its eigenvalues are λ L = 0, 0, 0, 1.5 ± 0.86i, 2, 3.59, 4, 6.41. The network may be bipartitioned into two subgroups, V 1 = {ν 1 , ν 2 , ν 3 , ν 5 , ν 6 , ν 7 }, V 2 = {ν 4 , ν 8 , ν 9 }, so is structurally balanced, and

V l =      
0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 0 0 0 1 0 0 0 0 0 1 We notice that V l and V f have the properties stated on Items 1 ) -4 ) of Lemma 1, as the network is structurally balanced. For V l , we have two elements equal to one, corresponding to isolated leaders ν 4 and ν 5 , as they are in the exclusive part of the reaches. Leaders ν 1 , ν 2 and ν 3 are in the exclusive part of a reach so the corresponding elements of the right eigenvector are equal to one. Thus, as they are interconnected within a strongly-connected graph, the absolute value of the elements of the left eigenvector are less than one. V f does not have an element equal to ±1 since all the followers are influenced by more than one leader. Followers ν 6 and ν 8 are not influenced by the leader ν 5 , so the corresponding elements on the fifth column are equal to zero. We also remark that the sum of the absolute value of the terms on each row is equal to 1. Now, let P be generated by [START_REF] Sebastián | Adaptive multirobot implicit control of heterogeneous herds[END_REF] with Q = I n and α = 20, then we obtain λ P = 0.5193. Consider the system (29) and the bipartite containment law (32) with k 1 = 0.8, k 2 = 1.5, and k 3 = 1.2, which satisfy the conditions in [START_REF] Valcher | On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions[END_REF]. The respective agents' initial states are r x (0) = [3.5 1 -0.5 -1.6 1 -6. The simulation results are showed in Figures 2 and3. The followers converge to the bipartite containment set spanned by cooperative leaders' final states and competitive leaders' mirrored final states and all agents' velocities converge to zero. Using the relations in [START_REF] Hu | Emergent collective behaviors on coopetition networks[END_REF] and the coordinate transformation, we obtain the following limit values for followers' states, lim t→∞ r x (t) = [1.99 In a second run of simulations, we tested the bipartitecontainment control law (32) on the system (29), using the same initial conditions and controller gains as above. Therefore, in the simulations we consider that the system is subject to a disturbance d i = σ i (t) 1 1 , where σ i (t) is given by

      , (33) 
V f =     0 
σ i (t) =    tanh(t -10) -1 + 1 (t+10) i ∈ {7, 9} -tanh(t -10) + 1 -1 (t+10) i = 6 0 i ∈ {1, 2, 3, 4, 5, 8}.
The simulation results can be appreciated in Figures 4 and5. During the first 10s, the perturbation d(t) prevents the achievement of bipartite containment tracking but, after the perturbation vanishes, the trajectories of the followers towards the bipartite containment set spanned by cooperative leaders final states and competitive leaders' mirrored final states and all agents' velocities converge to zero. We obtain the same limit values as before for the followers. 

B. Structurally Unbalanced Networks

Consider a network containing five leaders ν i , i ≤ 5, three leader groups {ν 1 , ν 2 , ν 3 }, {ν 4 }, {ν 5 }, and four followers ν j , 6 ≤ j ≤ 9, provided in Figure 6. The Laplacian matrix corresponding to the graph is

L =               1 
0 -1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 4 0 -1 0 0 0 0 0 0 -1 2 0 1 0 0 0 -5 0 -1 0 6 0 0 0 0 0 3 0 -1 0 4

             
and its eigenvalues are λ L = 0, 0, 0, 1.5 ± 0.86i, 2, 3.59, 4, 6.41. The network may not be bipartitioned into two subgroups, so is structurally unbalanced. The matrix V l is calculated as in (33) and V f is calculated as We notice that V f has the properties stated on Items 1) -4) of Lemma 1, since the network is structurally unbalanced. Since all followers are influenced by more than one leader, there are no agents corresponding to the exclusive part of a reach and as a result V f does not have an element equal to ±1 but the absolute value of each element is less than one. We also remark that the sum of the absolute value of the terms on each row is less than 1.

V f =     0 
Now, let P be generated by [START_REF] Sebastián | Adaptive multirobot implicit control of heterogeneous herds[END_REF] with Q = I n and α = 20, then we obtain λ P = 0.4839. Consider the system (29) and the bipartite containment law (32) with the same controller gains as before. The respective agents' inertial positions and linear speeds are the same as before, while the orientations are θ(0) = [0.25 0.61 -1.27 0.32 1.42 0.46 0.98 1. 19 1.03] . The simulation results are depicted in Figures 7 and8.

Note that all followers converge to the convex hull spanned by leaders' final states and mirrored final states and all agents' velocities converge to zero. Using relations in [START_REF] Hu | Emergent collective behaviors on coopetition networks[END_REF] and the coordinate transformation, we obtain the following limit values for followers' states, lim t→∞ r x (t) = [1.5 1.1 0.01 -0.94] , lim t→∞ r y (t) = [1.79 -0.01 0.89 1.54] , lim t→∞ s(t) = [0 0 0 0] .

We remark that for structurally balanced signed networks, the followers' final states converge to the bipartite containment set spanned by cooperative leaders' final states and antagonistic leaders' mirrored states. However, in the case of a structurally unbalanced network, we cannot observe this as we cannot bipartition the agents into two disjoint subsets. 

VI. CONCLUSIONS

We presented a Lyapunov approach to analyze the exponential stability of the bipartite containment tracking problem of double-integrators over multiple-leader signed networks. Via a change of coordinates, we have shown the existence and characterized a bound for the convergence of the followers. Moreover, we have generalized the Lyapunov equation characterization of the Hurwitz property of a matrix to matrices having more than one zero eigenvalue, which allowed us to construct strict Lyapunov functions. Disposing of strict Lyapunov functions allowed us to establish the robustness of the system with a bounded disturbance. Even though, paper, we only address bipartite containment tracking of second-order systems, the stability and robustness properties may serve for more complex systems.

  L D = DLD denote the unsigned Laplacian matrix of the transformed network. Then, we may express the Laplacian L in Jordan canonical form, as L = DL D D = DP D ΛP -1 D D, where P D = v D1 . . . v D k P D1 ∈ C n×n , P -1 D = w D1 . . . w D k P † D1 ∈ C n×n , and Λ ∈ C n×n , with v Di and w Di , i ≤ m are the right and left eigenvectors associated to k zero eigenvalues of L D . From the Jordan decomposition, we can see that the basis of the null space of L is given by LDγ Di = LDv Di = 0, i ≤ k and has a basis defined by the columns of γ = Dγ D , where γ D = [γ D1 • • • γ D k ] and the columns {γ Di } constitute the basis of the associated eigenspace of L D . Then, using [28, Corollary 4.2]

k

  i=1 v ri v li e 1 = P k i=1 v ri v li e 2 = 0 we obtain the following:-k 1 e 1 P Le 1 = -k 1 e 1 (P L + L P )e 1 = -1 2 k 1 |e 1 | 2 , -e 2 µk 2 (P L + L P )e 2 = -µk 2 e 2 e 2 , e 1 [I -(L P + P L)]e 2 = -e 1 [I -I]e 2 = 0.
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 1 Fig. 1. Network 1: A network of nine mobile robots

  5 5.5 -3.5 6] , r y (0) = [3 2.5 -1.5 1.3 -3 -1 -3 -3 -2.5] , θ(0) = [0.25 0.61 -1.27 0.32 1.42 0.46 0.98 1.19 1.03] and s(0) = [1.2 1.2 -1.4 -1.6 1.3 -2.2 0.4 -1.1 1.2] .
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 2 Fig. 2. Bipartite containment tracking of (29) with the control (5) on the plane. The filled dots are the final states of the agents. The diamonds represent the mirrored final states of the leaders.

Fig. 3 .

 3 Fig.3. Bipartite containment tracking of (29) with (5) on velocity.
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 4 Fig. 4. Bipartite containment tracking of (25) on the plane.

Fig. 5 .

 5 Fig. 5. Bipartite containment tracking of (25) on velocity.

Fig. 6 .

 6 Fig. 6. Network 2: A network of nine mobile robots

Fig. 7 .

 7 Fig. 7. Bipartite containment tracking of (1) on position. The filled dots are the final states of the agents. The diamonds represent the mirrored final states of the leaders.

Fig. 8 .

 8 Fig. 8. Bipartite containment tracking of (1) on velocity.