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Abstract: 

The objective of this paper is to propose an energy-aware and ambulatory gait corrected pedestrian 

dead reckoning (PDR) approach using foot-mounted magnetic, angular rate and gravity (MARG) 

sensors. Compared with existing algorithms of PDR, the proposed method aims to solve three main 

problems for real pedestrian applications. First, to avoid limitations of off-line calibration for 

personal step length parameters, we utilize the zero-velocity-update (ZUPT) aided pedestrian 

MARG performance to continuously compute one's pose information. Meanwhile, it accumulates 

the moving distance for further estimation of one's step length during the initialization process. 

Secondly, due to different pedestrian gaits implicating the heading deviation angle between one's 

moving direction and heading, there are non-negligible impacts on pedestrian dead reckoning 

accuracy. The linear Kalman filter is used to recursively estimate the deviated heading during 

aforementioned initialization process. The third problem is related to the energy consumption. 

Following three aspects of adaptive energy saving work are devised: (i) energy-ware strategy for 

gyroscopes measurements acquisition is adopted to guarantee lower energy consumption. (ii) Modes 

switching mechanism of navigation computation is applied to the initialization and dead reckoning 

processes. (iii) De-sampling after initialization process has been invoked. Finally, real-world 

experiments are carried out to evaluate the performances of developed PDR system. The results 

show the efficiency of the suggested approach. The personal moving deviation angle obtained from 

the developed pedestrian navigation system can be potentially used for monitoring the patients' 

walking rehabilitation training and provide essential data for doctors to make constructive 

suggestions. 
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Online Calibrated, Energy-aware and Heading
Corrected Pedestrian Navigation with Foot-Mounted

MARG Sensors

Abstract

The objective of this paper is to propose an energy-aware and ambulatory gait

corrected pedestrian dead reckoning (PDR) approach using foot-mounted mag-

netic, angular rate and gravity (MARG) sensors. Compared with existing al-

gorithms of PDR, the proposed method aims to solve three main problems for

real pedestrian applications. First, to avoid limitations of off-line calibration for

personal step length parameters, we utilize the zero-velocity-update (ZUPT)

aided pedestrian MARG performance to continuously compute one’s pose infor-

mation. Meanwhile, it accumulates the moving distance for further estimation

of one’s step length during the initialization process. Secondly, due to different

pedestrian gaits implicating the heading deviation angle between one’s mov-

ing direction and heading, there are non-negligible impacts on pedestrian dead

reckoning accuracy. The linear Kalman filter is used to recursively estimate

the deviated heading during aforementioned initialization process. The third

problem is related to the energy consumption. Following three aspects of adap-

tive energy saving work are devised: (i) energy-ware strategy for gyroscopes

measurements acquisition is adopted to guarantee lower energy consumption.

(ii) Modes switching mechanism of navigation computation is applied to the

initialization and dead reckoning processes. (iii) De-sampling after initializa-

tion process has been invoked. Finally, real-world experiments are carried out

to evaluate the performances of developed PDR system. The results show the

efficiency of the suggested approach. The personal moving deviation angle ob-

tained from the developed pedestrian navigation system can be potentially used

for monitoring the patients’ walking rehabilitation training and provide essential
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data for doctors to make constructive suggestions.

Keywords: Pedestrian Navigation, Energy Management, Kalman Filter,

Heading Correction, Zero-Velocity-Update.

1. Introduction

1.1. Motivation

Nowadays, with the increasing demands of real-time personal location based

service, location-aware consumer electronics have become more and more indis-

pensable and popular in daily life [1, 2]. Pedestrian navigation technology has5

been intensively studied and widely applied in numerous military and civilian

applications, in particular, pedestrian localization, indoor navigation, motion

capturing and body tracking [3, 4, 5, 6]. Global navigation satellite system

(GNSS) provides users with satisfactory positioning accuracy in outdoor en-

vironments. However, it cannot work in GNSS challenging environments, e.g.10

canyons, tunnels, indoors, signal jamming or interruptions [7]. Wireless signals,

e.g. Wi-Fi, Bluetooth, and ZigBee generated by local area networks have been

commonly utilized as potentially feasible supplementaries through fingerprinting

and trilateration for augmenting navigation solutions under those GNSS denied

environments [4, 8, 9, 10]. However, the radio signals are prone to suffer from15

multi-path effects, e.g. signal attenuation, diffraction and refraction, thus sig-

nificantly degrading the signal quality [6, 11]. Moreover, state-of-the-art ground

based radio augmentation systems require a complex sensor-network infrastruc-

ture to be deployed in advance.The network system usually contains numerous

beacons for good accuracy and coverage purpose such that it is neither a low-20

cost nor an instant-deployment solution for pedestrian navigation applications

[12, 13]. Therefore, the beacon-free and self-contained navigation technology is

much more preferable without any pre-installed infrastructure.

1.2. Related Work

In the past decades, with the development of micro-electro-mechanical (MEMS)25

technologies, MEMS inertial sensors have been extensively used for pedestrian
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navigation [1, 7, 14, 15, 16].These sensors consisting of a tri-axial gyroscope and

a tri-axial accelerometer are usually attached to a certain part of one’s body for

motion monitoring or biomedical rehabilitation purposes [17, 19, 18, 20, 21, 22].

A great deal of endeavor has been paid to improving the performances of30

pedestrian navigation. Existing representative methods of pedestrian naviga-

tion with inertial sensors can be mainly categorized into two sorts. One is

strapdown-inertial-mechanization based method. Due to the inherent drift of

gyroscopes and accelerometers, the navigation error of strapdown inertial sys-

tem rapidly grows, inevitably leading to an important error [23]. To solve this35

problem, a considerable research on zero-velocity-update (ZUPT) method has

been conducted by introducing zero velocity as a pseudo-measurement during

one’s stance phase of walking. It is proven to be sufficient to compensate for the

inertial sensor drifts and reset the accumulation errors [24, 25, 26]. To maintain

good heading accuracy and limit the vertical axis drift of gyroscope, magnetome-40

ters are increasingly common to be assembled with inertial sensors on massive

low-cost devices [5, 27, 28]. It is referred to as MARG sensor that contains a

triad of magnetic, angular rate and gravity components. Many researchers are

concerned with magnetic disturbances and inertial drifts estimation for MARG

sensor module applications [29, 30, 31, 32]. To optimally fuse data from this45

module, various linear and nonlinear Kalman filters (KFs) e.g. conventional

KF, extended KF, unscented KF and particle KF are intensively developed to

estimate the one’s position and orientation [4, 27, 33, 34, 35]. The other sort

of pedestrian navigation method is dead reckoning based method. It recursively

integrates one’s step length and orientation during each detected step. Large50

amount of previous studies have been performed focusing on step detection

[36, 37] and step length model estimation [38, 39, 40, 41]. To further enhance the

navigation accuracy and reliability, [38] developed a multi-mode pedestrian nav-

igation algorithm by taking multi-placement of smartphones into account. More

recently, multi-mode behaviors including walking, running, swing and standing55

still are considered as well in recent work [42]. However, the existing dead reck-

oning methods mentioned above need to calibrate a group of parameters with
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sufficient personal off-line datasets prior to use. This is a main impediment for

its being off-the-shelf product. Moreover, though various types of misalignment

angles caused by inconsistency of installed sensor frame and defined body frame60

have been previously discussed and fixed [2, 43, 45], to the best of our knowl-

edge, there are quite few related works discussing the heading deviation angle

compensation related to personal gait in foot-mounted pedestrian navigation

yet. It is worthy of mentioning that such heading deviation angle varies from

persons and their gaits. Energy management is another critical issue for the65

wearable devices. For pedestrian navigation applications, gyroscope measure-

ments are proven to be more reliable than accelerometers in either orientation

determination or step detection [46]. However, in practice, it is universally

acknowledged that the gyroscopes consume much more energy compared with

accelerometers or magnetometers [47]. For instance, according to the official70

user manuals of STMicroelectronics, for its typical product of MEMS gyroscope

LSGD20 and accelerometer LIS3DH, the former consumes about 6.1mA while

the latter is merely about 11 µA [47]. On the other hand, sampling rate is also

of great importance for MEMS inertial measurement unit (IMU) performances.

The authors in [43] present an interesting results that a 2.5 times increase of75

velocity uncertainty by reducing the sampling rate from 1000 Hz to 100 Hz

during ZUPT aided pedestrian inertial navigation. This strongly motivates us

to develop an efficient and applicable energy saving strategy of MARG sensor

module for pedestrian navigation without evidently affecting its performance.

1.3. Main Contributions80

Up to now, much attention has been paid to pedestrian navigation partic-

ularly concentrating on step detection, step length modeling and sensor bias

compensation but rarely with regard to efficient energy management, online

pedestrian parameter calibration and gait related heading compensation. In

this paper, the pedestrian navigation problem is solved under the following con-85

tributions

(1) A joint ZUPT/dead reckoning based pedestrian navigation method. It is
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free of off-line calibration for personal PDR parameters. The ZUPT-aided

Pedestrian MARG Navigation is utilized to continuously compute one’s pose

information meanwhile it accumulates the moving distance during the ini-90

tialization process for further estimating one’s step length in the way of

dead reckoning.

(2) A gait related heading deviation angle compensation. Due to different

pedestrian gaits implicating the heading deviation angle between one’s mov-

ing direction and heading, there are non-negligible impacts on PDR accu-95

racy. To solve such problem, a linear KF will be proposed to recursively

estimate the deviated heading for adapting one’s different behavior modes.

(3) An adaptive and efficient energy management strategy. Three aspects of

adaptive energy saving work are devised: (a) Energy-aware strategy for

gyroscope measurements acquisition is adopted to ensure the lower energy100

consumption. (b) Modes switching mechanism of navigation computation

is applied to the initialization and dead reckoning processes. (c) Adaptive

de-sampling during pedestrian dead reckoning process.

The proposed method has the following advantages:

(1) It is based on the energy-aware strategy thus consumes less energy.105

(2) It identifies step length parameters for different users without any off-line

tests.

(3) Most importantly, it adaptively corrects one’s moving direction according

to personal gait. Inversely, it can be potentially used for monitoring the

patients’ walking rehabilitation training.110

1.4. Arrangement of Contents

This paper is organized as follows. In Section II, the principle and structure

of proposed method is given and explained. In Section III, a gait related heading

deviation angle is analyzed and compensated through a linear KF. The energy

management strategy is devised in Section IV. In Section V, real experimental115

tests and comparisons are carried out. Finally, concluding remarks in Section

VI end this paper.
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2. Principle and Structure of Proposed Pedestrian Navigation Method

The overall structure of proposed pedestrian navigation method is presented

in Fig. 1. It is clearly shown that two major parts are involved in pedestrian120

navigation computation: on-line initialization and gait based dead reckoning.

During online initialization process, the ZUPT-aided pedestrian MARG naviga-

tion is performed to continuously compute one’s pose information meanwhile it

accumulates the moving distance to achieve on-line calibration for personal step

length parameters. Besides, due to different pedestrian gaits implicating the125

heading deviation angle (see δγ in Fig. 2) between one’s moving direction and

foot’s heading, there are non-negligible impacts on pedestrian dead reckoning

accuracy. Actually, it is not compulsory for sensor placement. If the sensor

module is placed as shown in Fig. 3, the misalignment angle between forward

axes of shoe and sensor can be still roughly measured by protractor beforehand.130

To recursively estimate the heading deviation, a linear KF is constructed. Af-

ter completing initialization, the pedestrian position will be updated with dead

reckoning based method. Such structure can greatly saves the computation

resources than conventional ZUPT-aided inertial mechanization methods.

2.1. ZUPT-Aided Pedestrian MARG Navigation135

ZUPT-aided MARG navigation not only continuously estimates ones’ posi-

tion, velocity and attitude (PVA) information [27, 44] , but also plays a role

in initialization part for calibrating personal parameters (e.g. step length and

heading deviation). At epoch k, one’s PVA can be easily computed with inertial

measurements through
pnk = pnk−1 + vnk∆t+ (Cn

bk · fk + g) (∆t)2/2

vnk = vnk−1 + (Cn
bk · fk + g) ∆t

Cn
bk = Cn

bk−1 (I3 + [ωk×] ∆t)

(1)

where subscripts k and k−1 represent epoch indexes; superscript n and subscript

b represent navigation frame (denoted as n-frame, North-East-Down) and body
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Figure 1: The diagram of proposed pedestrian navigation method

Figure 2: Illustration of pedestrian gait related heading deviation sketch ( line for foot’s

heading; blue line for moving direction; N-E stands for ‘North-East’)

Figure 3: Two different sensor installation positions
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frame (denoted as b-frame, front-right-down), respectively; ω denotes the angu-

lar rate and f denotes the specific force; p and v are three-dimensional position

and velocity vectors respectively; Cn
b is the direction cosine matrix transforming140

a vector from b-frame into n-frame; ∆t denotes the sampling interval of iner-

tial sensors; g is the local gravity vector; I3 denotes the 3 dimensional identity

matrix; [·×] represents the skew symmetric matrix operator.

The accelerometer and gyroscope models are established respectively as

yG = ω + bG +wG (2)

yA = f + bA +wA (3)

where subscripts G and A denote the gyroscope and accelerometer respectively;

y denotes the output of sensor; wG and wA are the zero mean Guassian white

noises with variances QwG and QwA respectively; bG and bA represent the

gyroscope and accelerometer biases respectively. The models of bG and bA are

formulated as

ḃG = wrG (4)

ḃA = wrA (5)

where wrG and wrA are the zero mean Guassian white noises with variances

QwrG
and QwrA

respectively. To limit the inertial accumulative errors, the

ZUPT-aided MARG KF is constructed with the following 15-dimensional error

state

xI =
[
φ> δp> δv> b>G b>A

]>
(6)

where φ, δp and δv denote misalignment angles, position error and velocity

error vectors, respectively; superscript I and II are introduced to distinguish

different Kalman filters. Then the state model can be established as

xI
k = ΦI

k−1,kx
I
k−1 + Γ I

kw
I
k (7)
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where the state transition matrix ΦI
k−1,k and the noise transition matrix Γ I

k are

given by

ΦI
k−1,k =



I3 03×3 03×3 −∆tCn
b 03×3

03×3 I3 ∆tI3 03×3 03×3

∆t [fn×] 03×3 I3 03×3 ∆tCn
b

03×3 03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3 I3



Γ I
k =



−∆tCn
b 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 ∆tCn
b 03×3 03×3

03×3 03×3 ∆tI3 03×3

03×3 03×3 03×3 ∆tI3


The process noise wI

k can be written as

wI
k =

[
w>G w>A w>rG w>rA

]>
which obeys zero mean Guassian distribution, with variance

QI
k = diag

{
QwG,k

,QwA,k
,QwrG,k

,QwrA,k

}
where diag represents diagonal matrix. The predicted state and its covariance

matrix are computed by,

xI
k|k−1 = ΦI

k−1,kx
I
k−1|k−1 (8)

P I
k|k−1 = ΦI

k−1,kP
I
k−1|k−1

(
ΦI
k−1,k

)>
+ Γ IQI

k

(
Γ I
)>

(9)

Considering ZUPT and magnetic sensor output, accordingly the observation

model is formulated as

zIk = HI
kx

I
k + εIk (10)

where the observation vector zk and the corresponding design matrix Hk are

given by

zIk =
[
ψM,k − ψG,k −v>k

]>
9



HI
k =

 D 01×3 01×3 01×3 01×3

03×3 03×3 I3 03×3 03×3


where ψG,k denotes heading angle derived from gyroscope while ψM,k is com-

puted from magnetometer outputs; D is the connection matrix between mis-

alignment angles and Euler error angles D = [ sinψ tan θ − cosψ tan θ 1 ]

(see Appendix A). The observation model noise εIk ∼ N
(
0,RI

k

)
is

εIk =
[
ε>ψ,k ε>v,k

]>
in which εψ,k ∼ N (0,Rψ,k) denotes the heading correction model noise; εv,k ∼ N (0,Rv,k)

denotes the velocity correction model noise, which is highly determined by the

static threshold setting during the zero velocity detection. The observation

variance can be written as

Rk = diag{Rψ,k,Rv,k}

Then the KF solution and its covariance are estimated by

xI
k|k = xI

k|k−1 +KI
k

(
zIk −HI

kx
I
k|k−1

)
(11)

P I
k|k =

(
I15 −KI

kH
I
k

)
P I
k|k−1 (12)

with the gain matrix K

KI
k = P I

k|k−1
(
HI
k

)> [
HI
kP

I
k|k−1

(
HI
k

)>
+RI

k

]−1
(13)

Finally by correcting the PVA with estimated δp, δv,φ and resetting error state,

the ZUPT-aided MARG navigation is completed.145

2.2. Gait Based Dead Reckoning

The principle of gait based dead reckoning is generally depicted as: px,k

py,k

 =

 px,k−1

py,k−1

+ dk

 sin γk

cos γk

 (14)

where [px,k, py,k]
>

denotes the position after the k-th step ; dk and γk represents

the k-th step length and moving orientation respectively. For step length esti-

mation, there are numerous models with various parameters. The most popular
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one is a bi-parametric linear model [48], in which the step length is assumed

to be related to the step frequency. Apart from the step frequency, other pa-

rameters are introduced into the refined step length model as well, for instance,

acceleration variance [25], acceleration boundary [40], height [38] and leg length

[39]. Finally, the following step length model [42] is chosen
dW,k =

2∑
j=0

Kj × f−j/2sk +K3 ×max
(
ãk
)

(walking)

dR,k = K4 × 3
√
ãk (running)

(15)

where subscripts ‘W’ and ‘R’ represent the walking and running behaviors,

respectively. To remove the influences of high-frequency noise from acceleration,

the Hamming-window based, linear-phase finite impulse response (FIR) filter is

introduced to generate the filtered acceleration ãk. ãk denotes the mean value of150

ãk; fsk denotes step frequency during the k-th step period; Kj for j = 0, 1, 2, 3, 4

are coefficients that need to be calibrated beforehand. Note that the calibration

can be done online during the initialization process with the given distance

estimated by ZUPT-KF.

The heading angle during one motion period can be obtained based on var-

ious MARG sensors data fusion strategies [15, 38, 49]. However, the perfor-

mances in real applications will be degraded due to the existence of gait related

heading deviation which differs from individuals. For this reason, the heading

should to be cautiously aligned to the moving direction before using (14) by

γi = ψi + δγi (16)

where δγi is the heading deviation angle between moving direction and heading;155

γi and ψi represent one’s actual moving direction and heading angle, respec-

tively. The compensation method for δγi will be detailed in Section III.

2.3. Working Mode Switching

It needs to be clarified that

(i) initialization and dead reckoning are two basic working modes during160

pedestrian navigation.
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(ii) when the changing of motion behavior is detected, the initialization mode

will be triggered for performing the ZUPT-aided MARG KF and calibrat-

ing the personal parameters.

(iii) while once the initialization is successfully completed, the dead reckoning165

mode will be carried out with the calibrated parameters in (ii).

The working mode switching diagram is exhibited in Fig. 3. Therefore, the

Figure 4: Diagram of working mode switching

behavior recognition is critical to detect the event of working mode switching.

Here we utilize three features i.e. variance, direct component (DC) and energy to

identify one’s motion behaviors including walking, running, swing and standing.170

Based on that, the real-time state machine for multi-mode behaviors recognition

is designed and developed to make decision on working mode. More details can

be found in reference [42].

3. Gait Related Heading Deviation Angle Compensation

Recalling the heading deviation in (16), it has a strong relation with personal

gait. Inversely, the deviation also reflects one’s gait and potentially can be ap-

plied to walking rehabilitation training. As a matter of fact, personal gait has a

very good repeatability thus such deviation can be estimated within aforemen-

tioned initialization period. Assuming the following state model through KF of

˙δγ as

˙δγi = ˙δγi−1 + w1,i (17)

12



Letting xII
i =

[
˙δγi δγi

]>
, the state model can be reformulated as

xII
i = ΦII

i−1,ix
II
i−1 +wII

i (18)

where the state transition matrix ΦII
i−1,i is

ΦII
i−1,i =

 1 0

∆t 1


The two dimensional process noise can be written as

wII
i =

[
w>1,i w>2,i

]>
where w1,i ∼ N (0,Qw1) describes the reliability of model (17); w2,i ∼ N (0,Qw2)

is caused by discretization of first order deviation ˙δγ = ∂ (δγ)/∂t. The variance

of process noise can be written as

QII = diag {Qw1,Qw2}

Accordingly, the observation model is established as

zIIi = HII
i x

II
i + εIIi (19)

where the design matrix is HII
i = [ 0 1 ] and the observation vector is con-

structed as zIIi = γi−ψi. ψi denotes the heading angle obtained from ZUPT-KF,

which is taken at the instant of hitting the ground. γi can be approximately

calculated with the position increment or the velocity vector by

γp,i = arctan
∆px,i
∆py,i

(20)

γv,i = arctan
vmax x,i

vmax y,i
(21)

where [ ∆px,i ∆py,i ]> are the two-dimensional position increment vector dur-175

ing the i-th step, [ vmax x,i vmax y,i ]> are the maximal value of velocity during

the i-th step. εIIi is the zero mean Guassian noise, and its variance RII can be

determined after obtaining the variances of heading angle and the position (or

velocity). Then the deviation angle can be recursively estimated by implement-

ing the proposed KF.180

13



4. The Adaptive Energy Management Strategy

Three aspects of adaptive energy management (mentioned in Fig. 3) are

devised including energy-aware for gyroscope, mode switching mechanism and

adaptive system de-sampling.

4.1. Energy-Aware Strategy for Gyroscopes Measurements Acquisition185

As is pointed out in [47], gyroscopes consume much more energy compared

with that of accelerometers or magnetometers. To ensure the lower energy

consumption, an energy-aware strategy for gyroscope measurements acquisition

is given in Table 1.

Table 1: Energy-aware strategy for gyroscope measurements acquisition

Behavior recognition:

IF recognition result is non-static (e.g. “walking” or

“running”)

⇒ turns to Working mode identification

ELSE ⇒ gyroscope ‘off’

Working mode identification:

IF working mode is “ZUPT-KF”

⇒ gyroscope ‘on’

ELSE ⇒ turns to Step length model examination

Step length model examination:

IF ∆TG ≥ T0 (∆TG: the time interval from time instant

of last step length model examination; T0: the time duration

threshold of step length model examination)

⇒ gyroscope ‘on’ till a whole step is completed

ELSE ⇒ gyroscope ‘off’

Behavior recognition method is utilized to identify one’s motion behavior190

and non-static behavior will wake up the gyroscope from its sleeping status.

For these non-static behaviors, the gait based dead reckoning (Gait-DR) mode

does not employ any gyroscope outputs while ZUPT-KF utilizes gyroscope mea-

surements. Furthermore, one thing should be noticed that motion behavior

changing may lead to corruptions of one’s step length model. To avoid such195

14



problem, without significantly increasing the computations, a periodical step

length model examination procedure is introduced with a long time-interval.

4.2. Mode Switching Mechanism of Navigation Computation

Due to different computation complexity for Gait-DR and ZUPT-KF, modes

switching mechanism of navigation computation mode is designed to minimize200

energy consumption (see Table 2).

Table 2: Mode switching mechanism of navigation computation

ZUPT-KF mode:

Implement the following verification condition:

IF LZUPT−KF < L0

⇒ keep computation mode ‘ZUPT-KF’.

ELSE ⇒ switch the computation mode ‘ZUPT-KF’ to ‘Gait-DR’.

Gait-DR mode:

Implement the following verification condition:

IF new motion behavior is detected

⇒ switch the computation mode to ‘ZUPT-KF’.

ELSE IF the step length model cannot adapt to the current motion

⇒ switch the computation mode ‘Gait-DR’ to ‘ZUPT-KF’

ELSE ⇒ keep ‘Gait-DR’ computation mode.

At the initialization stage, ‘ZUPT-KF’ calibrates the step length model and

estimates the heading deviation angle till the accumulated moving distance

LZUPT−KF derived from ZUPT-KF does not exceed the predetermined thresh-

old L0. In another word, if LZUPT−KF exceeds L0, then the initialization is205

complete and the computation mode ‘ZUPT-KF’ will be switched to ‘Gait-DR’.

On the other hand, there are two conditions to trigger the switching ‘Gait-DR’

to ‘ZUPT-KF’: i) a new motion behavior is detected; ii) for a certain behavior,

the motion frequency changes may lead to the original calibrated step length

model inaccurate. For example, for running behavior, jogging and running fast210

are different, then one set of step length model parameters may not be incom-

patible with these two scenarios. Therefore, even one’s motion behavior is kept,

we still need to carefully monitor the possible corruption of step length model.

The details of step length model examination is presented in Table 3.
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Table 3: Details of step length model examination

Priori precision statistics of step length model in ‘Initialization’ part:

σd =

√∑n
i=1 (dKF,i−dSL,i)

2

n−1

dKF,i denotes the distance derived from ZUPT-KF at i-th step;

dSL,i denotes the distance with calibrated step length model of i-th step

Step length model examination of ‘Gait–DR’:

do the examination on dKF and dSL with a regular time interval T0:

by the following testing condition:

IF |dKF − dSL| ≤ 3σd

⇒ keep the mode ‘Gait-DR’.

ELSE ⇒ switch the mode ‘Gait-DR’ to ‘Initialization’

4.3. Adaptive De-sampling for Gait-DR Mode215

To further reduce system power consumption, an adaptive de-sampling strat-

egy is proposed when one is with ‘Gait-PDR’ mode. As is widely acknowledged

that, the strapdown-inertial-mechanization based method, e.g. ZUPT-KF re-

quires a high sampling rate of inertial measurements. This is because it essen-

tially calculates the real-time PVA information by continuous integral compu-220

tation, where a lower sampling rate cannot adequately capture one’s motion

thus inevitably degrading the PVA accuracy. In contrast, the dead reckoning

based methods calculate the position only through heading and step length of

each step which only requires the sampling rate satisfying Nyquist theorem and

obviously does not need a high sampling rate. Inspired by this point of view,225

system de-sampling is feasible to perform the pedestrian navigation during the

Gait-DR working period.

5. Experimental Results and Analyses

In this section, pedestrian experiments are carried out to verify the pro-

posed method and fully evaluate its performances. The MARG module HI229,230

includes accelerometers, gyroscopes and magnetometers[50]. The hardware de-

vice is mounted on one of user’s foot. The module is communicated with a
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memory card through TTL-USB module (Fig. 5). The computation and eval-

uation of proposed method is post-processed under Matlab r2015a on a Dell

Inspiron14 laptop with a CPU of 4-core i5-4210U.

Figure 5: HI229 and TTL-USB module

235

As shown in Fig. 6, the octagon trajectory is designed following the corridor

of report hall in the University of Electronic Science and Technology of China

(UESTC) library. Three schemes are employed to estimate pedestrian trajectory

for comparison purpose:

(1) ZUPT-aided pedestrian MARG navigation (ZUPT-KF)240

(2) Conventional PDR based on previous offline calibration test. These methods

integrates one’s step length and orientation (uncorrected gait deviatation)

during each detected step, such as [37, 38, 39, 40]

(3) The proposed online calibrated and heading deviation corrected Gait-PDR

method.245

Figure 6: 2D trajectory of pedestrian experiment
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To verify the accuracy of proposed method, the user is arranged to walk

along the corridor of report hall twice with an arbitrary pace. For the first

circular moving, ZUPT-KF is used for online calibrating step length parameter

and estimating heading deviation angle which is estimated according to Section

III. Then during the second circular trajactory, the working mode is switched to250

Gait-PDR. Fig. 7 clearly shows the heading deviation between moving direction

and heading angle. γp and γv in Fig. 7 are derived from Eqs. (16) and (17)

respectively. γp shows a better result. As a consequence, (16) is chosen in KF

II to estimate heading deviation angle and the result is given in Fig. 8.

Besides, four testers’ heading deviation angle estimation results are com-255

puted and presented in Table 4. Seen from this table, the gait related deviation

angles are indeed varied with different persons. The largest deviation angle

among testers even reaches 30 degrees. Consequently, its trajectory estimation

error is much larger than others with smaller deviation angles.

Table 4: Gait related deviation angles of four testers

Testers Gender
Age Height Weight Deviation angle (deg)

(years) (cm) (kg) Range Average

Tester A Male 24 175 65 27.5 ∼ 30.3 29.2

Tester B Male 25 180 72 5.1∼7.1 5.8

Tester C Female 24 158 44 15.2∼17.7 15.6

Tester D Female 23 160 51 7.3∼9.5 8.7

For online calibration of step length model, we can point out that: to gu-260

rantee an reliable calibration process, the step frequency is used as a key indi-

cator to discriminate different walking patterns (usually two or three patterns,

i.e. walking slowly and walking fast, are adequate for describing one’s walking

modes). This is clearly verified through previous experiments (see Fig. 9). The

threshold of step frequency variation can be empirically set as ±0.2 according265

to our previous tests. Similarly, calibration in running mode also can be done

in the way of calibration implemented in walking mode.

Next, we start to evaluate and compare the presented schemes, i.e. ZUPT-
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Figure 7: Comparison of moving direction and heading (walking)

Figure 8: Gait related heading deviation angle estimation results (walking)

Figure 9: Step features of walking normally and walking fast
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KF, PDR and Gait-PDR with the data of second cycle trajectory (shown in

Fig. 10). The reference trajectory is obtained with a distance-measuring tape.270

The default sampling rate is set as 200Hz. With this high sampling rate, both

ZUPT-KF and Gait-PDR methods perform well, while PDR method is inferior

to ZUPT-KF and Gait-PDR suffering from the heading deviation angle. Com-

parisons of de-sampling cases are shown in Fig. 11. Result shows that Gait-PDR

method maintains a good performance even at a lower sampling rate. In con-275

trast, ZUPT-KF method gradually works worse even diverges as the sampling

rate decreases as a result of sparse inertial integral computations. We also

Figure 10: Trajectory comparisons of different methods (walking with the sampling rate of

200Hz)

verify these three schemes in the running scenario. The trajectory results are

drawn in Fig. 10 ∼12. Compared to Fig. 8, Fig. 12 shows that for the same

test, heading deviation angles for different behaviors may be different.280

More detailed errors evaluation in walking and running experiments are

listed in Table 5. It needs to be clarified that the average time consumption

criterion of one step is computed based on the number of total steps and their
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Figure 11: Results of de-sampling cases (walking)

time consumptions. The relative error of distance is defined as

σd =

∣∣∣d̂tol − dref ∣∣∣
dref

× 100% (22)

where dref is the reference distance; d̂tol is the total distance derived from ZUPT-

KF or Gait-PDR methods. The position error of starting point is obtained ac-

cording to the closure trajectory. Besides, the position accuracy and maximum

heading deviation are also given for comparison purpose. Since the ‘ground-

truth’ position of each step cannot be acquired, the position uncertainty is eval-

uated by feature points consisting of eight corner points #Pk (k = 1, 2, . . . , 8)

and the end point #P9. The positions of these points (as shown in Fig.10)

are utilized as references to compute the root mean square error (RMSE) of

horizontal position through

RMSE (p) =
1

N

N∑
k=1

√(
pref,x,k − p̂x,k

)2
+
(
pref,y,k − p̂y,k

)2
(23)
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Figure 12: Gait related heading deviation angle estimation results (running)

where N = 9 denotes the number of referenced (subscript ‘ref’) feature points.285

These results statistics are fully consistent with the advantages and disadvan-

tages of listed methods. Furthermore, for the aspect of energy saving, Table

5 also provides the average time consumptions for ZUPT-KF and Gait-PDR

methods. Results show that Gait-PDR generally consumes much less time

compared with ZUPT-KF in all cases of sampling rate. In particular, with sam-290

pling rate of 200Hz, time consumptions of ZUPT-KF and Gait-PDR in walking

mode are 100.4ms and 23.8ms respectively; for running, their time consump-

tions are 78.0ms and 15.7ms respectively. As sampling rate decreases, time

consumptions of these two methods are both significantly reduced. However,

de-sampling rate leads to large errors on ZUPT-KF even divergence. Concretely295

speaking, as sampling rate decreases from 200Hz to 50Hz for walking mode, the

time consumption of ZUPT-KF is minimized from 100.4ms to 24.9ms, while its

trajectory misclosure is enlarged from 0.1m to 11.6m. It is also noticed that the

max orientation errors of ZUPT-KF is significantly amplified when sampling

rate decreases. This is mainly caused by non-commutativity of the rotation300

operations [51]. By contrast, our proposed Gait-PDR is insensitive to sampling

rate (the trajectory misclosure errors are 1.1m and 1.6m for 200Hz and 20 Hz
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Figure 13: Trajectory comparisons of different methods (running with the sampling rate of

200Hz)

respectively). Table 6 presents the gait deviation influences imposing on posi-

tion accuracies of four testers under a given testing scenario. Once again, the

results show that the deviation angle has non-negligible impacts on pedestrian305

dead reckoning and our deviation angle compensation method is effective in

improving the position accuracy. The total distance error is given in Table 7.

It intuitively shows the influence of de-sampling on two methods. Thus con-

ventional ZUPT-KF is not suitable for the platform with low sampling rate.

One the contrary, Gait-PDR is very computationally efficient compared with310

ZUPT-KF. Meanwhile it still maintains a good accuracy even in the scenarios

of low sampling rate. It is therefore very promising for its calibration conve-

nience (online), computation efficiency and high accuracy in future wearable

consumer electronics devices.

To verify the mode switching mechanism and gyroscopes energy-ware strat-315

egy, the users are allowed to walk or run in their own paces to collect a new

dataset. Behaviors identification and working mode switching results are shown

in Fig. 15. It shows gyroscope is only employed in initialization process and

also used to examine step length model in Gait-PDR mode. It is switched off
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Figure 14: Results of de-sampling cases (running)

for energy saving purpose in the rest time.320

There are three key factors related to power consumption, i.e. communica-

tion, computational complexity and execution time. Usually power consumption

of system can hardly be accurately quantized with the first factor. It is uni-

versally known that communication cost is highly related to sampling rate of

hardware system. Therefore, qualitatively speaking, our method with a lower325

sampling rate inevitably consumes much less power than ZUPT-KF method.

The second factor is also a common indicator to reflect the system power con-

sumption. To clearly show the computational complexity difference between

two methods, an example is given as follows:

Given matrix A with dimension of m × n and B with dimension of n × p, the

computation complexity of A×B is defined as

T (Am×n ×Bn×p) = O(m× n× p) (24)

Table 8 presents complexity comparison between ZUPT-KF and PDR during330

one step walking period where zero velocity lasts about 0.3 seconds. Actually,

after successfully initializing, our proposed method reduces to PDR method.

It is obviously superior to ZUPT-KF method in aspect of computation com-

plexity. Next we focus on the computation of initialization which contains two

main parts: step length model calibration and heading deviation correction.335

The whole computation complexity for one time of initialization in our method

consumes O(88n), where n denotes the counting number of steps during the
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Table 5: Statistics results for pedestrian navigation accuracy and time consumption

Behavior
Working Sampling Average time consumption Distance Misclosure RMSE (p) Max orientation

mode (Hz) for one step (×10−3 s) relative error (m) (m) error (deg)

Walking

ZUPT-KF

200 100 0.57% 0.10 0.46 0.9

100 48 1.10% 0.45 0.59 1.2

75 36 0.80% 0.51 0.89 3.0

70 33 0.57% 5.31 3.12 3.1

50 24 5.30% 11.60 8.95 7.1

Gait-PDR

200 23 0.57% 1.13 1.50 1.1

100 12 0.59% 1.51 1.28 1.3

75 6 0.59% 1.11 1.42 1.6

50 4 0.57% 1.56 1.21 1.6

20 2 0.58% 1.61 1.39 2.0

Running

ZUPT-KF

200 78 1.46% 0.51 0.65 1.4

100 42 3.06% 4.37 2.67 9.9

80 35 3.18% 10.35 5.65 10.1

Gait-PDR

200 16 2.01% 1.16 1.73 1.4

100 7 2.64% 2.21 1.78 1.6

80 6 3.46% 2.00 1.87 1.6

initialization. Supposing n as 40, the computation complexity of one time of

initialization is O(3520). It should be pointed out that the times of initialization

is limited and usually does not exceed 3 ∼ 5 considering one’s typical motion be-340

havior modes. Therefore, likewise, our proposed method has a power-consuming

advantage on computation complexity.

Intuitively, the last factor has the most straightforward connection with power

consumption. The average time consumption of one step is presented in Table

Table 6: Gait deviation influences imposing on position accuracies of four testers with sampling

rate of 100Hz (unit: m)

Testers RMSE(p): PDR RMSE(p): Gait-PDR

Tester A 20.34 1.34

Tester B 4.10 1.28

Tester C 10.26 1.15

Tester D 7.28 1.30
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Table 7: Total distance error (walking)

Working mode Sampling (Hz) Total distance error (m)

ZUPT-KF
200 1.00

50 9.29

Gait-PDR
200 1.00

50 1.01

Table 8: Complexity comparison between ZUPT-KF and PDR during walking period of 1.2

seconds
Method Sampling rate (Hz) Computation cycles Complexity

ZUPT-KF 200 60 O(1.0377× 106)

PDR 50 1 O(6)

9. Owing to the mode switching mechanism and de-sampling strategy, the345

consumed time of proposed method in one step is reduced by 80.75%. Therefore,

considering overall facts above, we cautiously come to a conclusion that our

proposed method outperforms the ZUPT-KF method for power consumption.

To further verify the proposed online calibrated step length model, the rep-

resentative step length models with offline calibration are compared with our350

step length model with online calibrated parameters [52, 53, 54, 55]. The es-

timated step length results are presented in Fig. 16. It is obvious that the

proposed method is much more accurate and reliable than others especially

when undergoing transitions of different behaviors.

Table 9: Average time consumption for one step

Method Time Consumption (×10−3 s)

ZUPT-KF (200Hz) 104

Proposed method 20

6. Conclusion355

In this paper, an online calibrated, energy-aware and ambulatory gait cor-

rected pedestrian dead reckoning (Gait-PDR) method is proposed for pedestrian

navigation via the foot-mounted magnetic, angular rate and gravity (MARG)
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Figure 15: Illustrations of behaviors identification, working mode switching and gyroscope

mode switching.

Figure 16: Step length estimation results in the scenario of behaviors transition
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sensors. The proposed method solves three main problems for current pedes-

trian navigation applications: online calibration, gait related heading deviation360

and adaptive energy management. The real pedestrian experiments are car-

ried out to demonstrate the validity and efficiency of proposed method. The

results show that this latter outperforms the representative methods especially

for low sampling rate scenarios. Overall, it is accurate, energy-saving and easy-

to-implement thus is very promising for pedestrian navigation applications. In365

addition, the personal deviation angle obtained during the pedestrian navigation

process would be an essential indicator for evaluating the efficiency of patients’

walking rehabilitation training. In the future, more complex pedestrian be-

havior modes e.g. going upstairs, downstairs and climbing will be extended in

theory.370

Appendix A

Due to the existence of sensor error, there is a small difference between ‘true’

attitude matrix Cn
b and the estimated one Cn′

b (n and n′ represent the ‘true’

navigation frame and calculated navigation frame). According to the chain rule

of coordinate frame,

Cn
b = Cn

n′Cn′

b (25)

where Cn′

n is defined as misalignment attitude matrix and it is very close to

identity matrix. Therefore it can be written as:

Cn
n′ = I3 + [φ×]

=


1 −φz φy

φz 1 −φx
−φy φx 1

 (26)

in which φ is referred to as misalignment angle. Herein, the rotation matrix Cb
n

can be expressed a set of Euler angles

Cb
n =


cβcψ − sβsθsψ sψcβ + cψsβsθ −sβcθ

−cθsψ cθcψ sθ

sβcψ + cβsθsψ sψsβ − cβsθcψ cθcβ

 (27)
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where the Euler angles are with the rotation order of ‘3-1-2’, i.e. yaw-pitch-roll

( ψ − θ − β ); c and s denote cosine and sine functions respectively. Denoting

the calculated Euler angles as
[
ψ′ θ′ β′

]>
, and then the Euler angle errors

are 
δψ

δθ

δβ

 =


ψ′

θ′

β′

−

ψ

θ

β

 (28)

Knowing Cn
b =

(
Cb

n

)>
and inserting (26) (27) (28) into (25), we have

δψ

δθ

δβ

 =
1

cθ


sψsθ −cψsθ cθ

−cψcθ −sψcθ 0

sψ −cψ 0



φx

φy

φz

 (29)

Thereby the heading errors is written as

δψ = Dφ (30)

where D =
[

sinψtanθ −cosψtanθ 1
]

is only related to heading and pitch

angles.
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ization by Dual Foot-Mounted Inertial Sensors and Inter-Agent Ranging,”

EURASIP J. Adv. Signal Process., vol. 2013, no. 1, Oct 2013.

[12] G. Piccinni, G. Avitabile, and G. Coviello, “An Improved Technique based415

on Zadoff-Chu Sequences for Distance Measurements,” IEEE RADIO, Oct

2016.

[13] G. Piccinni, G. Avitabile, G. Coviello, “A Novel Distance Measurement

Technique for Indoor Positioning Systems based on Zadoff-Chu Sequences,”

IEEE NEWCAS, Jun 2017.420

[14] C. M. Brahms, Y. Zhao, D. Gerhard, and J. M. Barden, “Stride Length

Determination during Overground Running Using a Single Foot-Mounted

Inertial Measurement Unit,” J. Biomechanics, vol. 71, pp. 302–305, 2018.

[15] R. Valenti, I. Dryanovski, and J. Xiao, “Keeping a good attitude: A

quaternion-based orientation filter for imus and margs,” Sensors, vol. 15,425

no. 8, pp. 19 302–19 330, Aug 2015.

[16] X. Meng, Z. Q. Zhang, J. K. Wu, W. C. Wong, and H. Yu,

“Self-contained pedestrian tracking during normal walking using an iner-

tial/magnetic sensor module,” IEEE Trans. Biomed. Eng., vol. 61, no. 3,

pp. 892–899, 2014.430

[17] G. V. Prateek, I. Skog, M. E. McNeely, R. P. Duncan, G. M. Earhart, and

A. Nehorai, “Modeling, Detecting, and Tracking Freezing of Gait in Parkin-

son Disease Using Inertial Sensors,” IEEE Trans. Biomed. Eng., vol. 65,

no. 10, pp. 2152–2161, Oct 2018.

[18] D. Trojaniello, A. Cereatti, and U. D. Croce, “Foot Clearance Estimation435

during Overground Walking and Vertical Obstacle Passing using Shank-

Mounted MIMUs in Healthy and Pathological Subjects,” IEEE EMBC,

Aug 2015.

31
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[44] J-O. Nilsson, I. Skog, P. Händel, and K.V.S. Hari, “Foot-mounted INS for

Everybody - An Open-source Embedded Implementation, ”IEEE PLANS,

Apr 2012.520

34



[45] A. Manos, I. Klein, and T. Hazan, “Gravity-Based Methods for Heading

Computation in Pedestrian Dead Reckoning,” Sensors, vol. 19, no. 5, pp.

1170, Mar 2019.

[46] W. Zhang, D. Wei, and H. Yuan, “Novel Drift Reduction Methods in Foot-

Mounted PDR System,” Sensors, vol. 19, no. 18, pp. 3962, Sep 2019.525

[47] A. Makni, H. Fourati, and A. Y. Kibangou, “Energy-Aware Adaptive At-

titude Estimation under External Acceleration for Pedestrian Navigation,”

IEEE/ASME Trans. Mech., vol. 21, no. 3, pp. 1366–1375, 2015.

[48] Z. Sun, X. Mao, W. Tian, and X. Zhang, “Activity Classification and Dead

Reckoning for Pedestrian Navigation with Wearable Sensors,” Meas. Sci.530

Tech., vol. 20, no. 1, pp. 015203, Nov 2008.

[49] R. Stirling, K. Fyfe, and G. Lachapelle, “Evaluation of a New Method of

Heading Estimation for Pedestrian Dead Reckoning Using Shoe Mounted

Sensors,” J. Navigation, vol. 58, no. 1, pp. 31–45, Jan 2005.

[50] Beijing Beyond Core Electronic Technology Co., Ltd. HI229. Available:535

https://yandld.gitee.io/product doc/.

[51] S. Stančin, and S. Tomažič, “Angle estimation of simultaneous orthogonal

rotations from 3D gyroscope measurements,” Sensors, vol. 11, no. 9, pp.

8536–8549, Aug 2011.

[52] R. W. Levi and T. Judd, “Dead Reckoning Navigational System Using540

Accelerometer to Measure Foot Impacts,” 1996, uS Patent 5,583,776.

[53] Q. Ladetto, “On Foot Navigation: Continuous Step Calibration Using both

Complementary Recursive Prediction and Adaptive Kalman Filtering,” in

Proceedings of ION GPS, vol. 2000, 2000, pp. 1735–1740.

[54] O. Woodman and R. Harle, “Pedestrian Localisation for Indoor Environ-545

ments,” in Proceedings of the 10th international conference on Ubiquitous

computing, 2008, pp. 114–123.

35



[55] B. Krach and P. Roberston, “Cascaded Estimation Architecture for Inte-

gration of Foot-Mounted Inertial Sensors,” in IEEE PLANS. IEEE, 2008,

pp. 112–119.550

36


