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The objective of this paper is to propose an energy-aware and ambulatory gait corrected pedestrian dead reckoning (PDR) approach using foot-mounted magnetic, angular rate and gravity (MARG) sensors. Compared with existing algorithms of PDR, the proposed method aims to solve three main problems for real pedestrian applications. First, to avoid limitations of off-line calibration for personal step length parameters, we utilize the zero-velocity-update (ZUPT) aided pedestrian MARG performance to continuously compute one's pose information. Meanwhile, it accumulates the moving distance for further estimation of one's step length during the initialization process. Secondly, due to different pedestrian gaits implicating the heading deviation angle between one's moving direction and heading, there are non-negligible impacts on pedestrian dead reckoning accuracy. The linear Kalman filter is used to recursively estimate the deviated heading during aforementioned initialization process. The third problem is related to the energy consumption. Following three aspects of adaptive energy saving work are devised: (i) energy-ware strategy for gyroscopes measurements acquisition is adopted to guarantee lower energy consumption. (ii) Modes switching mechanism of navigation computation is applied to the initialization and dead reckoning processes. (iii) De-sampling after initialization process has been invoked. Finally, real-world experiments are carried out to evaluate the performances of developed PDR system. The results show the efficiency of the suggested approach. The personal moving deviation angle obtained from the developed pedestrian navigation system can be potentially used for monitoring the patients' walking rehabilitation training and provide essential data for doctors to make constructive suggestions.

Introduction

Motivation

Nowadays, with the increasing demands of real-time personal location based service, location-aware consumer electronics have become more and more indispensable and popular in daily life [START_REF] Bancroft | Estimating MEMS Gyroscope g-Sensitivity Errors in Foot Mounted Navigation[END_REF][START_REF] Shi | A Robust Pedestrian Dead Reckoning System Using Low-Cost Magnetic and Inertial Sensors[END_REF]. Pedestrian navigation technology has been intensively studied and widely applied in numerous military and civilian applications, in particular, pedestrian localization, indoor navigation, motion capturing and body tracking [START_REF] Jin | A Robust Dead-Reckoning Pedestrian Tracking System with Low Cost Sensors[END_REF][START_REF] Tian | A Low-Cost INS and UWB Fusion Pedestrian Tracking System[END_REF][START_REF] Wang | A Real-Time Pedestrian Dead Reckoning System With FM-Aided Motion Mode Recognition[END_REF][START_REF] Tong | A Double-Step Unscented Kalman Filter and HMM-Based Zero-Velocity Update for Pedestrian Dead Reckoning Using MEMS Sensors[END_REF]. Global navigation satellite system (GNSS) provides users with satisfactory positioning accuracy in outdoor environments. However, it cannot work in GNSS challenging environments, e.g. canyons, tunnels, indoors, signal jamming or interruptions [START_REF] Fan | Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System[END_REF]. Wireless signals, e.g. Wi-Fi, Bluetooth, and ZigBee generated by local area networks have been commonly utilized as potentially feasible supplementaries through fingerprinting and trilateration for augmenting navigation solutions under those GNSS denied environments [START_REF] Tian | A Low-Cost INS and UWB Fusion Pedestrian Tracking System[END_REF][START_REF] Gu | Trajectory Estimation and Crowdsourced Radio Map Establishment from Foot-Mounted IMUs, Wi-Fi Fingerprints, and GPS Positions[END_REF][START_REF] Steinhoff | Dead Reckoning from the Pocket -An Experimental Study[END_REF][START_REF] Liang | An Automatic Site Survey Approach for Indoor Localization Using a Smartphone[END_REF]. However, the radio signals are prone to suffer from multi-path effects, e.g. signal attenuation, diffraction and refraction, thus significantly degrading the signal quality [START_REF] Tong | A Double-Step Unscented Kalman Filter and HMM-Based Zero-Velocity Update for Pedestrian Dead Reckoning Using MEMS Sensors[END_REF][START_REF] Nilsson | Cooperative Localization by Dual Foot-Mounted Inertial Sensors and Inter-Agent Ranging[END_REF]. Moreover, state-of-the-art ground based radio augmentation systems require a complex sensor-network infrastructure to be deployed in advance.The network system usually contains numerous beacons for good accuracy and coverage purpose such that it is neither a lowcost nor an instant-deployment solution for pedestrian navigation applications [START_REF] Piccinni | An Improved Technique based on Zadoff-Chu Sequences for Distance Measurements[END_REF][START_REF] Piccinni | A Novel Distance Measurement Technique for Indoor Positioning Systems based on Zadoff-Chu Sequences[END_REF]. Therefore, the beacon-free and self-contained navigation technology is much more preferable without any pre-installed infrastructure.

Related Work

In the past decades, with the development of micro-electro-mechanical (MEMS) technologies, MEMS inertial sensors have been extensively used for pedestrian navigation [START_REF] Bancroft | Estimating MEMS Gyroscope g-Sensitivity Errors in Foot Mounted Navigation[END_REF][START_REF] Fan | Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System[END_REF][START_REF] Brahms | Stride Length Determination during Overground Running Using a Single Foot-Mounted Inertial Measurement Unit[END_REF][START_REF] Valenti | Keeping a good attitude: A quaternion-based orientation filter for imus and margs[END_REF][START_REF] Meng | Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module[END_REF].These sensors consisting of a tri-axial gyroscope and a tri-axial accelerometer are usually attached to a certain part of one's body for motion monitoring or biomedical rehabilitation purposes [START_REF] Prateek | Modeling, Detecting, and Tracking Freezing of Gait in Parkinson Disease Using Inertial Sensors[END_REF][START_REF] Gómez-Espinosa | Foot-Mounted Inertial Measurement Units-Based Device for Ankle Rehabilitation[END_REF][START_REF] Trojaniello | Foot Clearance Estimation during Overground Walking and Vertical Obstacle Passing using Shank-Mounted MIMUs in Healthy and Pathological Subjects[END_REF][START_REF] Ma | Cyclepro: A Robust Framework for Domain-Agnostic Gait Cycle Detection[END_REF][START_REF] Turcot | New accelerometric method to discriminate between asymptomatic subjects and patients with medial knee osteoarthritis during 3-D gait[END_REF][START_REF] Rampp | Inertial Sensor Based Stride Parameter Calculation from Gait Sequences in Geriatric Patients[END_REF].

A great deal of endeavor has been paid to improving the performances of pedestrian navigation. Existing representative methods of pedestrian navigation with inertial sensors can be mainly categorized into two sorts. One is strapdown-inertial-mechanization based method. Due to the inherent drift of gyroscopes and accelerometers, the navigation error of strapdown inertial system rapidly grows, inevitably leading to an important error [START_REF] Foxlin | Pedestrian Tracking with Shoe-Mounted Inertial Sensors[END_REF]. To solve this problem, a considerable research on zero-velocity-update (ZUPT) method has been conducted by introducing zero velocity as a pseudo-measurement during one's stance phase of walking. It is proven to be sufficient to compensate for the inertial sensor drifts and reset the accumulation errors [START_REF] Jiménez | Indoor Pedestrian Navigation Using an INS/EKF Framework for Yaw Drift Reduction and a Foot-Mounted IMU[END_REF][START_REF] Zhang | Adaptive Zero Velocity Update Based on Velocity Classification for Pedestrian Tracking[END_REF][START_REF] Wahlstrom | Zero-Velocity Detection-A Bayesian Approach to Adaptive Thresholding[END_REF]. To maintain good heading accuracy and limit the vertical axis drift of gyroscope, magnetometers are increasingly common to be assembled with inertial sensors on massive low-cost devices [START_REF] Wang | A Real-Time Pedestrian Dead Reckoning System With FM-Aided Motion Mode Recognition[END_REF][START_REF] Nilsson | Foot-Mounted Inertial Navigation Made Easy[END_REF][START_REF] Fourati | Heterogeneous Data Fusion Algorithm for Pedestrian Navigation via Foot-Mounted Inertial Measurement Unit and Complementary Filter[END_REF]. It is referred to as MARG sensor that contains a triad of magnetic, angular rate and gravity components. Many researchers are concerned with magnetic disturbances and inertial drifts estimation for MARG sensor module applications [START_REF] Wu | Real-time Magnetic disturbance Determination for Micro Air Vehicles via Gravity and Global Navigation Satellite System Measurements[END_REF][START_REF] Jirawimut | A Method for Dead Reckoning Parameter Correction in Pedestrian Navigation System[END_REF][START_REF] Roetenberg | Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation[END_REF][START_REF] Wu | MARG Attitude Estimation Using Gradient-Descent Linear Kalman Filter[END_REF]. To optimally fuse data from this module, various linear and nonlinear Kalman filters (KFs) e.g. conventional KF, extended KF, unscented KF and particle KF are intensively developed to estimate the one's position and orientation [START_REF] Tian | A Low-Cost INS and UWB Fusion Pedestrian Tracking System[END_REF][START_REF] Nilsson | Foot-Mounted Inertial Navigation Made Easy[END_REF][START_REF] Xu | An Indoor Pedestrian Localization Algorithm Based on Multi-Sensor Information Fusion[END_REF][START_REF] Wu | A Pedestrian Dead-Reckoning System for Walking and Marking Time Mixed Movement Using an SHSs Scheme and a Foot-Mounted IMU[END_REF][START_REF] Xia | Indoor Localization on Smartphones Using Built-In Sensors and Map Constraints[END_REF]. The other sort of pedestrian navigation method is dead reckoning based method. It recursively integrates one's step length and orientation during each detected step. Large amount of previous studies have been performed focusing on step detection [START_REF] Guo | Indoor Positioning based on Foot-Mounted IMU[END_REF][START_REF] Jimenez | A Comparison of Pedestrian Dead-Reckoning Algorithms Using a Low-Cost MEMS IMU[END_REF] and step length model estimation [START_REF] Tian | A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones[END_REF][START_REF] Lan | Using Smart-Phones and Floor Plans for Indoor Location Tracking-Withdrawn[END_REF][START_REF] Ho | Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at Various Walking Speeds Using a Smartphone[END_REF][START_REF] Zhang | A Handheld Inertial Pedestrian Navigation System With Accurate Step Modes and Device Poses Recognition[END_REF]. To further enhance the navigation accuracy and reliability, [START_REF] Tian | A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones[END_REF] developed a multi-mode pedestrian navigation algorithm by taking multi-placement of smartphones into account. More recently, multi-mode behaviors including walking, running, swing and standing still are considered as well in recent work [START_REF] Zhou | Behaviors Classification based Distance Measuring System for Pedestrians via a Foot Mounted Inertial Sensor[END_REF]. However, the existing dead reckoning methods mentioned above need to calibrate a group of parameters with sufficient personal off-line datasets prior to use. This is a main impediment for its being off-the-shelf product. Moreover, though various types of misalignment angles caused by inconsistency of installed sensor frame and defined body frame have been previously discussed and fixed [START_REF] Shi | A Robust Pedestrian Dead Reckoning System Using Low-Cost Magnetic and Inertial Sensors[END_REF][START_REF] Wang | Error Analysis of ZUPT-Aided Pedestrian Inertial Navigation[END_REF][START_REF] Manos | Gravity-Based Methods for Heading Computation in Pedestrian Dead Reckoning[END_REF], to the best of our knowledge, there are quite few related works discussing the heading deviation angle compensation related to personal gait in foot-mounted pedestrian navigation yet. It is worthy of mentioning that such heading deviation angle varies from persons and their gaits. Energy management is another critical issue for the wearable devices. For pedestrian navigation applications, gyroscope measurements are proven to be more reliable than accelerometers in either orientation determination or step detection [START_REF] Zhang | Novel Drift Reduction Methods in Foot-Mounted PDR System[END_REF]. However, in practice, it is universally acknowledged that the gyroscopes consume much more energy compared with accelerometers or magnetometers [START_REF] Makni | Energy-Aware Adaptive Attitude Estimation under External Acceleration for Pedestrian Navigation[END_REF]. For instance, according to the official user manuals of STMicroelectronics, for its typical product of MEMS gyroscope LSGD20 and accelerometer LIS3DH, the former consumes about 6.1mA while the latter is merely about 11 µA [START_REF] Makni | Energy-Aware Adaptive Attitude Estimation under External Acceleration for Pedestrian Navigation[END_REF]. On the other hand, sampling rate is also of great importance for MEMS inertial measurement unit (IMU) performances.

The authors in [START_REF] Wang | Error Analysis of ZUPT-Aided Pedestrian Inertial Navigation[END_REF] present an interesting results that a 2.5 times increase of velocity uncertainty by reducing the sampling rate from 1000 Hz to 100 Hz during ZUPT aided pedestrian inertial navigation. This strongly motivates us to develop an efficient and applicable energy saving strategy of MARG sensor module for pedestrian navigation without evidently affecting its performance.

Main Contributions

Up to now, much attention has been paid to pedestrian navigation particularly concentrating on step detection, step length modeling and sensor bias compensation but rarely with regard to efficient energy management, online pedestrian parameter calibration and gait related heading compensation. In this paper, the pedestrian navigation problem is solved under the following contributions (1) A joint ZUPT/dead reckoning based pedestrian navigation method. It is free of off-line calibration for personal PDR parameters. The ZUPT-aided Pedestrian MARG Navigation is utilized to continuously compute one's pose information meanwhile it accumulates the moving distance during the initialization process for further estimating one's step length in the way of dead reckoning.

(2) A gait related heading deviation angle compensation. Due to different pedestrian gaits implicating the heading deviation angle between one's moving direction and heading, there are non-negligible impacts on PDR accuracy. To solve such problem, a linear KF will be proposed to recursively estimate the deviated heading for adapting one's different behavior modes.

(3) An adaptive and efficient energy management strategy. Three aspects of adaptive energy saving work are devised: (a) Energy-aware strategy for gyroscope measurements acquisition is adopted to ensure the lower energy consumption. (b) Modes switching mechanism of navigation computation is applied to the initialization and dead reckoning processes. (c) Adaptive de-sampling during pedestrian dead reckoning process.

The proposed method has the following advantages:

(1) It is based on the energy-aware strategy thus consumes less energy.

(2) It identifies step length parameters for different users without any off-line tests.

(3) Most importantly, it adaptively corrects one's moving direction according to personal gait. Inversely, it can be potentially used for monitoring the patients' walking rehabilitation training.

Arrangement of Contents

This paper is organized as follows. In Section II, the principle and structure of proposed method is given and explained. In Section III, a gait related heading deviation angle is analyzed and compensated through a linear KF. The energy management strategy is devised in Section IV. In Section V, real experimental tests and comparisons are carried out. Finally, concluding remarks in Section VI end this paper.

Principle and Structure of Proposed Pedestrian Navigation Method

The overall structure of proposed pedestrian navigation method is presented in Fig. 1. It is clearly shown that two major parts are involved in pedestrian navigation computation: on-line initialization and gait based dead reckoning.

During online initialization process, the ZUPT-aided pedestrian MARG navigation is performed to continuously compute one's pose information meanwhile it accumulates the moving distance to achieve on-line calibration for personal step length parameters. Besides, due to different pedestrian gaits implicating the heading deviation angle (see δγ in Fig. 2) between one's moving direction and foot's heading, there are non-negligible impacts on pedestrian dead reckoning accuracy. Actually, it is not compulsory for sensor placement. If the sensor module is placed as shown in Fig. 3, the misalignment angle between forward axes of shoe and sensor can be still roughly measured by protractor beforehand.

To recursively estimate the heading deviation, a linear KF is constructed. After completing initialization, the pedestrian position will be updated with dead reckoning based method. Such structure can greatly saves the computation resources than conventional ZUPT-aided inertial mechanization methods.

ZUPT-Aided Pedestrian MARG Navigation

ZUPT-aided MARG navigation not only continuously estimates ones' position, velocity and attitude (PVA) information [START_REF] Nilsson | Foot-Mounted Inertial Navigation Made Easy[END_REF][START_REF] Nilsson | Foot-mounted INS for Everybody -An Open-source Embedded Implementation[END_REF] , but also plays a role in initialization part for calibrating personal parameters (e.g. step length and heading deviation). At epoch k, one's PVA can be easily computed with inertial measurements through

         p n k = p n k-1 + v n k ∆t + (C n bk • f k + g) (∆t) 2 /2 v n k = v n k-1 + (C n bk • f k + g) ∆t C n bk = C n bk-1 (I 3 + [ω k ×] ∆t) (1) 
where subscripts k and k-1 represent epoch indexes; superscript n and subscript b represent navigation frame (denoted as n-frame, North-East-Down) and body The accelerometer and gyroscope models are established respectively as

y G = ω + b G + w G (2) 
y A = f + b A + w A (3) 
where subscripts G and A denote the gyroscope and accelerometer respectively; 

ḃA = w rA (5) 
where w rG and w rA are the zero mean Guassian white noises with variances Q wrG and Q wrA respectively. To limit the inertial accumulative errors, the ZUPT-aided MARG KF is constructed with the following 15-dimensional error state

x I = φ δp δv b G b A (6) 
where φ, δp and δv denote misalignment angles, position error and velocity error vectors, respectively; superscript I and II are introduced to distinguish different Kalman filters. Then the state model can be established as

x I k = Φ I k-1,k x I k-1 + Γ I k w I k (7)
where the state transition matrix Φ I k-1,k and the noise transition matrix Γ I k are given by

Φ I k-1,k =            I 3 0 3×3 0 3×3 -∆tC n b 0 3×3 0 3×3 I 3 ∆tI 3 0 3×3 0 3×3 ∆t [f n ×] 0 3×3 I 3 0 3×3 ∆tC n b 0 3×3 0 3×3 0 3×3 I 3 0 3×3 0 3×3 0 3×3 0 3×3 0 3×3 I 3            Γ I k =            -∆tC n b 0 3×3 0 3×3 0 3×3 0 3×3 0 3×3 0 3×3 0 3×3 0 3×3 ∆tC n b 0 3×3 0 3×3 0 3×3 0 3×3 ∆tI 3 0 3×3 0 3×3 0 3×3 0 3×3 ∆tI 3           
The process noise w I k can be written as

w I k = w G w A w rG w rA
which obeys zero mean Guassian distribution, with variance

Q I k = diag Q w G,k , Q w A,k , Q w rG,k , Q w rA,k
where diag represents diagonal matrix. The predicted state and its covariance matrix are computed by,

x I k|k-1 = Φ I k-1,k x I k-1|k-1 (8) 
P I k|k-1 = Φ I k-1,k P I k-1|k-1 Φ I k-1,k + Γ I Q I k Γ I (9) 
Considering ZUPT and magnetic sensor output, accordingly the observation model is formulated as

z I k = H I k x I k + ε I k ( 10 
)
where the observation vector z k and the corresponding design matrix H k are given by

z I k = ψ M,k -ψ G,k -v k H I k =   D 0 1×3 0 1×3 0 1×3 0 1×3 0 3×3 0 3×3 I 3 0 3×3 0 3×3  
where ψ G,k denotes heading angle derived from gyroscope while ψ M,k is computed from magnetometer outputs; D is the connection matrix between misalignment angles and Euler error angles

D = [ sin ψ tan θ -cos ψ tan θ 1 ] (see Appendix A). The observation model noise ε I k ∼ N 0, R I k is ε I k = ε ψ,k ε v,k in which ε ψ,k ∼ N (0, R ψ,k ) denotes the heading correction model noise; ε v,k ∼ N (0, R v,k )
denotes the velocity correction model noise, which is highly determined by the static threshold setting during the zero velocity detection. The observation variance can be written as

R k = diag{R ψ,k , R v,k }
Then the KF solution and its covariance are estimated by

x I k|k = x I k|k-1 + K I k z I k -H I k x I k|k-1 (11) 
P I k|k = I 15 -K I k H I k P I k|k-1 (12) 
with the gain matrix K

K I k = P I k|k-1 H I k H I k P I k|k-1 H I k + R I k -1 (13) 
Finally by correcting the PVA with estimated δp, δv, φ and resetting error state, the ZUPT-aided MARG navigation is completed. 

Gait Based Dead Reckoning

The principle of gait based dead reckoning is generally depicted as:

  p x,k p y,k   =   p x,k-1 p y,k-1   + d k   sin γ k cos γ k   (14) 
where [p x,k , p y,k ] denotes the position after the k-th step ; d k and γ k represents the k-th step length and moving orientation respectively. For step length estimation, there are numerous models with various parameters. The most popular one is a bi-parametric linear model [START_REF] Sun | Activity Classification and Dead Reckoning for Pedestrian Navigation with Wearable Sensors[END_REF], in which the step length is assumed to be related to the step frequency. Apart from the step frequency, other parameters are introduced into the refined step length model as well, for instance, acceleration variance [START_REF] Zhang | Adaptive Zero Velocity Update Based on Velocity Classification for Pedestrian Tracking[END_REF], acceleration boundary [START_REF] Ho | Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at Various Walking Speeds Using a Smartphone[END_REF], height [START_REF] Tian | A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones[END_REF] and leg length [START_REF] Lan | Using Smart-Phones and Floor Plans for Indoor Location Tracking-Withdrawn[END_REF]. Finally, the following step length model [START_REF] Zhou | Behaviors Classification based Distance Measuring System for Pedestrians via a Foot Mounted Inertial Sensor[END_REF] is chosen

     d W,k = 2 j=0 K j × f -j/2 s k + K 3 × max ãk (walking) d R,k = K 4 × 3 ãk (running) (15) 
where subscripts 'W' and 'R' represent the walking and running behaviors, respectively. To remove the influences of high-frequency noise from acceleration, the Hamming-window based, linear-phase finite impulse response (FIR) filter is introduced to generate the filtered acceleration ãk . ãk denotes the mean value of ãk ; f s k denotes step frequency during the k-th step period; K j for j = 0, 1,

are coefficients that need to be calibrated beforehand. Note that the calibration can be done online during the initialization process with the given distance estimated by ZUPT-KF.

The heading angle during one motion period can be obtained based on various MARG sensors data fusion strategies [START_REF] Valenti | Keeping a good attitude: A quaternion-based orientation filter for imus and margs[END_REF][START_REF] Tian | A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones[END_REF][START_REF] Stirling | Evaluation of a New Method of Heading Estimation for Pedestrian Dead Reckoning Using Shoe Mounted Sensors[END_REF]. However, the performances in real applications will be degraded due to the existence of gait related heading deviation which differs from individuals. For this reason, the heading should to be cautiously aligned to the moving direction before using ( 14) by

γ i = ψ i + δγ i (16) 
where δγ i is the heading deviation angle between moving direction and heading; γ i and ψ i represent one's actual moving direction and heading angle, respectively. The compensation method for δγ i will be detailed in Section III.

Working Mode Switching

It needs to be clarified that (i) initialization and dead reckoning are two basic working modes during pedestrian navigation.

(ii) when the changing of motion behavior is detected, the initialization mode will be triggered for performing the ZUPT-aided MARG KF and calibrating the personal parameters.

(iii) while once the initialization is successfully completed, the dead reckoning 165 mode will be carried out with the calibrated parameters in (ii).

The working mode switching diagram is exhibited in Fig. 3. Therefore, the Based on that, the real-time state machine for multi-mode behaviors recognition is designed and developed to make decision on working mode. More details can be found in reference [START_REF] Zhou | Behaviors Classification based Distance Measuring System for Pedestrians via a Foot Mounted Inertial Sensor[END_REF].

Gait Related Heading Deviation Angle Compensation

Recalling the heading deviation in [START_REF] Meng | Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module[END_REF], it has a strong relation with personal gait. Inversely, the deviation also reflects one's gait and potentially can be applied to walking rehabilitation training. As a matter of fact, personal gait has a very good repeatability thus such deviation can be estimated within aforementioned initialization period. Assuming the following state model through KF of δ γ as

δ γ i = δ γ i-1 + w 1,i (17) 
Letting x II i = δ γ i δγ i , the state model can be reformulated as

x II i = Φ II i-1,i x II i-1 + w II i ( 18 
)
where the state transition matrix Φ II i-1,i is

Φ II i-1,i =   1 0 ∆t 1  
The two dimensional process noise can be written as

w II i = w 1,i w 2,i
where w 1,i ∼ N (0, Q w1 ) describes the reliability of model [START_REF] Prateek | Modeling, Detecting, and Tracking Freezing of Gait in Parkinson Disease Using Inertial Sensors[END_REF];

w 2,i ∼ N (0, Q w2 )
is caused by discretization of first order deviation δ γ = ∂ (δγ)/∂t. The variance of process noise can be written as

Q II = diag {Q w1 , Q w2 }
Accordingly, the observation model is established as

z II i = H II i x II i + ε II i ( 19 
)
where the design matrix is H II i = [ 0 1 ] and the observation vector is constructed as z II i = γ i -ψ i . ψ i denotes the heading angle obtained from ZUPT-KF, which is taken at the instant of hitting the ground. γ i can be approximately calculated with the position increment or the velocity vector by

γ p,i = arctan ∆p x,i ∆p y,i (20) 
γ v,i = arctan v max x,i v max y,i (21) 
where [ ∆p x,i ∆p y,i ] are the two-dimensional position increment vector dur-175 ing the i-th step, [ v max x,i v max y,i ] are the maximal value of velocity during the i-th step. ε II i is the zero mean Guassian noise, and its variance R II can be determined after obtaining the variances of heading angle and the position (or velocity). Then the deviation angle can be recursively estimated by implementing the proposed KF. 

The Adaptive Energy Management Strategy

Three aspects of adaptive energy management (mentioned in Fig. 3) are devised including energy-aware for gyroscope, mode switching mechanism and adaptive system de-sampling.

Energy-Aware Strategy for Gyroscopes Measurements Acquisition

As is pointed out in [START_REF] Makni | Energy-Aware Adaptive Attitude Estimation under External Acceleration for Pedestrian Navigation[END_REF], gyroscopes consume much more energy compared with that of accelerometers or magnetometers. To ensure the lower energy consumption, an energy-aware strategy for gyroscope measurements acquisition is given in Table 1. Behavior recognition method is utilized to identify one's motion behavior and non-static behavior will wake up the gyroscope from its sleeping status.

For these non-static behaviors, the gait based dead reckoning (Gait-DR) mode does not employ any gyroscope outputs while ZUPT-KF utilizes gyroscope measurements. Furthermore, one thing should be noticed that motion behavior changing may lead to corruptions of one's step length model. To avoid such problem, without significantly increasing the computations, a periodical step length model examination procedure is introduced with a long time-interval.

Mode Switching Mechanism of Navigation Computation

Due to different computation complexity for Gait-DR and ZUPT-KF, modes switching mechanism of navigation computation mode is designed to minimize energy consumption (see Table 2). Implement the following verification condition:

IF LZUPT-KF < L0
⇒ keep computation mode 'ZUPT-KF'.

ELSE ⇒ switch the computation mode 'ZUPT-KF' to 'Gait-DR'.

Gait-DR mode:

Implement the following verification condition: At the initialization stage, 'ZUPT-KF' calibrates the step length model and estimates the heading deviation angle till the accumulated moving distance L ZUPT-KF derived from ZUPT-KF does not exceed the predetermined threshold L 0 . In another word, if L ZUPT-KF exceeds L 0 , then the initialization is complete and the computation mode 'ZUPT-KF' will be switched to 'Gait-DR'.

IF
On the other hand, there are two conditions to trigger the switching 'Gait-DR' to 'ZUPT-KF': i) a new motion behavior is detected; ii) for a certain behavior, the motion frequency changes may lead to the original calibrated step length model inaccurate. For example, for running behavior, jogging and running fast are different, then one set of step length model parameters may not be incompatible with these two scenarios. Therefore, even one's motion behavior is kept, we still need to carefully monitor the possible corruption of step length model.

The details of step length model examination is presented in Table 3. 

σ d = n i=1 (dKF,i-dSL,i) 2 n-1
dKF,i denotes the distance derived from ZUPT-KF at i-th step;

dSL,i denotes the distance with calibrated step length model of i-th step

Step length model examination of 'Gait-DR':

do the examination on dKF and dSL with a regular time interval T0:

by the following testing condition:

IF |dKF -dSL| ≤ 3σd
⇒ keep the mode 'Gait-DR'.

ELSE ⇒ switch the mode 'Gait-DR' to 'Initialization'

Adaptive De-sampling for Gait-DR Mode

To further reduce system power consumption, an adaptive de-sampling strategy is proposed when one is with 'Gait-PDR' mode. As is widely acknowledged that, the strapdown-inertial-mechanization based method, e.g. ZUPT-KF requires a high sampling rate of inertial measurements. This is because it essentially calculates the real-time PVA information by continuous integral computation, where a lower sampling rate cannot adequately capture one's motion thus inevitably degrading the PVA accuracy. In contrast, the dead reckoning based methods calculate the position only through heading and step length of each step which only requires the sampling rate satisfying Nyquist theorem and obviously does not need a high sampling rate. Inspired by this point of view, system de-sampling is feasible to perform the pedestrian navigation during the Gait-DR working period.

Experimental Results and Analyses

In this section, pedestrian experiments are carried out to verify the proposed method and fully evaluate its performances. The MARG module HI229, includes accelerometers, gyroscopes and magnetometers [50]. The hardware device is mounted on one of user's foot. The module is communicated with a memory card through TTL-USB module (Fig. 5). The computation and evaluation of proposed method is post-processed under Matlab r2015a on a Dell Inspiron14 laptop with a CPU of 4-core i5-4210U. during each detected step, such as [START_REF] Jimenez | A Comparison of Pedestrian Dead-Reckoning Algorithms Using a Low-Cost MEMS IMU[END_REF][START_REF] Tian | A Multi-Mode Dead Reckoning System for Pedestrian Tracking Using Smartphones[END_REF][START_REF] Lan | Using Smart-Phones and Floor Plans for Indoor Location Tracking-Withdrawn[END_REF][START_REF] Ho | Step-Detection and Adaptive Step-Length Estimation for Pedestrian Dead-Reckoning at Various Walking Speeds Using a Smartphone[END_REF] (3) The proposed online calibrated and heading deviation corrected Gait-PDR method. To verify the accuracy of proposed method, the user is arranged to walk along the corridor of report hall twice with an arbitrary pace. For the first circular moving, ZUPT-KF is used for online calibrating step length parameter and estimating heading deviation angle which is estimated according to Section III. Then during the second circular trajactory, the working mode is switched to Gait-PDR. Fig. 7 clearly shows the heading deviation between moving direction and heading angle. γ p and γ v in Fig. 7 are derived from Eqs. ( 16) and ( 17)

respectively. γ p shows a better result. As a consequence, ( 16) is chosen in KF II to estimate heading deviation angle and the result is given in Fig. 8.

Besides, four testers' heading deviation angle estimation results are computed and presented in Table 4. Seen from this table, the gait related deviation angles are indeed varied with different persons. The largest deviation angle among testers even reaches 30 degrees. Consequently, its trajectory estimation error is much larger than others with smaller deviation angles. For online calibration of step length model, we can point out that: to gurantee an reliable calibration process, the step frequency is used as a key indicator to discriminate different walking patterns (usually two or three patterns, i.e. walking slowly and walking fast, are adequate for describing one's walking modes). This is clearly verified through previous experiments (see Fig. 9). The threshold of step frequency variation can be empirically set as ±0.2 according to our previous tests. Similarly, calibration in running mode also can be done in the way of calibration implemented in walking mode.

Next, we start to evaluate and compare the presented schemes, i.e. ZUPT- KF, PDR and Gait-PDR with the data of second cycle trajectory (shown in Fig. 10). The reference trajectory is obtained with a distance-measuring tape.

The default sampling rate is set as 200Hz. With this high sampling rate, both ZUPT-KF and Gait-PDR methods perform well, while PDR method is inferior to ZUPT-KF and Gait-PDR suffering from the heading deviation angle. Comparisons of de-sampling cases are shown in Fig. 11. Result shows that Gait-PDR method maintains a good performance even at a lower sampling rate. In contrast, ZUPT-KF method gradually works worse even diverges as the sampling rate decreases as a result of sparse inertial integral computations. We also More detailed errors evaluation in walking and running experiments are listed in Table 5. It needs to be clarified that the average time consumption criterion of one step is computed based on the number of total steps and their time consumptions. The relative error of distance is defined as

σ d = dtol -d ref d ref × 100% (22) 
where d ref is the reference distance; dtol is the total distance derived from ZUPT-KF or Gait-PDR methods. The position error of starting point is obtained according to the closure trajectory. Besides, the position accuracy and maximum heading deviation are also given for comparison purpose. Since the 'groundtruth' position of each step cannot be acquired, the position uncertainty is evaluated by feature points consisting of eight corner points #Pk (k = 1, 2, . . . , 8)

and the end point #P9. The positions of these points (as shown in Fig. 10) are utilized as references to compute the root mean square error (RMSE) of horizontal position through where N = 9 denotes the number of referenced (subscript 'ref') feature points.

RMSE (p) = 1 N N k=1 p ref,x,k -px,k 2 + p ref,y,k -py,k 2 (23) 
These results statistics are fully consistent with the advantages and disadvantages of listed methods. Furthermore, for the aspect of energy saving, Table 5 respectively). Table 6 presents the gait deviation influences imposing on position accuracies of four testers under a given testing scenario. Once again, the results show that the deviation angle has non-negligible impacts on pedestrian dead reckoning and our deviation angle compensation method is effective in improving the position accuracy. The total distance error is given in Table 7.

It intuitively shows the influence of de-sampling on two methods. Thus conventional ZUPT-KF is not suitable for the platform with low sampling rate.

One the contrary, Gait-PDR is very computationally efficient compared with ZUPT-KF. Meanwhile it still maintains a good accuracy even in the scenarios of low sampling rate. It is therefore very promising for its calibration convenience (online), computation efficiency and high accuracy in future wearable consumer electronics devices.

To verify the mode switching mechanism and gyroscopes energy-ware strategy, the users are allowed to walk or run in their own paces to collect a new dataset. Behaviors identification and working mode switching results are shown in Fig. 15. It shows gyroscope is only employed in initialization process and also used to examine step length model in Gait-PDR mode. It is switched off for energy saving purpose in the rest time.

There are three key factors related to power consumption, i.e. communication, computational complexity and execution time. Usually power consumption of system can hardly be accurately quantized with the first factor. It is universally known that communication cost is highly related to sampling rate of hardware system. Therefore, qualitatively speaking, our method with a lower sampling rate inevitably consumes much less power than ZUPT-KF method.

The second factor is also a common indicator to reflect the system power consumption. To clearly show the computational complexity difference between two methods, an example is given as follows:

Given matrix A with dimension of m × n and B with dimension of n × p, the computation complexity of A × B is defined as

T (A m×n × B n×p ) = O(m × n × p) (24) 
Table 8 presents complexity comparison between ZUPT-KF and PDR during one step walking period where zero velocity lasts about 0.3 seconds. Actually, after successfully initializing, our proposed method reduces to PDR method.

It is obviously superior to ZUPT-KF method in aspect of computation complexity. Next we focus on the computation of initialization which contains two main parts: step length model calibration and heading deviation correction.

The whole computation complexity for one time of initialization in our method consumes O(88n), where n denotes the counting number of steps during the Intuitively, the last factor has the most straightforward connection with power consumption. The average time consumption of one step is presented in Table 9. Owing to the mode switching mechanism and de-sampling strategy, the consumed time of proposed method in one step is reduced by 80.75%. Therefore, considering overall facts above, we cautiously come to a conclusion that our proposed method outperforms the ZUPT-KF method for power consumption.

To further verify the proposed online calibrated step length model, the representative step length models with offline calibration are compared with our step length model with online calibrated parameters [START_REF] Levi | Dead Reckoning Navigational System Using Accelerometer to Measure Foot Impacts[END_REF][START_REF] Ladetto | On Foot Navigation: Continuous Step Calibration Using both Complementary Recursive Prediction and Adaptive Kalman Filtering[END_REF][START_REF] Woodman | Pedestrian Localisation for Indoor Environments[END_REF][START_REF] Krach | Cascaded Estimation Architecture for Integration of Foot-Mounted Inertial Sensors[END_REF]. The estimated step length results are presented in Fig. 16. It is obvious that the proposed method is much more accurate and reliable than others especially when undergoing transitions of different behaviors. Proposed method 20

Conclusion

In this paper, an online calibrated, energy-aware and ambulatory gait corrected pedestrian dead reckoning (Gait-PDR) method is proposed for pedestrian navigation via the foot-mounted magnetic, angular rate and gravity (MARG) for low sampling rate scenarios. Overall, it is accurate, energy-saving and easyto-implement thus is very promising for pedestrian navigation applications. In addition, the personal deviation angle obtained during the pedestrian navigation process would be an essential indicator for evaluating the efficiency of patients' walking rehabilitation training. In the future, more complex pedestrian behavior modes e.g. going upstairs, downstairs and climbing will be extended in theory.

Appendix A

Due to the existence of sensor error, there is a small difference between 'true' attitude matrix C n b and the estimated one C n b (n and n represent the 'true' navigation frame and calculated navigation frame). According to the chain rule of coordinate frame,

C n b = C n n C n b ( 25 
)
where C n n is defined as misalignment attitude matrix and it is very close to identity matrix. Therefore it can be written as: 

C n n = I 3 + [φ×] =      1 -φ z φ y φ z 1 -φ x -φ y φ x 1      (26 
s ψ -c ψ 0           φ x φ y φ z      (29) 
Thereby the heading errors is written as

δψ = Dφ (30) 
where D = sinψtanθ -cosψtanθ 1 is only related to heading and pitch angles.
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 123 Figure 1: The diagram of proposed pedestrian navigation method
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  denotes the output of sensor; w G and w A are the zero mean Guassian white noises with variances Q wG and Q wA respectively; b G and b A represent the gyroscope and accelerometer biases respectively. The models of b G and b A are formulated as ḃG = w rG (4)
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 4 Figure 4: Diagram of working mode switching
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  new motion behavior is detected ⇒ switch the computation mode to 'ZUPT-KF'. ELSE IF the step length model cannot adapt to the current motion ⇒ switch the computation mode 'Gait-DR' to 'ZUPT-KF' ELSE ⇒ keep 'Gait-DR' computation mode.
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 5 Figure 5: HI229 and TTL-USB module
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 6 Figure 6: 2D trajectory of pedestrian experiment
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 789 Figure 7: Comparison of moving direction and heading (walking)
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 10 Figure 10: Trajectory comparisons of different methods (walking with the sampling rate of 200Hz)
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 11 Figure 11: Results of de-sampling cases (walking)
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 12 Figure 12: Gait related heading deviation angle estimation results (running)
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 13 Figure 13: Trajectory comparisons of different methods (running with the sampling rate of 200Hz)

Figure 14 :

 14 Figure 14: Results of de-sampling cases (running)
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 15 Figure 15: Illustrations of behaviors identification, working mode switching and gyroscope mode switching.
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 16 Figure 16: Step length estimation results in the scenario of behaviors transition
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  ) in which φ is referred to as misalignment angle. Herein, the rotation matrix C b n can be expressed a set of Euler anglesβ c ψ -s β s θ s ψ s ψ c β + c ψ s β s θ -s β c θ -c θ s ψ c θ c ψ s θ s β c ψ + c β s θ s ψ s ψ s β -c β s θ c ψ c θ cβ angles are with the rotation order of '3-1-2', i.e. yaw-pitch-roll ( ψ -θ -β ); c and s denote cosine and sine functions respectively. Denoting the calculated Euler angles as ψ θ β , and then the Euler angle errors are ψ s θ -c ψ s θ c θ -c ψ c θ -s ψ c θ 0

Table 1 :

 1 Energy-aware strategy for gyroscope measurements acquisition

	Behavior recognition:

IF

recognition result is non-static (e.g. "walking" or "running")

⇒

turns to Working mode identification ELSE ⇒ gyroscope 'off' Working mode identification: IF working mode is "ZUPT-KF" ⇒ gyroscope 'on' ELSE ⇒ turns to Step length model examination Step length model examination: IF ∆TG ≥ T0 (∆TG: the time interval from time instant of last step length model examination; T0: the time duration threshold of step length model examination) ⇒ gyroscope 'on' till a whole step is completed ELSE ⇒ gyroscope 'off'

Table 2 :

 2 Mode switching mechanism of navigation computation

ZUPT-KF mode:

Table 3 :

 3 Details of step length model examination

	Priori precision statistics of step length model in 'Initialization' part:

Table 4 :

 4 Gait related deviation angles of four testers

			Age	Height Weight Deviation angle (deg)
	Testers	Gender					
			(years)	(cm)	(kg)	Range	Average
	Tester A	Male	24	175	65	27.5 ∼ 30.3	29.2
	Tester B	Male	25	180	72	5.1∼7.1	5.8
	Tester C Female	24	158	44	15.2∼17.7	15.6
	Tester D Female	23	160	51	7.3∼9.5	8.7

Table 5 :

 5 Statistics results for pedestrian navigation accuracy and time consumption

	Working	Sampling Average time consumption	Distance	Misclosure RMSE (p) Max orientation
	Behavior						
	mode	(Hz)	for one step (×10 -3 s)	relative error	(m)	(m)	error (deg)
		200	100	0.57%	0.10	0.46	0.9
		100	48	1.10%	0.45	0.59	1.2
	ZUPT-KF	75	36	0.80%	0.51	0.89	3.0
		70	33	0.57%	5.31	3.12	3.1
		50	24	5.30%	11.60	8.95	7.1
	Walking						
		200	23	0.57%	1.13	1.50	1.1
		100	12	0.59%	1.51	1.28	1.3
	Gait-PDR	75	6	0.59%	1.11	1.42	1.6
		50	4	0.57%	1.56	1.21	1.6
		20	2	0.58%	1.61	1.39	2.0
		200	78	1.46%	0.51	0.65	1.4
		100	42	3.06%	4.37	2.67	9.9
	ZUPT-KF						
		80	35	3.18%	10.35	5.65	10.1
	Running	200	16	2.01%	1.16	1.73	1.4
	Gait-PDR	100	7	2.64%	2.21	1.78	1.6
		80	6	3.46%	2.00	1.87	1.6

initialization. Supposing n as 40, the computation complexity of one time of initialization is O(3520). It should be pointed out that the times of initialization is limited and usually does not exceed 3 ∼ 5 considering one's typical motion be-340 havior modes. Therefore, likewise, our proposed method has a power-consuming advantage on computation complexity.

Table 6 :

 6 Gait deviation influences imposing on position accuracies of four testers with sampling

	rate of 100Hz (unit: m)		
	Testers	RMSE(p): PDR RMSE(p): Gait-PDR
	Tester A	20.34	1.34
	Tester B	4.10	1.28
	Tester C	10.26	1.15
	Tester D	7.28	1.30

Table 7 :

 7 Total distance error (walking)

	Working mode Sampling (Hz) Total distance error (m)
	200	1.00
	ZUPT-KF	
	50	9.29
	200	1.00
	Gait-PDR	
	50	1.01

Table 8 :

 8 Complexity comparison between ZUPT-KF and PDR during walking period of 1.2

	seconds			
	Method	Sampling rate (Hz) Computation cycles	Complexity
	ZUPT-KF	200	60	O(1.0377 × 10 6 )
	PDR	50	1	O(6)

Table 9 :

 9 Average time consumption for one step

	Method	Time Consumption (×10 -3 s)
	ZUPT-KF (200Hz)	104
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