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Abstract

In this paper we address the dynamic leaderless consensus control problem for generic linear systems (stable, unstable,
marginally stable, . . . ) interconnected over directed networks and under the influence of biased measurements. Essentially, the
control problem consists in redesigning a standard distributed consensus controller which, for each system, relies on own state
biased measurements and respective erroneous data received from a set of neighbors. The difficulty in such a scheme resides
in the fact that the measurement bias is directly amplified by the control gain so it cannot be handled as an additive external
disturbance. Our control design relies, on one hand, on the solution of a Riccati equation and, on the other, on the design of
an estimator reminiscent of a model-reference-adaptive control design. The estimator successfully computes a bias estimate
and completely compensates for its effect if the bias is constant—indeed, in this case, we establish exponential stability of the
consensus manifold and we show that the controller provides robustness with respect to time-varying biases.
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1 Introduction

Dynamic consensus, as defined in [1], pertains to the
state of synchronization of networked dynamical sys-
tems which, as a result of their interconnections, achieve
asymptotically a common dynamic behavior. It general-
izes the concept of consensus in which case all the sys-
tems reach a common stable equilibrium point 3 .

We address this problem under the assumption that
measurements are faulty. Measurement bias, which is the
one of interest here, is a persistent offset in the reading,
that may affect all the samples gathered in a particu-
lar deployment. Constant, or very slowly-varying, bias
appears in many applications, notably in aerospace [4]
and in robotic systems—see, e.g., the discussion in [5,
Remark 3]. Time-varying bias may be related, to some
extent, to false-data injection attacks, in which case the
measurements are affected by an additive bounded off-
set that is deliberately injected into the network, by a
hostile agent—see e.g., [6], [7], [8].

Depending on the scenario, different techniques may
apply to cope with constant [9] or time-varying bias [6].
For instance, adaptive control is used in [6,7], an LMI-
based approach is proposed in [10], and in [11] a dis-
tributed piece-wise constant impulsive reference is used.

1 This work was supported by the CEFIPRA under the
grant number 6001-A.
2 E. Panteley and A. Loŕıa’s work is also supported by the
ANR (project HANDY, contract number ANR-18-CE40-
0010).
3 The terminology “dynamic (average) consensus” is used,
e.g., in [2,3] to refer to a problem of consensus-tracking con-
trol, that is, in which the systems are required to follow a
pre-defined reference.

Articles that address consensus under false-data injec-
tion attacks include, e.g., [6], [7], [8], [12]. In the first
two the leader-follower consensus problem is addressed,
but under the assumption that the data received from
the leader is not under attack (unbiased). In [8] a leader-
follower scenario is also studied, but in which multiple
leaders are permitted and they may be compromised. In
[12] more generic leaderless directed-graph networks are
considered, but under the assumption that the biases are
homogeneous and multiplicative rather than additive.

A significant difficulty to deal with additive mea-
surement bias is that, in general, it cannot be dealt with
using ad hoc robust control techniques tailored to cope
with additive disturbances and consisting, essentially, in
increasing the gain—the bias, if anything, is amplified
by the control gain. In general, bias cannot be dealt with
as a common uncertainty in lumped parameters either.
Yet, some works successfully borrow inspiration from
the classical model-reference adaptive control (MRAC)
method—see e.g., [13] to successfully design distributed
model-reference adaptive controllers for cooperative
tracking [14]–[16], as well as for cooperative regula-
tion [17], and for different communication topologies—
whether it is undirected [14]–[16] or directed [17]. In
[14]–[16] the application of MRAC-inspired techniques
for leader-follower consensus relies on assimilating the
leader node as the singular reference model. In [17], a
framework for adaptive leaderless consensus of linear
(homogeneous) agents with uncertain dynamics is pro-
posed. The method consists in designing a reference
model for each system and having the latter track the
output generated by the corresponding linear reference
model with relative state measurement as input.
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In all of the references cited above MRAC-based tech-
niques are used to deal with uncertain systems, but none
of them considers biased relative state measurements. In
[18] an MRAC-based technique is proposed to accom-
modate constant sensor bias, but not in a multi-agent
context.

In this paper, which is the outgrowth of [19], we ad-
dress the problem of dynamic consensus for linear sys-
tems over generic directed graphs and under the assump-
tion that measurement bias is different and bounded for
each agent. In [19], as in [9], only constant bias is consid-
ered; in the former only asymptotic convergence to the
synchronization manifold is established and in the lat-
ter uniform ultimate boundedness. Relative to [6,7,8], as
well as [14]–[17], we provide an MRAC-based control law
for leader-less consensus among agents, which can over-
ride the effect of biased measurements. In comparison
with [6] and [7], we assume that any agent’s measure-
ment may be corrupted; relative to [7] and [8] we con-
sider generic directed-graph networks, which include the
leader-follower scenario. As in these references we ensure
uniform ultimate boundedness under time-varying bias,
but in contrast to them, as well as to [19] and [9], we
establish global exponential stability of the synchroniza-
tion manifold, under measurements corrupted by con-
stant bias. This includes bias estimation.

The remainder of the paper is organized as follows.
In the upcoming section we provide a detailed problem
formulation, in Section 3 we present our main results,
in Section 4 we provide some simulation results to il-
lustrate our theoretical findings, and we conclude with
some closing remarks in Section 5.

Notation. We use | · | to denote the Euclidean norm of
vectors and the induced norm of matrices. For a square

matrix Q we use σQm and σQM to denote, respectively,
lower and upper bounds on |Q|.

2 Model and problem formulation

We considerN ∈ N identical, linear, autonomous sys-
tems modelled by the equation

ẋi = Axi +Bui, ∀i = {1, 2, · · · , N}, (1)

where xi ∈ Rn, ui ∈ Rp is the control input andA,B are
constant matrices of compatible dimensions satisfying
the following:

(A1) the pair (A,B) is stabilizable,
(A2) the system matrix A has full rank.

For these systems, we address the dynamic consensus
control problem. This pertains to making all systems
achieve a common dynamic behavior, hence, such that

lim
t→∞
|xp(t)− xq(t)| = 0, ∀ p 6= q ∈ {1, 2, · · · , N},

(2)
for all initial conditions, via a distributed consensus con-
troller of the form

ui = K
∑
j∈Ni

aij(xi − xj) + νi, (3)

where x̄i := xi + δi is the state measurement of the ith

agent, affected by a measurement bias δi. In that regard,
it is assumed that

(A3) the ith agent has access to its own state and that of
its neighbors, but these measurements are biased
by an unknown offset δi, that is, x̄i := xi + δi;

(A4) the bias δi is either constant or time-varying with
bounded derivative.

Then, the term νi in (3) denotes an additional, re-
design, control input to be determined, notably to com-
pensate for the effect of the measurement bias.

The matrixK is a coupling gain to be defined and the
coefficients aij ≥ 0 represent the existence (if aij > 0) or
the absence (if aij = 0) of a one-way interaction from the
jth node to the ith node. As it is customary, we consider
that there are no self-loops, so aii = 0. More precisely,
we assume that

(A5) the network’s topology is directed and contains
a directed spanning tree. Hence, its associated
Laplacian is defined by L = [lij ] ∈ RN×N , where

lii =
∑
j∈Ni

aij , lij = −aij , (4)

and, in general, aij 6= aji.

Under Assumption (A5), our results hold for varied
network topologies, including those admiting a directed
spanning-tree graph [6,7], connected undirected graphs
[5,20], as well as strongly-connected directed graphs. In
the latter two cases all the elements of vl are strictly pos-
itive, so x>[PL+L>P ]x, where P := diag[vli], qualifies
as a Lyapunov function—cf. [21]. Topologies satisfying
Assumption (A5) cover, but are not bound to, those of
graphs for which all the elements of vl are strictly posi-
tive. Therefore, none of the approaches cited above gen-
erally applies.

Furthermore, under Assumption (A5) the following
two statements hold; they are instrumental to construct
a Lyapunov function to analyze the stability of the con-
sensus manifold {xi = xj}.
Lemma 1 [22,23] If a directed network has a directed
spanning tree, then the Laplacian matrix L = [lij ] ∈
RN×N has a unique zero eigenvalue σ1 and N − 1 eigen-
values σk have strictly positive real part. That is,

σ1(L) = 0, <{σk(L)} > 0, k = {2, · · · , N}.
On the other hand, the right eigenvector of the zero eigen-
value is given by 1N = [1 1 · · · 1]> and the left eigenvec-

tor vl satisfies
∑N
k=1 vlk = 1 and v>l L = 0>N . �

Lemma 2 [24] Let us consider a directed graph G of or-
der N containing a spanning tree and its Laplacian ma-
trix is L ∈ RN×N . Then, for any positive definite sym-
metric matrix QL ∈ RN×N and α ∈ R+, there exists
another positive definite symmetric matrix PL ∈ RN×N
such that

PLL+ L>PL = QL − α[PL1Nv
>
l + vl1

>
NPL]. (5)

�

3 Main results

3.1 Control design

The consensus controller that we propose relies on a
distributed estimator whose design, along similar lines
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as those in [14]–[17], borrows inspiration from model-
reference adaptive control. The control strategy consists
in coupling each agent’s dynamics to that of an estima-
tor, reminiscent of a reference model and defined as

˙̂xi =Ax̂i + εBF
∑
j∈Ni

aij(xi − xj)− εBF
∑
j∈Ni

aij(δ̂i − δ̂j),

(6)

where the coupling weight ε > 0, the control gain F ∈
Rp×n, and the bias estimate of the ith agent, δ̂i, is yet
to be defined. Note that the estimator also depends on

the bias estimates of its neighbours, δ̂j .

Then, to achieve the consensus control objective (2)
the first control goal is set to make the estimators (6)
achieve dynamic consensus, that is,

lim
t→∞
|x̂i(t)− x̂j(t)| = 0, ∀ i 6= j ∈ {1, 2, · · · , N}.

(7)
The second obejctive is to steer each agent’s state tra-
jectories to its corresponding estimator’s, that is,

lim
t→∞
|xi(t)− x̂i(t)| = 0 ∀ i ∈ {1, 2, · · · , N}. (8)

Note that (7) and (8) imply (2) since

{x̂i = x̂j} ∩ {xi = x̂i} ∀ i, j ∈ {1, 2, · · · , N}
implies that xi = xj for all i ∈ {1, 2, · · · , N}. However,
since the states xi are not measurable, we pose as ob-
jective to steer the measured state x̄i to the correspond-
ing biased state of the reference model in (6), that is, to
make ẽi → 0, where

ẽi = xi − (x̂i + δ̂i). (9)

It is remarked that this task, on one hand, appears feasi-
ble since ẽi is available and, on the other hand, is useful
since

ẽi = xi − x̂i + δ̃i, (10)

with δ̃i := δi− δ̂i, so (8) holds if ẽi → 0 and δ̂i is updated
so as to have

lim
t→∞
|δ̂i(t)− δi| = 0, ∀ i ∈ {1, 2, · · · , N}. (11)

Now, to steer ẽi → 0 the control law ui in (3) is
redesigned as follows. First, we rewrite (6) as

˙̂xi = Ax̂i + εBF
∑
j∈Ni

aij
[

(xi − xj) + (δ̃i − δ̃j)
]
. (12)

Then, we differentiate on both sides of (10) and we use
(12) and (1) to obtain

˙̃ei =Aẽi −Aδ̃i +Bui +
˙̃
δi

− εBF
∑
j∈Ni

aij
[

(xi − xj) + (δ̃i − δ̃j)
]
, (13)

Now, note that the terms on the second line of (13)
can be canceled directly since they correspond exactly
to the data available to the ith node. Second, we may
insert a control term of the form F ẽi, such that (A +
BF ) is Hurwitz; this is possible since the pair (A,B)
is stabilizable by assumption. More precisely, the latter

implies the existence of a matrix M = M> > 0 that
solves the algebraic Riccati equation

MA+A>M −MBB>M = −Q, (14)

for any given Q = Q> > 0. Thus, for any such given Q
that generates M as above, we define F = −B>M—cf.
[25,26] and we redefine ui in (3) as

ui = εF
∑
j∈Ni

aij(xi − xj)− εF
∑
j∈Ni

aij(δ̂i − δ̂j) + F ẽi.

(15)
Then, using (15) in (13), we obtain

˙̃ei =(A+BF )ẽi −Aδ̃i +
˙̃
δi. (16)

Since (A+BF ) is Hurwitz by design, it is left to define

the dynamics of the bias estimates δ̂i—hence that of δ̃i—

so as to ensure that δ̃i and
˙̃
δi vanish asymptotically. The

design of the bias estimation law depends on whether
δi is constant or time-varying, as per Assumption (A4),
and is presented in the next sections.

3.2 Dynamic consensus under constant bias

In the case that δi is constant we define

˙̂
δi = −M−1A>M ẽi, (17)

where M solves (14) for any given positive definite Q.
Such estimation law is distributed since it depends only
on ẽi, which is defined by variables that pertain to the
ith agent only—see (9). Then, we have the following.

Proposition 3 (Dynamic consensus) Consider N
identical linear systems as in (1) in closed loop with the

distributed control input given by (15), with ε ≥ σPLM
and PL solving (5) for QL = IN ; the feedback matrix
F = −B>M , where M solves (14); the reference model
(6), and the bias update law (17). Then, under Assump-
tions (A1)–(A5), (2) holds uniformly and exponentially.
�
Proof. The statement follows after a cascades argument
and the rationale presented previously. More precisely,
the limit in (2) holds if so do those in (7) and (8). In-
deed, {x̂i = x̂j} and {xi = x̂i} for all i and j imply that
{xi = xj} for all i, j. The limit in (8) is established in
Proposition 4, which is presented next, and (7) is estab-
lished in Proposition 6 farther below. �

Proposition 4 (bias estimation) ConsiderN identi-
cal linear systems as in (1) in closed loop with (15), (6),
and (17) under the conditions of Proposition 3. Then,
there exist λ and κ > 0, such that

|ξ(t)| ≤ κ|ξ(t◦)|e−λ(t−t◦), ∀t ≥ t◦, (18)

where ξ :=
[
ẽ> δ̃>

]>
, ẽ> := [ẽ>1 · · · ẽ>N ], and δ̃> :=

[δ̃>1 · · · δ̃>N ]. In turn, the limits in (8) and (11) hold. �
Proof. In compact form, the multi-agent closed-loop
equations correspond to

˙̃e=
[
IN ⊗ (A+BF )

]
ẽ− [IN ⊗A]δ̃

+
[
IN ⊗ (M−1A>M)

]
ẽ (19a)
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˙̃
δ =

[
IN ⊗ (M−1A>M)

]
ẽ. (19b)

Then, consider the Lyapunov function candidate

V (ẽ, δ̃) = ẽ>(IN ⊗M)ẽ+ δ̃>(IN ⊗M)δ̃, (20)

which, since M is symmetric positive definite, is both
positive definite and decrescent. Indeed, V satisfies

σMm |ξ|2 ≤ V (ẽ, δ̃) ≤ σM
M |ξ|2. (21)

Furthermore, in virtue of (14), the time-derivative of
V along the trajectories of (19) is negative semidefinite.
Indeed,

V̇ (ẽ, δ̃) = ẽ>
[
IN ⊗ (MA+A>M − 2MBB>M)

]
ẽ

− 2ẽ>[ IN ⊗ (MA) ]δ̃ + 2ẽ>[ IN ⊗ (A>M) ]ẽ

+ 2δ̃>[ IN ⊗ (A>M) ]ẽ

= 2ẽ>
[
IN ⊗ (MA+A>M −MBB>M)

]
ẽ

= − 2ẽ>[IN ⊗Q]ẽ ≤ 0. (22)

From (21)-(22), it follows that the origin, {(ẽ, δ̃) =
(0, 0)}, for the system (19a)-(19b) is uniformly globally
stable. That is, the origin is uniformly stable and all
solutions are uniformly globally bounded.

To establish uniform global exponential stability we
use the following statement, which follows from [27,
Lemma 3].

Lemma 5 Consider the system ξ̇ = f(t, ξ), where f(·, ξ)
is locally integrable and f(t, ·) is locally Lipschitz uni-
formly in t. Assume that there exist constants p, and
c > 0 such that the solution ξ(·, t◦, ξ◦) of ξ̇ = f(t, ξ) sat-
isfies

max

{
sup
t≥t◦
|ξ(t)|,

[ ∫ ∞
t◦

|ξ(τ)|p
]1/p

dτ

}
≤ c|ξ◦|, (23)

for all initial conditions 4 (t◦, x◦) ∈ R≥0 × Rn. Then,
the origin {ξ = 0} is uniformly globally exponentially
stable and, moreover, (18) holds with κ = ce1/p and λ =
[pcp]−1. �

Thus, the rest of the proof consists in establishing the
bounds in (23) for the closed-loop system (19). The first
inequality in (23) follows by integrating along trajecto-

ries on both sides of the inequality V̇ ≤ 0 in (22) and
using (21) to obtain

V (ẽ(t), δ̃(t)) ≤ V (ẽ(t◦), δ̃(t◦)) (24)

σM
m |ξ(t)|2 ≤ V (ẽ(t), δ̃(t)) ≤ σM

M |ξ(t◦)|2, ∀ t ≥ t◦ ≥ 0,

which, in turn, implies that

|ξ(t)| ≤

√
σM
M

σM
m

|ξ(t◦)|, ∀ t ≥ t◦, (25)

so the first inequality in (23) holds with c2 := σM
M /σM

m .

4 Considering t◦ ≥ 0 is a mere convention; the result cer-
tainly holds for all t◦ ∈ R.

On the other hand, integrating on both sides of V̇ =
−2ẽ>(IN⊗Q)ẽ in (22), along the trajectories, we obtain

V (ẽ(t), δ̃(t))− V (ẽ(t◦), δ̃(t◦)) ≤ −2σQm

∫ t

t◦

|ẽ(τ)|2dτ.

Rearranging the terms on both sides of the latter and
using V (ẽ(t), δ̃(t)) ≥ 0 we obtain

2σQm

∫ t

t◦

|ẽ(τ)|2dτ ≤ 2V (ẽ(t◦), δ̃(t◦))

which, in view of (21), implies that

lim
t→∞

∫ t

t◦

|ẽ(τ)|2dτ ≤ σM
M

σQm
|ξ(t◦)|2. (26)

The latter establishes the second inequality in (23),
for the ẽ-part of ξ. To compute a similar inequality for
δ̃, consider the function W : R2nN → R, defined by

W (ξ) = ẽ>[IN ⊗A]δ̃ (27)

and let σAM > 0 be such that |A| ≤ σAM . Then, W (ξ) ≤
(1/2)[σAM |ẽ|2 +σAM |δ̃|2] and, after (25) we see that, along
the trajectories,

W (ξ(t)) ≤ σAM
2
|ξ(t)|2 ≤ σAM

2
c2|ξ(t◦)|2, ∀ t ≥ t◦,

(28)

where c2 := σMM /σ
M
m . On the other hand,

W (ξ(t◦)) ≤
σAM
2
|ξ(t◦)|2. (29)

The total derivative of W along the trajectories of (19)
yields

Ẇ (ξ(t)) ≤ δ̃>[IN ⊗ (A>A+A>BF +A>M−1A>M)]ẽ

+ ẽ>[IN ⊗AM−1A>M ]ẽ

− δ̃>[IN ⊗A>A]δ̃. (30)

Then, to compact the notation, we introduce

A := A>A−A>BB>M +A>M−1A>M

and, since A, B, and M are constant matrices, we also
introduce σAM > 0 to denote an upper bound on the
induced norm of A, that is, |A| ≤ σAM . Hence, the terms
in the first line of (30) satisfy

δ̃>[IN ⊗A]ẽ ≤ (σAM )
2

2µ
|ẽ|2 +

µ

2
|δ̃|2 (31)

for any µ > 0. For further development, we also intro-
duce γ′ > 0 such that |AM−1A>M | ≤ γ′ and a′m > 0

such that σA
>A

m ≥ a′m; the latter holds under Assump-
tion (A2).

Next, replacing (31) and |AM−1A>M | ≤ γ′ in (30)
yields, along trajectories,

Ẇ (ξ(t)) ≤
[
γ′ +

(σAM )
2

2µ

]
|ẽ(t)|2 −

[
a′m −

µ

2

]
|δ̃(t)|2.

4



Then, we set µ = a′m, we define γ′′ := γ′ +
(σAM )

2

2µ , and

we integrate on both sides of the latter inequality and
rearrange terms to obtain

a′m
2

∫ t

t◦

|δ̃(τ)|2dτ ≤ |W (ξ(t))|+ |W (ξ(t◦))|

+ γ′′
∫ t

t◦

|ẽ(τ)|2dτ.

Thus, using (28), (29), and (26), we obtain∫ t

t◦

|δ̃(τ)|2dτ ≤ 2

a′m

[
γ′′
σM
M

σQm
+
σAM
2

[σM
M

σM
m

+ 1
]]
|ξ(t◦)|2,

for all t ≥ to. The latter, together with (25) and (26),
imply the condition (23) with p = 2 and

c2 := max

{
σM
M

σM
m

,
σM
M

σQm
+

2

a′m

[
γ′′
σM
M

σQm
+
σAM
2

[σM
M

σM
m

+ 1
]]}

,

so the result follows with κ and λ as in Lemma 5. �

Proposition 6 (Estimators’ consensus) Consider
the estimators defined in (6), with aij ≥ 0 such that the
corresponding Laplacian matrix, whose elements are de-
fined in (4), contains a directed spanning tree, and with

ε ≥ σPLM where PL solves (5) for QL = IN , the feedback
matrix F = −B>M where M solves (14). Then, on

the manifold {i ≤ N : (ẽi, δ̃i) = (0, 0)}, the estimators
(6) achieve dynamic consensus, that is, (7) holds. More
precisely, in the space of the synchronization errors
sx̂i

:= x̂i − x̂m, where x̂m corresponds to the solutions

of ˙̂xm = Ax̂m with x̂m(0) := (v>l ⊗ In)x̂(0), the origin
{sx̂i

= 0} is uniformly exponentially stable. �
Proof. In compact multi-variable form, the equations (6)
are written as

˙̂x = [IN ⊗A]x̂− ε[L ⊗BB>M ]x− ε[L ⊗BB>M ]δ̃,

and, on the manifold {(ẽ, δ̃) = (0, 0)}, in view of (10),
we have

˙̂x = [IN ⊗A]x̂− ε[L ⊗BB>M ]x̂. (32)

Now, following [1], to assess that the estimators (32)
reach dynamic consensus, we verify that x̂i, for each
i ≤ N , tends asymptotically to the trajectories of a
weighted-average system with state x̂m := (v>l ⊗ In)x̂.
In multi-variable form, we have[

x̂m

sx̂

]
=

[
(v>l ⊗ In)x̂[

(IN − 1Nv
>
l )⊗ In

]
x̂

]
, (33)

where sx̂ =
[
s>x̂1
· · · s>x̂N

]>
. Then, differentiating on

both sides of (33) and using (32), we obtain the system[
˙̂xm

ṡx̂

]
=

[
Ax̂m[

(IN ⊗A)− ε(L ⊗BB>M)
]
sx̂

]
. (34)

The latter is a dichotomous representation of the
multi-agent estimators (32). On one hand, one has the

decoupled average dynamics ˙̂xm = Ax̂m and, on the
other, the synchronization error dynamics. Therefore,

establishing that sx̂ → 0 implies that all estimators be-
have as the averaged model ˙̂xm = Ax̂m.

Remark 7 In an ordinary consensus problem, i.e., in
which all systems attain a common equilibrium point xm,
we have ẋm ≡ 0. In the present setting the systems do
not stabilize at an equlibrium, but adopt the behavior of
a non-prespecified dynamic average model; whence the
terminology dynamic consensus. •

For assessing convergence of individual reference sys-
tems to the concerned averaged model, we use procedure
outlined in [28]. To that end, we consider the Lyapunov
function candidate

V (sx̂) = s>x̂ (PL ⊗M)sx̂, (35)

where PL is generated by Lemma 2 with QL = IN . This
function is positive definite under Assumption (A5) and
Lemma 2.

The time derivative of V (sx̂), along the trajectories
of (34) yields

V̇ (sx̂) = s>x̂

[
PL ⊗ (MA+A>M)

− ε(PLL+ L>PL)⊗ (MBB>M)
]
sx̂. (36)

Then, we set QL = IN and use (5) to rewrite the second
term on the right-hand side of (36). Also, we use

α[PL1Nv
>
l ⊗ In]sx̂ = α[PL1Nv

>
l ⊗ In]×

[(IN − 1Nv
>
l )⊗ In]x̂ = 0Nn,

which holds under Assumption (A5)—see Lemma 1, and
the orthogonal decomposition of PL = P>L > 0, PL =
TΛT> where T ∈ RN×N is an orthogonal matrix. After
all the latter, (36) becomes

V̇ (sx̂) = σPLM s>x̂

[TΛT>

σPLM
⊗
[
MA+A>M

− ε

σPLM
MBB>M

]]
sx̂,

so for any ε ≥ σPLM , as posed in Proposition 3, we have

V̇ (sx̂) ≤ σPLM s>x̂
[
IN ⊗ (MA+A>M −MBB>M)

]
sx̂

and, after the algebraic Riccati equation (14), we get

V̇ (sx̂) ≤ −σPLM s>x̂ (IN ⊗Q)sx̂,

so global exponential stability of {sx̂ = 0} follows invok-
ing standard Lyapunov theory. �

3.3 Practical dynamic consensus under time-varying
measurement bias

To take into account the time-varying unknown
bounded biases δi : R≥0 → Rn, i = {1, · · · , N}, the
corresponding dynamics of the bias estimates is now
modified as

˙̂
δi = −(M−1A>M)ẽi − βM−1δ̂i, (37)

where β ∈ R+. Then, we have the following.

Proposition 8 (robust dynamic consensus) Con-
sider N linear systems defined by (1) under the condi-
tions laid in Proposition 3 and the bias update law (37) in

5



place of (17). Then, the tracking and estimation errors

(ẽ, δ̃) are uniformly ultimately bounded. Consequently, so
are the tracking errors xe = xi − x̂i, as well as the con-
sensus errors for the reference models, x̂i − x̂j, and for
the original systems (1), xi − xj, for all i 6= j.

Proof. The closed-loop equations, now using the update
law (37), correspond to

˙̃e=
[
IN ⊗ (A+BF )

]
ẽ− [IN ⊗A]δ̃ + δ̇

+β(IN ⊗M−1)δ̂ +
[
IN ⊗ (M−1A>M)

]
ẽ (38a)

˙̃
δ =

[
IN ⊗ (M−1A>M)

]
ẽ+ δ̇ + β(IN ⊗M−1)δ̂. (38b)

Reconsider the Lyapunov function V in (20). After
(22), its total derivative along the solutions of (38a)-
(38b) yields

V̇ = − 2ẽ>[IN ⊗Q]ẽ+ 2(δ̃ + ẽ)>(IN ⊗M)δ̇

+ 2β(δ̃ + ẽ)>δ − 2βẽ>δ̃ − 2β|δ̃|2. (39)

Therefore,

V̇ ≤ −[ 2σQm − β ]|ẽ|2 − β|δ̃|2 + k[ |ẽ|+ |δ̃|
]

(40)

where k := 2(σMM + β)δM , with

δM := max

{
ess sup
t≥0

|δ(t)|, ess sup
t≥0

|δ̇(t)|
}
.

Global ultimate boundedness of ẽ and δ̃ follow from stan-
dard Lyapunov theory.

Remark 9 An ultimate bound may be computed as fol-
lows. Let Q be such that σQm := β. Then, for sufficiently
large t, ∣∣ [ẽ(t)> δ̃(t)>]>

∣∣ ≤ √2k/β (41)

Note that both the numerator and denominator in (41)
are of order O(β) for any fixed M and Q. Therefore,
as in other works (e.g., [7]), the ultimate bound cannot
be diminished at will. This is reasonable because the
uncertainty that one wants to compensate for appears
in the measurements used in the control loop. •

To assess ultimate boundedness of the tracking errors,
xe = x − x̂, we analyze the corresponding dynamics
equation

ẋe = [IN ⊗ (A+BF )]xe + (IN ⊗BF )δ̃. (42)

To that end, we evaluate the total derivative of the Lya-
punov function V (xe) = x>e (IN ⊗M)xe along the tra-
jectories of (42), to obtain

V̇ (xe) = x>e
[
IN ⊗ (MA+A>M − 2MBB>M)

]
xe

− 2x>e (IN ⊗ (MBB>M))δ̃

≤ x>e
[
IN ⊗ (MA+A>M − 2MBB>M) ]xe

+ x>e (IN ⊗ (MA+A>M))xe + δ̃>(IN ⊗M)δ̃

≤− 2x>e (IN ⊗Q)xe + |M ||δ̃|2, (43)

where we introduced

M := MBB>M(MA+A>M)−1MBB>M.

Note that (MA+A>M) is non-singular under Assump-
tion (A2). Global ultimate boundedness of xe follows

from the ultimate boundedness of δ̃—see Ineq. (41).

Finally, to verify that the consensus error amongst
the reference systems is also UUB, we reconsider the syn-
chronization error sx̂ and the mean field value x̂m of the
reference systems, as defined in (33). The corresponding
dynamics, in this case, is

˙̂xm =Ax̂m (44a)

ṡx̂ =
[

(IN ⊗A)− ε(L ⊗BB>M)
]
sx̂

−ε[L ⊗BB>M)][(IN − 1Nv
>
l )⊗ In]δ̃. (44b)

Global uniform ultimate boundedness follows from the
fact that the origin for (44b) with δ̃ = 0 is globally expo-

nentially stable and δ̃(t) is globally uniformly ultimately
bounded. �

4 Simulation Results

We provide some numerical simulation results, gen-
erated using Matlab R2021a. As case-study, we consider
the dynamic consensus control of five harmonic oscilla-
tors, that is, linear systems modeled as in (1) with

A =

[
0 1

−1 0

]
, B =

[
0

1

]
, (45)

so Assumptions (A1) and (A2) hold. The oscillators are
taken to form the graph showed in Figure 1, so Assump-
tion (A5) also holds.

1

2 3

4 5

L =


1 0 0 0 −1

−1 1 0 0 0

−1 0 1 0 0

0 0 −1 1 0

0 0 −1 0 1


Fig. 1. Directed connected graph and corresponding Lapla-
cian.

We present the results for two tests, one in which
the biases are piecewise-constant and one in which they
are periodic functions. Irrespective of the nature of the
measurement biases, constant or otherwise, the initial
conditions assigned for the five agents are set to

x1(0) =
[

3 − 1 − 2 1.5 2
]>
,

x̂1(0) =
[
− 1.5 1 − 1.75 − 0.5 2.75

]>
,

x2(0) =
[

2 − 2 − 3 3 2.5
]>
,

x̂2(0) =
[

0.5 − 2 1 0.75 1.5
]>
,

and the initial conditions for the bias estimates are set to

δ̂1(0) =
[

1.5 − 1.5 2 − 2.5 0.5
]>
,

δ̂2(0) =
[

0.5 − 0.5 − 2 2 3
]>
.

In the first numerical test, the biases are modeled
as piecewise-constant functions taking random values
within [−1, 1] and changing at random instants sepa-
rated by no less than 10s; see Figure 2 below.
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Time [s]

-0.5

0

0.5

1

Fig. 2. Plot of piecewise-constant biases, with random
changes of random amplitude.

The control gain F = −B>M is computed by solving
the algebraic Riccati equation (14) for M , with Q = I2.
This yields

M =

[
1.9123 0.4142

0.4142 1.3522

]
. (46)

The systems’ trajectories are showed in Figure 3—they
all achieve dynamic consensus, as they enter in syn-
chrony with the average oscillator. The controlled sys-
tem is robust to the sudden changes in the biases.

-4

-2

0

2

4

20 40 60 80 100 120 140
-4

-2

0

2

Fig. 3. Oscillators’ trajectories reaching synchronization.
The solid curve in cyan represents the average oscillator.

For completeness, we show the bias estimation errors
in Figure 4 below.

0 100 200 300 400 500
-4

-2

0

2

4

Fig. 4. Estimation errors for the piecewise constant biases
for all agents.

With a second numerical test, we illustrate the ro-
bustness of our consensus controller vis a vis of time-
varying biases. These are of the form δi(t) := ci + δ′i(t),

where ci ∈ R and δ′i(t) is a sinusoidal or cosinusoidal sig-
nal whose amplitude and frequency is varied over time
using the rand( · ) function of Matlab, so Assumption
(A4) holds—see Figure 5 below.

0 100 200 300 400 500

-0.5

0

0.5

Fig. 5. Time-varying biases present in the state measure-
ments of the system.

We set Q = 3 I2 and β = 1.7 so the factor of ẽi in
(40) be positive and we solve (14) for M with this new
value. This yields [

4.4721 1

1 2.2361

]
.

As per Proposition 8, the bias estimation errors are
uniformly ultimately bounded—see Figure 6—and
the multi-agent system achieves practical dynamic
consensus—see Figure 7.

0 100 200 300 400 500
-4

-2

0

2

4

Fig. 6. Estimation errors corresponding to the time-varying
biases in Figure 5.

-2

0

2

4

0 25 50 75 100 125 150
Time [s]

-4

-2

0

2

4

Fig. 7. Oscillators trajectories in practical dynamic consen-
sus; the solid curve in cyan represents the average oscillator.
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5 Conclusion

In a network containing a directed spanning tree,
agents under measurement bias can reach dynamic lead-
erless consensus using a distributed-estimation-based
controller reminiscent of model-reference adaptive con-
trollers. However, consensus may be achieved only if
the measurement bias is exactly estimated, which is
possible only for piecewise-constant bias. If the bias
is time-varying, as e.g., due to a false-data-injection
attack, only ultimate boundedness is guaranteed.

Current research is aimed at extending the framework
to the case of heterogeneous systems; to investigate the
possibility of compensating for the effects of heterogene-
ity via adaptive control and estimation laws. Ensuring
asymptotic dynamic consensus in the presence of time-
varying bias requires further study, notably, regarding a
functional realistic model of the bias dynamics.
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Lyapunov functions for dynamic consensus in linear systems
interconnected over directed graphs,” IEEE Control Systems
Letters, vol. 6, no. 1, pp. 2323–2328, 2022.

8


	Introduction
	Model and problem formulation
	Main results
	Control design
	Dynamic consensus under constant bias
	Practical dynamic consensus under time-varying measurement bias

	Simulation Results
	Conclusion
	Acknowledgements
	References

