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Abstract

Dynamic consensus pertains to the achievement of a common collective behavior among interconnected systems. In this
paper we address the dynamic consensus control problem for generic linear systems (stable, unstable, marginally stable, . . . )
interconnected over directed networks and under the influence of biased measurements. Essentially, the control problem consists
in redesigning a standard distributed consensus controller which, for each system, relies on own state biased measurements
and respective erroneous data received from a set of neighbors. The difficulty in such a scheme resides in the fact that the
measurement bias is directly amplified by the control gain so it cannot be handled as an additive external disturbance. Instead,
our control design relies, on one hand, on the solution of a Riccati equation and, on the other, on the design of an estimator
reminiscent of a model-reference-adaptive control design. The estimator successfully computes a bias estimate and completely
compensates for its effect if the bias is constant—indeed, in this case, we establish exponential stability of the consensus
manifold and we show that the controller provides robustness with respect to time-varying biases.

Key words: Measurement bias, directed graphs, multi-agent systems, linear systems, Lyapunov stability

1 Introduction

It is not a platitude to say that feedback is the essence
of automatic control, so using faulty sensor data can
have major repercussions in the closed-loop stability of
the physical systems and can lead to severe accidents—
see [11]. Sensor faults may consist, e.g., in bias, drift,
scaling, noise, etc. [1]. Measurement bias, which is the
one of interest here, is a persistent offset in the reading,
that may affect all the samples gathered in a particular
deployment.

In the context of networked multi-agent systems,
while a bidirectional communication helps in decou-
pling the sensor biases from the state measurements, as
seen in e.g., [21], [22], the influence of one agent over
its neighbor is not always reciprocal in nature, so de-
coupling of the bias from the measurements can turn
out to be an intricate problem in directed-topology
networks—see e.g, [23], [14], [3], [25], [2], [27]. Different
techniques are applied in the latter references to cope
with constant [23] or time-varying bias [14]: adaptive
control in [14], event-triggered control in [3], adaptive
neural control in [25], and an LMI-based approach in
[27]. In [2] a distributed piece-wise constant impulsive
reference is used.

1 This work was supported by the CEFIPRA under the
grant number 6001-A
2 E. Panteley and A. Loŕıa’s work is also supported by the
ANR (project HANDY, contract number ANR-18-CE40-
0010).

A general connected directed graph may consist in,
or contain, a spanning tree, so leader-follower consensus
is applicable if the communication topology is a span-
ning tree with the root node behaving as a leader. In
[14], [3], and [25] the leader-follower consensus problem is
addressed, under the assumption that the measurement
of the follower state/output variables are unreliable but
the measurement of the leader states is bias-free. How-
ever, such assumption appears conservative, specially in
a leaderless consensus scenario.

A significant difficulty to deal with measurement bias
is that, in general, it cannot be dealt with using ad hoc
robust control techniques tailored to cope with additive
disturbances and consisting, essentially, in increasing the
gain—the bias, if anything, is amplified by the control
gain. In [23] the leaderless consensus problem is tackled
using measurements affected by constant bias; the syn-
chronization error is shown to be ultimately ultimately
bounded (UUB).

In general, bias cannot be dealt with as a common un-
certainty in lumped parameters either. Yet, some works
borrow inspiration from the classical model-reference
adaptive control (MRAC) method—see e.g., [6] to suc-
cessfully design distributed model-reference adaptive
controllers for cooperative tracking [18], [24], [10], as
well as for cooperative regulation [13], and for different
communication topologies—whether it is undirected
[18], [24], [10] or directed [13].

The application of MRAC-inspired techniques for
leader-follower consensus generally relies on assimilat-
ing the leader node as the singular reference model—
e.g., [18], [24], [10]. In [13], a framework for adaptive
leaderless consensus of linear (homogeneous) agents
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with uncertain dynamics is proposed. The method con-
sists in designing a reference model for each system and
having the latter track the output generated by the
corresponding linear reference model with relative state
measurement as input.

Now, in all of the above cited references, MRAC-
based techniques are used to deal with uncertain sys-
tems, but none of them considers biased relative state
measurements. In the continuous-time domain, the
study of leader-less dynamical consensus among agents
exchanging biased state measurements (even for root
nodes) through unidirectional network is rather limited.
In [17] an MRAC-based technique is proposed to accom-
modate constant sensor bias, but not in a multi-agent
context.

Thus, the dynamic (leaderless) consensus problem
problem under measurement bias for multi-agent sys-
tems interconnected over generic directed graphs is
rather limited. In this paper, we address it for generic
identical linear systems under the assumption that mea-
surement bias is different and bounded for each agent.
More precisely, our contributions are the following:

(1) in contrast to [18], [24], [10], and [13] we provide
an MRAC-based control law for leader-less consen-
sus among agents, which can override the effect of
biased measurements;

(2) in contrast to [14], [3], and [25], we do not assume
that the leader (root) nodes are equipped with bias-
free sensors;

(3) unlike [23], in which the synchronization error is
only uniformly ultimately bounded in presence of
constant biases, we establish sufficient conditions
for exponential stability of the synchronization
manifold in the presence of constant biases and
UUB if the latter are time-varying.

The remainder of the paper is organized as follows. In
the next section we provide a detailed problem formula-
tion, in Section 3 we present our main results; in Section
4 we provide some simulation results to illustrate our
theoretical findings and we conclude with some closing
remarks in Section 5.

2 Problem Formulation: System Setup

We considerN ∈ N identical, linear, autonomous sys-
tems,

ẋi = Axi +Bui, ∀i = {1, 2, · · · , N}, (1)

where xi ∈ Rn, ui ∈ Rp is the control input andA,B are
constant matrices of compatible dimensions satisfying
the following:

(A1) the pair (A,B) is stabilizable,
(A2) the system matrix A is of full rank.

For these systems, we address the dynamic consensus
control problem. This pertains to making all systems
achieve a common dynamic behavior, hence, such that

lim
t→∞

|xi(t)− xj(t)| → 0, ∀ i ̸= j ∈ {1, 2, · · · , N},
(2)

via a distributed consensus controller of the form

ui = K
∑
j∈Ni

aij(xi − xj) + νi. (3)

In the expression above, the first term on the right-
hand side corresponds to a common consensus control
law, preceded by a suitable gain matrix K ∈ Rp×n to
be determined. It is assumed that the states xi are not
measurable, or, more precisely, that

(A3) the ith agent has access to its own state and that of
its neighbors, but these measurements are biased
by an unknown offset δi, that is, x̄i := xi + δi;

(A4) the bias δi is either constant or time-varying with
bounded derivative.

The term νi in (3) denotes an additional, redesign,
control input to be determined, notably to compensate
for the effect of the measurement bias.

Finally, the coefficients aij ≥ 0 represent the exis-
tence (if aij > 0) or the absence (if aij = 0) of a one-way
interaction from the jth node to the ith node. As it is
customary, we consider that there are no self-loops, so
aii = 0. More precisely, we assume that

(A5) the network of interconnections form a di-
rected connected graph with Laplacian matrix
L = [lij ] ∈ RN×N , where

lii =
∑
j∈Ni

aij , lij = −aij . (4)

Using the interactions as per (4), the ith node can also

have access to the bias estimates δ̂j of the state measure-
ment’s unknown bias δj ∀j ∈ Ni . The Laplacian, which
is positive semidefinite in the case that the graph is undi-
rected and connected, may be used with relative easi-
ness to construct Lyapunov functions that serve to an-
alyze the stability of the consensus manifold {xi = xj}.
For connected directed networksL is non-symmetric and
this hinders the construction of suitable Lyapunov func-
tion candidates. To that end, we recall the following use-
ful Lemmata.

Lemma 1 [19,20] If a directed network has a directed
spanning tree, then the Laplacian matrix L = [lij ] ∈
RN×N has a singular zero eigenvalue and N − 1 eigen-
values have strictly positive real part. That is,

σ1(L) = 0, ℜ{σk(L)} > 0, k = {2, · · · , N}.

On the other hand, the right eigenvector of the zero eigen-
value is given by 1N = [1 1 · · · 1]⊤ and the left eigenvec-

tor vl satisfies
∑N

k=1 vlk = 1 and v⊤l L = 0⊤N . □
Lemma 2 [16] Let us consider a directed graph G of or-
der N containing a spanning tree and its Laplacian ma-
trix is L ∈ RN×N . Then, for any positive definite sym-
metric matrix QL ∈ RN×N and α ∈ R+, there exists
another positive definite symmetric matrix PL ∈ RN×N

such that

PLL+ L⊤PL = QL − α[PL1Nv⊤l + vl1
⊤
NPL]. (5)

□
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3 Main results

3.1 Control design

The consensus controller proposed in this paper relies
on a distributed estimator whose design, along similar
lines as those in [18], [24], [10], and[13], borrows inspira-
tion from model-reference adaptive control. The control
strategy consists in coupling each agent’s dynamics to
that of an estimator of the form

˙̂xi =Ax̂i + ϵBF
∑
j∈Ni

aij(xi − xj)− ϵBF
∑
j∈Ni

aij(δ̂i − δ̂j)

(6)

where the coupling weight ϵ > 0, the control gain F ∈
Rp×n, and the bias estimate δ̂i are yet to be defined.
Then, to achieve the consensus control objective (2) the
first control goal is set to make the estimators (6) achieve
dynamic consensus, that is,

lim
t→∞

|x̂i(t)− x̂j(t)| → 0, ∀ i ̸= j ∈ {1, 2, · · · , N}
(7)

and, second, to steer each agent’s state trajectories to
its corresponding estimator’s, that is,

lim
t→∞

|xi(t)− x̂i(t)| → 0 ∀ i ∈ {1, 2, · · · , N}. (8)

Note that (7) and (8) imply (2) since

{x̂i = x̂j} ∩ {xi = x̂i} ∀ i, j ∈ {1, 2, · · · , N}
implies that {xi = xj} for all i ∈ {1, 2, · · · , N}. How-
ever, since the states xi are not measurable, we pose as
objective to steer the measured state x̄i to the corre-
sponding biased state of the reference model in (6), that
is, to make ẽi → 0, where

ẽi = xi − (x̂i + δ̂i). (9)

It is remarked that this task, on one hand, appears feasi-
ble since ẽi is available and, on the other hand, is useful
since

ẽi = xi − x̂i + δ̃i, (10)

with δ̃i := δi− δ̂i, so (8) holds if ẽi → 0 and δ̂i is updated
so as to have

lim
t→∞

|δ̂i(t)− δi| → 0, ∀ i ∈ {1, 2, · · · , N}. (11)

To steer ẽi → 0 the control law ui in (12) is redesigned
as follows. We start by differentiating on both sides of
(10) to obtain

˙̃ei =Aẽi −Aδ̃i +Bui +
˙̃
δi

− ϵBF
∑
j∈Ni

aij
[
(xi − xj) + (δ̃i − δ̃j)

]
, (12)

for which we used (1) and

˙̂xi = Ax̂i + ϵBF
∑
j∈Ni

aij
[
(xi − xj) + (δ̃i − δ̃j)

]
. (13)

First, note that the terms on the second line of (12)
can be canceled directly since they correspond exactly
to the data available to the ith node. Second, we may
insert a control term of the form F ẽi, such that (A +

BF ) is Hurwitz; this is possible since the pair (A,B)
is stabilizable by assumption. More precisely, the latter
implies the existence of a matrix M = M⊤ > 0 that
solves the algebraic Riccati equation

MA+A⊤M −MBB⊤M = −Q, (14)

for any given Q = Q⊤ > 0. Thus, for any such given Q
that generates M as above, we define F = −B⊤M—cf.
[26,28,4,8,9] and we redefine ui in (3) as

ui = ϵF
∑
j∈Ni

aij(xi − xj)− ϵF
∑
j∈Ni

aij(δ̂i − δ̂j) + F ẽi.

(15)
Then, using (15) in (12), we obtain

˙̃ei =(A+BF )ẽi −Aδ̃i +
˙̃
δi. (16)

Since (A+BF ) is Hurwitz by design, it is left to define

the dynamics of the bias estimates δ̂i—hence that of δ̃i—

so as to ensure that δ̃i and
˙̃
δi vanish asymptotically. The

design of the bias estimation law depends on whether
δi is constant or time-varying, as per Assumption (A4),
and is explained in the next sections.

3.2 Dynamic consensus under constant bias

In the case that δi is constant we define

˙̂
δi = −M−1A⊤M ẽi, (17)

where M solves (14) for any given positive definite Q.
Such estimation law is distributed since it depends only
on ẽi, which is defined by variables that pertain to the
ith agent only—see (9). Then, we have the following.

Remark 3 (Notation) In the remainder of the paper,
we use the notations σH

m and σH
M to represent the mini-

mum and maximum eigenvalue of any square matrix H
respectively. •
Proposition 4 (Dynamic consensus) Consider N
identical linear systems as in (1) in closed loop with the

distributed control input given by (15), with ϵ ≥ σPL
M

where PL solves (5) for QL = IN , the feedback matrix
F = −B⊤M where M solves (14), the reference model
(6), and the bias update law (17). Then, under Assump-
tions (A1)–(A5), (2) holds. □

The previous statement follows after a cascades argu-
ment and the rationale presented previously. The limit
in (2) holds if so do those in (7) and (8). The latter is es-
tablished in Proposition 5, which is presented next, and
(7) is established in Proposition 7 farther below.

Proposition 5 (bias estimation) ConsiderN identi-
cal linear systems as in (1) in closed loop with (15), (6),
and (17) under the conditions of Proposition 4. Then,
there exist λ and κ > 0, such that

|ξ(t)| ≤ κ|ξ(t◦)|e−λ(t−t◦), ∀t ≥ t◦, (18)

where ξ :=
[
ẽ⊤ δ̃⊤

]⊤
, ẽ⊤ := [ẽ⊤1 · · · ẽ⊤N ], and δ̃⊤ :=

[δ̃⊤1 · · · δ̃⊤N ]. In turn, the limits in (8) and (11) hold. □
Proof. In compact form, the multi-agent closed-loop
equations correspond to

˙̃e=
[
IN ⊗ (A+BF )

]
ẽ− [IN ⊗A]δ̃,
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+
[
IN ⊗ (M−1A⊤M)

]
ẽ (19a)

˙̃
δ =

[
IN ⊗ (M−1A⊤M)

]
ẽ. (19b)

Then, consider the Lyapunov function candidate

V (ẽ, δ̃) = ẽ⊤(IN ⊗M)ẽ+ δ̃⊤(IN ⊗M)δ̃, (20)

which, since M is symmetric positive definite, is both
positive definite and decrescent. Indeed, V satisfies

σM
m |ξ|2 ≤ V (ẽ, δ̃) ≤ σM

M |ξ|2. (21)

Furthermore, in virtue of (14), the time-derivative of
V along the trajectories of (19) is negative semidefinite.
Indeed,

V̇ (ẽ, δ̃) = ẽ⊤
[
IN ⊗ (MA+A⊤M − 2MBB⊤M)

]
ẽ

− 2ẽ⊤[ IN ⊗ (MA) ]δ̃ + 2ẽ⊤[ IN ⊗ (A⊤M) ]ẽ

+ 2δ̃⊤[ IN ⊗ (A⊤M) ]ẽ

=2ẽ⊤
[
IN ⊗ (MA+A⊤M −MBB⊤M)

]
ẽ

= − 2ẽ⊤[IN ⊗Q]ẽ ≤ 0. (22)

From (21)-(22), it follows that the origin, {(ẽ, δ̃) =
(0, 0)}, for the system (19a)-(19b) is uniformly glob-
ally stable. In particular, it is uniformly stable and all
solutions are uniformly globally bounded.

To establish uniform global exponential stability we
use the following statement, which follows from [12,
Lemma 3].

Lemma 6 Consider the system ξ̇ = f(t, ξ), where f(·, ξ)
is locally integrable and f(t, ·) is locally Lipschitz uni-
formly in t. Assume that there exist constants p, and
c > 0 such that the solution ξ(·, t◦, ξ◦) of ξ̇ = f(t, ξ) sat-
isfies

max

{
sup
t≥t◦

|ξ(t)|,
[ ∫ ∞

t◦

|ξ(τ)|p
]1/p

dτ

}
≤ c|ξ◦|, (23)

for all initial conditions 3 (t◦, x◦) ∈ R≥0 × Rn. Then,
the origin {ξ = 0} is uniformly globally exponentially
stable and, moreover, (18) holds with κ = ce1/p and λ =
[pcp]−1. □

Thus, the rest of the proof consists in establishing the
bounds in (23) for the closed-loop system (19). The first
inequality in (23) follows by integrating along trajecto-

ries on both sides of the inequality V̇ ≤ 0 in (22) and
using (21) to obtain

V (ẽ(t), δ̃(t)) ≤ V (ẽ(t◦), δ̃(t◦)) (24)

σM
m |ξ(t)|2 ≤ V (ẽ(t), δ̃(t)) ≤ σM

M |ξ(t◦)|2, ∀ t ≥ t◦ ≥ 0,

which, in turn, implies that

|ξ(t)| ≤

√
σM
M

σM
m

|ξ(t◦)|, ∀ t ≥ t◦, (25)

so the first inequality in (23) holds with p = 2 and c2 :=
σM
M /σM

m .

3 Considering t◦ ≥ 0 is a mere convention; the result cer-
tainly holds for all t◦ ∈ R.

On the other hand, integrating on both sides of V̇ =
−2ẽ⊤(IN ⊗Q)ẽ in (22), along the trajectories, we obtain

V (ẽ(t), δ̃(t))− V (ẽ(t◦), δ̃(t◦)) ≤ −2σQ
m

∫ t

t◦

|ẽ(τ)|2dτ.

Rearranging the letter and using (24) gives

2σQ
m

∫ t

t◦

|ẽ(τ)|2dτ ≤ 2V (ẽ(t◦), δ̃(t◦))

which, in view of (21), implies that

lim
t→∞

∫ t

t◦

|ẽ(τ)|2dτ ≤ σM
M

σQ
m

|ξ(t◦)|2. (26)

The latter establishes the second inequality in (23),
for the ẽ-part of ξ. To compute a similar inequality for
δ̃, consider the function W : R2nN → R, defined by

W (ξ) = ẽ⊤[IN ⊗A]δ̃ (27)

and let σA
M > 0 be such that |A| ≤ σA

M . Then, along the
trajectories,

W (ξ(t)) ≤ σA
M

2
|ξ(t)|2 ≤ σA

M

2
c2|ξ(t◦)|2, ∀ t ≥ t◦,

(28)

while the initial conditions satisfy

W (ξ(t◦)) ≤
σA
M

2
|ξ(t◦)|2. (29)

The directional derivative ofW along the trajectories
of (19) yields

Ẇ (ξ(t)) ≤ ẽ⊤[IN ⊗AM−1A⊤M ]ẽ

+ δ̃⊤[IN ⊗ (A⊤A+A⊤BF +A⊤M−1A⊤M)]ẽ

− δ̃⊤[IN ⊗A⊤A]δ̃. (30)

Then, to compact the notation, we introduce

A := A⊤A−A⊤BB⊤M +A⊤M−1A⊤M

and, since A, B, and M are constant, we also introduce
σA
M > 0 to denote an upper bound on the induced norm

of A, that is, |A| ≤ σA
M . Hence, the terms in the second

line of (30) satisfy

δ̃⊤[IN ⊗A]ẽ ≤ (σA
M )

2

2µ
|ẽ|2 + µ

2
|δ̃|2 (31)

for any µ > 0. For further development, we also intro-
duce γ′ > 0 such that |AM−1A⊤M | ≤ γ′ and a′m > 0

such that σA⊤A
m ≥ a′m; the latter holds under Assump-

tion (A2).

Next, replacing (31) and |AM−1A⊤M | ≤ γ′ in (30)
yields, along trajectories,

Ẇ (ξ(t)) ≤
[
γ′ +

(σA
M )

2

2µ

]
|ẽ(t)|2 −

[
a′m − µ

2

]
|δ̃(t)|2.

Then, we set µ = a′m, we define γ′′ := γ′ +
(σA

M )
2

2µ , and

we integrate on both sides of the latter inequality and
rearrange terms to obtain

a′m
2

∫ t

t◦

|δ̃(τ)|2dτ ≤ |W (ξ(t))|+ |W (ξ(t◦))|

4



+ γ′′
∫ t

t◦

|ẽ(τ)|2dτ. (32)

Thus, using (28), (29), and (26), we obtain∫ t

t◦

|δ̃(τ)|2dτ ≤ 2

a′m

[
γ′′σ

M
M

σQ
m

+
σA
M

2

[σM
M

σM
m

+ 1
]]
|ξ(t◦)|2,

∀ t ≥ t◦.
(33)

The latter, together with (25) and (26), imply the con-
dition (23) with p = 2 and

c2 := max

{
σM
M

σM
m

,
σM
M

σQ
m

+
2

a′m

[
γ′′σ

M
M

σQ
m

+
σA
M

2

[σM
M

σM
m

+ 1
]]}

,

so the result follows with κ and λ as in Lemma 6. ■

Proposition 7 (Estimators’ consensus) Consider
the estimators defined in (6), with aij ≥ 0 such that the
corresponding Laplacian matrix, whose elements are de-
fined in (4), contains a directed spanning tree, and with

ϵ ≥ σPL
M where PL solves (5) for QL = IN , the feedback

matrix F = −B⊤M where M solves (14). Then, on

the manifold {i ≤ N : (ẽi, δ̃i) = (0, 0)}, the estimators
(6) achieve dynamic consensus, that is, (7) holds. More
precisely,

lim
t→∞

|x̂i(t)− x̂m(t)| = 0, ∀ i ∈ {1, 2, · · · , N},

where x̂m corresponds to the solutions of ˙̂xm = Ax̂m with
x̂m(0) := (v⊤l ⊗ In)x̂(0). □
Proof. In compact multi-variable form, the equations (6)
are written as

˙̂x = [IN ⊗A]x̂− ϵ[L ⊗BB⊤M ]x− ϵ[L ⊗BB⊤M ]δ̃,
(34)

and, on the manifold {(ẽ, δ̃) = (0, 0)}, in view of (10),
we have

˙̂x = [IN ⊗A]x̂− ϵ[L ⊗BB⊤M ]x̂ (35)

Now, following [15], to assess that the estimators (35)
reach dynamic consensus, we verify that x̂i, for each
i ≤ N , tends asymptotically to the trajectories of a
weighted-average system with state x̂m := (v⊤l ⊗ In)x̂.
To that end, we also define the synchronization errors
sx̂i

:= x̂i − x̂m. In multi-variable form, we have[
x̂m

sx̂

]
=

[
(v⊤l ⊗ In)x̂[

(IN − 1Nv⊤l )⊗ In
]
x̂

]
, (36)

where sx̂ =
[
s⊤x̂1

· · · s⊤x̂N

]⊤
. Then, differentiating on

both sides of (36) and using (35), we obtain the system[
˙̂xm

ṡx̂

]
=

[
Ax̂m[

(IN ⊗A)− ϵ(L ⊗BB⊤M)
]
sx̂

]
. (37)

The latter is a dichotomous representation of the
multi-agent estimators (35). On one hand, one has the

decoupled average dynamics ˙̂xm = Ax̂m and, on the
other, the synchronization error dynamics. Therefore,
establishing that sx̂ → 0 implies that all estimators be-
have as the averaged model ˙̂xm = Ax̂m.

Remark 8 In an ordinary consensus problem in which
all systems attain a common equilibrium point, xm, such
that ẋm ≡ 0. On the other hand, replacement of suitable
control input can ensure that the averaged model of the
multi-agent system is ẋm = Axm, whence the terminol-
ogy dynamic consensus. •

For assessing convergence of individual reference sys-
tems to the concerned averaged model, we use procedure
outlined in [5]. To that end, we consider the Lyapunov
function candidate

V (sx̂) = s⊤x̂ (PL ⊗M)sx̂, (38)

where PL is generated by Lemma 2 with QL = IN . This
function is positive definite under Assumption (A5) and
Lemma 2.

The time derivative of V (sx̂), along the trajectories
of (37) yields

V̇ (sx̂) = s⊤x̂

[
PL ⊗ (MA+A⊤M)

− ϵ(PLL+ L⊤PL)⊗ (MBB⊤M)
]
sx̂. (39)

Then, we use (5), with QL = IN , in (39), we apply the
property

α[PL1Nv⊤l ⊗ In]sx̂ = α[PL1Nv⊤l ⊗ In]×
[(IN − 1Nv⊤l )⊗ In]x̂ = 0Nn,

which holds under Assumption (A4)—see Lemma 1, and
the orthogonal decomposition of PL = P⊤

L > 0, PL =
TΛT⊤ where T ∈ RN×N is an orthogonal matrix. Thus,
(39) becomes

V̇ (sx̂) = σPL
M s⊤x̂

[
TT⊤ ⊗

[
MA+A⊤M

− ϵ

σPL
M

MBB⊤M
]]
sx̂,

so for any ϵ ≥ σPL
M , as posed in the Proposition 4, we

have

V̇ (sx̂) ≤ σPL
M s⊤x̂

[
IN ⊗ (MA+A⊤M −MBB⊤M)

]
sx̂

and, after the algebraic Riccati equation (14), we get

V̇ (sx̂) ≤ −σPL
M s⊤x̂ (IN ⊗Q)sx̂,

so global exponential stability of {sx̂ = 0} follows invok-
ing standard Lyapunov theory. ■

3.3 Practical dynamic consensus under time-varying
measurement bias

To take into account the time-varying unknown
bounded biases δi : R≥0 → Rn, i = {1, · · · , N}, the
corresponding dynamics of the bias estimates is now
modified as

˙̂
δi = −(M−1A⊤M)ẽi − βM−1δ̂i, (40)

where β ∈ R+. Then, we have the following.

Proposition 9 (robust dynamic consensus) Con-
sider N linear systems defined by (1) under the condi-
tions laid in Proposition 4 and the bias update law (40) in
place of (17). Then, the tracking and estimation errors

(ẽ, δ̃) are uniformly ultimately bounded. Consequently, so

5



are the tracking errors xe = xi − x̂i, as well as the con-
sensus errors for the reference models, x̂i − x̂j, and for
the original systems (1), xi − xj, for all i ̸= j,.

Proof. The closed-loop equations, now using the update
law (40), correspond to

˙̃e=
[
IN ⊗ (A+BF )

]
ẽ− [IN ⊗A]δ̃ + δ̇

+β(IN ⊗M−1)δ̂ +
[
IN ⊗ (M−1A⊤M)

]
ẽ (41a)

˙̃
δ =

[
IN ⊗ (M−1A⊤M)

]
ẽ+ δ̇ + β(IN ⊗M−1)δ̂. (41b)

Reconsider the Lyapunov function V in (20). After
(22), its total derivative along the solutions of (41a)-
(41b) yields

V̇ = − 2ẽ⊤[IN ⊗Q]ẽ+ 2(δ̃ + ẽ)⊤(IN ⊗M)δ̇

+ 2β(δ̃ + ẽ)⊤δ − 2βẽ⊤δ̃ − 2β|δ̃|2. (42)

Therefore,

V̇ ≤ −[ 2σQ
m − β ]|ẽ|2 − β|δ̃|2 + k[ |ẽ|+ |δ̃|

]
(43)

where k := 2(σM
M + β)δM , with

δM := max

{
ess sup
t≥0

|δ(t)|, ess sup
t≥0

|δ̇(t)|
}
.

Global ultimate boundedness of ẽ and δ̃ follow from stan-
dard Lyapunov theory [7, p. 169]. To assess ultimate
boundedness of the tracking errors, xe = x− x̂, we ana-
lyze the corresponding dynamics equation

ẋe = [IN ⊗ (A+BF )]xe + (IN ⊗BF )δ̃. (44)

To that end, we evaluate the total derivative of the Lya-
punov function V (xe) = x⊤

e (IN ⊗ M)xe along the tra-
jectories of (44), to obtain

V̇ (xe) = x⊤
e

[
IN ⊗ (MA+A⊤M − 2MBB⊤M)

]
xe

− 2x⊤
e (IN ⊗ (MBB⊤M))δ̃

≤ x⊤
e

[
IN ⊗ (MA+A⊤M − 2MBB⊤M) ]xe

+ x⊤
e (IN ⊗ (MA+A⊤M))xe + δ̃⊤(IN ⊗M)δ̃

≤− 2x⊤
e (IN ⊗Q)xe + |M ||δ̃|2, (45)

where we introduced

M := MBB⊤M(MA+A⊤M)−1MBB⊤M.

Note that (MA+A⊤M) is non-singular under Assump-
tion (A2). Global ultimate boundedness of xe follows

from the ultimate boundedness of δ̃, after integrating on
both sides of (45).

Finally, to verify that the consensus error amongst
the reference systems is also UUB, we reconsider the syn-
chronization error sx̂ and the mean field value x̂m of the
reference systems, as defined in (36). The corresponding
dynamics, in this case, is

˙̂xm =Ax̂m (46a)

ṡx̂ =
[
(IN ⊗A)− ϵ(L ⊗BB⊤M)

]
sx̂

−ϵ[L ⊗BB⊤M)][(IN − 1Nv⊤l )⊗ In]δ̃. (46b)

Global uniform ultimate boundedness follows from the
fact that the origin for (46b) with δ̃ = 0 is globally expo-

nentially stable and δ̃(t) is globally uniformly ultimately
bounded. ■

4 Simulation Results

We provide some numerical simulation results, gen-
erated using Matlab R2021a. As case-study, we consider
the dynamic consensus control of five harmonic oscilla-
tors, that is, linear systems modeled as in (1) with

A =

[
0 1

−1 0

]
, B =

[
0

1

]
, (47)

so Assumptions (A1) and (A2) hold. The oscillators are
taken to form the graph showed in Figure 1, so Assump-
tion (A5) also holds.

1

2 3

4 5

L =


1 0 0 0 −1

−1 1 0 0 0

−1 0 1 0 0

0 0 −1 1 0

0 0 −1 0 1


Fig. 1. Directed connected graph and corresponding Lapla-
cian.

We present the results for two tests, one in which
the biases are piecewise-constant and one in which they
are periodic functions. Irrespective of the nature of the
measurement biases, constant or otherwise, the initial
conditions assigned for the five agents are set to

x1(0) =
[
3 − 1 − 2 1.5 2

]⊤
,

x̂1(0) =
[
− 1.5 1 − 1.75 − 0.5 2.75

]⊤
,

x2(0) =
[
2 − 2 − 3 3 2.5

]⊤
,

x̂2(0) =
[
0.5 − 2 1 0.75 1.5

]⊤
,

and the initial conditions for the bias estimates are set to

δ̂1(0) =
[
1.5 − 1.5 2 − 2.5 0.5

]⊤
,

δ̂2(0) =
[
0.5 − 0.5 − 2 2 3

]⊤
.

In the first numerical test, the biases are modeled
as piecewise-constant functions taking random values
within [−1, 1] and changing at random instants sepa-
rated by no less than 10s; see Figure 2 below.

0 100 200 300 400
Time [s]

-0.5

0

0.5

1

Fig. 2. Plot of piecewise-constant biases, with random
changes of random amplitude.
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The control gain F = −B⊤M is computed by solving
the algebraic Riccati equation (14) for M , with Q = I2.
This yields

M =

[
1.9123 0.4142

0.4142 1.3522

]
. (48)

The systems’ trajectories are showed in Figure 3—it
is noted that they all achieve dynamic consensus, as
they enter in synchrony with the average oscillator. The
controlled system is robust to the sudden changes in the
biases.

-4

-2

0

2

4

20 40 60 80 100 120 140
-4

-2

0

2

Fig. 3. Oscillators’ trajectories reaching synchronization.
The solid curve in cyan represents the average oscillator.

For completeness, we show the bias estimation errors
in Figure 4 below.

0 100 200 300 400 500
-4

-2

0

2

4

Fig. 4. Estimation errors for the piecewise constant biases
for all agents.

With a second numerical test, we illustrate the ro-
bustness of our consensus controller vis a vis of time-
varying biases. These are of the form δi(t) := ci + δ′i(t),
where ci ∈ R and δ′i(t) is a sinusoidal or cosinusoidal sig-
nal whose amplitude and frequency is varied over time
using the rand( · ) function of Matlab, so Assumption
(A4) holds. See Figure 5. We set Q = 3 I2 and β = 1.7
so the factor of ẽi in (43) be positive and we solve (14)
for M with this new value. This yields[

4.4721 1

1 2.2361

]
.

As per Proposition 9, the bias estimation errors
are uniformly ultimately bounded—see Figure 6. Con-
sequently, the multi-agent system achieves practical
dynamic consensus—see Figure 7.

0 100 200 300 400 500

-0.5

0

0.5

Fig. 5. Time-varying biases present in the state measure-
ments of the system.

0 100 200 300 400 500
-4

-2

0

2

4

Fig. 6. Error in estimation of the time-varying biases as in
Figure 5.

-2

0

2

4

0 25 50 75 100 125 150
Time [s]

-4

-2

0

2

4

Fig. 7. Trajectories of all oscillators exhibiting practical dy-
namic consensus. The solid curve in cyan represents the av-
erage oscillator.

5 Conclusion

In a network containing a directed spanning tree,
agents with linear homogeneous stabilizable dynamics
can reach dynamic consensus, relying on a distributed-
estimation algorithm that, on one hand, consists in cou-
pling the oscillators to the estimators and, on the other,
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aims at making the estimators achieve dynamic consen-
sus themselves. The approach relies on the ability of es-
timating the measurement bias exactly. The latter, in
turn, is guaranteed only in the case that the said bias is
constant. If time-varying, ultimate boundedness is still
guaranteed. That is, the original controller renders the
system robust.

Current research is aimed at extending the framework
to the case of heterogeneous systems; to investigate the
possibility of compensating for the effects of heterogene-
ity via adaptive control and estimation laws. Ensuring
asymptotic dynamic consensus in the presence of time-
varying bias requires further study, notably, regarding a
functional realistic model of the bias dynamics.
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