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91192, Gif-sur-Yvette, France

Abstract: Biased measurements in an inter-networked systems can have severe repercussions
in closed-loop stability of the individual systems and decelerate dynamical consensus among
the interacting agents. Bias in the measurement, even constant, cannot be dealt with ad hoc
techniques of robust control, in the presence of additive perturbations, because the control
gain amplifies the disturbance. One way to account for the effect of measurement bias is then
to rely on adaptive control. This has been done in the literature in the context of individual
systems, but to the best of our knowledge not for multi-agent systems, while ensuring consensus
control. In this paper we provide a model-reference-adaptive-control scheme to ensure dynamic
consensus of generic (stabilizable) linear systems interconnected over directed graphs and under
the influence of constant bias measurements. Our controller ensures global asymptotic stability
of the synchronization manifold and convergence of the bias estimates.

Keywords: Measurement bias, directed graphs, multi-agent systems, linear systems, Lyapunov
stability

1. INTRODUCTION

Accuracy of sensor readings plays a vital role in monitor-
ing and maintenance of desired performance in large-scale
interconnected systems. Consequently, faulty sensor data
may have major repercussions in the closed-loop stability
of the physical systems and may lead to severe accidents-
see incidents (Lombaerts et al., 2011; Norman, 1980).
Short circuited connections, incorrect hardware designs or
improper calibration or even low battery level are some
of the root causes for occurrence of faults in the data
collected by the sensors (Sharma et al., 2007). Sensor
faults are of several types: bias, drift, scaling, noise, hard-
fault, intermittent (Balaban et al., 2009). Bias faults are
persistent offset readings which can affect all the samples
gathered in a particular deployment. Such readings can
exhibit normal patterns and sometimes go undetected.

There are several available works which handle the prob-
lem of consensus of multi-agent systems equipped with sen-
sor whose reading are afflicted with white-noise (Djaidja
et al., 2015; Li and Zhang, 2009; Sun et al., 2013; Wu et al.,
2021). Li and Zhang (2009) state necessary and sufficient
conditions for average consensus for first-order integrator
systems communicating via balanced digraph such that
the control input for each agent uses relative-position
measurements that are corrupted with zero-mean white
noises. Several works have also been proposed for agents
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communicating under noisy communication network be it
for second-order integrator systems (Djaidja et al., 2015)
or for general linear systems (Wu et al., 2021) or systems
with time delay (Sun et al., 2013) to name a few. Also see
(Ni and Li, 2013) which deals with multiplicative noisy
measurements.

Symmetric communication network in undirected graphs
helps in decoupling the sensor biases from the state mea-
surements as seen in (Shi et al., 2020; Sinha et al., 2022). In
reality the influence of one agent with respect its neighbour
is not always reciprocal in nature so decoupling of the bias
from the state variables measurement can turn out to be
a relatively complex problem. On that note, we must take
into account some of the major recent strides made for
directed graphs—see e.g., (Borzone et al., 2019; Cao et al.,
2019; Meng et al., 2020; Sukumar et al., 2018; Tan et al.,
2022; Yan et al., 2019) for handling biased measurements.
Different techniques have been applied to overcome the
hindrance of using biased state measurements that are
offset; for instance, via adaptive control (Meng et al.,
2020), event-triggered control (Cao et al., 2019), adaptive
neural control (Tan et al., 2022), LMI techniques (Yan
et al., 2019), to mention a few.

Besides graphical conditions, individual system dynam-
ics can be really influential in the behaviour of the overall
collaborating agents, be it for double-integrators (Suku-
mar et al., 2018), general linear systems (Meng et al.,
2020), nonlinear system (Borzone et al., 2019), nonlinear
system with non-strict feedback structure (Cao et al.,
2019; Tan et al., 2022), or discrete-time linear system (Yan



et al., 2019). However, in the context of continuous time
systems, (Cao et al., 2019; Meng et al., 2020; Tan et al.,
2022) deals with leader-follower consensus such that the
measurement of the follower state/output variables are
unreliable but the measurement of the leader states is bias-
free. Also, (Borzone et al., 2019) uses a distributed piece-
wise constant impulsive reference. A general connected
directed graph can either be or contain spanning tree so
leader-follower consensus is applicable if the communica-
tion topology is a spanning tree with the root node behav-
ing as a leader. In order to achieve leader-less consensus,
assuming clean measurement of the state-variables of the
root nodes or the nodes which influence the behaviour
of the emergent dynamics is not a feasible option. Even
though Sukumar et al. (2018) tackle the leaderless con-
sensus problem using measurements affected by constant
biases in a more general context, the synchronisation error
is shown to be only uniformly ultimately bounded.

Model reference adaptive control (MRAC) consists in
designing a desired plant model depending on performance
requirements and to design a feedback control law that can
suitably morph the dynamics of the actual plant so that its
input-output properties matches with the reference model
(Ioannou and Sun, 1996). Taking inspiration from classical
MRAC for individual systems, there have been a few works
on distributed model reference adaptive control for cooper-
ative tracking (Liu and Jia, 2012; Peng et al., 2012; Sum-
izaki et al., 2010) and cooperative regulation(Mei et al.,
2021) for different communication topology- whether it is
undirected (Liu and Jia, 2012; Peng et al., 2012; Sumizaki
et al., 2010) or directed (Mei et al., 2021). Application of
MRAC for leader-follower consensus generally portrays the
leader node as the singular reference model (Liu and Jia,
2012; Peng et al., 2012; Sumizaki et al., 2010). Mei et al.
(2021) provide a framework for adaptive leaderless con-
sensus of linear (homogeneous) agents with uncertain dy-
namics using model reference adaptive consensus whereby
each agent has to track the output generated by their
corresponding reference linear model with relative state
measurement as input. Although all of these papers use
MRAC-based techniques to deal with uncertain systems,
none of them address the issue of handling biased rela-
tive position measurements. In continuous time domain,
study of leader-less dynamical consensus among agents
exchanging biased position measurements(even for root
nodes) through unidirectional network is rather limited.
Patre and Joshi (2011) presents a MRAC-based controller
to accomodate for constant sensor bias compensation, but
not in a multi-agent context.

In this paper, we address the leader-less dynamical
consensus problem for general linear systems equipped
with sensor providing state measurement tampered with
unknown bounded biases by using MRAC based consensus
procedure. These agents can communicate over a directed
network that is or may contain a spanning tree. Also, we
enlist the condition under which complete bias estimations
can be ensured. The contributions of this manuscript is as
follows:

(1) We propose an MRAC-based control law for leader-
less consensus among agents which can override the
effect of biased measurements relative to (Liu and Jia,

2012; Mei et al., 2021; Peng et al., 2012; Sumizaki
et al., 2010).

(2) We do not assume that the position sensor deployed
on the leader/root nodes provides bias-free measure-
ments, as in (Cao et al., 2019; Meng et al., 2020; Tan
et al., 2022).

(3) Unlike (Sukumar et al., 2018), where the synchronisa-
tion error is only uniformly ultimately bounded, we
propose conditions under which dynamic consensus
and bias estimation may be achieved asymptotically
in spite the presence of constant biases in the available
measurement.

The remainder of the paper is organised as follows. In
the following section we present the problem formulation,
including our main hypotheses. In Section 3 we provide
our main statements and in Section 4 we present some
illustrative simulation results. The paper is wraped up
with some concluding remarks in Section 5.

2. PROBLEM FORMULATION: SYSTEM SETUP

We consider N ∈ N general linear autonomous systems
of the form,

ẋi = Axi +Bui, ∀ i = {1, 2, · · · , N}, (1)

where xi ∈ Rn, ui ∈ Rp is the control input and A, B are
constant matrices of compatible dimensions. We address
the consensus problem which will essentially guarantee
lim
t→∞

∥xl(t) − xm(t)∥ = 0,∀l ̸= m, l,m ∈ {1, 2, · · · , N}
under the following assumptions:

(A1) the pair (A,B) is stabilizable;
(A2) the matrix A is of full rank;
(A3) the agents interact over a directed network which

has a spanning tree;
(A4) the ith agent has access to its own state and the

state of its neighbours but these measurements are
tampered with unknown constant biases. The agent
in question also has the estimate of its own and
neighbour’s sensor-biases.

For the sake of illustration, we can assume N au-
tonomous vehicles communicating unilaterally such that
each vehicle is equipped with a state sensor which
gives tampered measurements unbeknownst to the user.
Through the wireless communication network, a particular
vehicle has access to the state measurements of its neigh-
bours which are also afflicted with heterogenous biases. As
a result, the relative position data available to each agent
is in turn affected.
In short, the ith agent has access to the measurements
mi = xi = (xi + δi), mj = xj = (xj + δj), j ∈ Ni where
Ni represents the index set for the neighbours of the ith

agent, so the relative state data available is of the form
mij = xi−xj = ((xi+δi)−(xj+δj)) = (xi−xj)+(δi−δj)
for all i ̸= j, j ∈ Ni.

The intensity of the one-way interaction is captured
by the elements aij ≥ 0 such that aij > 0 if ith agent
receives information from the jth agent else aij = 0. As
is customary, it is assumed that there are no self loops,
i.e., aii = 0. Hence, the structure of the communication
graph G is portrayed by a so-called Laplacian matrix
L = [lij ] ∈ RN×N , whose elements are



lii =
∑
j∈Ni

aij , lij = −aij . (2)

Naturally the Laplacian matrix L of a connected directed
network is almost always non-symmetric. This hinders the
construction of suitable Lyapunov functions to study the
stability of such networked systems. In this paper we rely
on two technical Lemmata that are recalled below for the
sake of completeness.

Lemma 1. (Ren and Beard, 2005, 2008) If a directed
network has a directed spanning tree, then the Laplacian
matrix L = [lij ] ∈ RN×N has a singular zero eigenvalue
and N−1 eigenvalues have strictly positive real part. That
is,

σ1(L) = 0, ℜ{σk(L)} > 0, k = {2, · · · , N}.

The right eigenvector of the zero eigenvalue is given by

1N =
[
1 1 · · · 1

]⊤
and the left eigenvector vl satisfies the

properties
∑N

k=1 vlk = 1 and v⊤l L = 0⊤N .

Lemma 2. (Panteley et al., 2020) Let us consider a di-
rected graph G of order N containing a spanning tree
and its Laplacian matrix is L ∈ RN×N . Then, for any
QL ∈ RN×N , such that QL = Q⊤

L > 0, and α ∈ R+, there
exists a matrix PL ∈ RN×N , such that PL = P⊤

L > 0 and

PLL+ L⊤PL = QL − α[PL1Nv⊤l + vl1
⊤
NPL]. (3)

In the following section, we present our distributed
MRAC-based controller, which borrows inspiration from
(Mei et al., 2021), a recent work devoted to leaderless
consensus among uncertain systems.

3. MAIN RESULTS: ROBUST CONSENSUS SCHEME

The control strategy relies on the construction of a
reference model that can act as a yardstick for each of
the interacting agent to emulate. Each of these reference
models is designed to synchronise with each other, using
its own “measurements” (computed data), and the biased
measurements of interconnected neighbours. In addition,
the reference model dynamics includes a bias compensa-
tion, computed using an adaptation law. Then, dynamic
consensus of all agents is achieved provided their respective
reference models synchronise.

We introduce N reference-models given by

˙̂xi =Ax̂i + ϵBF
∑
j∈Ni

aij(xi − xj)

− ϵBF
∑
j∈Ni

aij(δ̂i − δ̂j)

=Ax̂i + ϵBF
∑
j∈Ni

aij((xi + δ̃i)− (xj + δ̃j))

=Ax̂i + ϵBF
∑
j∈Ni

aij(xi − xj) + ϵBF
∑
j∈Ni

aij(δ̃i − δ̃j)

(4)

for some coupling weight ϵ ∈ R+, and δ̃i = δi− δ̂i where δi
is a constant measurement bias associated with the state
of the ith agent and δ̂i is its corresponding estimate.

In light with the control strategy, the synchronisation
objective is split into three goals that need to be satisfied

to ensure dynamic consensus among the interacting agents
in the presence of measurement bias. These are:

(CO1) lim
t→∞

∥xi(t)− x̂i(t)∥ = 0,∀i ∈ {1, · · · , N}

(CO2) lim
t→∞

∥δ̃i(t)∥ = 0,∀i ∈ {1, · · · , N}

(CO3) lim
t→∞

∥x̂i(t)− x̂j(t)∥ = 0, i ̸= j, i, j ∈ {1, · · · , N}.

Now, the decentralised practical tracking error available
to the ith agent is

ẽi = xi − x̂i − δ̂i = (xi + δi)− x̂i − δ̂i = xi − x̂i + δ̃i.
(5)

Now, the total derivative of ẽi along (1), (4) yields

˙̃ei =Axi +Bui −Ax̂i − ϵBF
∑
j∈Ni

aij(xi − xj)

− ϵBF
∑
j∈Ni

aij(δ̃i − δ̃j) +
˙̃
δi

=Aẽi −Aδ̃i +Bui − ϵBF
∑
j∈Ni

aij(xi − xj)

− ϵBF
∑
j∈Ni

aij(δ̃i − δ̃j) +
˙̃
δi. (6)

Naturally, we want the practical tracking error ẽi to
gradually decrease. With this intention, we choose the
distributed feedback control input ui as

ui =ϵF
∑
j∈Ni

aij(xi − xj)− ϵF
∑
j∈Ni

aij(δ̂i − δ̂j) + F ẽi

=ϵF
∑
j∈Ni

aij(xi − xj) + ϵF
∑
j∈Ni

aij(δ̃i − δ̃j) + F ẽi,

(7)

where F ∈ Rp×n, is given by F = −B⊤M is the feedback
matrix such that M = M⊤ > 0 solves the Algebraic
Riccati equation given by

MA+A⊤M −MBB⊤M = −Q, Q = Q⊤ > 0. (8)

As explained, the model-reference-based estimator (4)
is complemented by an adaptive estimation law given by

˙̂
δi = −(M−1A⊤M)ẽi. (9)

Since the bias estimate for the bias associated with the
measurements of the ith sensor depends on the correspond-
ing available tracking error ẽi, so we can surmise that the
assigned dynamics is distributed.

Proposition 3. Consider N identical collaborating linear
systems as in (1), equipped with sensors whose readings
are offset by constant unknown biases, and satisfying
Assumptions (A1)–(A4). Consider, in addition, the dis-
tributed consensus control input given by (7) with ϵ ≥
σmax(PL), where PL solves (3) for QL = IN , the feedback
matrix F = −B⊤M , where M solves (8), and the bias
estimation law (9). Then, all the agents reach dynamic
consensus and, moreover, the synchronization manifold is
globally asymptotically stable.



Proof: The proof consists in showing that the interme-
diary objectives (CO1)–(CO3) are met. To that end, we
start by writing the closed-loop equations. For the tracking
errors ẽi, we have:

˙̃ei = Aẽi −Aδ̃i +B

(
ϵF

∑
j∈Ni

aij(xi − xj)

+ ϵF
∑
j∈Ni

aij(δ̃i − δ̃j) + F ẽi

)
− ϵBF

∑
j∈Ni

aij(xi − xj)

− ϵBF
∑
j∈Ni

aij(δ̃i − δ̃j) +
˙̃
δi

= Aẽi −Aδ̃i +BFẽi +
˙̃
δi

= (A+BF )ẽi −Aδ̃i +
˙̃
δi. (10)

In compact form, (9) and (10) can be written as

˙̃e = (IN ⊗ (A+BF ))ẽ− (IN ⊗A)δ̃ +
˙̃
δ (11a)

˙̃
δ = (IN ⊗ (M−1A⊤M))ẽ. (11b)

The above dynamical system admits the Lyapunov
function candidate

V (ẽ, δ̃) = ẽ⊤(IN ⊗M)ẽ+ δ̃⊤(IN ⊗M)δ̃,

which is both positive definite and decrescent in the space
of the practical tracking error ẽ ∈ RNn and error in
estimation of the biases δ̃ ∈ RNn. Furthermore, its time-
derivative along the trajectories of (11a)-(11b) yields

V̇ (ẽ, δ̃) = 2ẽ⊤(IN ⊗M)
(
(IN ⊗ (A+BF ))ẽ− (IN ⊗A)δ̃

+
˙̃
δ
)
+ 2δ̃⊤(IN ⊗M)

(
(IN ⊗ (M−1A⊤M))ẽ

)
= ẽ⊤(IN ⊗ (MA+A⊤M − 2MBB⊤M))ẽ

− 2ẽ⊤(IN ⊗ (MA))δ̃ + 2ẽ⊤(IN ⊗ (A⊤M))ẽ

+ 2δ̃⊤(IN ⊗ (A⊤M))ẽ

= 2ẽ⊤(IN ⊗ (MA+A⊤M −MBB⊤M))ẽ

= − 2ẽ⊤(IN ⊗Q)ẽ ≤ 0. (12)

We see that V̇ is negative definite for all ẽ ∈ RNn and
there does not exist any other positive semi-trajectory
contained in the set {V̇ = 0} than the origin. In other
words, setting ẽ = 0 in (11) we see that, under As-

sumption (A2), the only solution is δ̃ = 0, so the largest

invariant set contained in {V̇ = 0} is the origin. Global
asymptotic stability follows after Barbashin-Krasovskii’s
theorem (Barbashin and Krasovskĭı, 1952), also (wrongly)
known as LaSalle’s (Loŕıa and Panteley, 2017).

Now, to prove that the last control objective, (CO3)
is met, we will check the resulting compact form of the
reference systems as ẽ, δ̃ → 0Nn

˙̂x = (IN ⊗A)x̂− ϵ(L ⊗BB⊤M)x− ϵ(L ⊗BB⊤M)δ̃

= (IN ⊗A)x̂− ϵ(L ⊗BB⊤M)x̂ (13)

Using Proposition 1 in (Dutta et al., 2022), it can be shown
that the reference models in (13) too reaches consensus
among themselves provided the Assumptions (A1)–(A4)
hold true and ϵ ≥ σmax(PL) where PL solves (3) for some

QL = Q⊤
L > 0. Following (Panteley and Loŕıa, 2017),

we can apply a linear transformation that can map the
reference systems into dichotomous system: mean-field/
emergent system which is the weighted average of all the
reference systems and synchronisation error system which
dictates the distance of all the individual reference systems
from the mean-field system. In particular,[

x̂m

sx̂

]
=

[
(v⊤l ⊗ In)x̂

((IN − 1Nv⊤l )⊗ In)x̂

]
(14)

The directional derivative of (14) along (13) is given by[
˙̂xm

ṡx̂

]
=

[
Ax̂m

((IN ⊗A)− ϵ(L ⊗BB⊤M))sx̂

]
(15)

where we have used the general properties of the Laplacian
matrix L and the left eigenvector vl of the zero eigenvalue.
In other words, this transformation converts the consensus
problem of the reference models into stabilization problem
of the system with respect to the manifold S = {sx̂ ∈
RNn|sx̂ = 0Nn}. The exponential stability of S can be
proved by a positive definite and decrescent Lyapunov
function V (sx̂) = s⊤x̂ (PL ⊗ M)sx̂. The time derivative of
V (sx̂) can be summarised in few steps as follows,

V̇ (sx̂) = s⊤x̂ (PL ⊗ (MA+A⊤M)

− ϵ(PLL+ L⊤PL)⊗ (MBB⊤M))sx̂. (16)

Next, we replace (3) in (16) and set QL = IN . Then
we use v⊤l 1N = 1 to see that α(PL1Nv⊤l ⊗ In)sx̂ =
α(PL1Nv⊤l ⊗ In)((IN − 1Nv⊤l ) ⊗ In)x̂ = 0Nn and apply
the orthogonal decomposition of PL = P⊤

L > 0 to get
PL = TΛT⊤ where T ∈ RN×N is an orthogonal matrix.
Thus, from (16) we obtain that

V̇ (sx̂) = pMs⊤x̂ (TT
⊤ ⊗ (MA+A⊤M − ϵ

pM
MBB⊤M))sx̂.

where pmI ≤ PL ≤ pMI. For ϵ ≥ pM , V̇ (sx̂) is upper
bounded as

V̇ (sx̂) ≤ pMs⊤x̂ (IN ⊗ (MA+A⊤M −MBB⊤M))sx̂

≤ − pMs⊤x̂ (IN ⊗Q)sx̂ < 0 (17)

where Q is defined in (8). This implies the global expo-
nential stability of manifold S. Since sx̂ = 0 implies that
x̂i = x̂j = x̂m for all i, j ≤ N , it follows that the reference
models reach dynamic consensus, that is, they synchronise
with the mean-field system ˙̂xm = Ax̂m. The statement
follows.

4. SIMULATION RESULTS

For the purpose of illustration we provide some numeri-
cal simulation results generated using Matlab R2021a, for
the case-study of five harmonic oscillators, modelled as in
(1) with

A =

[
0 1
−1 0

]
, B =

[
0
1

]
. (18)

Clearly, the pair (A,B) is stabilizable and A is a full rank
matrix, so Assumptions (A1) and (A2) hold.



The initial conditions assigned for the five agents is

x1(0) = x̂1(0) =
[
3 −1 1.5 −1.5 2

]⊤
,

x2(0) = x̂2(0) =
[
2 −2 0.5 −0.5 2.5

]⊤
.

Additionally, the initial conditions for bias estimates are

δ̂1(0) =
[
3 −1 1.5 −1.5 2

]⊤
,

δ̂2(0) =
[
1 −2 0.5 −0.5 2.5

]
.

The constant unknown biases are taken all different,
defined as

δi =

[
πi

10

πi

12

]⊤
, i ∈ {1, · · · , 5}. (19)

Then, to compute the feedback matrix F , we use a
matrix M ∈ R2×2 which solves the algebraic Riccati
equation (8) for Q = I2. The resulting matrix M is

M =

[
1.9123 0.4142
0.4142 1.3522

]
. (20)

The case-study involves five harmonic oscillators inter-
connected in a directed spanning tree graph as the one
shown in Figure 1, so Assumption (A3) holds.

x1

x2 x3

x4 x5

L =


0 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0
0 0 −1 1 0
0 0 −1 0 1


Fig. 1. A spanning-tree graph and its corresponding Laplacian
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Fig. 2. Responses of five harmonic oscillators in full synchronization

The simulation results are depicted in Figures 2–4. The
blue plot corresponds to that of the first agent, which
coincides with the mean-field dynamics in this case. As
expected, it can be seen that state variables x1 and
x2 for the remaining four agents syncronise with that
of the mean-field dynamics—see Figure 2. In turn, the
responses of the reference models, which also achieve
dynamic consensus, is depicted in Figure 3. Finally, in
Figure 4, we show the bias estimation errors, which clearly
converge to zero asymptotically.
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Fig. 3. Responses of the five corresponding reference models in full
synchronization

0 5 10 15 20 25 30
-4

-2

0

2

4

6

Fig. 4. Bias estimation errors for all five agents

5. CONCLUSION

In network with unilateral exchange of biased mea-
surements, agents with linear homogeneous stabilizable
dynamics can still reach dynamic consensus. That is, their
motions may be controlled to synchronise with that of an
average dynamical system. This may be achieved using
a dynamic distributed consensus controller that borrows
inspiration from model-reference adaptive control. Asymp-
totic decay of constant bias estimation error can ensure
that each of the individual agent tracks its correspond-
ing reference systems which in turn can reach consensus
among themselves. This work albeit restricted to interac-
tion of linear systems through a static graph, can provide
a gateway for handling even more complex scenarios: such
a linear systems exchanging biased data through time
varying graph or agents with generic nonlinear dynamics
or systems with time delay. Such scenarios are currently
under study.
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