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) Every 1-cycle cell complex is realizable as a path cycle and (3) Every 1-cycle is realizable as a free ring (this reverbates back to W. Dyke's 1882 work on the derivation of free groups from circuits on simply connected polygons). Inspired by Lupton-Oprea-Scoville digital fundamental groups, a number of conjectures about the geometric realization of free path rings as structures in digital images and as vector fields are given.

In this paper, Herstein rings [START_REF] Herstein | Topics in algebra[END_REF] are extended to include free rings, defined in Def. 9 with respect to a pair of homomorphisms on a free group.

From the beginning, geometry has played a key role in the introduction of free groups. A free group G(β, +) is nonempty finite set G of n elements equipped with binary operation (typically written as a +) and a basis β ⊂ G so that every member a ∈ G can be written as a linear combination the generators g ∈ β, i.e., a = g∈β kg, k mod n. Free groups were introduced by W. Dyck in 1882 as a natural biproduct of simply connected polygons P in which every vertex a ∈ P can be reached by traversing the edges between a and a distinguished vertex g ∈ P [START_REF] Dycke | Gruppentheoretischer studien[END_REF]. Later, J.H.C. Whitehead defined free groups in terms of circuits in graphs in which every every vertex can be reached in series of moves from a generator vertex [START_REF] Whitehead | On certain sets of elements in a free group[END_REF] and [START_REF]On equivalent sets of elements in a free group[END_REF]Theorem 4,p. 799] in which circuits on connected surfaces also have corresponding free groups. Polygons are simply connected, provided the polygon vertices are in a sequence of edges with no self-intersections (see Fig. 2 and Fig. 8 for examples).

This paper also introduces free path rings R(β, +, •), defined in terms of a pair of homomorphisms on a free path group (see Def. 11). Briefly, a free path group is a free group G(β, +) with a basis β ⊂ G that is a collection of paths in a path cycle and there is a homomorphism f : X × β → G. A path cycle is a collection of paths that are continuous maps h : [0, 1] → X on a space X in which the vertexes h(0), h [START_REF] Cohn | Free ideal rings and localization in general rings[END_REF] are simply connected via h ∈ G and there is no end vertex [START_REF]Path triangulation, cycles and good covers on planar cell complexes. extension of J.H.C. Whitehead's homotopy system geometric realization and E.C. Zeeman's collapsible cone theorems[END_REF], [START_REF] Peters | Descriptive proximal homotopy. Properties and relations[END_REF]App. A].

Remark 1. Applications.

Free path rings provide a topological alternative to Cohn free rings [START_REF] Cohn | Free ideal rings and localization in general rings[END_REF], useful in a number of applications, e.g., in simplified presentation of Dyck polygon cycles [START_REF] Peters | Dyck fundamental group on arcwise-connected polygon cycles[END_REF] as well as boundary cycles in maximal nucleus clusters (MNCs) of triangles covering objects in optical flow in the foreground of triangulated video frames [2, §2, p. 4].

Consideration of free path rings leads to a straightforward extension of J.J. Rotman's Free Group Theorem. For the extension, see Theorem 5.

Theorem 1. [19, p. 237] If X is a set, then there exists a group F that is free on X.

Preliminaries

This section briefly visits basic structures underlying free ring presentations of path cycles and path nerve complexes. Recall 

Remark 2. Paths over Temporal Unit Intervals.

In application, it is often appropriate to consider paths over a temporal unit interval. In that case, the variable t ∈ I would be conveniently thought of as a clock tick and

grad h h(0) = ⃗ v 1 h(1) = ⃗ v 2 h Figure 1. Sample path gradient h(t) k(t ′ ) ℓ(t ′′ ) K h(0) := ℓ 0 := v 0 , t h = 0, t ℓ = 1 h(1) = k(0) := v 1 , t h = 1, t k = 0 k(1) = ℓ i (0) := v 2 , t k = 1, t ℓ = 0 k h ℓ [h, k, ℓ] △ E Figure 2. [h, k, ℓ] △ E (Curviliner path triangle) → |[h, k, ℓ] △ E| (geometric realization of [h, k, ℓ] △ E
as a curviliner triangle) on a space K. During its construction over a temporal interval, h(t), k(t ′ ), ℓ(t ′′ ) occur at times t, t ′ , t ′′ , respectively.

a path h(t) ∈ R for t ∈ [0, 1

] would depend on not only the set of points passed through by h but also the time at which a point

h(t) is visited [11, §VII.1, p. 174], i.e., h[0, 1] → X. t ∈ [0, 1], with h(t) ∈ 0 = start time, t = elapsed time, 1 =end time [0, . . . , t, . . . , 1] ,
and h(t) is an event that occurs at time t. For example, the trajectory of a moving billiard ball E traces a path h(t) with an initial time at t = 0 when the billiard starts moving, visiting a sequence of points (0-cells, or vertexes) as it travels on some surface, and end time t = 1, when E reaches an end point.

Paths provide a simple means of presenting the flow of photons in an optical flow.

Definition 2. (Optical Flow).

An optical flow is a vector field containing vectors that are photons and in which there is a circulation of light (varying directional flow of photons) reflected from a curved surface.

Example 1. (Gradient of a planar path).

Let h be a path that presents an optical flow. The gradient grad(h) describes a small movement for a vector at time t along path h, defined by

grad(h) = ∂h ∂y i + ∂h ∂x j + ∂h ∂t k.
A sample path gradient at time t is shown in Fig. 1.

In an optical flow, the gradient of the points of light varies continuously, depending on the time of day in a terrestial setting and the varying angle of reflection of the light.

A collection of path-connected endpoints on a sequence of three paths with gradients varying over time form a temporal path triangle, which is also an example of a path cycle.

Example 2. (Temporal Path Triangle).

A sample path triangle (also called a temporal path triangle) constucted over a temporal interval is shown in Fig. 2. This path triangle models the paths h 1 , h 2 , h 3 traced by a moving object such as a billiard ball during its movements before it reaches a rest state h 3 [START_REF] Cohn | Free ideal rings and localization in general rings[END_REF]. Temporal path triangles can be found in triangulated video frames [START_REF] Haider | Temporal proximities: Self-similar temporally close shapes[END_REF] in which the changing triangles on triangulated video frame shapes result from the optical flow recorded in the video.

Definition 3. Path Cycle [15, App. A].

A path cycle hCycE in a CW space K is a sequence of continuous maps {h i }

(n-1)[n] i=0 , h i : I → K, [n] = mod n, with h 0 (0) = h n[n] (0) = v 0 ∈ K, h n-1[n] (1) = v n-1[n] ∈ K. Given h i ∈ {h i } (n-1)[n] i=0
, g = h i (0), a basis element in hCycE, so that v h i+k (0) walks forward k vertexes from g to reach h i+k (0)

:= kg = kh i (0) = h i+k (0) ∈ K, k ∈ Z. hi+k (0) hi+k (0) walks back k vertexes from h i+k (0) to reach h i (0) := h (i+k)-k (0) = h i (0). + : K × K → K, is defined by +(v, v ′ ) = move to v ′ via h i (0) = v, h i+k (v ′ ) +(kg, k ′ g) = kg + k ′ g ∈ hCycE. +(v, 0) = zero moves from v, pseudo-element 0 ∈ hCycE +(kg, 0) = kg + k ′ 0 = kg = v ∈ hCycE. +(v, -v) = move back to v from v +(kg, -kg) = (k -k)g = 0g = g + 0 = v ∈ hCycE. +(v, -v ′ ) = move back to v ′′ from v ∈ hCycE +(kg, -k ′ g) = (k -k ′ )g = k ′′′ g ∈ hCycE.

Lemma 1. Let (hCycE, +) be a path cycle hCycE equipped with move +. hCycE has a basis.

Proof. From Def. 3, hCycE has at least one vertex g so that every vertex v ∈ hCycE is reachable after k moves from g. Then g is a generator element of hCycE. Hence, there is a subset β ⊂ hCycE with g ∈ β such that |β| ≥ 1, i.e., β is a basis for hCycE.

Next, observe1 that a path cycle with move + is a groupoid.

Lemma 2. Let (hCycE, +) be a path cycle hCycE equipped with move +. The

structure (hCycE, +) is a free groupoid. Proof. From Lemma 1, hCycE has a basis β ⊂ hCycE. Let g ∈ β. From Def. 3, + is a binary operation, i.e., every +(v, v ′ ) = kg + k ′ g ∈ hCycE for v, v ′ ∈ hCycE.
Hence, (hCycE, +) is a free groupoid.

A path cycle E free groupoid with basis β is denoted by hCycE(β, +).

Lemma 3. Let hCycE(β, +) be a path cycle equipped with basis β and move +. Then hCycE(β, +) is a free semigroup.

Proof. From Lemma 2, the structure hCycE(β, +) is a free groupoid with basis

β ⊂ hCycE. Let +(v, v ′ ) = kg + k ′ g for v, v ′ ∈ G, g ∈ β. Then v = kg, v ′ = k ′ g, v ′′ = kk ′′ g for v, v ′ , v ′′ ∈ hCycE, b ∈ β +((v, v ′ ), v ′′ ) = (kg + k ′ g) + k ′′ g = kg + (k ′ g + k ′′ g) = (v, (v ′ , v ′′ )).
Consequently, the operation + is associative. Hence, (hCycE, +) is a free semigroup.

Theorem 2. hCycE(β, +) is a free group.

Proof. From Lemma 3, the structure hCycE(β, +) is a free semigroup with basis β. From Def. 3, for a path cycle hCycE, each element v := kg ∈ hCycE has an inverse, namely, the -kg := v ∈ hCycE. Also, from Def. 3, hCycE has an identity element, namely, 0. Hence, hCycE(β, +) is a free group.

Remark 3. Order of a path cycle.

A k-path cycle has order k and contains k paths.

Example 3. Path cycle h E in Fig. 3 is a 3-path cycle (its order is 3) and path cycle hCycE ′ in Fig. 6 is a 9-path cycle (its order is 9).

Example 4. Path cycle h E in Fig. 4 is a 4-path cycle (its order is 3) and path cycle hCycE ′ in Fig. 6 is a 9-path cycle (its order is 9).

Definition 4. 1-Cycle. In a CW space K [23], a 1-cycle E (denoted by cycE) in a CW space K is a collection of path-connected vertexes (0-cells) on edges (1-cells) attached to each other with no end vertex.

Definition 5. (Path-Connected).

A pair of 0-cells v, v ′ in a cell complex K is path-connected, provided there is a sequence of paths h 1 , . . . , h k , starting with h 1 (0) := v and ending with

h k-1 (1) = h k (0) := v ′ .

Lemma 4. Every path has a geometric realization as an edge.

Proof. From Def. 1, a path h : I → X includes all points h(t), t ∈ [0, 1], i.e., we have the closed set of points

{h(0), . . . , h(t), . . . , h(1)} , for 0 ≤ t ≤ 1, which is geometrically realized as an edge |h| = > h(0)h(1) with h(t) ∈ int(|h|), t ∈ (0, 1) (interior of edge |h|).

Remark 4. (Significance of Lemma 4).

As a result of Lemma 4, the geometric realization of every path as an edge (a 1cell) indicates that a path also has a realization as a vector field. Recall that S. Lefschetz [7,p. 158] introduces a more general form of a Whiteadean 1-cell with an arc, which is an edge that can be either curved or straight. From an application perspective, this is significant, since we can then view a Feynman path [4, p. xiv] (a trace of a trajectory of a particle) having a geometric realization as a Lefschetz arc in which each point has both magnitude and direction, i.e., a Feynman path has a realization as a vector field. Proof.

h 1 (1) := h 2 (0) := v 2 h 1 (t) := p h 2 (t) := q h 2 (1) := h 3 (0) := v 3 h 1 (0) := h 3 (1) := v 1 h 3 (t) := r h △ E → v 1 p v 2 q v 3 r K |h △ E|
1 o : Let h E be a 3-path cycle containing paths h, h ′ , h ′′ . From Lemma 4, the geometric realization of a path h is a 1-cell (edge) |h| in a cell complex. Attach the three paths h, h ′ , h ′′ together so that

h ′ (0) := h(1) defines edge > h(1), h ′ (0) h ′′ (0) := h ′ (1) defines edge > h ′ (1), h ′′ (0) h(0) := h ′′ (1) defines edge > h ′′ (1), h(0).
From Def. 5, the vertexes are path-connected in this sequence of three edges (call it E). Hence, E is a 1-cycle that is a triangle, which is the geometric realization of h E (denoted by |h E|).

2 o : Replace h E in 1 o with a 4-path cycle containing paths h, h ′ , h ′′ , h ′′′ and the desired result follows.

3 o : Recall that a planar polytope is a convex hull that is a finite collection of intersecting half spaces [START_REF] Ziegler | Lectures on polytopes[END_REF]. Let hCycE be a k-path cycle. Replace h E in 1 o with a 4-path cycle containing paths h 1 , . . . , h k . From Lemma 4, the geometric realization of a path h is a 1-cell (edge). Assume that the geometric realization each path h ∈ hCycEis a straight edge on a half plane. Since each h i (1) = h i+1 (0) for every h i , h i+1 ∈ hCycE, the pairs of paths with geometrically-realized edges with common vertexes have geometric realizations as interseting half planes. Replace h E in 1 o with the k-path cycle hCycE and the desired result follows. 

h 1 h 3 h 2 h 4 h 1 (1) := h 2 (0) := v 1 h 2 (1) := h 3 (0) := v 2 h 3 (1) := h 4 (0) := v 3 h 1 (0) := h 4 (1) := v 0 h E → v 0 v 1 v 2 v 3 K |h E|

Free Rings

This section introduces free rings, which are an extension of free groups. Recall (3) There is an element 0 ∈ R so that a + 0 ∈ R for all a ∈ R.

(4) For every a ∈ R, there is an -a ∈ R so that a + (-a) = 0.

(5 

) a • b ∈ R. (6) a • (b + c) = a • b + a • c and (7) (b + c) • a = b • a + c • a.
: X × β → G defined by f (a • b) = ka • k ′ b, a, b ∈ X for every subset X in G.

Theorem 4. [13](Path Cycle Free Group Presentation).

Every path cycle in a CW space has a free group presentation.

For the structure of a path cycle, see Def. 3. Let hCycE be a path cycle. Each a ∈ G can be written as kg for g ∈ β, k ∈ Z. Also, let f : G → G, a homomorphism defined by

f (a + b) = f (a) + f (b) = kg + k ′ g = a + b = (k + k ′ )g = k ′′ g, for a, b ∈ G. Hence, from Def.

8, hCycE has a free group presentation.

A free ring R(β, +, •), introduced in this paper, is the counterpart of a free group G(β, +) with basis beta (see, e.g., [19, p. 237, 1955 edtion]. Unlike a free group, a free ring R is defined in terms of a pair of homomorphisms on a free group.

Definition 9. Free Ring.

Let G(β, +) be a free group with basis β ⊂ G and X be a nonempty set X ⊆ G, generator g ∈ β, a, b ∈ X. Then a ring R(β, +, •) is free on G, provided every map f : X × β → R has a corresponding pair of unique homomorphisms α : X × β → R with respect to + and γ : X × β → R with respect to •, kmod n ∈ Z + , defined by (X,β) G(β,+) (X,β) R (β,+,• 

X ⊆ R, β ⊂ R. α(a, g) = kg ∈ R, γ(a, b) = k ′ g ∈ R, k ∈ Z. α(a + b, g) = α(a, g) + α(b, g) ∈ R for all a, b ∈ X. γ(a, g) = kg, k ∈ Z. γ(a • b) = γ(a, g) • γ(b.g) ∈ R for all a, b ∈ X.
= kg + k ′ g from Def. 9, for all a, b ∈ X, k, k ′ ∈ Z = (k + k ′ )g = k ′′ g ∈ R, k ′′ ∈ Z. γ(a • b) = γ(a, g) • γ(b.g) from Def. 9, = kg • k ′ g from Def. 9, for all a, b ∈ X, k, k ′ ∈ Z = (k • k ′ )g = k ′′′ g ∈ R, k ′′′ ∈ Z.

Free Path Rings

Free path rings are free ring structures built on free path groups.

Definition 10. Free Path Group.

A group G(β, +) with basis set β ⊆ G (a collection of paths in a path cycle hCycE) is a free path group on G, provided there is a homomorphism f :

X × β → G defined by f (h + h ′ ) = kg + k ′ g ∈ G, X ⊂ hCycE ⊂ G ⊆ hCycE, h, h ′ ∈ X for every nonvoid set of paths X ⊆ G.
Free path groups lead to free path rings, each with a structure that is similar to an ordinary free ring.

Definition 11. Free Path Ring.

A ring R(β, +, •) on a free path group G(β, +) with basis set β ⊆ G is a path free ring on G, provided there is a pair of homomorphisms α :

X × β → R defined for + by α(h + h ′ ) = kg + k ′ g ∈ R and γ : X × β → R defined for + by α(h • h ′ ) = kg • k ′ g ∈ R, X ⊂ hCycE ⊂ R, for every pair of paths h, h ′ ∈ X for X ⊆ G, g ∈ β.
In either case, a reverse move is possible, i.e.,

α(h -h ′ ) = k ′′ reverse moves from h(0) to reach h ′′ (0) kg + (-k ′ )g = (k -k ′ )g = k ′′ g = k ′′ h(0) = h ′′ (0). α(h • h ′ ) = k ′′′ reverse moves from h(0) to reach h ′′′ (0) kg • (-k ′ )g = (k • k ′ )g = k ′′′ g = k ′′′ h(0) = h ′′′ (0).
It is also the case that a free path ring has a zero move (also called the null move), serving as an identity in a free path Ring, which is possible for both + and •. 

α(a + b, g) = α(a, g) + α(b, g) ∈ hRngR from Def. 9 = kg + k ′ g from Def. 9, for all a, b ∈ X, k, k ′ ∈ Z = (k + k ′ )g = k ′′ g ∈ R, k ′′ mod n ∈ Z + . γ(a • b, g) = γ(a, g) • γ(b, g)hRngR from Def. 9, = kg • k ′ g from Def. 9, for all a, b ∈ X, k, k ′ ∈ Z = (k • k ′ )g = k ′′′ g ∈ R, k ′′′ mod n ∈ Z + . v 1 v 0 v 5 = v ′ 0 = g ∈ β ⊂ R v ′ j hCycE hCycE ′ v i v 2 v 3 v 4 v ′ 1 Figure 8. Free path ring R ({hCycE, hCycE ′ : hCycE ∩ hCycE ′ ̸ = ∅} , +, •)
on a pair of intersecting path cycles hCycE, hCycE ′ . 8. In this ring, the +, • operations are defined by

Example 11. The pair of path cycles hCycE, hCycE

′ with β = hCycE ∩ hCycE ′ = {h 5 (0) = v ′ 0 = g} represent a free path ring R(β, +, •) in Fig.
h, h ′ ∈ hCycE ∪ hCycE ′ , β = hCycE ∩ hCycE ′ = {h 5 (0) = v ′ 0 = g} basis kh(0) = k moves from h(0) to reach h ′ (0) kg = h ′ (0). +(h, h ′ ) = k ′′ moves from h(0) to reach h ′′ (0) kg + k ′ g = (k + k ′ )g = k ′′ g = k ′′ h(0) = h ′′ (0). •(h, h ′ ) = k ′′′ moves from h(0) to reach h ′′′ (0) kg • k ′ g = (k • k ′ )g = k ′′′ g = k ′′′ h(0) : k ′′ ≤ k ′′ , h ′′ (0) ≤ h ′′′ (0).
In effect, •(h, h ′ ) results in a longer walk that starts at h(0) than the walk +(h, h ′ ) that starts at h(0). This is a distinguishing property of the • ring homomorphism.

Lemma 5. Every path cycle is realizable as a free path group.

Proof. Let hCycE be a path cycle, paths h, h ′ ∈ hCycE, β ⊂ hCycE, g = h(0) ∈ β. From Def. 10, we can define a homomorphism

+(h, h ′ ) = kg + k ′ g = (k + k ′ )g = k ′′ g = k ′′ h(0) ∈ hCycE.
In addition, every move +(h, h ′ ) has a reverse move -kg, i.e.. +(h,

h ′ ) = kg + (-k ′ g) = kg -k ′ g = (k -k ′ )g = k ′′ g = k ′′′ h(0) ∈ hCycE.
With k = 0, we obtain a zero move, which is the identity or null move in hCycE, i.e., +(h, h ′ ) = kg + (0g) = kg + 0 = kg = kh(0) ∈ hCycE. Hence, we obtain hCycE(β, +), a free path group on hCycE. Lemma 6. Every path cycle is realizable as a free path ring.

Proof. Let hCycE be a path cycle. From Lemma 5, hCycE is realizable as a free path group G(β, +) with basis β and homomorphism +. Similarly, hCycE is realizable as a free path group G(β, +, •) with basis β and homomorphism •. Hence, G is a free path ring.

It is a straightforward step from free path groups to free path rings.

Theorem 5. If X is a path cycle, then there exists a free path ring R that is free on X.

Proof. Let X be a path cycle. From Lemma 5, X is realizable as a free path group. In addition, from Lemma 6, X is realizable as a free path ring. Replace G(β, +) in Def. 6 with X and the desired result follows.

Theorem 6. Every path cycle is realizable as a 1-cycle.

Proof. From Lemma 4, the geometric realization of a path h is a 1-cell (edge) |h| in a cell complex. Then each of the paths in a path cycle has a geometric realization as an edge. Hence, from Def. 4 (1-cycle), a path cycle has a geometric realization as a 1-cycle.

The converse of Theorem 6 also holds.

Lemma 7. Every 1-cycle cell complex X in a CW space is realizable as a path cycle.

Proof. Let cycE be a 1-cycle on a space X. Let a, b be vertices for an edge > ab in cycE. Then define the path

h : I → X. h(0) = a. h(1) = b.
Hence, every 1-cycle in space X is realizable as a path cycle.

From an applications perspective, there is interest in the derivation of vector fields from path cycles. The importance of vector fields in algebraic topology was first pointed out by S. Lefschetz in 1949 [7, p. 17]. In an n-dimensional space X, recall that a vector field is a mapping F : 2 X → 2 X so that, for every vertex p ∈ 2 X (collection of vertexes), p has magnitude and direction, i.e., F (E ∈ 2 X ) is a collection vectors in a vector space.

Theorem 7. Every path cycle is realizable as a vector field.

Proof. Let hCycE be a path cycle. From Theorem 6, hCycE is realizable as a 1-cycle cycE. Let f : 2 X → 2 X be a mapping on a space X and let hCycE ∈ 2 X . Then, from Theorem 6, f (hCycE) = cycE, which is a collection path-connected vertexes p ∈ cycE for every h(t) ∈ hCycE. Each vertex p has a location, magnitude and direction in space R 4 . Hence, cycE is a vector field. Definition 12. A 1-cycle vector field is a 1-cycle whose members are vectors in a vector field.

Corollary 1. Every path cycle is realizable as a 1-cycle vector field.

Proof. Immediate from Theorem 7.

Theorem 8. Every 1-cycle cell complex X in a CW space is realizable as a ring that is free on X.

Proof. Let cycE be a 1-cycle on a space X. From Lemma 7, cycE is realizable as a path cycle. Then the desired result is an immediate consequence of Theorem 5. Definition 13. A vector field ring is a ring whose members are vectors in a vector field. Theorem 9. Every path cycle on a space X is realizable as a vector field ring that is free on X.

Proof. Let cycE be a 1-cycle on a space X. From Lemma 7, cycE is realizable as a path cycle. Then the desired result is an immediate consequence of Theorem 5. Remark 5. Theorem 5 is a fundamental theorem in homotopy theory, since free path rings have their counterpart in the free groups introduced by W. Dyke [START_REF] Dycke | Gruppentheoretischer studien[END_REF]. Both free path rings and free groups are a result of geometry. That is, free groups result from cycles in polygons and free path rings are realizable as 1-cycles in cell complexes. And, from Theorem 9, every 1-cycle is realizable as a free vector field ring.

Conjectures

This section briefly introduces conjectures, which lead to a transition from the results in this paper to closely related results in digital topology from G. Lupton, J. Oprea and N.A. Scoville [START_REF] Lupton | Digital fundamental groups and edge groups of clique complexes[END_REF], [START_REF] Lupton | Subdivision of maps of digital images[END_REF], e.g., Theorem 10. Theorem 5.16 [10, p.22]. Every finitely presented group occurs as the (digital) fundatmental group of some digital image.

Recall that in every triangulated digital image, there is a least one maximal nucleus cluster (MNC) of triangles on a single vertex [12, §1.4, p. 9]. By attaching the edges to the barycenters of the MNC triangles, we obtain a 1-cycle. This leads to Conjecture 1.

Conjecture 1. Every free path ring has a geometric realization as a 1-cycle in a triangulated digital image.

One way to prove Conj. 1 is to define a path over each edge between consecutive barycenters. The end result will be a path cycle, which provides a basis for a free path ring. From Conj. 1, we also have the following Conjectures. Conjecture 5. Every path cycle has a realization as a free vector field ring in a digital image.

Concluding Remark

In its introduction, this paper calls attention to geometric origins of free groups as a natural biproduct of simply connected polygons introduced by W. Dyck [START_REF] Dycke | Gruppentheoretischer studien[END_REF] and in terms of circuits in connected graphs introduced by J.H.C. Whitehead [START_REF] Whitehead | On certain sets of elements in a free group[END_REF]. It is I.N. Herstein's ring theory and Whitehead's homotopy theory that then lead to the introduction of free rings as well as free path rings in this paper. An important result in this paper is an extension of J.J. Rotman's free group theorem, namely, every path cycle is realizable as a free path ring (see Theorem 5). Another important result in this paper is that every path cycle is realizable as a vector field (see Theorem 7), leading to the introduction of free vector field rings (see Theorem 9).

Definition 1 .

 1 Path. Let I = [0, 1], the unit interval. A path in a space (S, P ) is a continuous map h : I → S with endpoints h(0) = x 0 , h(1) = x 1 ∈ P and h(t) ∈ S for t ∈ I [20, §2.1,p.11]. The geometric realization of a path h is denoted |h|.

Figure 3 .Theorem 3 .

 33 Figure 3. Three Paths that Construct the Sides of a Path Triangle h △ E in a CW space K, leading to its geometric realization |h △ E| as a 2-cell (triangle)

Figure 4 .Example 5 . 3 . 6 .Figure 5 . k ≥ 1 paths h 1 , h 2 ,Example 7 .

 45365127 Figure 4. Four Paths h 1 , h 2 , h 3 , h 4 geometrically realized as the sides of a Path Rectangle h E in a CW space K, leading to its geometric realization |h E| as a 1-cycle (rectangle)

Definition 6 .

 6 Ring [6, §7,p. 46]. A ring is a nonempty set R, a, b, c ∈ R, with operations + and • defined on R such that (1) a + b ∈ R. (2) (a + b) + c = a + (b + c).

Figure 6 .Example 9 .

 69 Figure 6. Free path ring R(β, +, •) on a free group G(β, +) with basis β. In this diagram, hook arrows represent inclusion maps, ordinary arrows represent homomorphisms and β = {v 5 = v ′ 0 = g}.

Figure 7 .Example 10 .

 710 Figure 7. Free path ring hRngR(β, +, •) on a free path group hGrpG(β, +) with basis β. In this diagram, hook arrows represent inclusion maps, ordinary arrows represent homomorphisms, and hRngR is defined on a free path group hGrpG(β, +) .

Conjecture 2 .Conjecture 3 .

 23 Every free path ring has a geometric realization in a collection of intersecting 1-cyles in a triangulated digital image. Every free path ring has a geometric realization in some triangulated digital image.

Conjecture 4 .

 4 Every free path ring has a realization as a vector field in a digital image.

Many thanks to Greg Lupton for pointing this out[8].

This diagram is a modified version of the gluing diagram introduced by Tane Vergili in[17, p. 

3].
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