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This paper proposes a solution for the leader-follower consensus formation control problem of nonholonomic vehicles that exhibit input constraints. In this consensus problem, the position and the orientation of all the vehicles has to be regulated at a desired equilibrium, hence this pertains to a stabilization scenario. Therefore, in order to satisfy Brockett's theorem, the controller has to be designed to be either discontinuous or time-varying. The proposed scheme is a smooth bounded Proportional plus damping injection controller that incorporates a persistency of excitation term. A comparative simulation analysis with an unbounded control scheme is also provided.

INTRODUCTION

The collective coordination of multiple mobile agents has received great interest in recent years since the multirobot system can execute a number of tasks that single systems or fixed-base robots can achieve. A particular coordination problem refers to the formation consensus problem, where all agents agree to a common unspecified value, leaderless consensus, or to a pre-defined value, leader-follower consensus [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF][START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF][START_REF] Wang | Consensus of networked mechanical systems with communication delays: A unified framework[END_REF][START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF]. As the number of robots becomes larger, centralized controllers, where each agent receives the state information of all other agents, becomes problematic due to the heavy communication load. Distributed control, where each agent only uses information from its neighbors to archive the desired formation, becomes more desirable [START_REF] Ren | Distributed leaderless consensus algorithms for networked euler-lagrange systems[END_REF].

When working with mobile vehicles the nonholonomic restrictions impose an inconvenient since they cannot reach any position with any velocity [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. This problem has been addressed in [START_REF] Do | Output-feedback formation tracking control of unicycle-type mobile robots with limited sensing ranges[END_REF] where a partial consensus problem is solved since only translational consensus is reached. In [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF] a decentralized discontinuous and timeinvariant controller is proposed to archive full consensus (both in position and orientation). In [START_REF] Peng | Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory[END_REF], a decentralized formation control law using a consensus based approach to drive a group of agents exponentially to a desired geometric pattern and reference trajectory is proposed.

In real physical systems, input saturation signals should be considered in the controller design in order to avoid actuator thermal or physical damage in addition to ensuring optimal performance of the controller. Along this line, [START_REF] Ren | Distributed leaderless consensus algorithms for networked euler-lagrange systems[END_REF] uses saturated controllers to ensure the inputs satisfy pre-imposed bounds. In [START_REF] Zavala-Rio | Global trajectory tracking through output feedback for robot manipulators with bounded inputs[END_REF][START_REF] Kostic | Saturated control of timevarying formations and trajectory tracking for unicycle multiagent systems[END_REF] trajectory tracking under bounded inputs is archived. [START_REF] Yu | Distributed formation control of nonholonomic vehicles subject to velocity constraints[END_REF] proposes a solution for the leader-follower formation problem under velocity constrains. The work of [START_REF] Fu | Local measurement based formation of nonholonomic robots with globally bounded inputs and collision avoidance[END_REF] uses Extended Kalman Filters and a switching control strategy to solve the leader-follower formation and obstacle avoidance with bounded input constrains. Similar techniques have been also used for multiagent systems [START_REF] Cruz-Zavala | Finite-time consensus of Euler-Lagrange agents without velocity measurements via energy shaping[END_REF], but more scarcely for networked nonholonomic vehicles, e.g., in [START_REF] Ren | Distributed consensus in multi-vehicle cooperative control[END_REF], without controlling the orientation of the vehicles.

The control design in this paper follows the lines of our previous works [START_REF] Nuño | Distributed consensusformation of force-controlled nonholonomic robots with time-varying delays[END_REF][START_REF] Loría | Observerless output-feedback consensus-based formation control of 2nd-order nonholonomic systems[END_REF][START_REF] Nuño | Leaderless consensus formation control of cooperative multi-agent vehicles without velocity measurements[END_REF], but differs from the latter in that here we assume velocity measurements to be available and the network to be delay-free. On the other hand, we design the controller to satisfy pre-imposed bounds, a constraint not considered in these references or any other. We should remark that the consensus formation problem in this paper is inherently a set-point stabilization problem and, due to the nonholonomic constraints, trajectory tracking results, as [START_REF] Mera | A slidingmode based controller for trajectory tracking of perturbed unicycle mobile robots[END_REF], even for a single robot, cannot be directly ported to our scenario [START_REF] Lizárraga | Obstructions to the existence of universal stabilizers for smooth control systems[END_REF].

Our main contribution is the solution to the leaderfollower consensus formation problem for a network of non-holonomic differential drive robots and a static leader. The interconnection topology of all the followers is undirected, static and connected. The controller is designed to be bounded, smooth and time-varying. Our proposal consists of a Proportional plus damping (P+d) control scheme with a time-varying vanishing term that excites the angular velocity to deal with the nonholonomic restrictions of the vehicles. A comparative simulation analysis with an unbounded control scheme is also provided. We consider a set of N differential drive nonholonomic vehicles, like the one depicted in Fig. 1, each of them modeled as the unicycle kinematics (1) under the assumptions that wheels are rolling without slippage, the steering axis is orthogonal to the xy-plane and the geometry center Q coincides with the center of mass. żi = ϕ(θ i )v i , θi = ω i ;

PROBLEM SETTING

(1) where ϕ(θ i ) := [cos(θ i ), sin(θ i )] , z i := [x i , y i ] ∈ R 2 stands as the Cartesian coordinates and θ i ∈ R as the orientation with respect to the x-axis, v i and ω i ∈ R are the linear and angular velocities, respectively. Subindex i ∈ N := {1, . . . , N }. The nonholonomic constraint is given by the expression ẋi sin(θ i ) -ẏi cos(θ i ) = 0.

The force controlled dynamics of each vehicle is given by m i 0 0

I i vi ωi = 1 r i 1 1 2R i -2R i τ li τ ri (2)
where m i is the mass, I i is the moment of inertia, R i is the half distance between the actuated wheels, r i corresponds to the radius of the actuated wheels, τ li and τ ri stands for the control input torque of the left and right wheels.

The leader-follower consensus formation control problem involves making the vehicles acquire a desired position relative to a constant (desired) formation centre z ∈ R 2 and a constant desired orientation θ ∈ R. The formation is determined by defining a constant vector

δ i ∈ R 2 , δ i := [δ xi , δ yi ] ,
and the relative position error zi := z i -δ i for each follower. Then, the control goal is that all relative positions and orientations of the followers converge to the desired position and the desired orientation, respectively. Hence, for all initial conditions, lim

t→∞ v i (t) = 0, lim t→∞ zi (t) = z , (3) lim t→∞ ω i (t) = 0, lim t→∞ θ i (t) = θ ∀ i ∈ N , (4) 
In this work we are interested in solving the aforementioned problem under the following constraint. Constraint 1. Given τli > 0 and τri > 0, the left and right control input torques must satisfy |τ li | ≤ τli and |τ ri | ≤ τri .

We assume that each vehicle possesses position and velocity sensors and is able to communicate them to a number of neighbors through a relatively reliable network. The interconnection of the follower agents is modeled as a undirected, static, connected and weighted graph via the Laplacian matrix L ∈ R N ×N , such that its elements are defined as

ij =    k∈Ni a ik i = j -a ij i = j, (5) 
where a ij > 0 if j ∈ N i and a ij = 0 otherwise. The set N i contains all the neighbors to the ith-node. By construction,

L1 N = 0, such that 1 N = [1, • • • , 1] .
Matrix L is symmetric, it has a unique zero eigenvalue, and the rest of its spectrum is strictly positive.

In order to model the leader-follower interconnection, we define a diagonal matrix A := diag{a i } ∈ R N ×N , if the ith-vehicle receives the leader pose then a i > 0, a i = 0 otherwise. The following lemma, which is a special case of Lemma 3 in [START_REF] Hong | Tracking control for multi-agent consensus with an active leader and variable topology[END_REF] and Lemma 1.6 of [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF], provides a fundamental property of the composed Laplacian L := L + A . Lemma 1. Consider a diagonal matrix A := diag{a i } ∈ R N ×N and suppose that, at least, one a i is strictly positive. Assume that the interconnection graph is undirected, static, and connected; then the matrix L := L + A is symmetric, positive definite and of full rank.

PROPOSED CONTROL SCHEME

Let us start the control design by setting the following inner control-loop

τ li τ ri = r i 2 1 1/2R i 1 -1/2R i u vi u ωi , (6) 
where u vi and u ωi are new control inputs to be designed.

After replacing (6) in (2) yields vi = 1 m i u vi , ωi = 1 I i u ωi .
The inputs u vi and u ωi are composed of two smooth P+d terms that drive the linear and angular accelerations towards the desired control objective. The linear velocity term is given by

u vi := -p vi ϕ(θ i ) e zi -d vi tanh(v i ), (7) 
where p vi is a positive proportional gain, d vi is a positive damping gain, and the error e zi is defined as

e zi := a i tanh(z i -z ) + j∈Ni a ij tanh(z i -zj ). ( 8 
)
For the angular acceleration driving input, we design u ωi as

u ωi := -p ωi e θi -d ωi tanh(ω i ) + α i (t, θ i , e zi ), (9) 
where p ωi is a positive proportional gain, d ωi is a positive damping gain, the error e θi is given by 10) and the α i function is designed to be a δ-persistently exciting function [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]), as follows

e θi := a i tanh(θ i -θ ) + j∈Ni a ij tanh(θ i -θ j ), (
α i (t, θ i , e zi ) := k αi ψ i (t)ϕ(θ i ) ⊥ e zi , (11) 
where k αi is a positive gain, ϕ(θ i ) ⊥ := [-sin(θ i ), cos(θ i )] , and the function ψ i is twice differentiable, bounded, with bounded derivatives. Furthermore, there exist T and µ such that

t+T t ψi (s) 2 ds ≥ µ, ∀t ≥ 0, (12) 
hence, ψi is persistently exciting. Note that ϕ(θ i ) ⊥ is the annihilator of ϕ(θ i ), i.e., ϕ(θ i ) ⊥ ϕ(θ i ) = 0. The function α i is included in the controller in order to overcome the obstacle that have the vehicles' nonholonomy to asymptotic stabilization.

The closed-loop equations are given by two interconnected systems, under the action of the controllers ( 7) and ( 9), Σ vi :

   żi = ϕ(θ i )v i , vi = - 1 m i [p vi ϕ(θ i ) e zi + d vi tanh(v i )], (13) and 
Σ ωi :

   θi = ω i , ωi = - 1 I i [p ωi e θi + d ωi tanh(ω i ) -α i (t, θ i , e zi )].
(14) Now, we are ready to formulate our main result. Proposition 1. Consider a swarm of N differential drive nonholonomic vehicles, each one of them modeled by ( 1) and (2) under Constraint 1, such the interconnection is modeled by (5). Suppose that at least one vehicle has access to the desired leader position and orientation of the centre of the formation. Defining maximum inputs as ūvi := d vi + √ 2p vi (a i + ii ) and ūωi := d ωi +p ωi (a i + ii )+ √ 2k αi ψi (a i + ii ) such that the following inequalities are satisfied

d ωi ≥ √ 2k αi ψi (a i + ii ) tanh(1) , (15) 
and

2R i ūvi + ūωi < 4R i r i min{τ ri , τli }. ( 16 
)
Then, the control scheme described by ( 6) with ( 7) and ( 9) ensures that the control goal (3)-( 4) is achieved. Remark 1. Before going through the proof, let us remark that the control objective is ensured if we can prove that the errors e zi and e θi globally, converge to zero. In order to see this fact, let us invoke Lemma 2.4 in [START_REF] Ren | Distributed leaderless consensus algorithms for networked euler-lagrange systems[END_REF], to write

N i=1 (z i -z ) e zi = 1 2 N i=1 j∈Ni a ij (z i -zj ) tanh (z i -zj ) + N i=1 a i (z i -z ) tanh(z i -z ).
Suppose now that e zi = 0, since (z i -zj ) tanh (z i -zj ) vanishes only when zi -zj = 0, it follows that zi -zj = 0 and zi -z = 0, for all j ∈ N i and i ∈ N . Hence, it is also true that

1 2 N i=1 j∈Ni a ij (z i -zj ) (z i -zj ) + N i=1 a i |z i -z | 2 = 0.
Using the composed Laplacian matrix properties, this last equation can be written as (z -

1 N ⊗ z ) (L ⊗ I 2 )(z -1 N ⊗ z ) = 0
, where z = col(z i ). Thus, invoking Lemma 1, it holds that z = 1 N ⊗ z and thus, e zi = 0 implies that zi = z , for all i ∈ N .

Following these steps we can also show that e θi = 0 implies that θ i = θ , for all i ∈ N .

Proof of Proposition 1. The proof is divided in three steps, one to prove boundedness of all trajectories, another to establish convergence of the position and the orientation errors and, finally, in the last step we show that the designed controller satisfies Constraint 1.

(Boundedness of Trajectories). For the Σ vi system consider the following Lyapunov candidate function

V := 1 2 N i=1 m i p vi v 2 i + 2a i ln(cosh(x i -x )) + ln(cosh(ȳ i -ȳ )) + j∈Ni a ij ln(cosh(x i -xj )) + j∈Ni a ij ln(cosh(ȳ i -ȳj ))
(17) which is positive definite and radially unbounded with respect to v i , zi -z , and zi -zj , for all i ∈ N and j ∈ N i . Evaluating the total derivative V along the trajectories in (13), and after applying (Ren, 2009, Lemma 2.4), we obtain

V = - N i=1 d vi p vi v i tanh(v i ) ≤ 0. ( 18 
)
Since V ≥ 0 and V ≤ 0 then v i , zi -z , and zi -zj ∈ L ∞ . Moreover, v i ∈ L 2 . Since the right-hand side of ( 13) is uniformly bounded, then vi ∈ L ∞ . Now for the Σ ωi system consider the following Lyapunov candidate function

W := 1 2 N i=1 I i p ωi ω 2 i + 2a i ln(cosh(θ i -θ )) + j∈Ni a ij ln(cosh(θ i -θ j )) , (19) 
which is positive definite and radially unbounded with respect to ω i , θ i -θ , and θ i -θ j , for all i ∈ N and j ∈ N i . The time derivative of W along the trajectories in ( 14) and, once again, applying (Ren, 2009, Lemma 2.4), yields

Ẇ = - N i=1 1 p ωi [d ωi ω i tanh(ω i ) -ω i α i (t, θ i , e zi )]. ( 20 
)
The δ-persistently exciting function is bounded by

|α i | ≤ √ 2k αi ψi (a i + ii ),
where

|ψ i | ≤ ψi . Consequently Ẇ ≤ - N i=1 1 p ωi [d ωi ω i tanh(ω i ) -ω i √ 2k αi ψi (a i + ii )],
given that tanh(•) is strictly increasing, for all |ω i | ≥ 1 we have

Ẇ ≤ - N i=1 1 p ωi [d ωi tanh(1) - √ 2k αi ψi (a i + ii )]|ω i |.
Satisfying the inequality ( 15), then we have that Ẇ ≤ 0.

Hence, for all t ≥ 0 such that |ω i (t)| ≥ 1 we have Ẇ (ω(t), θ(t)) ≤ 0 so |ω i (t)| is bounded. For any other t, |ω i (t)| ≤ 1. This implies that ω i ∈ L ∞ , for all t ≥ 0. Since the right-hand side of ( 14) is uniformly bounded, this implies that ωi ∈ L ∞ .

(Convergence of Position Error). Since v i ∈ L ∞ ∩ L 2 and vi ∈ L ∞ , we have that lim t→∞ v i (t) = 0. This, in turn, implies that

lim t→∞ t 0 vi (t) = -v i (0).
Hence, to prove that lim t→∞ vi (t) = 0 by Barbȃlat's Lemma, we need to show that vi is uniformly continuous. For, consider vi = -

1 m i d vi vi sech 2 (v i ) + p vi ω i ϕ(θ i ) ⊥ e zi + 1 m i p vi ϕ(θ i ) ėzi . (21) 
Observe that all the terms on the right-hand-side in (21) are bounded. Thus, vi → 0, so from (13) we have

lim t→∞ ϕ(θ i (t)) e zi (t) = 0. ( 22 
)
Invoking Barbalǎt's Lemma, it also follows that lim t→∞ vi (t) = 0. From vi → 0, we have that ėzi → 0. Thus, the first and last terms on the right-hand side of (21), as well as vi , vanish individually. Consequently, lim

t→∞ ω i (t)ϕ(θ i (t)) ⊥ e zi (t) = 0. (23) 
Now, because ϕ and ϕ ⊥ take values in orthogonal spaces, if ( 22) and ( 23) hold simultaneously whereas ω i → 0, then lim t→∞ e zi (t) = 0. If, alternatively, ( 22) and ( 23) hold simultaneously because lim

t→∞ ω i (t) = 0, then lim t→∞ t 0 ωi (σ)dσ = -ω i (0). Moreover, ωi = - 1 I i d ωi ωi sech 2 (ω i ) + p ωi ėθi -αi , (24) 
where αi = k αi ψi (t)ϕ(θ i ) ⊥ e zi -k αi ω i ψ i (t)ϕ(θ i ) e zi + k αi ψ i (t)ϕ(θ i ) ⊥ ėzi (25)
is bounded because so are all the terms on the respective right-hand sides of ( 25) and ( 24). Hence lim t→∞ ωi (t) = 0 and lim t→∞ t 0 ωi (σ)dσ = -ωi (0). A direct similar computation shows that, also, ω

(3) i ∈ L ∞ , so, by Barbalǎt's Lemma, it follows that lim t→∞ ωi (t) = 0. From this and (24) it follows that αi → 0, so from (25) we conclude that lim t→∞ ψi (t)ϕ(θ i (t)) ⊥ e zi (t) = 0. However, since ψi (t) satisfies (12), ψi (t) → 0, so the last limit holds only if lim t→∞ ϕ(θ i (t)) ⊥ e zi (t) = 0, which together with ( 22), implies that lim t→∞ e zi (t) = 0. Following Remark 1, we conclude that lim t→∞ e zi (t) = 0 implies the second limit in (3).

(Convergence of Orientation Error). Assume, for now, that α i ≡ 0 for all i ∈ N . Then, a simple inspection of (20) shows that Ẅ ∈ L ∞ and, invoking Barbalǎt's Lemma, we conclude that Ẇ → 0, which implies in turn that lim t→∞ ω i (t) = 0. The same conclusion is drawn for ωi , after differentiating on both sides of ( 14) and observing that ωi is uniformly bounded. Hence, under the condition that α i ≡ 0, we see from ( 14) that ωi → 0 and ω i → 0 imply that lim t→∞ e θi (t) = 0. Now, e θi = 0 and the conclusions in Remark 1, imply that θ i = θ . The limits in (4) follow. Furthermore, because the closed-loop solutions are uniformly globally bounded under any bounded α i ≡ 0, the same conclusion follows using a cascades argument [START_REF] Loría | From feedback to cascadeinterconnected systems: Breaking the loop[END_REF], provided that α i → 0, which we have established with the fact that lim t→∞ e zi (t) = 0.

(Saturation Avoidance). In this final part, we show that the actuators do not saturate if the inequality ( 16) holds. For this purpose, note that, from ( 7) and ( 9) with the fact that | tanh(•)| < 1, results 

|u vi | ≤ d vi + √ 2p vi (a i + ii ) := ūvi

SIMULATIONS

In order to show the effectiveness of the proposed scheme we performed some numerical simulations, we compare the controller of Proposition 1 with one in tanh(s) is replaced by its argument s. The simulation setup consists in six differential drive vehicles, whose communication topology is depicted in Fig. 2. All interconnection weights are equal to one except the leader connections whose weight is set to 10. The physical parameters and actuators bounds are shown in Table 1, while the initial conditions and the offsets that define a triangular formation with center at the coordinates (x , y ) = (-25, -25) are shown in Table 2.

Table 1. Physical parameters and actuators bounds The control gains for each robot are set to satisfy the conditions ( 15) and ( 16), i.e.,

index m i [Kg] I i [Kg m 2 ] R i [m] r i [m] τi [N] 1, 2 10 
p v = 56⊗1 6 , d v = 840⊗1 6 , Table 2. Initial conditions index x i (0) y i (0) θ i (0) δ xi δ yi 1 -3 0 π -5 -3 2 0 5 π/2 -2.5 2 3 -1 5 π/2 0 7 4 2 0 0 2.5 2 5 -2 7.5 -π/4 5 -3 6 -2 -5 -3π/4 0 -3
d ω = [28 59 28 59 28 28] , p ω = [2.8 5.9 2.8 5.9 2.8 2.8]

k αi = [3 1 3 1 3 3] . The function t → ψ i (t) is defined as ψ i (t) := 5 4 + 5 k=1 4 (2k -1) π sin 2k -1 2 t .
For a fair comparison we used identical initial conditions, gains and δ-persistently exciting functions for both control schemes, constrained and unscontrained one. The paths described by the vehicles on the plane are illustrated in Figures 34. In both cases the formation goal is achieved, and the final orientations are depicted by pointing arrows. Note that all orientations match the leader's θ = 5π/4 rad. From the Figures 56we can realize that it takes more time for the bounded scheme to achieve the control goal, which is an expected behavior considering that the actuators are bounded. In fact, we can observe the bounds of the actuators in Fig. 7, on the left we present the unbounded scheme, while on the right we observe the proposed scheme. interconnection graph is undirected, static and connected, the proposed scheme ensures consensus and stabilization both in the Cartesian positions and orientations. Further research is aimed at relaxing the assumption that the complete state is available for measurement.
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 5 Fig. 5. Pose consensus for the unbounded scheme.

Fig. 6 .Fig. 7 .

 67 Fig.6. Pose consensus for the bounded scheme.5. CONCLUSIONSIn this work we solve the leader-follower consensus formation problem for force-controlled differential drive vehicles. To cope with the difficulty imposed by the nonholonomic constraints, our controller is time-varying. At the same time, the control inputs are guaranteed to respect bounds imposed by the actuators. Assuming that the

  , and |u ωi | ≤ d ωi + p ωi a i + (p ωi + √ 2k αi ψi ) ii := ūωi .

	Hence, from (6) we have				
	max{|τ ri |, |τ li |} ≤	r i 2	[ū vi +	1 2R i	ūωi ]
	and from (16), it is fulfilled that |τ li | ≤ τli and |τ ri | ≤ τri .
	Thus Constraint 1 holds.				
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