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Abstract 

Background: There has been an increased focus on active transport, but the measurement of active transport is still 
difficult and error-prone. Sensor data have been used to predict active transport. While heart rate data have very rarely 
been considered before, this study used random forests (RF) to predict transport modes using Global Positioning Sys-
tem (GPS), accelerometer, and heart rate data and paid attention to methodological issues related to the prediction 
strategy and post-processing.

Methods: The RECORD MultiSensor study collected GPS, accelerometer, and heart rate data over seven days from 
126 participants living in the Ile-de-France region. RF models were built to predict transport modes for every minute 
(ground truth information on modes is from a GPS-based mobility survey), splitting observations between a Training 
dataset and a Test dataset at the participant level instead at the minute level. Moreover, several window sizes were 
tested for the post-processing moving average of the predicted transport mode.

Results: The minute-level prediction rate of being on trips vs. at a visited location was 90%. Final prediction rates 
of transport modes ranged from 65% for public transport to 95% for biking. Using minute-level observations from 
the same participants in the Training and Test sets (as RF spontaneously does) upwardly biases prediction rates. The 
inclusion of heart rate data improved prediction rates only for biking. A 3 to 5-min bandwidth moving average was 
optimum for a posteriori homogenization.

Conclusion: Heart rate only very slightly contributed to better predictions for specific transport modes. Moreover, 
our study shows that Training and Test sets must be carefully defined in RF models and that post-processing with 
carefully chosen moving average windows can improve predictions.

Keywords: Transport mode, Prediction models, Global Positioning System, Accelerometer, Heart rate, Machine 
Learning
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Background
There has been an increased focus on active transport in 
Public Health. Studies have shown that individuals who 
walk, bike, or use public transport perform more physical 

activity during travel and are more likely to achieve the 
recommended requirement in daily physical activity [1, 
2]. Building on these data and others, policymakers and 
urban planners are planning transport systems of cities 
while considering the promotion of exercise and sport 
and improvement in active transport and public transits 
infrastructure but also cost-effectiveness, accident pre-
vention and control of traffic speeds, reforms in trans-
port pricings, and health-related exposures (air pollution, 
noise, etc.) during travel [3, 4].
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Accurate data are needed to orientate planning efforts 
based on evidence. Bohte et  al. [5] highlight that mem-
ory or recall biases tends to be present in self-reported 
data on transport activity. Time spent on public trans-
port is usually overestimated, whereas time spent in a 
car or walking is underestimated. The emergence of new 
technology and the use of algorithms offer alternatives 
compared to surveys for collecting data on travel behav-
iours [6]. Global Positioning System (GPS) data provide 
information on travel time, speed, and positional char-
acteristics of the travel. Although very accurate, they are 
prone to signal losses in some areas and are difficult to 
process [7, 8]. Accelerometer data provide information 
on how people move, i.e., their bodily movements on 
three orthogonal axes [9]. The combined use of devices 
like GPS receivers and accelerometers provides accurate 
information for predicting travel modes but requires 
high computational power to process the vast amount of 
data. The most effective and accurate approach to cap-
ture transport modes is likely to combine the processing 
of GPS data with a GPS-based prompted recall mobility 
survey where participants are directly interviewed on 
the basis of GPS data [2, 10, 11]; however, this is a costly 
strategy, and therefore, it is also essential to develop pre-
diction algorithm-only solutions for the assessment of 
transport modes, to be able to collect data for broader 
samples of participants.

GPS-based classification algorithms have been used to 
detect travel modes, activity places, and trip destinations 
[12, 13]. Several studies have assessed travel patterns 
using data from body-worn or vehicular GPS receivers 
[5, 7, 11, 14–16]. Feng et  al. have shown that the com-
bination of GPS and accelerometer data for transport 
mode prediction at the trip level was more reliable than 
using GPS data or accelerometer data only [9]. Ellis et al. 
[17] used data from GPS receivers and accelerometers 
in a random forest (RF) classification model to classify 
each minute of observation in five different categories 
(standing, sitting, walking/running, biking, and riding a 
vehicle), with ground-truth data obtained from Sense-
Cam cameras. The same authors also compared several 
machine learning algorithms to predict transport mode 
and body posture (biking, bus, car, sitting, standing, and 
walking) in 1-min windows and found that RF models 
showed the highest prediction rates [18]. Prediction rates 
similar to Ellis et al. [18] were obtained by Brondeel et al. 
who used GPS, accelerometer, and Geographic Informa-
tion System (GIS) data to predict transport modes at the 
level of trips whose start and end points were a priori 
known [19]. Kohla et  al. used multinomial regression 
models to predict eight different transport modes at the 
trip stage level from GPS and accelerometer data [6]. The 
study by Shafique et al. based on GPS and accelerometer 

data, personal attributes from participants, and Google 
Maps information (Distance Matrix API), using RF with 
Stepwise Feature Inclusion, classified four transport 
modes (walk, bicycle, car, and train) [20]. Similarly, using 
sensor data from GPS receivers and accelerometers and 
utilizing a supervised machine learning method called 
Support Vector Machine (SVM), Roy et al. predicted five 
different modes of transport (bicycle, bus, motor vehicle, 
sky train, and walk) in their study [21].

Most previous studies used either GPS, accelerom-
eter data, or both. There have only been a few attempts 
to consider heart data (HR) to predict transport modes. 
Previous studies have been successful in the recognition 
of various human activities by using accelerometer data 
complemented by HR data. Ellis et  al. in another study 
than the one mentioned above, were successful in classi-
fying different household and locomotion activities with 
a 88% accuracy using RF [22]. Although Ellis et  al. [22] 
stated that the inclusion of HR data did not improve the 
prediction model, Mehrang et al. reported a 7% increase 
in the prediction of cycling with the inclusion of HR data 
in the model [23]. The authors also mention the diffi-
culty in accurately differentiating cycling from sedentary 
behaviour due to the limited motion of the hands while 
cycling, which can be overcome by the addition of HR 
data that can help distinguish between activities of dif-
ferent intensities. Finally, comparing various machine 
learning methods to detect human activities, Balli et  al. 
determined that the RF method was the most success-
ful in predicting eight different human activities in their 
study, also aided by HR data [24]. The present study, 
therefore, used heart rate data in addition to GPS and 
accelerometer data to predict transport modes (rather 
than activities in a more general way in most of the 
studies above). Situations where the inclusion of heart 
rate data may be beneficial are attempts to distinguish 
between sitting in a car with only minor hand and leg 
movements while driving vs. standing or moving within a 
public transport vehicle. Indeed, it is known that chang-
ing postures from sitting to standing and vice-versa con-
tributes to even higher elevated HR [25]. Using heart rate 
data in addition to waist-worn accelerometers may also 
be beneficial for the identification of cycling.

Moreover, there is room for improvement of prediction 
algorithms. The present study aimed to demonstrate that, 
when predicting modes at the minute or trip levels with 
RF, splitting observations between the Training and Test 
sets at the minute or trip level upwardly biases prediction 
rates because data from the same participants are used to 
train the model and to validate it. This bias is expected 
to be overcome with participant level split between the 
Train-Test sets, for example, using the leave-one-out 
cross-validation method. Moreover, when predicting 
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modes at the minute level, a posteriori processing of pre-
dictions is needed to reduce heterogeneity in the minute-
level predictions, commonly done with moving averages 
[18]. We examined whether the bandwidth size used for 
the moving average influenced the rate of correct predic-
tions, with the assumption that the posterior smoothing 
of output predictions can reduce the misclassification of 
transport modes and that both insufficient and excessive 
smoothing should be avoided.

Overall, accurately predicting transport behaviours 
and transport modes used from sensor data in an auto-
matic way is a crucial step for increasing the sample size 
and the quality of studies, which ultimately will be use-
ful to provide urban planners and other policymakers 
with relevant information on the relationships between 
transport behaviour and environmental exposures, trans-
port-related physical activity, and health status.

Methods
Study participants
The RECORD (Residential Environment and Coronary 
heart Disease) Cohort Study recruited participants dur-
ing preventive health check-ups in 2007–2008 at four dif-
ferent sites of the IPC Medical Centre located in Paris, 
Argenteuil, Trappes, and Mantes-la-Jolie [26]. These 
participants were invited to the second wave of the study 
in 2011–2015, and new participants were recruited. 
The criteria for inclusion in the study were (i) to be 
30–79 years year old in 2007–2008, (ii) residing at base-
line in one of the 112 municipalities of the Ile-de-France 
Paris region that had been selected, and (iii) being able 
to complete study questionnaires [2, 26]. During the sec-
ond wave of the study, between July 2014 and June 2015, 
participants were additionally invited to participate in 
the RECORD MultiSensor Study [10, 27, 28] when sen-
sor devices were available. Figure 1 shows the location of 
the four IPC centres and the study area. All the partici-
pants filled out an informed consent form. The study was 
approved by the French Data Protection Authority.

Fig. 1 Location of the IPC centres and the study area
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Participants wore a GPS receiver (QStarz BT-
Q1000XT) [29] and an ActiGraph GT3X + tri-axial 
accelerometer on the right hip with a dedicated elastic 
belt for the recruitment day and seven additional days. 
In addition, they were asked to complete a travel diary 
to record their visited places over seven days [2, 19]. 
For heart rate, participants were asked to wear a Bio-
Patch BHM 3 (Zephyr Technology, Annapolis, MD) on 
the chest for seven days. The BioPatch is an electrocar-
diography (ECG) sensor with two electrodes [27]. Par-
ticipants were instructed to remove the GPS receiver, 
accelerometer, and heart rate monitor only while sleep-
ing and when they were in contact with water and to 
recharge the GPS receiver and heart rate monitor over-
night. Before the data collection was initiated for each 
participant, synchronization of the sensors was per-
formed. The GPS receiver, accelerometer, and heart rate 
monitor were all synced with the Internet-based com-
puter time using the dedicated software provided by the 
manufacturer. Based on these synced timestamps, the 
variables obtained from the devices were aggregated 
and merged to create a single-minute level dataset that 
included all three sensor data from the participants.

One-hundred-twenty-six participants from the “Car-
diovascular” arm of the RECORD MultiSensor Study 
(n = 286) carried a heart rate monitor. This resulted in 
334,976-min level observations from 126 participants, 
for which the sensor data and mode information were 
available.

Definition of the outcome to predict from the mobility 
survey
GPS data collected over seven days were uploaded in a 
web mapping application called TripBuilder [10] that 
processed the data with algorithms for the identifica-
tion of places visited, trips, and trip stages (with the 
start and end times of all episodes) [11], and transport 
mode used. Trip information displayed on the com-
puter screen along with the travel diary filled by the 
participants were used during a prompted recall mobil-
ity survey administered via phone calls. Participants 
confirmed or corrected all information on trips and vis-
ited places during the survey. All this information was 
used to build a timetable containing detailed trip and 
trip stage information with start and end times of trip 
stages and corresponding transport mode information 
for each participant over seven days. This is considered 
the true information on transport mode in each trip 
stage to predict.

The outcome to be predicted defined from the GPS-
based mobility survey included the following categories: 
being at a fixed visited location (activity place), walking, 

biking, using public transport, and using a private motor-
ized vehicle. Thus, our algorithm had to simultaneously 
predict the fact that participants were travelling rather 
than at a fixed location and the transport mode when 
travelling.

Potential predictors of transport modes
The RF model can handle a large number of predictors, 
including highly correlated variables. Predictor variables 
were created from GPS, accelerometer, and heart rate 
data [27, 30] for every minute of the follow-up of partici-
pants. The complete list of predictors is reported in Addi-
tional file 1: Table S1.

The GPS device recorded positional data (latitude, lon-
gitude, and elevation), speed, and three other measure-
ments: horizontal, vertical, and positional dilution of 
precision (HDOP, VDOP, and PDOP, respectively), which 
are the indicators of the quality of the GPS points. Only 
good quality observations (based on the threshold rule 
of HDOP < 6, VDOP < 7, and PDOP < 8) were kept for the 
aggregation of GPS points at the minute level. Standard 
measures of central tendency (mean and median) and 
measures of dispersion (standard deviation, minimum, 
maximum, 10th, and 90th percentiles) were calculated 
from the GPS positional data, speed, the horizontal, ver-
tical, and positional dilution of precision (HDOP, VDOP, 
and PDOP respectively), and from the numbers of satel-
lites in view and used for the prediction [19]. Based on 
the acceleration across the x, y, and z axes recorded by 
the accelerometer, variables created for each 5-s epoch 
were (1) the number of steps, (2) the energy expenditure 
based on the Sasaki and Freedson equation calculated 
using the activity counts, and participant’s body weight 
[31], (3) moderate-to-vigorous physical activity (MVPA) 
[31], and (4) sedentary behaviour [32]. Two series of 
these variables were created based on raw acceleration 
data using first the standard filter and second the low-
frequency extension filter implemented in ActiLife. The 
low-frequency extension filter helps detect very low-
intensity movement and, consequently, adds information 
to the prediction process [33].

Heart rate data were collected as time series of inter-
vals between heartbeats, also known as inter-beat (RR) 
intervals [27]. Heart rate variability parameters were 
calculated based on the RR intervals, using the “RHRV” 
R package [34]. All these variables were aggregated 
at the minute level, as shown in Table  1. Other predic-
tors included time-related variables: time of the day and 
weekend vs. weekdays. After aggregating the trip level 
data to the minute level, an average number of 2659.5 
data points (Standard Deviation: 1291.1) were available 
for each participant.
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Statistical analysis
Random forest (RF) models [35] were used to predict 
transport mode at the minute-level from minute-level 
observations. RF models use an ensemble of decision 
trees rather than a unique tree and prevent overfitting 
by using random subsamples of observations for each 
tree through multiple iterations. For a given N number of 
trees, N subsamples (train samples) of observations are 
selected from the dataset. Each subsample is a bootstrap 
sample from the cases (with replacement) of the same 
size as the original sample. On average, 63% of observa-
tions are included in a particular train subsample, and the 
remaining 37% are called out-of-bag observations. The 
train subsample is used to train a decision tree based on a 
random subset of the explanatory variables, making each 
tree unique, while the out-of-bag sample is used as a test 
set for the particular tree. RF classification models use an 
impurity index called Gini as a decision criterion at each 
node. Every time a split is made on a node based on a 
variable, the Gini impurity for the two descendent nodes 
has to be less than for the previous (parent) node. The 
outcome that is predicted the largest number of times for 
a minute-level observation is withheld as the final predic-
tion for this observation. We examined the evolution of 
the error rate as the number of trees was incrementally 
increased. Based on the drop in the error rate, models 
were built with 100 trees, using default parameters.

An issue with the standard application of RF used in 
previous research of this kind is that the split of minute-
level observations between the train and test sets for each 
particular tree ignores the fact that the same participants 
provide minute-level observations to both the train and 
test sets. It obviously favours overfitting to specific par-
ticipants and spuriously increases the prediction rate 
in the test set. As a remedy, we split our sample at the 
participant level, with data from 125 participants in a 
Training set and the remaining one in a Test set, usually 
referred to as the leave-one-out cross-validation method. 
We then ran the RF model within the Training set (of 125 

participants), with train and test sets repeatedly defined 
as usual in the default RF approach in this Training set, 
and reported the out-of-bag prediction rate, which we 
think is biased (due to the fact that that the same par-
ticipants provide observations to train and test sets). 
We then tested the resulting model in the Test set (con-
taining one unique separate participant), which should 
provide a correct prediction rate. We repeated the split 
126 times, performing leave-one-out cross-validation. 
Barshan et al. discussed the use of three different cross-
validation methods in their study [36]. They reported that 
the results from leave-one-out cross-validation method 
was the most meaningful when data from different sub-
jects are partitioned in the training and test sets, such as 
in our case. Separate models were built with and without 
heart rate data in each iteration.

Regarding the rates of successful prediction by catego-
ries of the outcome (i.e., for specific transport modes), 
it is well known that categories with higher numbers of 
observations have better prediction rates than categories 
with fewer observations (RF tends to favour the major-
ity classes). Class-wise weights were also applied to the 
model to estimate correct prediction rates by categories 
to fix the issue [37]. The entire process of data analysis is 
presented in a flow diagram in Fig. 2.

R version 4.1.3 and the “randomForest” package [38, 
39] were used. Due to the vast amount of data and mul-
tiple iterations for Random Forest, running the predic-
tion models was computationally challenging. Thus, we 
distributed the analysis between two different computers 
with multiple windows of R running simultaneously.

A posteriori homogenization of predictions
As expected, a closer look at the minute-level predic-
tions in the Test set indicated sporadic misclassifica-
tions of the predicted transport mode within a trip. A 
simple moving average output filter was used for the 
homogenization of misclassified transport modes to 
improve the prediction rates. The filter processes each 

Table 1 Overview of the size of the sample used in the study

GPS Accelerometer Heart rate (HR)

Sample size
No. of participants 283 285 127

No. of minute-level observations 1,611,875 2,651,735 566,092

After merging GPS, accelerometer, and HR data

No. of minute-level observations 336,014

No. of removed observations 2,316,759

No. of participants 126

Final size of the merged dataset 334,976
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minute in sequential order and outputs for the cen-
tral minute of interest, the mode predicted the high-
est number of times in the surrounding windows. As a 
sensitivity analysis, we considered different bandwidths 
surrounding the minute of interest with a window of 1 
to 5 min before and after. For a 1-min bandwidth, if the 
preceding and succeeding minutes had a similar mode 
B, then the discordant mode A of the minute under 
consideration was changed from A to B.

Results
Descriptive statistics
Our sample of 126 participants comprised 39% of 
women, and the mean age was 50.7 (min: 34, max: 77). 
Seventeen percent of participants did not complete 
high school, while 52% had a degree corresponding to 
3 years or more after high school.

Over the seven days of follow-up, participants per-
formed a median of 5.1 trips per day (10th and 90th 
percentiles: 2.9, 7.8), corresponding to a median of 8.7 

trip stages per day (10th and 90th percentiles: 4.7, 12.6). 
Participants spent a median of 6.9 percent of their fol-
low-up time on trips (10th and 90th percentiles: 3.6, 
11.0), corresponding to a duration of 100.00  min per 
day (10th and 90th percentiles: 51.4, 158.0).

Participant‑level vs. minute‑level split of observations
As shown in Table 2, the overall naïve out-of-bag predic-
tion rate (obtained by splitting observations of the Train-
ing sets at the minute level) was similar or comparable 
to the overall prediction rate derived from the Test sets, 
and the same applied to the prediction rate for being at 
a visited place. However, for the overall prediction rate 
for transport modes and each of the prediction rates for 
the specific transport modes, as expected, the naïve out-
of-bag prediction rates (based on observations from the 
same participants that were used to grow the forests) 
were higher than the prediction rates derived from par-
ticipant-distinct Test sets.

Fig. 2 Flow diagram of the analysis process
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Contribution of HR
As shown in Table 3, adding HR predictors to RF mod-
els already comprising GPS and accelerometer predictors 
did not improve the overall prediction rate. Regarding 
mode-specific prediction rates, while the final prediction 
rate for biking slightly increased (by 2 percentage points), 
no changes in prediction rates were observed for other 
transport modes.

A posteriori homogenization
As shown in Table 4, applying a moving average homog-
enization systematically improved the final prediction 
rates obtained in our Test sets. Improvements ranged 
from 2 percentage points for walking to 10 percentage 
points for using a private motorized vehicle. Depending 
on the outcome, the curve of improvement of prediction 
rates peaked when a 3-, or sometimes 4-, or even 5-min 
bandwidth moving average was used and then either 
plateaued or decreased when enlarging the bandwidth 
further.

Table 2 Comparison of Out-of-bag prediction rates (%) from Training sets and Prediction rates from Test sets

a  Prediction rates presented as median prediction rates from 126 RF models with 2.5th and 97.5th percentiles in the parentheses. Prediction rates by transport modes 
are shown before and correction for category size; model without heart rate data

Naïve out‑of‑bag prediction rates in the training sets Prediction  ratesa in the test sets

Before correction After correction Before correction After correction

Overall 94 (94–94) 78 (78–78) 94 (81–98) 79 (62–88)

Overall transport 70 (70–70) 77 (76–77) 64 (33–88) 74 (41–89)

Activity place 98 (98–98) 78 (78–79) 98 (95–100) 79 (61–89)

Bike 67 (66–68) 88 (88–89) 65 (40–82) 90 (77–100)

Private motorized 84 (84–85) 72 (72–73) 85 (16–96) 69 (1–89)

Public transport 46 (44–47) 75 (74–75) 22 (0–68) 62 (0–91)

Walking 63 (62–63) 81 (81–82) 61 (5–88) 80 (23–95)

Table 3 Prediction rates of transport modes in the Test sets: 
models with and without heart rate data

a Prediction rates presented as median prediction rates from 126 iteration of 
RF models with 2.5th and 97.5th percentiles in the parentheses. The overall 
prediction rate is from a model that is unweighted by category size, while the 
mode-specific prediction rates are from a corrected model applying a weight. 
Correction for category size entails modifying the cut-offs for prediction to 
the observed proportions of the categories, at the forest prediction step 
(when aggregating information from all trees). For the same tree predictions, a 
higher “proportion of votes” is reached for rarer categories in the weighted vs. 
unweighted model

Prediction  ratesa (%)

Without heart rate 
data

With heart rate data

Overall 79 (62–88) 79 (57–88)

Overall transport 74 (41–89) 74 (41–89)

Activity place 79 (61–89) 80 (55–89)

Bike 90 (77–100) 92 (76–100)

Private motorized 69 (1–89) 69 (0–87)

Public transport 62 (0–91) 62 (0–90)

Walking 80 (23–95) 80 (28–95)

Table 4 Prediction rates of transport modes in the Test sets before and after a posteriori homogenization

a Prediction rates presented as median prediction rates from 126 RF models with 2.5th and 97.5th percentiles in the parentheses. The overall prediction rate is from a 
model (with heart rate data) that is unweighted by category size, while the mode-specific prediction rates are from a corrected model (with heart rate data) applying 
a weight. Correction for category size entails modifying the cut-offs for prediction to the observed proportions of the categories, at the forest prediction step (when 
aggregating information from all trees). For the same tree predictions, a higher “proportion of votes” is reached for rarer categories in the weighted vs. unweighted 
model

Prediction  ratesa (%)

Before 
homogenization

1‑min bandwidth 2‑min bandwidth 3‑min bandwidth 4‑min bandwidth 5‑min bandwidth

Overall 79 (57–88) 86 (68–93) 88 (66–94) 89 (67–95) 90 (67–95) 90 (67–95)

Overall transport 74 (41–89) 76 (39–91) 79 (42–92) 80 (42–94) 78 (40–95) 77 (35–96)

Activity place 80 (55–89) 89 (68–95) 90 (68–96) 91 (69–97) 91 (71–97) 92 (71–97)

Bike 92 (76–100) 93 (77–100) 95 (79–100) 95 (80–100) 95 (78–100) 95 (77–100)

Private motorized 69 (0–87) 73 (0–92) 77 (0–96) 78 (0–96) 79 (0–97) 79 (15–100)

Public transport 62 (0–90) 63 (0–95) 63 (0–95) 65 (0–100) 65 (0–100) 66 (0–100)

Walking 80 (28–95) 81 (29–97) 81 (23–97) 82 (22–97) 81 (21–98) 78 (17–99)
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Final predictions
Our final report of findings considers predictions estab-
lished in our Test sets (separate participant) from RF 
models including GPS, accelerometer, and heart rate pre-
dictors, after applying a 3-min bandwidth moving aver-
age. Moreover, class-wise weights are applied to prevent 
outcomes with a lower prevalence from being penalized 
(as shown in Table 2, this correction tended to increase 
the prediction rates of biking, using public transport, and 
walking, while it decreased the prediction rate for being 
at a visited place and using a personal motorized vehicle).

As shown in Table  4 (sixth column), the overall pre-
diction rate was 90%. However, such a prediction rate is 
markedly increased by the correct prediction of being at 
visited locations (e.g., at home or work), which accounts 
for a significant proportion of the time. Therefore, we 
also calculated a prediction rate that only pertains to the 
prediction of transport modes. This overall prediction 
rate of transport modes was 78%. The model and post-
processing achieved a prediction rate of 95% for biking 
and 81% for walking, while the rate of correct prediction 
was only 65% for public transport. Using a private motor-
ized vehicle achieved a better prediction rate without 
correcting for category-specific weights.

Discussion
The diversity in the availability of methodolo-
gies (machine learning techniques vs. deep learning 
approaches), data sources (public vs. tailored for study), 
sensors and instruments, and approaches in pre-post-
processing opens a multitude of avenues in transport 
mode detection. Our study used RF models to predict 
transport modes at the minute level. We examined the 
added impact of heart rate in the prediction, assessed 
the impact of splitting observations at the participant 
level rather than at the observation level during the esti-
mation procedure, and we investigated the influence of 
bandwidth size during the post-processing moving aver-
age on the final prediction rate. Various recent studies 
have approached transport mode detection with different 
methods like classical machine learning techniques (RF, 
SVM) [40, 41], Convolutional Neural Network (CNN) 
[42], Long Short-Term Memory (LSTM) [43], Temporal 
Convolutional Network (TCN) [44], Multilayer Percep-
tron (MLP) [45]. Some have used multiple algorithms 
as an evaluation of their chosen method in their study 
[40–42, 44–46]. For example, Alotaibi, in their article, 
presents an ensemble method that utilized a combination 
of three different machine learning algorithms for classi-
fication or model learning [45]. They used two additional 
algorithms stacked with the ensemble fed into a neu-
ral network architecture named multilayer perceptron 
(MLP), in order to predict five different transport modes. 

While the use of this multilayer algorithm for model 
building and prediction outperformed the predictions of 
twelve other independent machine learning algorithms in 
their study, the use of smartphone motion sensors to cre-
ate a 5-s window size for their dataset vastly differs from 
ours where we use minute level observations of GPS, 
accelerometer and heart rate.

Similar use of smartphone sensors at 4-s window size 
was presented by Mantellos et  al. where they proposed 
a smartphone application to automatically predict the 
transport modes only using motion-based sensors and a 
rule-based algorithm known as PART [47]. Their study, 
focusing on the development of a smartphone applica-
tion to create environmental awareness to enable people 
to follow a sustainable way of life, also gave significant 
attention to the comparison of different algorithms to 
select a method that was simple to use for the automatic 
recognition of transport modes using smartphones. The 
study also reported a difficulty similar to ours to differ-
entiate between being in a car vs. in a bus. We attempted 
to overcome this problem by using heart rate data, which 
Mantellos et  al. [47] report as a potential improvement 
for their future work by following a hierarchical clas-
sification approach like RF, and for classifying different 
motorized and non-motorized transportation modes. 
Some recent studies have also used shorter window sizes 
(ranging from 5 to 8.7  s) [43, 44, 46] while others used 
trips [40–42] for the transport mode detection in their 
study.

Most of the recent studies in our literature review 
have used accelerometer, gyroscope, and magnetometer 
data derived from smartphones [42–47], with one study 
using GPS only [40], and one using the GPS, accelerom-
eter, and heart rate data from a smartphone and smart-
watch as in our study [41]. Although smartphones make 
it easy to collect mobility data, sensor information may 
vary across different smartphone devices compared to 
bespoke sensor devices (like the ones used in our study) 
whose primary function is to collect sensor data. For reli-
able accelerometer measures, the smartphones would 
have to be well attached to a fixed place on the body 
(for example, on the hips) and basically not be used as a 
smartphone. Moreau et  al. and Wang et  al. used a real-
world dataset for their study, which contains multi-
modal data collected using a body-worn camera and 
multiple smartphones fixed at typical body locations [42, 
44]. Using this dataset, Moreau et  al. [42] predicted six 
transport modes with 98% precision using CNN, while 
Wang et  al. [44] predicted eight transport modes with 
a precision of 87% using TCN. Deep learning methods 
require more pre-processing, have complex training pro-
cesses, and are computationally expensive compared to 
RF. According to Hasan et al. RF was the most accurate 
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in identifying different transport modes when compar-
ing Extreme Gradient Boosting, RF, SVM, and ANN in 
their study, where they used GPS, accelerometer, and 
heart rate data at trip level [41]. They employ a similar 
web-based application for trip generation as we used to 
identify trips and trip stages in the GPS-based mobility 
survey. One difference though is that we further disag-
gregated the trips into minutes of observation, because 
we did not want to assume that the trips’ start and end 
times were a priori known. To the best of our knowledge, 
no recent study has attempted to predict the use of trans-
port modes at the minute level while accounting for GPS, 
accelerometer, and heart rate with post-processing done 
via homogenization.

Main results
Participant‑level vs. observation‑level split of observations
In the model without heart rate, the naïve out-of-bag 
prediction rate for being in transport in the Training 
sets was 77%. As expected, the overall prediction rate for 
being in transport was lower (74%) in our Test sets. In the 
Training sets, RF splits minute-level observations from 
the same participants between the train and test samples. 
Thus, the naïve out-of-bag prediction rate in the Train-
ing set is upwardly biased because it is based on observa-
tions from the same participants that were used to train 
the model. The overall prediction rate from our Test sets 
provides more accurate information on the model’s per-
formance as it is derived from a different participant than 
those used to grow the model, which is definitely what we 
aim for with our prediction efforts. Because the partici-
pant-level split between the Training set and Test set was 
repeated 126 times, the unbiased prediction rate derived 
from the Test sets takes into account information from all 
participants.

Brondeel and Chaix achieved a prediction rate of 90% 
using GPS, accelerometer, and GIS data in an RF model 
at the trip level [19]. However, because observations 
from the same participants were used to grow the model 
and validate it, we expect our reported prediction rates 
to be upwardly biased. Similarly, using a Bayesian Belief 
Model, Feng et al. obtained a prediction rate of approxi-
mately 90% at the trip level using GPS, accelerometer, 
and survey data [9]. It is indicated without further details 
that 65% of observations were assigned to the calibration 
set while 35% were used as a validation set. If the same 
participants contributed observations to both the cali-
bration and validation sets, the reported prediction rate 
should be seen as overestimating the correct prediction 
rate when applied to a new set of participants.

Ellis et  al. used a combination of strategies to predict 
a mix of body posture and transport mode with their RF 
model based on GPS and accelerometer data [17]. Some 

of their strategies were unbiased, such as when models 
were grown and tested in different samples and when 
a “leave-one-day-out cross-validation” was used (each 
time, data from one day was used for testing). Shafique 
et  al. used a mix of data (GPS, accelerometer, personal 
attributes, and Google Maps information) to reach an 
impressive 99.6% correct prediction rate using Random 
Forest with Stepwise Feature Inclusion [20]. Their pre-
diction accuracies ranged from 95.44% to 99.84% for 
four transport modes (walk, bicycle, car, and train). The 
authors adopted a more complicated moving average fil-
ter employed during the pre-processing to account for 
the variability in the accelerometer data. The near-perfect 
accuracy in their study can possibly be attributed to the 
fact that the train-test split was done at the outcome level 
(similar to the observation level), where 70% of the data 
from each transport mode was randomly included in the 
training set and the rest in the test set, with the same par-
ticipants providing data to both sets.

Other studies by Gong et al. [48] and Chen et al. [49] 
have yielded prediction rates of 82.6% and 79.1% at the 
trip stage level, respectively. Because they used GIS rule-
based algorithms, the methodological issue related to RF 
that we raise does not apply to their work.

Heart rate in addition to GPS and accelerometer data
Previous studies have used a combination of GPS, accel-
erometer, and heart rate data for the prediction of other 
outcomes such as energy expenditure and physical activ-
ity [50–53], but to the best of our knowledge, only very 
rarely for the prediction of transport modes e.g., for the 
prediction of cycling or for identification of the most sig-
nificant variables in transport modes prediction [41]. Our 
a priori hypothesis that heart rate data would substan-
tially contribute to a better distinction between motor-
ized transport modes (especially between driving a car 
and using public transport) was not confirmed overall. 
Probably heart rate provided information strongly corre-
lated to the one provided by accelerometers. Given that 
accelerometer measurement is easier to implement than 
heart rate measurement, we did not examine whether 
accelerometer variables added to prediction accuracy 
based on GPS and heart rate data. It should be empha-
sized, however, that heart rate seemed to improve the 
prediction for biking which is easily understandable as 
waist-worn accelerometers are unable to adequately cap-
ture biking physical activity.

Predictive contribution of variables
Predictors that were tested included variables from the 
accelerometer (55 variables), the GPS receiver (51 vari-
ables), and the heart rate monitor (12 variables). The 
variable importance plots (for models including heart 
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Fig. 3 Variable importance plot: Mean decrease in accuracy

Fig. 4 Variable importance plot: Mean decrease in Gini
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rate data) give a glimpse of which variables contributed 
most in terms of the overall accuracy of the prediction 
and related performance of the model (mean decrease in 
accuracy) as illustrated in Fig.  3, and in terms of purity 
of the final subgroups in the tree through splits with this 
variable (mean decrease in Gini) as depicted in Fig. 4.

Half of the predictors out of the top 30 predictive vari-
ables contributing to the model’s accuracy belonged to 
GPS, followed by 13 accelerometer variables, one heart 
rate, and one time-related variable. It should be noted 
that none of the accelerometer variables made it to the 
top 10 contributing predictors. The standard deviation 
of speed (from GPS data) contributed most in terms of 
the predictive accuracy of the models (mean decrease in 
accuracy). The information on weekday vs. weekend was 
ranked second, followed by maximum speed, heart rate, 
and then by other speed and GPS indicators. The mean 
number of satellites used was ranked in the ninth posi-
tion. While the importance of weekday/weekend (ranked 
second) was surprising, the importance of speed was 
expected since speed, and also the variance in speed, dif-
fer between transport modes, even between motorized 
transport modes (for example, public transport vehicles 
may have a more constant speed and more regular stops, 
compared to private motorized vehicles). It is interest-
ing to see how heart rate contributed to the predictive 
accuracy of the entire model even if it was not found to 
improve the prediction rate in addition to other variables, 
which is likely due to substitutions among variables. Vari-
ables related to the number of satellites in view are likely 
relevant for predicting public transport, which is often 
underground in the Paris area. It was assumed that accel-
erometer data measuring body acceleration would be 
important, but the model reported otherwise.

In contrast, Ellis et  al. and Brondeel et  al. found that 
accelerometer variables contributed more in terms of 
predictive power than the GPS data [18, 19]. This is dif-
ficult to explain, given that the latter study was based on 
data collected by our team with comparable methods for 
another sample over similar territory.

A posteriori homogenization of predictions
Our a posteriori homogenization systematically 
improved the reported prediction rates as we expected. 
Ellis et  al. reported significant improvements in their 
final prediction rates after using the moving average filter 
[18]. Similarly, Prelipcean et al. observed higher accuracy 
growth using their “Explicit-consensus methods” com-
pared to other performance metrics used in their study 
[54]. This method also used a voting principle on each 
point of the trip segment but instead took into account 
the whole trip segment than a window of points before 
and after the point in question, which strategy is difficult 

to apply when the trip start and end is not known before-
hand as in our case.

In our study, using the moving average filter, the suc-
cessful prediction rate of transport modes (overall) was 
increased by 6 percentage points. In comparison, the 
prediction of public transport use was improved by 4 
percentage points and that of using a private motorized 
vehicle by 10 percentage points. Thus, our study dem-
onstrates that the posteriori homogenization reason-
ably improved the final prediction rates, although not 
substantially, and that it is a useful step in a prediction 
process.

There was evidence that excessively large homogeniza-
tion windows tended to obscure the prediction of walk-
ing episodes, which are typically shorter than those with 
other modes. Thus, our work suggests that investigators 
need to pay close attention to the size of the homogeni-
zation window and that a unique window size may not 
identically apply to all transport modes.

Overall and mode‑specific prediction rates
Although the overall prediction rate (in our Test sets, 
after applying a posteriori homogenization) seemed high 
(90%), it was greatly influenced by the extended stays at 
places visited that are relatively easy to predict (91%). 
We addressed this issue in two ways, first by deriving an 
overall prediction rate for transport modes (excluding 
stays at visited places), which was 80% at its peak, and 
second by calculating mode-specific prediction rates. For 
the latter approach, we applied class-wise weights based 
on the observed proportion of the modes among all trips, 
which prevents rare modes from having their prediction 
rate penalized due to their low prevalence [19, 37]. Our 
final prediction rate of transport modes (80%) suggests 
that there is room for improvement for our model of pre-
diction of being in trips rather than a visited place and 
of transport modes. Biking achieved a higher prediction 
rate than the other modes. Particular efforts are needed 
in the future for predicting public transport use, for 
example, taking into account the location of public trans-
port stations to aid the prediction.

Strengths and limitations
The main strength of this study is that it relies on a large 
sample of accurately identified trips using GPS tracking 
and a GPS-based mobility survey. Our sample includes a 
large number of trip configurations from participants in 
free-living conditions, along with a large number of dif-
ferent types of personal motorized vehicles and public 
transport vehicles. Thus, it is logical to expect a lower 
rate of correct prediction in our study than in others with 
less variability in trip conditions. Still, the relatively low 
final prediction rate is the major limitation of this work, 
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which will have to be improved in the future. Moreover, 
the region of Paris has a specific transport system with a 
densely connected public transport network with highly 
walkable areas. Our particular prediction model is likely 
not generalizable to contexts with different transport and 
urban systems; however, our data collection and data 
processing methodology is the second strength is that 
our study is one of the first to include heart rate data for 
the prediction of transport mode. However, the contribu-
tion of heart rate data to improve the prediction of pri-
vate and public transport modes, as hypothesized, was 
not verified in our analyses, and the inclusion of heart 
rate data only very slightly improved the prediction of 
biking. A third related strength is the large set of poten-
tially relevant predictors generated for our modelling 
from GPS, accelerometer, and heart rate data.

The fourth strength is that we developed an algorithm 
for minute-level prediction, which assesses both being at 
a visited place and being on trips. Thus, contrary to our 
previous work [19], the present algorithm is a standalone 
algorithm that does not require a pre-identification of 
trips. In the present work, we tested an alternative two-
step approach where we first used an algorithm based on 
GPS speed to identify trip stages, and in a second step, 
attempted to predict transport mode at the trip stage 
level and then compared the predictions to the ground-
truth from our GPS-based mobility survey. However, 
this approach yielded abysmal prediction rates due to 
the combination of uncertainty in the first step (identi-
fying trips) and the second step (identifying modes). The 
fifth strength of the work is related to the methodological 
developments implemented, including improving over 
the straightforward split of observations in RF ignoring 
the nesting of observations within individuals and inves-
tigating the impact of the window size for the a posteriori 
homogenization of predictions.

Limitations to overcome in the future include the 
restricted age range of our sample population. Future 
considerations should be given to expanding the selection 
of participants to include a large age range (preferably 
18  years and above). Also, the inclusion of participants’ 
sociodemographic characteristics should be considered 
to determine whether personal information can con-
tribute to prediction accuracy. Finally, the application of 
our method to mobility data from various and differing 
urban settings would provide the level of variability our 
algorithm needs to improve the generalizability of our 
findings.

Conclusions
Our study shows that it is feasible to use sensor-based 
prediction models of transport modes. Our work 

suggests that GPS and accelerometer data provide rel-
evant information for the prediction and that heart 
rate adds minor information only for specific transport 
mode. Finally, our work demonstrates that a two-phase 
approach, including RF prediction and a posteriori 
homogenization, improves over RF prediction only.

Abbreviations
ECG: Electrocardiography; GIS: Geographic Information System; GPS: Global 
positioning system; HDOP: Horizontal Dilution Of Precision; MVPA: Moderate-
to-vigorous physical activity; PDOP: Positional dilution of precision; RECORD: 
Residential environment and coronary heart disease; RF: Random forest; VDOP: 
Vertical dilution of precision.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12942- 022- 00319-y.

Additional file 1: Table S1. List of all the predictors generated from GPS, 
accelerometer, and heart data used in the Random Forest prediction.

Acknowledgements
Not applicable.

Author contributions
BC is the principal investigator of the RECORD MultiSensor Study and 
conceived the principle of the present prediction study. SG analysed and 
interpreted the results from GPS, accelerometer, and heart rate data with 
guidance from BC, RB, and TEA. SG also contributed to the initial drafting 
of the manuscript. BC was a major contributor in reframing and writing the 
final manuscript. RB and TEA provided oversight on the methodological and 
statistical aspect of the manuscript. All authors read and approved the final 
manuscript.

Funding
The RECORD MultiSensor Study was supported by the Ministry of Ecology 
(DGITM); Cerema (Centre for the Study of and Expertise on Risks, the Environ-
ment, Mobility, and Planning); INPES (National Institute for Prevention and 
Health Education); STIF (Ile-de-France Transportation Authority); and DRIEA 
(Regional and Interdepartmental Direction of Equipment and Planning) of Ile-
de-France. The funding institutions had no role in the design of the study and 
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets generated and/or analysed during the current study are not 
publicly available due to the sensitivity of data (GPS receiver data providing 
the location of participants) but are available from the research team in the 
context of scientific collaborations.

Declarations

Ethics approval and consent to participate
Ethical approval for the study was obtained from the French Data Protection 
Authority. All involved participants filled out an informed consent form.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 INSERM, Nemesis Research Team, Institut Pierre Louis d’Épidémiologie et de 
Santé Publique, Sorbonne Université, Paris, France. 2 School of Public Health, 
Ecole des Hautes Études en Santé Publique, Rennes, France. 3 Department 

https://doi.org/10.1186/s12942-022-00319-y
https://doi.org/10.1186/s12942-022-00319-y


Page 13 of 14Giri et al. International Journal of Health Geographics           (2022) 21:19  

of Movement and Sport Sciences, Faculty of Medicine and Health Sciences, 
Ghent University, Watersportlaan 2, B-9000 Ghent, Belgium. 

Received: 19 November 2021   Accepted: 20 October 2022

References
 1. Sahlqvist S, Song Y, Ogilvie D. Is active travel associated with greater 

physical activity? The contribution of commuting and non-commuting 
active travel to total physical activity in adults. Prev Med. 2012;55:206–11.

 2. Chaix B, Kestens Y, Duncan S, Merrien C, Thierry B, Pannier B, et al. Active 
transportation and public transportation use to achieve physical activity 
recommendations? A combined GPS, accelerometer, and mobility survey 
study. Int J Behav Nutr Phys Act. 2014;11:1–11.

 3. De Nazelle A, Nieuwenhuijsen MJ, Antó JM, Brauer M, Briggs D, Braun-
Fahrlander C, et al. Improving health through policies that promote 
active travel: a review of evidence to support integrated health impact 
assessment. Environ Int. 2011;37:766–77. https:// doi. org/ 10. 1016/j. envint. 
2011. 02. 003.

 4. Litman T. Transportation and public health. Annu Rev Public 
Health. 2013;34:217–33. https:// doi. org/ 10. 1146/ annur ev- publh 
ealth- 031912- 114502.

 5. Bohte W, Maat K. Deriving and validating trip purposes and travel modes 
for multi-day GPS-based travel surveys: a large-scale application in the 
Netherlands. Transp Res Part C Emerg Technol. 2009;17:285–97.

 6. Kohla B, Gerike R, Hössingerr R, Meschik M, Sammer G, Unbehaun W. A 
New algorithm for mode detection in travel surveys: mobile technolo-
gies for activity-travel data collection and analysis. Mob Technol Act Data 
Collect Anal. 2014. https:// doi. org/ 10. 4018/ 978-1- 4666- 6170-7. ch009.

 7. Shen L, Stopher PR. Review of GPS travel survey and gps data-processing 
methods. Transp Rev. 2014;34:316–34. https:// doi. org/ 10. 1080/ 01441 647. 
2014. 903530.

 8. Hu M, Li W, Li L, Houston D, Wu J. Refining time-activity classification 
of human subjects using the global positioning system. PLoS One. 
2016;11:e0148875.

 9. Feng T, Timmermans HJP. Transportation mode recognition using 
GPS and accelerometer data. Transp Res Part C Emerg Technol. 
2013;37:118–30.

 10. Chaix B, Benmarhnia T, Kestens Y, Brondeel R, Perchoux C, Gerber P, 
et al. Combining sensor tracking with a GPS-based mobility survey to 
better measure physical activity in trips: public transport generates 
walking. Int J Behav Nutr Phys Act. 2019;16:84. https:// doi. org/ 10. 1186/ 
s12966- 019- 0841-2.

 11. Axhausen K, SchöUnfelder S, Wolf J, Oliveira M, Samaga U. Eighty weeks 
of global positioning system traces: approaches to enriching trip infor-
mation. Transp Res Rec. 2004;1870:46–54.

 12. Gong L, Morikawa T, Yamamoto T, Sato H. Deriving personal trip data 
from GPS data: a literature review on the existing methodologies. Proc 
Soc Behav Sci. 2014;138:557–65.

 13. Thierry B, Chaix B, Kestens Y. Detecting activity locations from raw GPS 
data: a novel kernel-based algorithm. Int J Health Geogr. 2013;12:1–10.

 14. Stopher P, FitzGerald C, Xu M. Assessing the accuracy of the Sydney 
household travel survey with GPS. Transportation (Amst). 2007;34:723–41.

 15. Schuessler N, Axhausen KW. Processing raw data from global position-
ing systems without additional information. Transp Res Rec J Transp Res 
Board. 2009;2105:28–36.

 16. Wolf J, Guensler R, Bachman W. Elimination of the travel diary: experiment 
to derive trip purpose from global positioning system travel data. Transp 
Res Rec J Transp Res Board. 2001;1768:125–34. https:// doi. org/ 10. 3141/ 
1768- 15.

 17. Ellis K, Godbole S, Chen J, Marshall S, Lanckriet G, Kerr J. Physical activity 
recognition in free-living from body-worn sensors. In: Ellis K, editor. 
Proceedings of the 4th International SenseCam & Pervasive Imaging 
Conference. San Diego: ACM Digital library; 2013. p. 88–9.

 18. Ellis K, Godbole S, Marshall S, Lanckriet G, Staudenmayer J, Kerr J. Iden-
tifying active travel behaviors in challenging environments using GPS, 
accelerometers, and machine learning algorithms. Front Public Health. 
2014. https:// doi. org/ 10. 3389/ fpubh. 2014. 00036/ abstr act.

 19. Brondeel R, Pannier B, Chaix B. Using GPS, GIS, and accelerometer data to 
predict transportation modes. Med Sci Sports Exerc. 2015;47:2669–75.

 20. Shafique MA, Hato E. Classification of travel data with multiple sensor 
information using random forest. Transp Res Proc. 2017;22:144–53. 
https:// doi. org/ 10. 1016/j. trpro. 2017. 03. 021.

 21. Roy A, Fuller D, Stanley K, Nelson T. Classifying transport mode from 
global positioning systems and accelerometer data: a machine learning 
approach research question and hypothesis. Findings. 2020. https:// doi. 
org/ 10. 32866/ 001c. 14520.

 22. Ellis K, Kerr J, Godbole S, Lanckriet G, Wing D, Marshall S. A random forest 
classifier for the prediction of energy expenditure and type of physical 
activity from wrist and hip accelerometers HHS public access. Physiol 
Meas. 2014;35:2191–203.

 23. Mehrang S, Pietilä J, Korhonen I. An activity recognition framework 
deploying the random forest classifier and a single optical heart rate 
monitoring and triaxial accelerometer wrist-band. Sensors (Switzerland). 
2018;18:1–13.

 24. Balli S, Sag EA. Human activity recognition from smart watch sensor 
data using a hybrid of principal component analysis and random forest 
algorithm. Meas Control. 2019;52:37–45.

 25. Jones AYM, Kam C, Lai KW, Lee HY, Chow HT, Lau SF, et al. Changes 
in heart rate and R-wave amplitude with posture. Chin J Physiol. 
2003;46:63–9.

 26. Chaix B, Kestens Y, Bean K, Leal C, Karusisi N, Meghiref K, et al. Cohort 
profile: Residential and non-residential environments, individual activity 
spaces and cardiovascular risk factors and diseases-The RECORD cohort 
study. Int J Epidemiol. 2012;41:1283–92.

 27. El Aarbaoui T, Méline J, Brondeel R, Chaix B. Short-term association 
between personal exposure to noise and heart rate variability: The 
RECORD MultiSensor Study. Environ Pollut. 2017;231:703–11.

 28. El Aarbaoui T, Chaix B. The short-term association between exposure to 
noise and heart rate variability in daily locations and mobility contexts. 
J Expo Sci Environ Epidemiol. 2020;30:383–93. https:// doi. org/ 10. 1038/ 
s41370- 019- 0158-x.

 29. Chaix B, Kestens Y, Perchoux C, Karusisi N, Merlo J, Labadi K. An interactive 
mapping tool to assess individual mobility patterns in neighborhood 
studies. Am J Prev Med. 2012;43:440–50.

 30. Brondeel R, Pannier B, Chaix B. Associations of socioeconomic status 
with transport-related physical activity: combining a household travel 
survey and accelerometer data using random forests. J Transp Heal. 
2016;3:287–96.

 31. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph 
activity monitors. J Sci Med Sport. 2011;14:411–6.

 32. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. 
Validation of wearable monitors for assessing sedentary behavior. Med 
Sci Sports Exerc. 2011;43:1561.

 33. Wanner M, Martin BW, Meier F, Probst-Hensch N, Kriemler S. Effects of 
filter choice in GT3X accelerometer assessments of free-living activity. 
Med Sci Sports Exerc. 2013;45:170–7.

 34. García Martínez CA, Otero Quintana A, Vila XA, Lado Touriño MJ, Rod-
ríguez-Liñares L, Rodríguez Presedo JM, et al. Heart rate variability analysis 
with the R package RHRV. Cham: Springer International Publishing; 2017. 
https:// doi. org/ 10. 1007/ 978-3- 319- 65355-6.

 35. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 36. Barshan B, Yüksek MC. Recognizing daily and sports activities in two open 

source machine learning environments using body-worn sensor units. 
Comput J. 2013;57:1649–67.

 37. Lin WJ, Chen JJ. Class-imbalanced classifiers for high-dimensional data. 
Brief Bioinform. 2013;14:13–26.

 38. Liaw A, Wiener M, Andy Liaw M. Random forests for classification and 
regression. CRAN Ref Man. 2015;4:14.

 39. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest vari-
able importance measures: illustrations, sources and a solution. BMC 
Bioinform. 2007;8:25.

 40. Roy A, Fuller D, Nelson T, Kedron P. Assessing the role of geographic 
context in transportation mode detection from GPS data. J Transp Geogr. 
2022;100:103330. https:// doi. org/ 10. 1016/j. jtran geo. 2022. 103330.

 41. Hasan RA, Irshaid H, Alhomaidat F, Lee S, Oh JS. Transportation mode 
detection by using smartphones and smartwatches with machine learn-
ing. KSCE J Civ Eng. 2022. https:// doi. org/ 10. 1007/ s12205- 022- 1281-0.

https://doi.org/10.1016/j.envint.2011.02.003
https://doi.org/10.1016/j.envint.2011.02.003
https://doi.org/10.1146/annurev-publhealth-031912-114502
https://doi.org/10.1146/annurev-publhealth-031912-114502
https://doi.org/10.4018/978-1-4666-6170-7.ch009
https://doi.org/10.1080/01441647.2014.903530
https://doi.org/10.1080/01441647.2014.903530
https://doi.org/10.1186/s12966-019-0841-2
https://doi.org/10.1186/s12966-019-0841-2
https://doi.org/10.3141/1768-15
https://doi.org/10.3141/1768-15
https://doi.org/10.3389/fpubh.2014.00036/abstract
https://doi.org/10.1016/j.trpro.2017.03.021
https://doi.org/10.32866/001c.14520
https://doi.org/10.32866/001c.14520
https://doi.org/10.1038/s41370-019-0158-x
https://doi.org/10.1038/s41370-019-0158-x
https://doi.org/10.1007/978-3-319-65355-6
https://doi.org/10.1016/j.jtrangeo.2022.103330
https://doi.org/10.1007/s12205-022-1281-0


Page 14 of 14Giri et al. International Journal of Health Geographics           (2022) 21:19 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 42. Moreau H, Vassilev A, Chen L. The devil is in the details: an efficient con-
volutional neural network for transport mode detection. IEEE Trans Intell 
Transp Syst. 2022;23:12202–12.

 43. Kumar S, Damaraju A, Kumar A, Kumari S, Chen CM. LSTM network for 
transportation mode detection. J Internet Technol. 2021;22:891–902.

 44. Wang P, Jiang Y. Transportation mode detection using temporal convolu-
tional networks based on sensors integrated into smartphones. Sensors. 
2022;22:6712.

 45. Alotaibi B. Transportation mode detection by embedded sensors based 
on ensemble learning. IEEE Access. 2020;8:145552–63.

 46. Di Mitri D, Asyraaf Mat Sanusi K, Trebing K, Bromuri S. MOBIUS: smart 
mobility tracking with smartphone sensors. Lect Notes Inst Comput Sci 
Soc Telecommun Eng. 2021;372:462–75.

 47. Mantellos G, Exarhos TP, Christopoulou E. Human activity and transporta-
tion mode recognition using smartphone sensors. In: Mantellos G, editor. 
2020 5th South-East Europe design automation, computer engineering, 
computer networks and social media conference SEEDA-CECNSM. Corfu: 
IEEE; 2020.

 48. Gong H, Chen C, Bialostozky E, Lawson CT. A GPS/GIS method for 
travel mode detection in New York City. Comput Environ Urban Syst. 
2012;36:131–9.

 49. Chen C, Gong H, Lawson C, Bialostozky E. Evaluating the feasibility of a 
passive travel survey collection in a complex urban environment: lessons 
learned from the New York City case study. Transp Res Part A Policy Pract. 
2010;44:830–40.

 50. Tikkanen O, Kärkkäinen S, Haakana P, Kallinen M, Pullinen T, Finni T. EMG, 
heart rate, and accelerometer as estimators of energy expenditure in 
locomotion. Med Sci Sports Exerc. 2014;46:1831–9.

 51. Strath SJ, Swartz AM, Bassett DR, O’Brien WL, King GA, Ainsworth BE. 
Evaluation of heart rate as a method for assessing moderate intensity 
physical activity. Med Sci Sports Exerc. 2000;32:S465-70.

 52. de Müllenheim PY, Chaudru S, Emily M, Gernigon M, Mahé G, Bickert S, 
et al. Using GPS, accelerometry and heart rate to predict outdoor graded 
walking energy expenditure. J Sci Med Sport. 2018;21:166–72. https:// doi. 
org/ 10. 1016/j. jsams. 2017. 10. 004.

 53. Tapia EM, Intille SS, Haskell W, Larson K, Wright J, King A, et al. Real-time 
recognition of physical activities and their intensities using wireless accel-
erometers and a heart rate monitor. In: Tapia EM, editor., et al., 2007 11th 
IEEE International Symposium on wearable computers, 2007 Oct 11–13. 
Boston: IEEE; 2007. p. 37–40.

 54. Prelipcean AC, Gidofalvi G, Susilo YO. Measures of transport mode seg-
mentation of trajectories. Int J Geogr Inf Sci. 2016;30:1763–84.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jsams.2017.10.004
https://doi.org/10.1016/j.jsams.2017.10.004

	Application of machine learning to predict transport modes from GPS, accelerometer, and heart rate data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Study participants
	Definition of the outcome to predict from the mobility survey
	Potential predictors of transport modes
	Statistical analysis
	A posteriori homogenization of predictions

	Results
	Descriptive statistics
	Participant-level vs. minute-level split of observations
	Contribution of HR
	A posteriori homogenization
	Final predictions

	Discussion
	Main results
	Participant-level vs. observation-level split of observations
	Heart rate in addition to GPS and accelerometer data
	Predictive contribution of variables
	A posteriori homogenization of predictions
	Overall and mode-specific prediction rates

	Strengths and limitations
	Conclusions

	Acknowledgements
	References




