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 HLA-H*02:07 Is a Membrane-Bound Ligand of DenisovanQ:1,2,3,4

Origin That Protects against Lysis by Activated ImmuneQ:5,6,7,8

EffectorsQ:9,10

Lucas Hubert,*,† Julien Paganini,‡ Christophe Picard,*,† Jacques Chiaroni,*,†

Laurent Abi-Rached,§,{ Pierre Pontarotti,§,{ and Julie Di Cristofaro*,†

The biological relevance of genes initially categorized as “pseudogenes” is slowly emerging, notably in innate immunity. In the
HLA region on chromosome 6, HLA-H is one such pseudogene; yet, it is transcribed, and its variation is associated with immune
properties. Furthermore, two HLA-H alleles, H*02:07 and H*02:14, putatively encode a complete, membrane-bound HLA
protein. Here we thus hypothesized that HLA-H contributes to immune homeostasis similarly to tolerogenic molecules HLA-G,
-E, and -F. We tested if HLA-H*02:07 encodes a membrane-bound protein that can inhibit the cytotoxicity of effector cells. We
used an HLA-null human erythroblast cell line transduced with HLA-H*02:07 cDNA to demonstrate that HLA-H*02:07 encodes a
membrane-bound protein. Additionally, using a cytotoxicity assay, our results support that K562 HLA-H*02:07 inhibits human
effector IL-2�activated PBMCs and human IL-2�independent NK92-MI cell line activity. Finally, through in silico genotyping of
the Denisovan genome and haplotypic association with Denisovan-derived HLA-A*11, we also show that H*02:07 is of archaic
origin. Hence, admixture with archaic humans brought a functional HLA-H allele into modern European and Asian populations. The
Journal of Immunology, 2021, 208: 1�6.

The HLA region is the most polymorphic region of the
human genome, displaying a breadth of functional diversity,
in particular for the HLA proteins themselves thanks to their

extreme allotypic diversity. This region also encompasses many
pseudogenes (1�3) (i.e., genes considered as defective and that are
often derived from functional genes through processes such as retro-
transposition of processed mRNAs or segmental duplications).
Although both processes are associated with genome plasticity, their
typical product, pseudogenes, is generally considered nonfunctional.
However, an increasing number of studies identify functional pro-
cesses attributable to pseudogenes, and direct investigations reveal
biological roles, notably in innate immunity (4). Yet, the potential
expression and function of the pseudogenes described in the HLA
region are largely unexplored.
HLA-H was defined as a nonfunctional gene, notably because of

its genetic deletion in a significant fraction of the population (5�8).
The 50-kb deletion encompassing HLA-H is observed at a frequency
of >10% in all continents and reaches 21% in East Asia (9).
Currently, 19 HLA-H alleles with a distinct sequence in the exons

are described (10). These alleles display open reading frames rang-
ing from 18 to 362 aa. All potential HLA-H allotypes lack the cyste-
ine at codon 164 reported to be critical for the disulfide bond of the
a2 domain; this feature was put forward to classify HLA-H as

nonfunctional (3). Of these 19 alleles, 2 (HLA-H*02:07 and
H*02:14) putatively encode a complete, membrane-bound HLA
protein (9). Interestingly, early data on the distribution of H*02:07
in modern populations and high linkage disequilibrium (LD) with
HLA-A*11 are both consistent with H*02:07 having been intro-
duced into modern human populations on one of the HLA haplo-
types that are of Denisovan origin (11).
HLA-H*02:07 and H*02:14 alleles and putative products are

highly related to the HLA-G molecule (9). HLA-G is a nonclassical
HLA class I molecule (HLA-Ib; a group that also includes HLA-E
and -F) that is well described for its tolerogenic activity in a clinical
context. Indeed, HLA-G ligand modulates NK cell and CTL-medi-
ated activity as well as B-lymphocyte proliferation through its interac-
tion with the inhibitory receptors LILRB1, LILRB2, and KIR2DL4
(reviewed in [12]).
HLA-H transcriptional activity was characterized in PBMCs and

human bronchial epithelial cells (13�16). HLA-H immune proper-
ties were also supported by different observations. An indirect role
in HLA-E expression was shown, for example, because HLA-H’s
signal peptide mobilizes in vitro HLA-E to the cell surface (16),
similarly to what is observed for other HLA molecules as well as
for stress and virus peptides (17, 18). HLA-H absence may also
impair immune-tolerance equilibrium: In lung transplant patients,
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tion, Phylog�enie et Infection, Institut Hospitalier Universitaire-M�editerran�ee Infection,
Marseille, France; and {CNRS, Marseille, France

ORCIDs: 0000-0001-7110-5465 (L.H.); 0000-0003-2369-9320 (J.P.); 0000-0001-9118-
5239 (C.P.); 0000-0001-7202-3648 (P.P.); 0000-0001-7867-6455 (J.D.C.).

Received for publication April 15, 2021. Accepted for publication November 1, 2021.

This work was supported by l’�Etablissement Français du Sang Provence-Alpes Côte-
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the HLA-G*01:04 allele, in LD with the HLA-H deletion, was asso-
ciated with de novo donor-specific Ag (19). The potential tolerogenic
function of the H*02:07 protein is supported by its association,
through its full LD with the HLA-A*11 allele, with higher risk of
lung cancer (15).
We hypothesize that HLA-H contributes to immune homeostasis

similarly to tolerogenic molecules HLA-G, -E, and -F (20�26) and
that HLA-H*02:07 is expressed as a functional, immune-tolerant,
membrane-bound HLA molecule. Here we thus aimed to study
membrane expression of HLA-H*02:07 in an HLA-null cell line
and its potential function as an immune modulator in a cytotoxicity
assay. HLA-G, which protects against NK cell cytotoxicity (27),
was used as positive control. We also investigated, through the study
of the Denisovan HLA-H locus, the possibility that HLA-H*02:07 is
of Denisovan origin and was introduced into modern populations in
Asia by Denisovan admixture.

Materials and Methods
HLA-H and HLA-G K562 transduction

HLA-H*02:07 membrane expression was explored by transduction of HLA-
H*02:07 cDNA in the K562 human erythroleukemic cell line that displays a
reduced expression of HLA class I. HLA-G*01:01 cDNA transduction was
used as a positive control. The K562 (ACC86) cell line was obtained from
the German Collection of Microorganisms and Cell Cultures (Leibniz Insti-
tute DSMZ, Braunschweig, GermanyQ:12 ). HLA-H*02:07 and HLA-G*01:01
cDNAs optimized for protein expression (Gene Optimizer Assisted; Invitro-
gen) were cloned in the pWPXL expression vector (Addgene).

K562 cells were transduced with lentiviral particles. Lentiviral particles
were harvested at days 1 and 2 after transfection of 25 � 106 HEK adherent
cellsQ:13 at 60% of confluence with 12.5 mg of pMDG (envelope vector), 25 mg
of p8.91 (packaging vector), and 50 mg of pWPXL containing cDNA, 100
mM NaCl, and 1 mM polyethylenimine (Sigma-Aldrich). Lentiviral particles
were concentrated by centrifugation at 9700 Rpm for 1 h 30 min in polyeth-
ylene glycol 10% (PEG 8000; Fluka BiochemikaQ:14 ). K562 were transduced
with lentiviral particles containing HLA-H*02:07 or HLA-G*01:01 and
expanded.

Transcriptional expression of HLA-H and HLA-G transgenes in K562
cells was assessed by quantitative PCR. Total RNA from transduced K562
cells and wild-type K562 cells (negative control) was isolated using the
RNeasy kit (Qiagen, Courtaboeuf, FranceQ:15 ). cDNA was reverse transcribed
using Superscript III Reverse Transcriptase (Invitrogen).

Real-time PCR analyses were performed with lentivirus-specific transgene
(WPRE gene) primers, Albumin gene primers were used as a reference (28). A
primer specific to HLA-H cDNA was also included in the analysis (T1 Table I).

Each experiment was carried out in duplicate, and average cycle threshold
(Ct) was calculated with StepOne 2.1 software (Invitrogen), excluding Ct
duplicates with an SD >0.5.

HLA-H and HLA-G membrane expression

HLA-H protein expression at the cell surface was assessed by flow cytome-
try. HLA-G expression was used as a positive control; wild-type K562 cells
were used as a negative control. HLA-H and HLA-G membrane-bound pro-
teins were stained by mouse IgG1 Ab clone W6/32-PE (anti�HLA class I;
Invitrogen) and mouse IgG1 Ab clone B2M-01-PE (anti b2-microglobulin;
Invitrogen). The isotype control used was mouse IgG1 Ab clone 679.1Mc7-
PE (Beckman Coulter).

Data were acquired on a Cytoflex machine (Beckman Coulter) and ana-
lyzed with CytExpert software 2.3 and Kaluza Analysis 2.1. Membrane
expression was estimated by mean fluorescence intensity (MFI).

HLA-H immunomodulation analysis

The capacity of membrane-bound HLA-H to inhibit the cytotoxic activity
of immune effector cells was assessed by a cytotoxicity assay on target
cells. Transduced and wild-type K562 cells were used as target cells, and
IL-2�activated PBMCs or the NK92-MI cell line (an IL-2�independent
NK cell line derived from the NK-92 cell line) were as effector cells.

The K562 cells display a reduced expression of HLA ligand for
inhibitory NK receptors and high expression of ligands for activating
NK receptors. Thus, activated immune effector cells exert a cell-medi-
ated cytotoxic activity on K562 cells (target), which can be suppressed
by engagement of inhibitory receptors expressed on the immune effec-
tors (29). HLA-H*02:07 K562�transduced cells were used to explore

the capacity of the HLA-H*02:07 membrane-bound molecule to inhibit
cytotoxic activity. HLA-G*01:01 K562�transduced cells were used as a
positive control, and wild-type K562 cells were used as a reference (27).

The cytotoxicity assay was conducted using an xCELLigence Real-Time
Cell Analyzer (Agilent Technologies). This assay allows monitoring of real-
time target cell growth and lysis in a 96-well plate. Target cells are attached
to well bottoms by a specific Ab. Each well bottom integrated microelec-
tronic cell sensor arrays that measure impedance. Impedance at the well bot-
tom varies according to target cell attachment. An increase in impedance
reflects target cell growth, whereas a decrease reflects target cell lysis.
Impedance is expressed as cell index (30).

Fifty thousand K562 target cells were seeded into each well coated with
anti-CD71 Ab (IMT assay anti-CD71 tethering kit; Agilent Technologies).
Target cell growth was monitored until the plateau phase was reached, and
effector cells were then added (E:T ratio 2:1) (31).

Experiments were conducted with different effector cells: primary IL-2
activated PBMCs or the IL-2�independent NK92-MI cell line. Effector
PBMCs were isolated from EDTA peripheral blood samples by density gra-
dient centrifugation (Lymphoprep solution; STEMCELL Technologies) and
cultured in stromal vascular fraction�supplemented RPMI Q:16. PBMCs were
activated by 100 IU/ml of recombinant human IL-2 (rhIL-2) for 24 h (Life
Technologies). The IL-2�independent NK92-MI cell line (CRL-2408; Amer-
ican Type Culture Collection) was cultured in NK MACS medium (Miltenyi
Biotec) supplemented with serum from an AB donor.

Effector cells (25 � 103 Q:17) were added (t0), and cell lysis was monitored
every 15min for 24 h (t24). Target cell lysis was assessed by the slope (cell
index t0 to t24) and compared between assay and negative and positive con-
trols. All experiments were conducted in a humidified incubator at 37�C
with 5% CO2. Each experiment was carried out in duplicate.

Characterization of the Denisovan HLA-H alleles

To investigate the Denisovan HLA-H content, all HLA class I�related reads
were first isolated from the whole-genome sequences (32) using Bowtie 2
(33).

Initial HLA-H allelic assignment was performed with the PolyPheMe soft-
ware (Xegen, Gemenos, France) (34) using the IPD-IMGT/HLA Database
3.43.0 as s reference (35) (Supplemental Table I). The HLA-H allelic typing
accuracy of PolyPheMe software was previously validated (9, 36). Briefly,
HLA-H typing was first validated on 25 individuals by comparing typing
results from exome sequence data from the 1000 Genomes Project with typ-
ing results generated by a resequencing by next-generation sequencing Q:18on
the original genomic DNA samples (9). Then, HLA-H typing accuracy was
confirmed by comparing HLA-H full gene typing results by two independent
next-generation sequencing methods and two independent types of software
(PolyPheMe, Xegen; and AlloSeq Assign software, CareDx, Fremantle, Aus-
tralia Q:19) (36).

Following this HLA-H allelic assignment, the two predicted HLA-H alleles
were checked by remapping the HLA class I�related reads on the gene
sequences for these two alleles. Reads with differences from the reference
sequences were manually investigated to ensure specificity for the HLA-H
locus and discarded when they were not specific (Supplemental Table I).

HLA-H*02:07 worldwide distribution

HLA-H*02:07 worldwide distribution was visualized using HLA-H typing
data from the 1000 Genomes Project (9, 37). Additionally, HLA-A and HLA-
H types for 31 Melanesian individuals (38) defined with the PolyPheMe soft-
ware (Xegen) were added to the data from the 1000 Genomes Project. HLA-
H*02:07 allele frequency was estimated for each subpopulation (n 5 26)
according to individual genotype using the GENE[RATE] program (39).
HLA-H*02:07 allelic frequency data were plotted on a world map using
Mango software (https://mangomap.com/).

Statistical analyses

All association and correlation tests were performed with GraphPad Prism 9
software (GraphPad Software, La Jolla, CA). Differences between two
modalities were tested using a Mann-Whitney U test. Kruskal-Wallis one-
way ANOVA followed by a Dunn post hoc test was used to test more than
two modalities.

Results
HLA-H*02:07-transduced K562 cells express a membrane-bound
HLA protein

Lentiviral transduction of the K562 HLA-null cell line was used to
investigate membrane-bound expression of the HLA-H*02:07 allele.
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Transduction with the HLA-G*01:01 allele was used as a positive
control.
K562 cell transduction efficiency was first validated by quantify-

ing the lentivirus-specific transgene WPRE transcriptional activity
(28). Both HLA-H*02:07 K562 and HLA-G*01:01 K562 cells were
positive for WPRE transcription and showed quantitative PCR�posi-
tive amplification (DCtWPRE 5 �14). Wild-type K562 cells dis-
played no signal for WPRE assays.
HLA-H*02:07 K562 cell transduction was also validated by

HLA-H transcriptional activity (DCtHLA-H 5 10). Wild-type K562
cells displayed no signal for HLA-H assays.
Expression of membrane-bound HLA molecules by transduced

K562 cells was explored by flow cytometry using the anti-HLA
class I W6/32 Ab and the anti�b2-microglobulin Ab. The HLA-
G*01:01 K562 cells used as a positive control for membrane-
bound HLA expression displayed staining comparable to that of
HLA-H*02:07 K562 cells with W6/32-PE anti-HLA class I Ab
(MFI-HLA-H K562 5 95; MFI-HLA-G 5 70; MFI wild type 5 19;

F1 Fig. 1) and B2M-01-PE anti�b2-microglobulin (data not shown).

HLA-H*02:07-transduced K562 cells diminish IL-2�activated
PBMCs and IL-2�independent NK92 cell line cytotoxic activity

Inhibition of cell lysis by immune effectors was analyzed using a
real-time cytotoxicity assay conducted with K562 as target cells
(positive control: HLA-G*01:01 K562 cells; negative control: wild-
type K562 cells; assay: HLA-H*02:07 K562 cells) and IL-
2�activated PBMCs or the IL-2�independent NK92-MI cell line as
effector cells. Target lysis by IL-2�activated PBMCs showed no dif-
ference between HLA-G*01:01 K562 cells and HLA-H*02:07
K562 cells, whereas both were significantly different from wild-type
K562 cells (Kruskal-Wallis test; p 5 0.002; F2Fig. 2). HLA-G was
shown to protect against NK cell cytotoxicity (27). Target lysis by
the IL-2�independent NK92-MI cell line showed equivalent results
(Kruskal-Wallis test; p < 0.001; F3Fig. 3). Primary data for the assay
conducted with IL-2�activated PBMCs as effector cells are shown
in Supplemental Fig. 1.

HLA-H*02:07 is a Southeast Asian allele that is of Denisovan origin

To define worldwide HLA-H*02:07 distribution and investigate its
potential evolutionary origin, we analyzed its frequency in popula-
tions from the 1000 Genomes Project as well as in Melanesian indi-
viduals (Supplemental Table II) because the 1000 Genomes Project
does not cover Oceania. Worldwide HLA-H*02:07 distribution
(Supplemental Table III) is shown on a world map ( F4Fig. 4). HLA-H
in silico typing in 31 Melanesian individuals revealed an H*02:07
allele frequency of 4.8% (Supplemental Table III). This worldwide
analysis hence shows that the highest frequencies of H*02:07 are
observed in Southeast Asia, with a Chinese Dai population display-
ing the highest allelic frequency (37%).
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FIGURE 1. Flow cytom-
etry analysis with W6/32-
PE anti-HLA class I Ab.
HLA-H*02:07 K562 cells
(dark gray) and HLA-G*01:
01 K562 cells (striped gray)
displayed similar staining as
compared with wild-type
K562 cells (light gray)
staining. Unstained wild-
type K562 cells are repre-
sented by a dashed line.Q:22

Table I. Primer sequences used for lentiviral transduction expression
assessment

Primer Sequence

Albumin forward 59-TTTGCAGATGTCAGTGAAAGAGA-39
Albumin reverse 59-TGGGGAGGCTATAGAAAATAAGG-39
WPRE forward 59-GTCCTTTCCATGGCTGCTC-39
WPRE reverse 59-CCGAAGGGACGTAGCAGA-39
HLA-H forward 59-CTGGGTGTTTCTGTCCCAGT-39
HLA-H reverse 59-AGGCGAGCCTAGATTCATCA-39
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Because of this distribution and because H*02:07 is in full LD
with HLA-A*11:01 ([9] and Supplemental Table III) and HLA-A*11:
01 is of Denisovan origin (11), this raises the possibility that H*02:
07 is also of Denisovan origin. To test this possibility, HLA-H in sil-
ico typing was performed for the Denisovan genome with Poly-
PheMe software and showed the presence of H*01:01-like and
H*02:07-like alleles. Careful remapping of the Denisovan HLA class
I-related reads against reference gene sequences for H*01:01 and
H*02:07 (Supplemental Table I; IPD-IMGT/HLA Database 3.43.0)
confirmed the genotype H*01:01/H*02:07 with 99.5% and 100%
coverage, respectively. The Denisovan genome thus contains
H*02:07. Together with the facts that this allele is in full LD
with HLA-A*11:01 in modern human populations (9) and that
HLA-A*11-containing haplotypes are of Denisovan origin (11),
this shows that H*02:07 was brought into modern human popu-
lations by admixture with Denisovans.

Discussion
The pseudogene HLA-H locus displays 19 known alleles, two of
which, HLA-H*02:07 and H*02:14-, potentially encode a full-length
HLA protein (9). Because of HLA-H*02:07 transcriptional activity
and homology between its putative product and HLA-G molecule
(9, 16), we hypothesized that the H*02:07 allele encodes a func-
tional, membrane-bound HLA molecule and contributes to immune
regulation.
In this study, we show that HLA-H*02:07 cDNA is expressed as

a membrane-bound protein using an HLA-null erythroblast cell line
(K562) transduced with HLA-H*02:07 cDNA. Our results also sup-
port, using an in vitro cytotoxicity assay, that HLA-H*02:07 inhibits
effector cells as efficiently as HLA-G. Thus, the HLA-H*02:07 pro-
tein may have an immunotolerant function, like the nonclassical
molecules HLA-G, -E, and -F (20�26).
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FIGURE 3. Dynamic monitoring of cell lysis (xCELLigence assay). Tar-
get cells were cultured into 96-well E-plates until the plateau phase was
reached and NK-92 MI effector cells were added (t0). The method of deter-
mining the cell viability is the same as described in Fig. 2. Cell viability
was compared between assay (HLA-H*02:07 K562) and negative (wild-
type K562) and positive controls (HLA-G*01:01 K562) (Kruskal-Wallis
test; p < 0.001).

FIGURE 2. Dynamic monitoring of cell lysis (xCELLigence assay). Tar-
get cells were cultured into 96-well E-plates until the plateau phase was
reached. IL-2�activated effector PBMCs were added (t0). Impedance at
well bottoms was measured every 15min for 24 h and normalized to base-
line impedance values with medium only. Changes in impedance normal-
ized to t0 are given as cell index, and cell viability was expressed by the
slope from t0 to t24 and compared between assay (HLA-H*02:07 K562)
and negative (wild-type K562) and positive controls (HLA-G*01:01 K562)
(Kruskal-Wallis test; p 5 0.002).

FIGURE 4. Worldwide HLA-H*02:07 allele frequency (Mango software). Worldwide HLA-H*02:07 frequency from the 1000 Genomes Project popula-
tions (9, 37) and from Melanesian individuals (38) (Frequencies are given in Supplemental Table II.)
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We also explored HLA-H*02:07 evolution and show that the
allele was brought into modern humans through Denisovan admix-
ture. Indeed, HLA-H*02:07 is in full LD with HLA-A*11, an allele
of Denisovan origin (11), and our in silico HLA-H typing of the
Denisovan genome confirmed the presence of H*02:07 in combina-
tion with the presence of HLA-A*11. Interestingly, although Deniso-
van admixture contributed to 4�6% of present-day Melanesian
genomes (32) and a lot less in mainland Asia (<1% [40]), HLA-
H*02:07 is present in modern Asian genomes at a much higher fre-
quency, with an allele frequency >35% in a Chinese population.
Such a high HLA-H*02:07 allelic frequency is consistent with adap-
tive introgression of either H*02:07 or a variant at another locus
that would be present on H*02:07-containing haplotypes. No selec-
tion test could be performed on HLA-H allelic sequences because
coding polymorphism events are too uncommon (41). Similarly, the
full LD between HLA-H*02:07 and HLA-A*11:01 (9) prevents pre-
cise selection analyses.
Although our results support that HLA-H*02:07 is functional, it

has no known receptor to date. The tolerogenic HLA-G molecule
interacts with the inhibitory receptors LILRB1, LILB2, and
KIR2DL4. Accordingly, the HLA-H*02:07 molecule may be the
ligand of different receptors with differential affinity. Interestingly,
the fact that this variant was brought into modern humans through
Denisovan admixture raises the possibility that one of the corre-
sponding receptors may also have been brought by Denisovan
admixture into modern populations. For example, killer Ig-like
receptors are known receptors for HLA class I ligands, and one
such variant, KIR3DS1*013, was a candidate for introgression from
Denisovan (11).
The nonavailability of validated specific Ab directed against

HLA-H is a main limitation of our study. Such a tool would allow
HLA-H tissue expression exploration and functional confirmation
by blocking experimental investigation.
Nevertheless, our study illustrates how HLA pseudogenes deserve

dedicated studies to decipher their expression and their potential role
in immune homeostasis.
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20. Rouas-Freiss, N., R. M. Gonçalves, C. Menier, J. Dausset, and E. D. Carosella.
1997. Direct evidence to support the role of HLA-G in protecting the fetus from
maternal uterine natural killer cytolysis. Proc. Natl. Acad. Sci. USA 94:
11520�11525.

21. Allan, D. S., E. J. Lepin, V. M. Braud, C. A. O’Callaghan, and A. J. McMichael.
2002. Tetrameric complexes of HLA-E, HLA-F, and HLA-G. J. Immunol. Meth-
ods 268: 43�50.

22. HoWangYin, K. Y., M. Loustau, J. Wu, E. Alegre, M. Daouya, J. Caumartin, S.
Sousa, A. Horuzsko, E. D. Carosella, and J. Lemaoult. 2012. Multimeric struc-
tures of HLA-G isoforms function through differential binding to LILRB recep-
tors. Cell. Mol. Life Sci. 69: 4041�4049.

23. Pratheek, B. M., T. K. Nayak, S. S. Sahoo, P. K. Mohanty, S. Chattopadhyay,
N. G. Chakraborty, and S. Chattopadhyay. 2014. Mammalian non-classical major
histocompatibility complex I and its receptors: important contexts of gene, evolu-
tion, and immunity. Indian J. Hum. Genet. 20: 129�141.

24. Celik, A. A., T. Kraemer, T. Huyton, R. Blasczyk, and C. Bade-D€oding. 2016.
The diversity of the HLA-E-restricted peptide repertoire explains the immunolog-
ical impact of the Arg107Gly mismatch. Immunogenetics 68: 29�41.

25. Burian, A., K. L. Wang, K. A. Finton, N. Lee, A. Ishitani, R. K. Strong, and D. E.
Geraghty. 2016. HLA-F and MHC-I open conformers bind natural killer cell Ig-
like receptor KIR3DS1. PLoS One 11: e0163297.

26. Garcia-Beltran, W. F., A. H€olzemer, G. Martrus, A. W. Chung, Y. Pacheco, C. R.
Simoneau, M. Rucevic, P. A. Lamothe-Molina, T. Pertel, T. E. Kim, et al. 2016.
Open conformers of HLA-F are high-affinity ligands of the activating NK-cell
receptor KIR3DS1. Nat. Immunol. 17: 1067�1074.

27. Rouas-Freiss, N., R. E. Marchal, M. Kirszenbaum, J. Dausset, and E. D. Carosella.
1997. The a1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by
natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory
receptors? Proc. Natl. Acad. Sci. USA 94: 5249�5254.

28. Barczak, W., W. Suchorska, B. Rubi�s, and K. Kulcenty. 2015. Universal real-
time PCR-based assay for lentiviral titration. Mol. Biotechnol. 57: 195�200.

29. Shabrish, S., M. Gupta, and M. Madkaikar. 2016. A modified NK cell degranula-
tion assay applicable for routine evaluation of NK cell function. J. Immunol. Res.
2016: 3769590.

30. Thakur, A., J. Scholler, D. L. Schalk, C. H. June, and L. G. Lum. 2020. Enhanced
cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T
cells: a proof-of-concept study. J. Cancer Res. Clin. Oncol. 146: 2007�2016.

31. Dunne, J., S. Lynch, C. O’Farrelly, S. Todryk, J. E. Hegarty, C. Feighery, and D. G.
Doherty. 2001. Selective expansion and partial activation of human NK cells and
NK receptor-positive T cells by IL-2 and IL-15. J. Immunol. 167: 3129�3138.

32. Reich, D., R. E. Green, M. Kircher, J. Krause, N. Patterson, E. Y. Durand, B.
Viola, A. W. Briggs, U. Stenzel, P. L. Johnson, et al. 2010. Genetic history of an
archaic hominin group from Denisova Cave in Siberia. Nature 468: 1053�1060.

33. Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg. 2009. Ultrafast and memory-effi-
cient alignment of short DNA sequences to the human genome.Genome Biol. 10: R25.

34. Abi-Rached, L., P. Gouret, J. H. Yeh, J. Di Cristofaro, P. Pontarotti, C. Picard,
and J. Paganini. 2018. Immune diversity sheds light on missing variation in
worldwide genetic diversity panels. PLoS One 13: e0206512.

35. Robinson, J., J. A. Halliwell, J. D. Hayhurst, P. Flicek, P. Parham, and S. G. E.
Marsh. 2015. The IPD and IPD-IMGT/HLA database: allele variant databases.
Nucleic Acids Res. 43: D423�D431.

511
512

513
514
515

516
517
518

519
520
521

522
523
524
525

526
527
528

529
530
531

532
533
534

535
536
537
538

539
540
541

542
543
544

545
546
547
548

549
550
551

552
553
554

555
556
557

558
559
560
561

562
563
564

565
566
567

568
569
570
571

572
573
574

575
576

577
578
579

580
581
582

583
584
585

586
587
588
589

590
591
592

593
594
595

596
597
598

599
600
601
602

603
604
605

606
607
608

609
610
611
612

613
614
615

616
617
618

619
620
621

622
623
624
625

626
627
628

629
630
631

632
633
634
635

636
637
638

The Journal of Immunology 5



 

 

36. Paganini, J., P. Dallas, J. Chiaroni, D. Sayer, and J. Di Cristofaro. 2020. Com-
plete genetic sequence of 15 novel HLA-H alleles. HLA 96: 133�135.

37. The 1000 Genomes Project Consortium. 2015. A global reference for human
genetic variation. Nature 526: 68�74.

38. Vernot, B., S. Tucci, J. Kelso, J. G. Schraiber, A. B. Wolf, R. M. Gittelman, M.
Dannemann, S. Grote, R. C. McCoy, H. Norton, et al. 2016. Excavating Neander-
tal and Denisovan DNA from the genomes of Melanesian individuals. Science
352: 235�239.

39. Nunes, J. M. 2014. Using UNIFORMAT and GENE[RATE] to analyze data with
ambiguities in population genetics. Figshare.

Q:2140. Browning, S. R., B. L. Browning, Y. Zhou, S. Tucci, and J. M. Akey. 2018. Anal-
ysis of human sequence data reveals two pulses of archaic Denisovan admixture.
Cell 173: 53�61.e9.

41. Teufel, A. I., A. M. Ritchie, C. O. Wilke, and D. A. Liberles. 2018. Using the
mutation-selection framework to characterize selection on protein sequences.
Genes (Basel) 9: 409.

639
640

641
642
643

644
645
646

647
648
649

650
651
652
653

654
655
656

657
658
659

660
661
662

663
664
665
666

667
668
669

670
671
672

673
674
675
676

677
678
679

680
681
682

683
684
685

686
687
688
689

690
691
692

693
694
695

696
697
698
699

700
701
702

703
704

705
706
707

708
709
710

711
712
713

714
715
716
717

718
719
720

721
722
723

724
725
726

727
728
729
730

731
732
733

734
735
736

737
738
739
740

741
742
743

744
745
746

747
748
749

750
751
752
753

754
755
756

757
758
759

760
761
762
763

764
765
766

6 HLA-H*02:07 ENCODES A MEMBRANE-BOUND HLA LIGAND



 

 AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES 1

1—Any alternations between capitalization and/or italics in genetic nomenclature have been
retained per the original manuscript. Please confirm that all genetic nomenclature has been
formatted properly throughout.

2—A response to this query is REQUIRED: Please confirm that the listed ORCIDs are correct.
Additional ORCIDs cannot be added at this stage.

3—Please confirm that all affiliations are presented correctly as edited per journal style.

4—Please indicate the correct surname (family name) of each author for indexing purposes.

5—Please verify that the mailing address and e-mail address for correspondence are correct as
set. If any details are missing that are needed for mail to reach you (e.g., a street address,
building name, or room number), please add it.

6—If your proof includes supplementary material, please confirm that all supplementary mate-
rial is cited in the text.

7—If your proof includes links to Web sites, please verify that the links are valid and will direct
readers to the correct Web page.

8—A response to this query is REQUIRED: Please confirm that the Key Points shown on the last
page of this proof are correct as presented. Please note that they may have been edited per
journal style.

9—Please verify that the title, footnotes, author names, and affiliations are correct as set.

10—Please verify the name of the grant sponsor in the grant footnote, as the full formal name of
the sponsor should be stated. Should “Canceropôle Provence-Alpes-Côte d’Azur” be
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Key Points

� HLA-H*02:07 encodes a membrane-bound protein.
� HLA-H*02:07 inhibits human effector cell activity.
� HLA-H*02:07 is of archaic origin.
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