
HAL Id: hal-03869622
https://hal.science/hal-03869622

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Sources in Private Computation
Geoffroy Couteau, Adi Rosén

To cite this version:
Geoffroy Couteau, Adi Rosén. Random Sources in Private Computation. Advances in Cryptology -
ASIACRYPT 2022, Dec 2022, Taipei, Taiwan. �hal-03869622�

https://hal.science/hal-03869622
https://hal.archives-ouvertes.fr

Random Sources in Private Computation

Geoffroy Couteau1 and Adi Rosén2

1 CNRS, IRIF, Université Paris Cité, Paris, France
couteau@irif.fr

2 CNRS, FILOFOCS, Israel
adiro@irif.fr

Abstract. We consider multi-party information-theoretic private com-
putation. Such computation inherently requires the use of local random-
ness by the parties, and the question of minimizing the total number of
random bits used for given private computations has received consider-
able attention in the literature, see, e.g., [21,16,19,5,14,9,26,17].
In this work we are interested in another question: given a private compu-
tation, we ask how many of the players need to have access to a random
source, and how many of them can be deterministic parties. We are fur-
ther interested in the possible interplay between the number of random
sources in the system and the total number of random bits necessary for
the computation.
We give a number of results. We first show that, perhaps surprisingly, t
players (rather than t+ 1) with access to a random source are sufficient
for the information-theoretic t-private computation of any determinis-
tic functionality over n players for any t < n/2; by a result of [16],
this is best possible. This means that, counter intuitively, while private
computation is impossible without randomness, it is possible to have
a private computation even when the adversary can control all parties
who can toss coins (and therefore sees all random coins). For random-
ized functionalities we show that t+1 random sources are necessary (and
sufficient).
We then turn to the question of the possible interplay between the num-
ber of random sources and the necessary number of random bits. Since
for only very few settings in private computation meaningful bounds on
the number of necessary random bits are known, we consider the AND
function, for which some such bounds are known. We give a new protocol
to 1-privately compute the n-player AND function, which uses a single
random source and 6 random bits tossed by that source. This improves,
upon the currently best known results [18], at the same time the number
of sources and the number of random bits ([18] gives a 2-source, 8-bits
protocol). This result gives maybe some evidence that for 1-privacy, us-
ing the minimum necessary number of sources one can also achieve the
necessary minimum number of random bits. We believe however that our
protocol is of independent interest for the study of randomness in private
computation.

mailto:couteau@irif.fr
mailto:adiro@irif.fr

Random Sources in Private Computation 1

1 Introduction

A multi-party t-private protocol for computing a function f is a distributed
protocol that allows n ≥ 3 players Pi, for 1 ≤ i ≤ n, each possessing an individual
secret input xi, to jointly compute the value of f(x) in a way that conceals,
with respect to any coalition of at most t players, all information beyond what
can be deduced from the value of f and their own inputs. Secure multi-party
computation is a fundamental problem in cryptography. It has received intense
attention, both in the computational and in the information-theoretic setting,
starting with its introduction in the seminal works of Yao [27], and Goldreich,
Micali, and Wigderson [13,12] (GMW). This is due to both its theoretical interest
and its many applications (including, but not limited to, e-voting, auctions,
private set intersections, privacy-preserving machine learning, and many more).

Information-theoretic secure computation. In this work, we focus specif-
ically on information-theoretic secure (private) computation, introduced in the
seminal works of [4] and [7]. In this model, the protocol proceeds in rounds,
where in each round each player sends a message to each other player, over a
secure and authenticated point-to-point channel. The privacy property of such
a protocol means, informally, that no coalition of at most t players can learn
anything (in the information-theoretic sense) from the execution of the protocol,
except what is implied by the value of f(x) and the inputs of the player in the
coalition. Private computation in this setting was the subject of considerable
research, see e.g., [4,7,21,1,8,16,19,10] and references therein. In addition to its
theoretical interest, this setting (and its variants) constitutes the foundation of
many cryptographic applications, due (in part) to the existence of (efficient)
compilers that can transform a generic representation of any function f (e.g.,
as a boolean circuit) into a secure protocol computing the same function f [4,7]
with complexity proportional to the size of the representation.

Randomness in secure computation. It is a folklore result that the ability
to sample random coins is necessary in order to perform private computations
involving more than two players (except for the computation of very degener-
ate functions).3 That is, the players must have access to (private) sources of
unbiased, untemperable, independent random coins. Randomness is typically re-
garded as a scarce resource in the design of algorithms, and methods for saving
random bits in various contexts have been the focus of a wide number of works
(see, e.g., [23] and its many follow-ups, or [25,11] for surveys). In the context of
information theoretic secure computation, a problem of fundamental interest is
to understand how much randomness is required to securely compute a function.
The design of randomness-efficient private protocols, and the quantification of
the amount of randomness necessary to perform private computations of various
functions and under various constraints has received considerable attention in
the literature, see, e.g., [21,16,19,5,14,9,26,17].
3 We remark that the two-party case, n = 2, is known to be qualitatively different [8].

2 Geoffroy Couteau and Adi Rosén

On random sources in secure computation. In this work, we tackle the
problem of randomness in secure computation from a new angle, which, to the
best of our knowledge, was not investiagted in the past. The main motivation
for reducing the randomness complexity of secure computation protocols is that
producing high quality, unbiased, untemperable independent random coins is
expensive: it requires an appropriate, well-calibrated device which can extract
this randomness from well-chosen noisy sources. In addition, it is unfortunately
common to generate randomness in a poor way, by reusing random strings sev-
eral times, poorly seeding a pseudorandom generator, using an inappropriate
randomness-generating functionalities in some computer languages or softwares
etc. This is, of course, an extremely well understood issue in the cryptographic
community: poor randomness generations has led to a number of broken imple-
mentations of cryptographic primitives, or insecure generations of cryptographic
keys (e.g., [24] showed that the bad quality of the randomness used by major
manufacturers of cryptographic hardware caused tens of millions of devices to
use broken RSA keys. See also [22] for even more striking examples).

However, once a participant in a cryptographic protocol does have the means
to generate randomness properly, then asking this participant to generate a lot
of random coins does not necessarily incur a major additional cost. This suggests
a natural, different question: rather than looking for bounds on the number of
random bits that are necessary to privately compute given functions, or the in-
terplay between the amount of randomness used and other complexity measures,
is it possible to bound how many of the n players in a cryptographic protocol
must have access to private random sources? While this question was, to the
best of our knowledge, never studied before, we believe that it is of fundamen-
tal interest. From a theoretical point of view, given that secure computation
is impossible with deterministic parties alone, it is a very natural question to
understand how many of the parties must actually have the ability to generate
unbiased random coins (we call such parties sources).

From a practical point of view, the question is also well motivated: if a secure
computation protocol requires only a small number of (random) sources, then
many other (cheaper) individuals that do not have the means or the capacity to
produce high quality randomness can still be added to the system and participate
in the secure computation.

1.1 Our Contributions

In this work, we seek to characterize the number k of players that must have
access to a random source in a system of n players so that one can t-privately
compute a (deterministic or randomized) functionality. Further, we are also in-
terested in the question of the existence of a tradeoff between the number of
players that have access to random sources, and the total number of random
bits necessary for the private computation. Our main results are twofold.

A full characterization. We precisely characterize how many random sources
are necessary and sufficient to t-privately compute an n-party functionality F .

Random Sources in Private Computation 3

For the general case of randomized functionalities, we prove a simple lower
bound: t + 1 sources are necessary. We also provide a matching upper bound,
which follows from a simple tweak of the seminal BGW protocol [4]. Then, we
turn our attention to the case of deterministic functionalities. Here, it follows
from a lower bound of [16] that t random sources are necessary in general for
t-private computation.

At first glance, it seems natural to believe that the lower bound of [16] is
not tight in general. Indeed, if there are only t (fixed) parties that can generate
randomness among all participants, and if the adversary can corrupt up to t
parties, then the adversary can corrupt all participants which can generate ran-
domness, and the protocol becomes entirely deterministic from the viewpoint of
the adversary. Since secure computation is impossible with deterministic parties,
we are tempted to conclude that such a protocol cannot be secure in general.

Our main technical result in this full characterization shows that, surprisingly,
this intuition is flawed, and the lower bound of [16] is tight. Namely, we prove
the following:

Theorem 1 (Informal). For every deterministic n-party functionality F , and
every t < n/2, there exists a t-private protocol that securely computes F between
n parties P1, · · · , Pn, if there is a size-t subset of the parties which have the
ability to toss random coins.

In other words: while secure computation is impossible without randomness,
we show that secure computation is always possible using randomness, even if
the adversary is allowed to corrupt all parties that can produce randomness. The
proof of Theorem 1 is non-trivial; it relies on a careful combination of the GMW
protocol (used as an outer protocol) and the BGW protocol (used as an inner
protocol). At a very high level, the key idea is to isolate the t random sources, and
to involve them solely in sub-computations that do not involve any actual input,
letting the remaining parties perform the bulk of the sensitive computation,
using random coins sent by these sources. Intuitively, we achieve the following
dichotomy: either the adversary corrupts all sources, but in this case it cannot
corrupt any of the parties that actually take part in the “sensitive part” of the
computation; or the adversary corrupts at least one deterministic party, but then
there is at least one uncorrupted source, which we leverage to generate random
coins for all parties. The above intuition is relatively easy to instantiate when
t < n/3; most of the complexity of our result stems from instantiating it for
the optimal bound of t < n/2. Our complete characterization is summarized in
Table 1.

Extension to UC security and statistical security. For simplicity, all our protocols
and lower bounds are discussed in the stand alone model, and with perfect
security. However, all our constructions are proven secure using a black-box non-
rewinding simulator. By a known result of [15], this implies that our protocols
also enjoy perfect universal composability. Second, our lower bounds extend
directly to the setting of statistically secure protocols; we actually directly prove

4 Geoffroy Couteau and Adi Rosén

Deterministic functionalities Randomized functionalities

Lower Bound t sources [16] t+ 1 sources (Section 3.1)

Upper Bound t sources (Section 4) t+ 1 sources (Section 3.2)

Table 1: Lower and upper bounds on the number of sources necessary for t-private
computation of n-party functionalities. See Section 3 for discussions on defining the
notion of the necessary numbber random sources.

our lower bound with respect to statistical security in our proof of Theorem 7,
and the proof of Theorem 6 in [16] extends also immediately to the setting of
statistical privacy.

Extension to Adaptive Security. Our protocols achieve perfect selective security
with straight-line black-box simulators. Therefore, it follows by known results [1,
Section 8] that the protocols also enjoys adaptive simulation with respect to an
inefficient simulator. Whether we can achieve the stronger notion of adaptive
corruption with efficient simulation is an interesting open question.

Randomness complexity of AND. In our second contribution, we turn to
the question whether there is a tradeoff between the number of players that
have access to a random source and the total number of random bits necessary
for the private computation. The motivation for this question is that, in the
constructions of our positive results, secure computation using an optimally small
number of sources seems to require up to Θ(t) times more randomness compared
to secure computation where all parties can toss coin (this is particularly visible
in our simple upper bound for randomized functionalities). It is natural to wonder
whether this is inherent: in order to reduce the number of sources, do we have to
pay a price in randomness complexity? We put forward a conjecture stating that
this is indeed the case for complex functionalities, i.e., n-party functionalities that
do not have information-theoretic t-private protocols for t ≥ n/2. Our conjecture
states that, for such functionalities, a Θ(t) blowup in randomness complexity is
necessary and sufficient to minimize the number of random sources. We view
this conjecture as an interesting open question.

Then, in the course of getting a better understanding of the relation between
randomness complexity and random sources, we turn our attention to a simple,
yet very basic, concrete functionality: the n-party AND (it is very common in the
literature on randomness complexity of secure computation to study the case of
simple functionalities such as XOR [21,16,19,10] or AND [17], as they are basic
functions). Here, the state of the art is the recent work of [17], that showed that
8 bits are sufficient to 1-privately compute the n-party AND functionality (the
paper also shows that more than 1 bit is necessary). The upper bound of [17]
uses two sources, and our question is whether we can match this upper bound
using a single source or whether a private protocol with a single source will
require more random bits.

Random Sources in Private Computation 5

Here, we again achieve a somewhat surprising result: we improve over the
result of [17] in the two aspects at the time, i.e., we reduce both the number of
sources and the number of random bits. Using a completely different protocol,
we show that 6 bits tossed by a single source are sufficient to 1-privately compute
the n-party AND functionality, for any n ≥ 3.

2 Preliminaries

In this work, we consider perfectly secure protocols in the presence of semi-
honest adversaries. More precisely, we focus on the stand-alone setting (security
is argued for a single execution of the protocol in isolation), with semi-honest
(perfect) security (the adversary sees the view of all corrupted parties, but all
parties follow the specifications of the protocol) in a static corruption model (the
adversary specify the set of corrupted parties ahead of time).

Network Model. The parties interact over a synchronous network: the com-
putation takes place in clearly defined rounds. All pairs of parties are connected
via perfectly private and authenticated channels.

Notations. We let n denote the number of parties, and t denote the (maxi-
mum) number of corrupted parties. Let [n] denote the set {1, · · · , n}. We use
the following notation for vectors, e.g., x = (x1, · · · , xn); for any subset C ⊆ [n],
we write xC for (xi)i∈C . Given a set S, we write s

$← S to denote that s is sam-
pled uniformly at random from S. Given a vector x, we let |x| denote its length.
An n-party deterministic functionality is a function f : ({0, 1}∗)n 7→ ({0, 1}∗)n;
we write fi(x1, · · · , xn) to denote the i-th output of f on inputs (x1, · · · , xn),
and fC(x1, · · · , xn) to denote (f(x1, · · · , xn))C for any C ⊆ [n]. For randomized
functionality, every input vector (x1, · · · , xn) defines a distribution f(x1, · · · , xn)
over the output space ({0, 1}∗)n. We say that the protocol computes the deter-
ministic functionality f : ({0, 1}∗)n 7→ ({0, 1}∗)n (with perfect correctness) if, for
every input x = (x1, · · · , xn) ∈ ({0, 1}∗)n, and for any outcome of all coin tosses,
the output produced by each party Pi is always fi(x). When f is a randomized
functionality, we say that a protocol computes f (with perfect correctness) if for
every input x = (x1, · · · , xn) ∈ ({0, 1}∗)n, the distribution (over the random-
ness of the parties) of the joint outputs of the parties is exactly f(x1, · · · , xn).
We write D ≡ D′ to denote that two distributions D and D′ are identical. We
sometime write distributions as {(a, b) : sampling process} to denote a distri-
bution over pairs (a, b) sampled according to the given sampling process. Given
a probabilistic algorithm A, we slightly abuse notation and usually view A(x) as
the distribution corresponding to the output of A on input x.

2.1 Perfect Privacy

We first define the notion of a view of a player. The sets, functions, and random
variables in the following definition are implicitly parametrized by a protocol π.

6 Geoffroy Couteau and Adi Rosén

Definition 2. (View) The view of party Pi (on a joint input x from all parties)
at round r ≥ 1, denoted V r

i (x), is the (joint) distribution of the sequence of
messages received by Pi in rounds 1 to r − 1, and the sequence of the results of
the coin tosses performed by Pi in rounds 1 to r.

All the protocols we consider in this paper have deterministic upper bounds on
the number of rounds. Hence we can also define the “final view" of the players
after that upper bound is attained. We denote those without superscripts, i.e.,
Vi(x).

Definition 3. (Output Distribution) We let Oi(x) denote the distribution
of the output of Pi after an execution of the protocol with a joint input x.

Given a subset C of [n], we write VC(x) to denote (Vi(x))i∈C and OC(x) to
denote (Oi(x))i∈C ; we use O(x) as a shorthand for O[n](x).

Definition 4 (t-Privacy for deterministic functionalities [1]). Let f :
({0, 1}∗)n 7→ ({0, 1}∗)n be an n-party deterministic functionality and let π be
a protocol. We say that π is (perfectly) t-private if (1) π computes f with perfect
correctness, and (2) there exists a probabilistic polynomial-time algorithm Sim
such that for every C ⊂ [n] of cardinality at most t and every x ∈ ({0, 1}∗)n
where |x1| = · · · = |xn|, it holds that Sim(C,xC , fC(x)) ≡ VC(x).

While the above definition considers separately (with (1) and (2)) the issues
of correctness and privacy, in the general case of randomized functionalities, the
two notions are intertwined:

Definition 5 (t-Privacy for randomized functionalities ([1], def. 2.2)).
Let f : ({0, 1}∗)n 7→ ({0, 1}∗)n be an n-party randomized functionality and let
π be a protocol. We say that π is (perfectly) t-private if (1) π computes f with
perfect correctness, and (2) there exists a probabilistic polynomial-time algorithm
Sim such that for every C ⊂ [n] of cardinality at most t and every x ∈ ({0, 1}∗)n
where |x1| = · · · = |xn|, it holds that

{(v, y) : y ← f(x), v ← Sim(C,xC , yC)} ≡ (VC(x), O(x)),

where (VC(x), O(x)) denotes the joint distribution of the corrupted parties’ (fi-
nal) views and the outputs of all parties in a run of the protocol on common
input x.

A simulator according to the above definitions is simply a machine that
produces emulated views for all corrupted parties. However, it will be convenient
when analyzing the security of our protocols to view the simulator Sim as an
interactive machine, which pretends to play the role of the honest parties during
an execution of the protocol, and interacts with the corrupted parties. Under
this viewpoint, Sim receives as input (C,xC , fC(x)), but also the random tapes
of all corrupted parties; this is w.l.o.g. since in the above definition, Sim will
anyway sample these random coins itself when emulating the views.

Random Sources in Private Computation 7

3 On the Number of Random Sources in Private
Computation

Parties participating in a private computation protocol may or may not have
access to a random source. We call a party that has access to a random source
a source, and assume that this party is given access to an arbitrarily long tape
of independent unbiased random bits. Note that what we call a source is exactly
the standard definition of a player in standard secure computation protocols. In
contrast, players which do not have access to such a tape are called deterministic
parties: the behavior of deterministic parties at any given time is entirely deter-
mined by a deterministic function of their input and the messages they received
up to that time.

Static versus dynamic measures. Note that our notions of source and de-
terministic parties is static: which parties can or cannot sample random bits is
a priori fixed before the start of the protocol. In other words, if in at least one
execution of a protocol π a given party has to sample a random coin, then that
party is a source. Even if (say) only 10 distinct parties have to sample coins dur-
ing any given execution of the protocol, but which of the parties sample coins
vary over different executions, then we cannot say that π uses only 10 sources
– it might be that all parties have to be sources. This static notion captures
in a more realistic way the setting where some parties in a system have access
to a high-quality random number generator, while others do not; the real-world
meaning of the dynamic variant of the notion is less clear.

When one considers the static measure, another distinction is called for,

Universal versus non-universal setting. Before we establish our main the-
orems, we formally define what we mean by a statement of the form “all n-party
functionalities can be privately computed with s sources.” This can be inter-
preted in two ways:

1. Fix s sources (P1, · · · , Ps), and n−s deterministic parties (Ps+1, · · · , Pn). For
any n-party functionality F there is a protocol that uses the above parties
and privately computes F .

2. Fix an n-party functionality F . Then there exists a choice of a subset S,
s = |S|, of parties among (P1, · · · , Pn) such that if (Pi)i∈S are sources, and
the other parties are deterministic, then there exists a protocol that uses the
above parties and privately computes F .

We call a protocol of the first type universal, and a protocol of the second type
non-universal. Universal protocols are more desirable, since we would like to
capture settings where sources are defined by the availability of a good random
number generator, and then one can privately compute any functionality in that
system; we typically do not want the choice of the sources to depend on the
specific functionality at hand. Looking ahead, our results will consider the static

8 Geoffroy Couteau and Adi Rosén

measure (as it better captures the situation in “realistic" systems), and will be
proved with the best flavor: our upper bounds will be universal protocols, while
our lower bounds hold even for non-universal protocols.

3.1 Lower Bounds

Theorem 6 (deterministic functionalities, lower bound). For any num-
ber of parties n, there exists a deterministic n-party functionality F such that
for any t ≤ n−2, any t-private n-party protocol computing F must have at least
s ≥ t sources.

The theorem follows directly from a result of Mansour and Kushilevitz [16]
who showed that in order to t-privately compute the function xor, t ≤ n − 2,
at least t players with access to a local random source are necessary. Note that
Mansour and Kushilevitz did not focus on the number of random sources in
their work: their goal was to show that the randomness complexity of t-private
computation of xor is at least t (that is, in any given execution of a t-private
protocol computing xor, at least t random coins must be sampled). However,
their proof proceeds by showing that in any given execution at least t different
parties must sample at least one random bit, hence, as they note, their proof
proves also that at least t players with access to a local random source are
necessary to t-privately compute xor.

Theorem 7 (randomized functionalities, lower bound). For any number
of parties n, there exists a randomized n-party functionality F such that for any
t ≤ n−1, any t-private n-party protocol computing F must have at least s ≥ t+1
sources.

The proof follows the (natural) intuition that if all sources can be corrupted
and the outputs of the honest parties depend on independent random coins, these
random coins will not be independent of the view of the sources. In fact, the proof
below also rules out any statistically private protocol for such functionalities,
by showing that the statistical distance between the ideal distribution and the
simulated distribution cannot be sub-constant.

Proof. Consider the following simple randomized functionality F : on joint input
x, the output of each player is x together with a single bit chosen uniformly
and independently at random. Assume that the number s of sources is at most
t; since the functionality is symmetrical, let us, without loss of generality, call
P1, · · · , Ps the s sources, and Ps+1, · · · , Pn the remaining deterministic parties.

Let π be an arbitrary protocol computing F in the above setting, and Sim be
any simulator. Let C ← {1, · · · , s}; that is, the adversary corrupts exactly all the
sources. Since all honest parties are deterministic, the only coins tossed during
the entire protocol are tossed by corrupted parties. Since the entire joint input
x is part of the output of each party (hence part of the view of the corrupted
parties), there necessarily exists a deterministic function g such that {g(V) :
V ← VC(x)} ≡ O(x). Now, given y ← f(x), the input (C,xC , yC) to Sim depends

Random Sources in Private Computation 9

solely on x and the independent random output bits defining the outputs of the
corrupted parties, as defined by the functionality. Writing ((x, b1), · · · , (x, bn))←
f(x), the bits (bs+1, · · · , bn) are n − s random bits independent of (C,x, yC).
Therefore,

Pr[g(Sim(C,xC , yC)) = f(x)] ≤ 1

2n−s
≤ 1

2
,

for any choice of randomness done by Sim. Therefore, the function g provides
a simple distinguisher showing that the distributions {(v, y) : y ← f(x), v ←
Sim(C,xC , yC)} and (VC(x), O(x)) have (at least) a constant statistical distance.
this concludes the proof.

3.2 Upper Bounds

In this section, we give the matching upper bounds for both deterministic and
randomized functionalities. The upper bound for randomized functionalities fol-
lows from a simple and natural protocol; the protocol for deterministic function-
alities is considerably more involved, and is the focus of Section 4.

Theorem 8 (deterministic functionalities, upper bound). For any num-
ber of parties n and any t < n/2, there is a choice of t sources among the n play-
ers such that for any deterministic n-party functionality F there is a t-private
protocol for F that works with those parties.

Section 4 below is dedicated to the proof of Theorem 8.

Theorem 9 (randomized functionalities, upper bound). For any number
of parties n and any t < n/2, there is a choice of t + 1 sources among the
n players such that for any (randomized) n-party functionality F there is a t-
private protocol for F that works with those parties.

The protocol for randomized functionalities captures the (correct, straight-
forward) intuition that if not all sources can be corrupted, then there is always
at least one uncorrupted source which can distribute random coins to the de-
terministic parties. To formalize this intuition, we recall the seminal result of
Ben-Or, Goldwasser, and Wigderson [4]:

Theorem 10 (BGW). For any t < n/2 and any n-party (possibly randomized)
functionality F , there is a perfect t-private protocol for F (with communication
and randomness proportional to the circuit size of F).

In the protocol guaranteed by the above theorem, all parties have access to
their own random tape, and the size of the random tape is bounded by an a priori
known polynomial in the circuit size of F . Note that the BGW protocol also
extends to securely computing randomized functionalities, and functionalities
that provide different outputs to all parties [1]. In our case we have a fixed set
of t + 1 parties which can toss random coins: they are called the sources, and
are denoted S1, · · · , St+1; the remaining n− t−1 parties, denoted Pt+2, · · · , Pn,

10 Geoffroy Couteau and Adi Rosén

are deterministic. Given the functionality F , let BF be an upper bound on
the maximum number of random coins tossed by any single party in the BGW
protocol for computing F t-privately. The protocol to t-privately compute F as
guaranteed by the theorem works as follows:

1. Each source Si samples, for j = t+ 2 to n, a random string ri,j
$← {0, 1}BF

and sends it to Pj . Each party Pj sets rj =
⊕t+1

i=1 ri,j . In addition, each
source Si samples a random string ri

$← {0, 1}BF .
2. All n parties run the BGW protocol for t-privately computing F , where each

player Pi, i = 1 to n, uses the tape ri as their random source.
3. All parties output their output from the BGW protocol.

Correctness is straightforward, and t-privacy follows directly from the fact
that from the viewpoint of any subset of t parties (random sources or determin-
istic), the random tape rj used by any honest party Pj is perfectly distributed
as a real random tape, since it is the XOR of t+1 strings, at least one of which
is guaranteed to be (random and) unknown to the corrupted parties.

4 Private Computation of Deterministic Functionalities

In this section, we prove that for every deterministic functionality F : ({0, 1}∗)n 7→
({0, 1}∗)n, there exists a t-private n-party protocol which requires exactly t
sources; these sources can be arbitrary players. Hence we show that for any
deterministic functionality F there is a t-source uniform t-private protocol.

4.1 The GMW Protocol with Beaver Triples

To start we recall the seminal GMW protocol of Goldreich, Micali, and Wigder-
son [12], which we use in our construction. For our purpose, it will be more
convenient to view GMW as an information-theoretic protocol in the correlated
randomness model of Beaver [2,3], in which the parties have access to a trusted
source of correlated random coins, in the form of random Beaver triples. Below,
whenever we refer to random (n out of n) shares of a bit x, we mean the follow-
ing: a string of n bits x1, . . . , xn sampled randomly conditioned on

⊕n
i=1 xi = x.

Given a value x, we write ⟨x⟩ as a more compact representation of the n-tuple
(x1, . . . , xn) of shares of x.

Definition 11 (Beaver triple). We say that n parties (P1, . . . , Pn) receive a
(random, n-party) Beaver triple if the parties receive random n out of n shares
of a, b, and a · b, where a and b are two independent random bits. That is,
each party Pi receives a triple (ai, bi, ci), where all triples are jointly sampled at
random conditioned on (

⊕n
i=1 ai) · (

⊕n
i=1 bi) =

⊕n
i=1 ci.

Theorem 12 (GMW + Beaver). For any t < n, there exists a t-private
information-theoretic secure n-party protocol in the correlated randomness model
for computing any deterministic functionality F : ({0, 1}∗)n 7→ ({0, 1}∗)n where,

Random Sources in Private Computation 11

prior to the execution of the protocol, the parties can ask a trusted dealer for
any number of random Beaver triples. Furthermore, no party needs to toss any
additional random coin.

The GMW Protocol. Let P1, . . . , Pn be n parties with respective inputs
(x1, . . . , xn), and let CF be a boolean circuit with XOR and AND gates of fan-in
2 computing the functionality F .4 The parties will evaluate the circuit gate by
gate, starting from the inputs and computing the value of a gate when the values
of its two parent nodes (which are either input nodes or gates themselves) have
been computed. The protocol maintains the following invariant: after evaluating
a gate, each party Pi will hold an additive share vi of the value v on this gate
(i.e., v =

⊕n
i=1 vi). Without loss of generality, we assume that the parties always

hold shares of the inputs to a gate when evaluating it: if an input to the gate is
an input bit b belonging to party Pi, we define the shares of (P1, . . . , Pi, . . . , Pn)
to be (0, . . . , b, . . . , 0).

– Evaluating an XOR gate XOR(u, v): the parties locally XOR their shares of
u and v. No communication is required.

– Evaluating an AND gate AND(u, v): given ⟨u⟩ and ⟨v⟩ the parties must
compute additive shares ⟨uv⟩ of u · v. This is done using one invocation of
the secure multiplication protocol defined below.

– Output: after evaluating an output gate whose output is assigned to a party
Pi, all parties send their share of the output to Pi, who reconstructs the
output.

Secure Multiplication. Let u, v be the inputs to the AND gate, and let (ui, vi)
be Pi’s share of the inputs, 1 ≤ i ≤ n.

– Beaver triple request. All parties receive from the trusted dealer a random
Beaver triple. Let (ai, bi, ci) denote Pi’s share of the triple.

– Broadcast. Each party Pi broadcasts αi = ui⊕ai and βi = vi⊕bi; all parties
reconstruct α =

⊕n
i=1 αi = u⊕ a and β =

⊕n
i=1 β = v ⊕ b.

– Output. Each party Pi outputs α · vi ⊕ β · ai ⊕ ci.

Security follows from the fact that the pairs ui, vi are uniformly random;
correctness follows from the relation ⟨u · v⟩ = (u⊕ a) · ⟨v⟩+ ⟨a⟩ · (v ⊕ b) + ⟨ab⟩.

In our main protocol, we will rely on the above version of the GMW pro-
tocol. It will be convenient to view it as follows: the GMW protocol involves
deterministic parties in a model where all parties can request, upon need, a
random Beaver triple in order to execute a secure multiplication.
4 To be completely formal, since F can take inputs from ({0, 1}∗)n, the circuit CF

must also depend on the input sizes |x1|, . . . , |xn|, which means the parties have to
reveal their input sizes to each other before the actual protocol starts. This does not
contradict security, as privacy is only required to hold when |x1| = . . . = |xn|; we
ignore this technicality in the remainder of this paper.

12 Geoffroy Couteau and Adi Rosén

4.2 Intuition behind our Protocol: Two Complementary Scenarios

We consider n parties wishing to t-privately compute a deterministic n-party
functionality F : ({0, 1}∗)n 7→ ({0, 1}∗)n on their private inputs, with exactly t
sources (S1, . . . , St), and n− t deterministic parties, (Pt+1, . . . , Pn). We assume
t < n/2. The first important observation is that the following two scenarios are
mutually exclusive and cover all possible situations:

1. There is an honest majority among the n− t the deterministic parties.
2. A majority of the n − t deterministic parties is corrupted (i.e., there are

at least ⌈(n− t)/2⌉ corrupted deterministic parties). But in that case there
is an honest majority among the t sources and there is at least one honest
deterministic party.

Obviously the two scenarios are mutually exclusive and cover all possible
situations. To see that in the second scenario there is still at least one honest
deterministic party and there is an honest majority among the t sources, observe
that 2t < n and hence (n− t)− t > 0. At the same time the number of corrupted
sources is at most t− (n− t)/2 < t/2, hence there is an honest majority among
the t sources.

Now, assume for a moment that the parties could somehow know in which
scenario they are. In what follows we assume for simplicity that the functionality
delivers the same output to all parties (the general case can be handled with
standard techniques, as we will show in our full construction).

A Protocol for Scenario 1. If the parties know that the corruption pattern
follows scenario 1 above, then we can isolate the sources and let the deterministic
parties alone perform the computation as they have an honest majority among
them. For simplicity, assume for now that the functionality output the same value
to everyone. Since there is an honest majority among the deterministic parties,
they can execute an appropriate BGW protocol among themselves, using random
tapes sent by the sources (after the sources share their own inputs among the
deterministic parties). During the entire protocol, the deterministic parties never
send anything to the sources, except for the final output. Then, security follows
from a simple case disjunction:

– If at least one source is honest, then the random tapes of the deterministic
parties (obtained by XORing independent tapes received from each of the
sources) are guaranteed to be uncorrupted, and security follows via the same
argument as for the simple protocol from Section 3.2.

– Else, if all t sources are corrupted, then all deterministic parties are honest.
In this case, security follows trivially from the fact that no corrupted party
ever receives any message whatsoever, except the output itself.

More formally,

1. Each source Si (for i = 1 to t) with input xi computes n− t random additive
shares (yi,j)t+1≤j≤n of xi, and sends yi,j to party Pj for j = t+ 1 to n.

Random Sources in Private Computation 13

Let F ′ be the following (n−t)-party functionality: on input (xj , y1,j , . . . , yt,j)

of each party Pj , F ′ outputs F(
⊕n−t

j=1 x1,j , . . . ,
⊕n−t

j=1 yt,j , xt+1, . . . , xn).
2. Each source Si samples a random string ri,j

$← {0, 1}BF′ and sends it to Pj

for i = 1 to t and j = t+ 1 to n; Each party Pj sets rj ←
⊕t+1

i=1 ri,j .
3. The n−t deterministic parties run the BGW protocol for securely computing
F ′, where Pj uses rj as its random tape to emulate the coin tosses in the
BGW protocol.

4. The deterministic parties send the output of the BGW protocol to the t
sources. All parties output this result.

Correctness follows from the fact that
⊕n−t

j=1 yi,j = xi, hence the output of
F ′ is indeed F(x1, . . . , xn). t-privacy follows immediately from the simple case
disjunction outlined above. The general case, where different parties can receive
different outputs, is easily handled with the standard reduction of multi-output
secure computation to single-output secure computation: each party samples a
random mask to mask its own output, and the parties jointly evaluate the single-
output functionality that outputs (to everyone) the string of all outputs, each
masked by the random mask of the corresponding party. Then, each party gets
their own output (and nothing more) by removing their own mask.

A Protocol for Scenario 2. In scenario 2, we do not have anymore an honest
majority among the n − t deterministic parties (but there is still at least one
honest party among the deterministic parties). However, this guarantees that
there is now an honest majority among the sources. There are several solutions
in this setting. We sketch one such solution: the deterministic parties can use the
GMW protocol from Section 4.1, which tolerates up to all-but-one corruptions.
The GMW protocol, in its version as described in Section 4.1, is deterministic,
but the parties must request random Beaver triples from a trusted dealer. Here,
we let the sources jointly emulate the trusted dealer: each time the determin-
istic parties ask for a random Beaver triple, the sources distributively generate
and send to the parties (shares of) this triple. This distributed generation is
performed among the sources using the BGW protocol. Since in this scenario a
majority of the sources are honest, the Beaver triples are guaranteed to remain
uncorrupted, and security follows from the security of the GMW protocol.

Our Goal: a Best of Both Worlds Protocol. In each of the two scenarios
above, there is a secure protocol for computing F ; the trouble is, of course, that
the parties do not know in which scenario they are. To solve this issue, our aim
is, at a high level, to combine the two protocols above into a single best of both
worlds protocol: a combined protocol which is guaranteed to be secure if at least
one of the protocols is secure, which is always the case (as the two scenarios cover
all possible situations). The idea of reconciling protocols with different security
guarantees is not new: it originates in the work of Chaum [6]. Chaum’s original
motivation was the following: some protocols achieve computational security
against n−1 corruptions, while others achieve unconditional security against t <

14 Geoffroy Couteau and Adi Rosén

n/2 corruptions (assuming secure point-to-point channels); however, no protocol
achieves both at the same time. To overcome this limitation, Chaum introduced
the idea of combining an outer protocol, computing the target functionality and
an inner protocol, used by the parties to emulate some key sub-functionality
required by the outer protocol. Crucially, the inner protocol is never invoked
directly on private values held by the parties.

4.3 The Protocol

We represent in Figure 1 and Figure 2 a protocol which allows n players (S1, . . . ,
St, Pt+1, . . . , Pn), where only (S1, . . . , St) can toss coins, to jointly and t-privately
compute an arbitrary n-party deterministic functionality of their joint input.
The protocol combines a GMW-based outer protocol with a BGW-based inner
protocol. More precisely,

The Outer Protocol (Figure 1). The outer protocol is essentially the protocol for
scenario 2 above: the sources (S1, . . . , St) additively share their inputs among
the deterministic parties (Pt+1, . . . , Pn), and the latter jointly run an instance of
the GMW protocol to evaluate the original functionality to be computed, where
the inputs are the inputs of the deterministic parties, and the shares of the
inputs of the sources (now known to the deterministic parties). Each time the
deterministic players need to receive a random Beaver triple, all players (sources
and deterministic parties together) run the inner protocol in order to compute
the shares of this triple to be given to the deterministic parties.

The Inner Protocol (Figure 2). The inner protocol is the simple protocol of
Section 3.2 (which is, in spirit, essentially the same as the protocol of scenario 1),
applied to the specific functionality that distributes random shares of a random
Beaver triple to the deterministic parties.

A Note on Input and Output Size. In the protocol, we assume that the
length of the output of any participant is a priori known to all parties. This is
without loss of generality since in the semi-honest model, we can always add
a pre-initialization phase where all parties announce their input length to each
other. Since t-privacy is only required to hold when all inputs are of the same
length, this does not harm privacy. Then, all parties can compute an upper
bound on the length of any output by computing κ = maxi∈[n] maxx |Fi(x)|,
where the second maximum is taken over all possible inputs of the appropriate
length. Finally, all outputs can be interpreted as elements of {0, 1}κ, by padding
them with zeroes.

Random Sources in Private Computation 15

Outer Protocol ΠF

Fix n participants (S1, . . . , St, Pt+1, . . . , Pn), where only the players Si, 1 ≤ i ≤ t
are sources.

Fix an n-party deterministic functionality F : ({0, 1}ℓ)n 7→ ({0, 1}κ)n, and let the
joint input to the players be (x1, . . . , xn) ∈ ({0, 1}ℓ)n. Let κ be the length, known
to everyone, of each participant’s output.

Initialization. Each source Si (for i = 1 to t) with input xi computes n−t random
additive shares (yi,j)t+1≤j≤n of xi, samples n − t random masks mi,j

$← {0, 1}κ,
t+ 1 ≤ j ≤ n and sends (yi,j ,mi,j) to party Pj for j = t+ 1 to n.
We call mi =

⊕n
j=t+1 mi,j the output mask of Si. We let zj =

(xj , y1,j , . . . , yt,j ,m1,j , . . . ,mt,j) denote the outer input of party Pj for j = t+1 to n.

Execution. The outer protocol will first run an (n − t)-party “GMW + Beaver”
protocol (as defined in Section 4.1), run on players Pt+1, . . . Pn, and computing the
(n− t)-party deterministic functionality F ′ defined below.
Each time that the “GMW + Beaver” protocol is supposed to request a Beaver triple
from the trusted party, all parties run instead the inner protocol represented in
Figure 2, which results in players Pt+1, . . . , Pn having what would have the trusted
party give them. We note that in the GMW protocol the sequence of requests of
the beaver triples is a function of the functionality being computed only (and not
of the inputs or of previous random choices).
Functionality. The functionality F ′ is defined as follows: on input (zt+1, . . . , zn),
where zi is defined as above, let

(w1, . . . , wn) = F

(
n⊕

j=t+1

y1,j , . . . ,

n⊕
j=t+1

yt,j , xt+1, . . . , xn

)
,

where all wi are seen as elements in {0, 1}κ. Let

(m1, . . . ,mt) = (

n⊕
j=t+1

m1,j , . . . ,

n⊕
j=t+1

mt,j) .

The functionality F ′ outputs wi to each party Pi for i ≥ t + 2, and
(wt+1, w1 ⊕m1, . . . , wt ⊕mt) to Pt+1.

Output Phase. Once the execution of the protocol is completed, the deterministic
parties first execute the output phase of the GMW protocol: for all (i, j) ∈ [t+1, n]2,
Pi sends its share of Pj ’s output to Pj . Then, Pt+1 sends wi ⊕mi to each source
Si, which unmasks wi using their output mask mi. Each deterministic party Pj

outputs wj and each source Si outputs wi.

Fig. 1: A t-private, t-sources, n-party protocol ΠF for any n-party deterministic func-
tionality F

16 Geoffroy Couteau and Adi Rosén

Inner Protocol Πin

Fix n participants (S1, . . . , St, Pt+1, . . . , Pn), where only the players Si, 1 ≤ i ≤ t
are sources.

Let FBT be the n-party randomized functionality which, on any input to all parties,
(ignores the input and) samples two independent unbiased random bits (a, b)

$←
{0, 1}2, and sets (ai, bi, ci)t+1≤i≤n to be uniformly random (n − t) out of (n − t)
shares of (a, b, a · b). It outputs ⊥ to each source Si (for i = 1 to t) and (aj , bj , cj)
to each party Pj (for j = t+1 to n). Let BBT be an upper bound on the maximum
number of coins tossed by any party during the t-private computation of FBT by
the BGW protocol.

1. Tape sharing phase. Each source Sk for k = 1 to t samples n − t random
strings rk,ℓ

$← {0, 1}BBT , t+1 ≤ ℓ ≤ n and sends rk,ℓ to Pℓ. Each deterministic
party Pℓ sets rℓ ←

⊕t
k=1 rk,ℓ. In addition each source Sk, for k = 1 to t,

samples a random string rk
$← {0, 1}BBT

2. BGW phase All n parties jointly run the BGW protocol for t-privately com-
puting the n-party randomized functionality FBT, where they use the strings
ri, 1 ≤ i ≤ n as their random sources. All players use, e.g., 0 as their input
(since FBT ignores its input, any fixed input would do).

3. Output The output of each party is its output in the BGW protocol.

Fig. 2: The inner protocol Πin

Security Analysis. The intuitive idea behind the security guarantee of our
protocol is as follows. Observe that only the deterministic players receive mes-
sages that depend on the input of the functionality to be computed. Therefore,
if the adversary does not corrupt any deterministic party then security is guar-
anteed. If, however, there are corrupted deterministic parties, then at least one
source is uncorrupted. It follows that from the point of view of the adversary
the randomness used in the BGW, inner, protocol is real randomness (provided
by the at least one uncorrupted source), and the inner BGW protocol that is
run on all players (to compute the Beaver triples) is secure since there is always
an honest majority among all players. Since there is always at least one uncor-
rupted deterministic player (given the relation between n and t) we have that
in this case (i.e., when there are corrupted deterministic players) the GMW +
Beaver protocol is secure too. We note in passing that the correctness of our
protocol is guaranteed since both the outer and the inner protocol are run on
“honest-but-curious“ players.

We now formally prove the security property of the protocol. Fix a functional-
ity F : ({0, 1}ℓ)n 7→ ({0, 1}κ)n (F is deterministic). Let CS ⊂ [t] and CP ⊂ [n−t]
denote the subsets of corrupted sources and corrupted deterministic parties, re-
spectively. Since we consider a static corruption model, C = (CS , CP) is known

Random Sources in Private Computation 17

to the simulator. Let x be the joint input vector of the players. We describe a
simulator Sim for the protocol defined above.

If no party is corrupted (i.e., CS = CP = {∅}), the simulation is trivial. We as-
sume now that at least one party is corrupted. On input (C = (CS , CP),xC ,FC(x)),
Sim distinguishes between two cases: either CS ̸= [t] (there is at least one un-
corrupted source, some deterministic parties can be corrupted) or CS = [t] and
CP = {∅} (all sources are corrupted, and only them).

Case 1: CS ̸= [t]. Let t′ = |CS | + |CP | ≤ t denote the number of corrupted
parties. In the initialization phase, for every i ∈ [t] \ CS and every j ∈ CP , Sim
sends a uniformly random ℓ-bit string yi,j and a uniformly random κ-bit string
mi,j to Pj on behalf of Si. Sim also stores the input shares (yi,j)t+1≤j≤n and
the outputs masks mi of each corrupted source Si (they can be computed from
their inputs and random tapes, which Sim knows). Then, for every j ∈ CP , Sim
computes and stores the outer input zj = (x1,j , . . . , xt,j ,m1,j , . . . ,mt,j) of Pj .
Throughout the protocol, Sim maintains a local simulation of the shares held by
each corrupted deterministic participant Pj for j ∈ CP of the value carried by
each wire in the circuit.

When the parties evaluate an XOR gate, Sim simply updates its local simula-
tion of the output wire shares of the corrupted parties, by locally XORing their
shares of the input wires. Each time the n− t deterministic parties evaluate an
AND gate, Sim behaves as follows:

– (Tape sharing phase) For every k ∈ [t] \ CS and any ℓ ∈ CP , Sim samples a
random string rk,ℓ on behalf of Sk and sends it to Pℓ.

– Emulation of FBT. Sim locally emulates FBT as follows: it samples uniformly
random triples (aj , bj , cj) for every j ∈ CP , and sets (aj , bj , cj) to be the
emulated output of FBT to Pj (note that the (aj , bj , cj) are perfectly dis-
tributed as in the real execution from the viewpoint of all corrupted Pj ,
because |CP | ≤ t < n − t: there is at least one uncorrupted deterministic
party). Then, Sim runs SimBGW(C,0t′ , outC), where SimBGW is the perfect
simulator for the BGW protocol, and outC is equal to ⊥ for all indices in
CS , and to (aj , bj , cj) for each j ∈ CP .

– Secure multiplication. Sim emulates the broadcast message of each honest
deterministic party Pj by broadcasting two uniformly random bits (αj , βj)
on their behalf.

Output Phase. At the end of the outer protocol, each party Pi, t + 1 ≤
i ≤ n holds a share si,j of the output of Pj , and all shares held by corrupted
deterministic parties are known to Sim. For every j ∈ CP \ {t + 1}, Sim sends
n− t− |CP | uniformly random shares of Fj(x)⊕

⊕
i∈Cp

si,j to Pj on behalf of
each uncorrupted party Pk. Finally,

– If Pt+1 is corrupted, Sim sends n− t− |CP | uniformly random shares of

(Ft+1(x),F1(x)⊕m1, . . . ,Ft(x)⊕mt)⊕
⊕
i∈Cp

si,1

to P1, on behalf of each uncorrupted party Pk.

18 Geoffroy Couteau and Adi Rosén

– If Pt+1 is honest, Sim sends Fi(x)⊕mi to each corrupted source Si on Pt+1

behalf.

We now argue that Sim’s emulation is perfect in Case 1. First, the simulation
of the input sharing, mask sharing, and tape sharing phases are perfectly identi-
cal to an honest execution of the protocol. Second, since CS ̸= [t], there exists at
least one uncorrupted source. This guarantees that the string rℓ, used by each
party Pℓ as its random tape in (any given instance of) the BGW protocol, is a uni-
formly random string unknown to any corrupted party. Therefore, we can treat
each participant in the BGW protocol as a probabilistic player in the analysis.
Now, let (u, v) be the inputs to an AND gate, of which the deterministic parties
hold shares; the shares of the corrupted parties are known to Sim. Let (uj , vj)
denote Pj ’s share, for j = t+ 1 to n. Recall that the (aj , bj) part of the output
of FBT are uniformly random independent bits. Since Sim’s messages (αj , βj)
are uniformly random, so are αj ⊕ uj and βj ⊕ vj . By the t-privacy of BGW for
randomized functionalities, the joint distribution of SimBGW(C,0t′ , outC) and
all pairs (αj ⊕ uj , βj ⊕ vj) for each uncorrupted Pj are distributed perfectly as
the joint distribution of the views of the corrupted parties in a real execution,
together with the random outputs (aj , bj) of FBT to all honest deterministic
parties. Therefore, SimBGW(C,0t′ , outC) together with the simulated messages
(αj , βj) is perfectly distributed as the corrupted parties’ views together with the
real messages (αj , βj) = (uj ⊕ aj , vj ⊕ bj).

It remains to argue that the simulation is perfect for the output phase as well.
Consider a given output wire where Pj should receive the output, and assume
without loss of generality that this wire goes out of an AND gate (since the parties
can always add a dummy multiplication by 1 to any output gate). For simplicity,
let us assume for now that j ̸= t+1 (the case j = t+1 can be handled similarly).
Let u, v be the inputs to this AND gate: it holds that u · v = Fj(x,y) (the case
where j = t + 1 is identical, except that Ft+1(x,y) must be replaced by the
longer output of Pt+1, which also includes the masked output of other players).
Therefore, by the definition of FBT, the triples (ak, bk, ck) are uniformly random
triples conditioned on the ck being random shares of Fj+t(x,y) ⊕ α · v ⊕ β · u,
where α, β are the XOR of the messages αk, βk broadcast by all deterministic
parties.

For each k ∈ [t + 1, n] \ CP , let us call γk the simulated random share of
Fj(x)⊕

⊕
i∈CP

si,j sent by Sim on behalf of Pk. By construction, the sequence
(γk)k and the sequence (si,j)i jointly constitute uniformly random shares of
Fj(x) = u · v. Let us rewrite wk the share of each party Pk for notational con-
venience (each wk is either sk,j or γk, depending on whether Pk is corrupted or
not). Then the (αk, βk, wk) and the input shares (uk, vk) virtually define triples
(ak, bk, ck) as (αk⊕uk, βk⊕vk, wk⊕α ·vk⊕β ·(αk⊕uk)) which, by construction,
are uniformly distributed as random Beaver triples. By the t-privacy of BGW
for randomized functionalities, the joint distribution of SimBGW(C,0t′ , outC)
together with all triples (αk ⊕ uk, βk ⊕ vk, wk ⊕ α · vk ⊕ β · (αk ⊕ uk)) is per-
fectly indistinguishable from the views of the corrupted parties in a real ex-
ecution together with random Beaver triples (ak, bk, ck). This implies that the

Random Sources in Private Computation 19

joint distribution of SimBGW(C,0t′ , outC) together with the simulated messages
(αk, βk, γk) are perfectly distributed as in a real execution (with random Beaver
triples (ak, bk, ck) equal to (αk ⊕ uk, βk ⊕ vk, wk ⊕ α · vk ⊕ β · (αk ⊕ uk))). This
concludes the analysis for Case 1.

Case 2: CS = [t]. In this case, the adversary corrupted all sources, and only
them. Observe that all messages seen by the sources during the entire execution
of the protocol are of two types:

– Messages exchanged during an execution of a BGW protocol for a secure mul-
tiplication. In all such instances, the inputs of the honest parties are never
involved, since the BGW instances evaluate an input-independent random-
ized functionality.

– The output message, where each source Si receives wi ⊕mi from P1, where
mi is a mask chosen by Si and wi is Si’s output in the protocol.

The simulation is therefore straightforward: during the entire execution of the
protocol, Sim will just play honestly on behalf of the (deterministic) Pi’s, and
using inputs 0. Since the Pi only interact with the sources in input-independent
protocols, this simulation is perfectly indistinguishable from the honest execu-
tion. Finally, Sim sends wi ⊕ mi to each source Si at the end of the protocol
on behalf of P1, where wi is Fi(x,y) and mi can be deterministically computed
from the random tape of Si (hence both are known to Sim). This concludes the
analysis for Case 2.

5 On the Relation Between Randomness Complexity and
the Number of Random Sources

In this section, we are interested in the relation between the randomness com-
plexity of a perfect secure protocol for a given functionality, and the number of
random sources that this protocol uses. The main question we ask is:

Does keeping the number of random sources to a minimum come at the
cost of increasing the the number of random bits necessary for the perfect secure
computation?

To illustrate the question, consider the t-source protocol we described in
Section 4. There is a natural variant of the protocol that uses n sources, but
Ω(t) times less randomness: each time the parties jointly generate a Beaver triple
using BGW (which are essentially the only steps that use randomness, besides
the input sharing and output masking), the parties use their own random tape,
instead of letting each of the n− t deterministic parties aggregate (i.e., XOR) t
random tapes sent by each of the t sources. Ignoring the input sharing and output
masking (for large enough functions, the Beaver triple generation dominates the
cost), if the circuit has nAND AND gates, this reduces the randomness complexity
from t · (n− t+1) ·BBT ·nAND bits to n ·BBT ·nAND bits: a Ω(t) reduction. In the
following, we put forth a conjecture stating that this factor t cost is essentially
inherent.

20 Geoffroy Couteau and Adi Rosén

5.1 A Preliminary Investigation

The randomness complexity of t-private n-party computation for the XOR func-
tionality was studied in the work of [16]. Interestingly, this work achieves in par-
ticular the best known upper bound on the randomness complexity of t-private
n-party XOR, and this upper bound is achieved using a minimal number of
sources: exactly t. This seemingly contradicts the intuition that t-source private
computation should require more randomness than private computation without
limitations on the number of sources.

A conjecture on sources versus randomness. We warn the reader that what fol-
lows is a purely intuitive reasoning: our goal here is to develop an intuition about
which conjecture can reasonably be expected. Intuitively, all known private com-
putation protocols proceed , one way or another, by operating on random shares
– this is how multiple parties can jointly manipulate private values. These shares
do typically enjoy linear homomorphism: all linear functions can be computed
on the shares, without any communication. This creates a crucial distinction
between linear functions and nonlinear functions in secure computation: in the
former, following an input-sharing phase, the protocol involves only local compu-
tation followed by a reconstruction of the final output. In contrast, for nonlinear
function, there will necessarily be interactions where intermediate values of the
computation are jointly manipulated and used to communicate.

Now, consider any t-source protocol for t-privately computing a nonlinear
function. In this protocol, there necessarily exist parties that will be involved
(i.e., receive messages) in exchanges involving intermediate values of the com-
putation – we call them sensitive parties, in the sense that they see messages
where random coins are used to hide sensitive intermediate values. Assume that
the adversary simultaneously corrupts some sources and one (or more) of the
sensitive parties. Then, when a deterministic party sends a sensitive message to
one of the sensitive parties, the randomness used to generate this message must
be uncorrupted, and can only come from the sources. But the deterministic party
cannot possibly know which of the sources are uncorrupted: it appears unavoid-
able, then, that the party must aggregate randomness for all t sources to obtain
uncorrupted coins in this situation. Therefore, we expect that there should ex-
ists nonlinear functions where the n − t deterministic parties will necessarily
have to receive t coins from the sources for each coin they would have tossed
themselves if they had the ability to. The above (informal) discussion clearly
breaks down when we consider solely linear functions; for sufficiently complex
functions, however, the t factor appears inherent.

Above, we did not precisely define what are linear and nonlinear functionali-
ties. The informal conditions we stated, however, corresponds to the feature that
partitions all Boolean functions into two classes: those that can be n-privately
computed, and those that can only be t-privately computed for t < n/2 [8]. It also
corresponds to the feature that typically distinguishes functionalities that admit
n-party t-private protocols for t ≥ n/2. For example, the subprotocol computing
the AND gates in a circuit is the only component in the BGW protocol [4] that

Random Sources in Private Computation 21

requires an honest majority, i.e., t < n/2; all other components handle linear
parts of the circuit, and can have t ≥ n/2 (this is discussed in details in [1]).
Similarly, the (BGW-based) protocol used in our work to handle the AND gates
is also precisely what requires a t-times randomness blowup. Hence, it seems
plausible to expect that the functionalities for which the factor-t randomness
blowup is inherent are the same functionalities for which private computation
requires an honest majority. We state this in Conjecture 13. We view the proof
of Conjecture 13 an interesting open question.

Conjecture 13. Let F be an n-party functionality that cannot be t-privately
computed for t ≥ n/2. For any t < n/2, let Rt be the randomness complexity
of t-privately computing F (with any number of sources). Then the t-source
randomness complexity of F is Θ(t ·Rt).

Results for the AND functionality. Characterizing the minimal amount of ran-
domness required for securely computing a functionality is non-trivial in general,
and indeed, no such general characterization is known. We expect that relating
the randomness complexity to the number of sources might be of comparable
difficulty in general. Most previous works on randomness complexity focused
on simple functionalities such as n-party XOR and n-party AND, as these are
simple building blocks in other computations, and in order to make the prob-
lem tractable. Even for these simple functionalities randomness lower bounds
are difficult to obtain, and in almost all known cases (with the exception of the
1-private computation of XOR, which can be done using a single random bit,
and which is tight since private computation of XOR without randomness is
impossible), the known upper bounds do not match the known lower bounds.
Therefore, we focus on the following simpler question:

When t is a constant, it possible to match the best known upper bound on the
randomness complexity of simple functionalities such as n-party AND, using an
optimally small number of random sources?

Note that t being a constant captures a setting where matching the best
known randomness complexity would not contradict Conjecture 13. In particu-
lar, when t = 1, we ask: is it possible to 1-privately compute a functionality, using
a single source, with a randomness complexity matching the best known multi-
source randomness complexity for this functionality? The randomness complex-
ity of the 1-private computation of the n-party AND functionality was investi-
gated in a recent work [17]. Their upper bound uses 8 random bits to 1-privately
compute AND (for any number of parties), and uses two random sources; they
also give a lower bound stating that more than a single random bit is necessary
to 1-privately compute AND. We obtain a non-trivial, and perhaps surprising re-
sult: we give a 6-bit private 1-private protocol to compute AND (for any number
of parties), which uses a single random source, thus improving the result of [17]
both in the number of random bits and the number of sources. While this result
is interesting in the context of understanding the relation between the number
of sources and the randomness complexity, we view it as being mainly a result
of independent interest on the randomness complexity of AND.

22 Geoffroy Couteau and Adi Rosén

5.2 Randomness Upper Bound for Secure Computation of AND

For the n-party AND functionality, not much is known in the general case of t-
privacy. A longstanding open question exists even in the case of 1-privacy, where
there is still a considerable gap between the best known upper and lower bounds
on the number of random bits required for the 1-private computation of AND.
Here, the only known non-trivial lower bound was recently proven in [17]: More
than one random bits are required for 1-private computation of n-party AND.
In the same work, the authors also improved the previously best known upper
bound from 73 bits (implicit in [20]) to 8 bits.

The protocol of [17] requires two sources. In contrast, the 73-bit protocol
of [20] requires a single source (which is optimal). It is therefore natural to wonder
whether two sources are necessary to achieve a very low randomness complexity.
Perhaps surprisingly, our result in this section indicates that it might not be the
case: We give a 1-private protocol for n-party AND which uses 6 random bits,
and a single source. Our result also tightens the gap between the best known
lower and upper bounds on the randomness of AND in general, which is of
independent interest.

Theorem 14. For any n ≥ 3, let FANDn be the following n-party functionality:
on input of a single bit xi to each party Pi, FANDn outputs

∧n
i=1 xi to all parties.

There exists an n-party perfect 1-private protocol for FANDn that uses a single
source, and where that source tosses exactly 6 random coins.

A pictural representation of the full protocol is given on Figure 3 (initializa-
tion phase and main phase) and Figure 4 (output phase). Before we proceed with
the formal proof, we explain the intuition underlying the protocol. At its heart
is a “transition protocol” (the main phase) which transitions from parties Pi−1

and Pi having shares of
∧i−1

j=0 xj to Pi and Pi+1 having shares of
∧i

j=0 xj , while
maintaining a carefully chosen invariant (described in the main phase below),
and using exactly four random bits. Crucially, these four random bits can be
reused for each step, with a cyclic shift of their roles (this will become clearer in
the sequel). The output phase requires a final oblivious transfer to reconstruct
the output, which requires 3 bits. One of the four bits of the main phase can
actually be recycled for this purpose, hence only two “fresh” bits are required,
leading to the 6 bits total cost.

The main phase. To simplify the exposition, we consider here n + 1 (and
not n) parties, (P0, · · · , Pn) (starting with index 0) each holding an input bit
xi. We will further assign a color code to the four random bits used during the
main phase. During the main phase, the parties are placed on a line; for each
i ≥ 1 each party Pi−1 will send messages solely to Pi and Pi+1. Fix three parties
(Pi−1, Pi, Pi+1). The protocol will have in sequence the following invariant for
all i between 1 and n− 2 (all sums are over F2):

– Pi−1 and Pi hold a mask αi−1, which is a random bit (from the viewpoint
of Pj for j ≥ i); let us call it the blue bit.

Random Sources in Private Computation 23

P0 P1 P2 P3 P4

Pi−1 Pi Pi+1

α0R1⟨x0⟩1⟨α0x0⟩1 α1 R1 α2 R2 α3 R3

αi Ri

⟨x0⟩0
⟨α0x0⟩0

⟨x0x1⟩1
⟨α1x0x1⟩1

⟨x0x1x2⟩2
⟨α2x0x1x2⟩2

〈∏i−1
j=0 xj

〉
i−1〈

αi−1

∏i−1
j=0 xj

〉
i−1

· · · · · ·· · ·

Current mask:
α0

$← {0, 1}
P0’s share of x0:
⟨x0⟩0 $← {0, 1}
P1’s share of x0:
⟨x0⟩1 ← ⟨x0⟩0 + x0

P0’s share of α0x0:
⟨α0x0⟩0 $← {0, 1}
P1’s share of α0x0:
⟨α0x0⟩1 ← ⟨α0x0⟩0 + α0x0

Rerandomization bit:
R1

$← {0, 1}

Current mask:
α1 ← α0 + x1

P1’s share of x0x1:
⟨x0x1⟩1 ← α1⟨x0⟩1 + ⟨α0x0⟩1
P2’s share of x0x1:
⟨x0x1⟩2 ← α1⟨x0⟩0 + ⟨α0x0⟩0
P1’s share of α1x0x1:
⟨α1x0x1⟩1 ← α1(⟨x0⟩1 + ⟨α0x0⟩1) +R1

P2’s share of α1x0x1:
⟨α1x0x1⟩2 ← α1(⟨x0⟩0 + ⟨α0x0⟩0) +R1

Rerandomization bit: R2 ← ⟨x0⟩0

Current mask:
αi ← αi−1 + xi

Pi’s share of
∏i

j=0 xj :〈∏i
j=0 xj

〉
i
← αi

〈∏i−1
j=1 xj

〉
i
+
〈
αi−1

∏i−1
j=0 xj

〉
i

Pi+1’s share of
∏i

j=0 xj :〈∏i
j=0 xj

〉
i+1
← αi

〈∏i−1
j=1 xj

〉
i−1

+
〈
αi−1

∏i−1
j=0 xj

〉
i−1

Pi’s share of αi

∏i
j=0 xj :〈∏i

j=0 xj

〉
i
← αi

(〈∏i−1
j=1 xj

〉
i
+
〈
αi−1

∏i−1
j=0 xj

〉
i

)
+Ri

Pi+1’s share of αi

∏i
j=0 xj :〈∏i

j=0 xj

〉
i+1
← αi

(〈∏i−1
j=1 xj

〉
i−1

+
〈
αi−1

∏i−1
j=0 xj

〉
i−1

)
+Ri

Rerandomization bit: Ri+1 ←
〈∏i−1

j=1 xj

〉
i−1

Initialization Phase

Main Phase

Fig. 3: Initialization phase and main phase of the 1-private protocol for the (n + 1)-
AND functionality. Each party Pi has an input bit xi. Pn receives the output

∏n
j=1 xj .

The protocol uses six random bits in total (α0, R1, ⟨x0⟩0, ⟨α0x0⟩0,m0, r), which are all
generated by the single random source P0. The color of a value indicates which of the
six random bits masks it additively. All operations are over F2.

– Pi and Pi+1 hold a rerandomizer Ri, which is also a random bit (from the
viewpoint of Pj for j ≥ i), and which we call the red bit.

– Pi−1 and Pi hold random additive shares of
∏i−1

j=0 xj (the AND of all in-
puts up to Pi−1). That is, Pi−1 holds a random bit ui−1, and Pi holds
u′
i−1 = ui−1 +

∏i−1
j=0 xj . We call ui−1 and u′

i−1 the green bit of Pi−1 and Pi

respectively.

24 Geoffroy Couteau and Adi Rosén

Pn−2 Pn−1 Pn

Pn−1 Pn P0 Pn−3

αn−2 Rn−2 αn−1

〈∏n−2
j=0 xj

〉
n−2〈

αn−2

∏n−2
j=0 xj

〉
n−2

m0
$← {0, 1} Rn−1 iff r = 0

r
$← {0, 1}b← xn + r

{sb +Rn−1, s1−b +m0}
m0 iff r = 1

r

· · ·

· · ·

· · ·
Rn−1

Pn−1 has
〈∏n−1

j=0 xj

〉
n−1

and Pn has
〈∏n−1

j=0 xj

〉
n
. Pn−1 sets s0 ← 0 and s1 ←〈∏n−1

j=0 xj

〉
n−1

.

Pn−1 and Pn execute an oblivious transfer (OT) protocol, where Pn−1 is sender with
input (s0, s1), and Pn is receiver with input xn. Note that Pn−1 does not send Rn−1

to Pn, and can therefore use it in the OT.

Given {sb +Rn−1, s1−b +m0}, Pn can recover sxn (and nothing more). If xn = 1, Pn

outputs s1 +
〈∏n−1

j=0 xj

〉
n
=
∏n

j=0 xj . Else, Pn outputs 0 =
∏n

j=0 xj .

Output Phase

Output:

Fig. 4: Output phase of the 1-private protocol for the (n+ 1)-AND functionality. Each
party Pi has an input bit xi. Pn receives the output

∏n
j=1 xj . The protocol uses six

random bits in total (α0, R1, ⟨x0⟩0, ⟨α0x0⟩0,m0, r), which are all generated by the single
random source P0. The color of a value indicates which of the six random bits masks
it additively. All operations are over F2.

– In addition, Pi−1 and Pi hold random additive shares of αi−1 ·
∏i−1

j=0 xj . That
is, Pi−1 holds a random bit vi−1, and Pi holds v′i−1 = vi−1 +αi−1 ·

∏i−1
j=0 xj .

We call vi−1 and v′i−1 the orange bit of Pi−1 and Pi respectively. We use these
notations and definitions to clarify that each share is a uniformly random
bit from the viewpoint of the party that holds it, but the joint distribution
(ui−1, vi−1) has a single bit of entropy.

It remains to explain how the parties communicate in order to transform the
above situation to the corresponding situation (invariant) relative to Pi, Pi+1

and Pi+2. Throughout this transition, the role of the blue bit remains identical,
while the roles of the last three random bits will undergo a cyclic shift. The
transition proceeds as follows:

– Pi defines the new mask αi to be αi−1 + xi, and sends it to Pi+1. Observe
that from the viewpoint of all parties j ≥ i + 2 (which we call “remaining
parties" with respect to i), αi is a uniform random bit (since xi is masked by
the uniform random “blue” bit αi−1, about which they have no information).
The bit αi is defined as the new blue bit.

Random Sources in Private Computation 25

– Pi−1 sends its two shares (that is, the green random bit ui−1 and the orange
random bit vi−1) to Pi+1.

– Pi computes ui = αi · u′
i−1 + v′i−1 and Pi+1 computes u′

i = αi · ui−1 + vi−1.
Observe that

ui + u′
i = αi(ui−1 + u′

i−1) + vi−1 + v′i−1

= (αi−1 + xi) ·
i−1∏
j=0

xj + αi−1 ·
i−1∏
j=0

xj =

i∏
j=0

xj ,

hence ui and u′
i do indeed form shares of

∏i
j=0 xj . Furthermore, from the

view point of the remaining parties with respect to i, these shares are indeed
random, because ui is additively masked with v′i−1 – that is, the orange bit
of Pi. Therefore, we view the bits ui and u′

i as the new orange bit of Pi and
Pi+1 respectively.

– Pi computes vi = αi · (u′
i−1+ v′i−1)+Ri and Pi+1 computes v′i = αi · (ui−1+

vi−1) +Ri. Observe that

vi + v′i = αi(ui−1 + u′
i−1 + vi−1 + v′i−1)

= (αi−1 + xi) · (
i−1∏
j=0

xj + αi−1 ·
i−1∏
j=0

xj)

= (αi−1 + xi) ·
i∏

j=0

xj = αi ·
i∏

j=0

xj ,

hence vi and v′i do indeed form shares of αi ·
∏i

j=0 xj . Furthermore, from
the view point of the remaining parties with respect to i, these shares are
indeed random, because vi is additively masked with Ri – that is, the red
bit of Pi (without Ri−1, which both parties add to their shares, the shares
would be biased towards 0; the purpose of the rerandomizer Ri is precisely
to rerandomize these shares). Therefore, we view vi and v′i as the new red
bit of Pi and Pi+1 respectively.

– It remains to set a new rerandomizer Ri+1 bit to be used by Pi+1 and Pi+2.
Above, the blue, orange, and red bits have already been “used”, hence we
will recycle the green bit. Recall that Pi+1 received Pi−1’s green random bit
ui−1, which is a uniformly random bit from the viewpoint of Pi+1 and Pi+2.
Therefore, Pi+1 sets Ri+1 ← ui−1 and sends Ri+1 to Pi+2.

The transition, and the invariant it maintains, are represented in Figure 5.

Initialization phase. The initialization phase sets up the invariant, for i = 1,
in a relatively straightforward way. The source, P0, samples the four random bits
(the blue, green, orange, and red bits). It sets the first mask α0 to be the blue
bit, the first rerandomizer R1 to be the red bit, and uses the green and orange
bits to share its input x0 as well as the value α0x0; that is, it sets the green bit

26 Geoffroy Couteau and Adi Rosén

Pi−1 Pi Pi+1

mask αi−1

rerandomizer Ri∏i−1
j=0 xj

αi−1

∏i−1
j=0 xj

=⇒

Pi Pi+1 Pi+2

mask αi

rerandomizer Ri+1∏i
j=0 xj

αi

∏i
j=0 xj

value known to both parties
value shared between the parties

Fig. 5: Pictural representation of the transition during the main phase. The color of a
rectangle indicates which random bit has been used to randomize the value. Straight
corners indicate values known to both parties, rounded corners indicate values shared
between the parties. The transition shows the colors of the bottom three values being
cycled upward, while the top color remains the same.

to be ⟨x0⟩0 and the red bit to be ⟨α0x0⟩0, and defines ⟨x0⟩1 ← x0 + ⟨x0⟩0 and
⟨α0x0⟩1 ← α0x0+ ⟨α0x0⟩0. It sends (⟨x0⟩1, ⟨α0x0⟩1) to P1, together with α0 and
R1. P1 sends R1 to P2, and the first transition phase can begin (where P0 will
send the remaining shares (⟨x0⟩0, ⟨α0x0⟩0) to P2; observe that those are exactly
the green and the orange random bits).

Output phase. It remains to describe how the parties obtain the final output.
Towards the end of the protocol, we slightly change the last (the n − 1’th)
transition. Let us assume without loss of generality that the rerandomization bit
Rn−1 is the green bit; Pn−1 does not send this rerandomization bit Rn−1 (which
Pn−1 received from Pn−3) to Pn. Otherwise the n− 1’th transition remains the
same and after its execution Pn−1 and Pn hold random shares of

∏n−1
j=0 xj .

The players Pn−1 and Pn will then execute an information theoretic oblivious
transfer protocol with the help of P0 and Pn−3, where Pn−1 will be the sender
with inputs s0 = 0 and its share of

∏n−1
j=0 xj (denoted s1), and Pn will be the

receiver, with input xn. This way, Pn receives 0 if xn = 0 and
∏n−1

j=0 xj otherwise;
that is, Pn learns exactly

∏n
j=0 xj .

The oblivious transfer proceeds as follows: the source P0 generates two addi-
tional random bits (r,m0). The bit r will be used to mask the selection bit xn,
and the two bits (m0, Rn−1) will be used to mask the sender inputs (this is where
we recycle Rn−1). P0 sends (r, r ·m0) to Pn, and m0 to Pn−1. Additionally, it
sends r to Pn−3, who sends Rn−1 ·(1+r) to Pn. This way, Pn knows r and either
Rn−1 (if r = 0) or m0 (if r = 1); this is exactly a random oblivious transfer
correlation.

The actual oblivious transfer follows the standard information-theoretic obliv-
ious transfer using a random oblivious transfer: Pn sends b = xn+ r (its masked

Random Sources in Private Computation 27

selection bit), and Pn−1 replies with (sb + Rn−1, s1−b +m0). If r = 0, this pair
is (sxn

+ Rn−1, s1+xn
+m0) and Pn knows the mask Rn−1; otherwise, if r = 1,

this pair is (s1+xn
+ Rn−1, sxn

+m0) and Pn knows the mask m0. Either way,
Pn can extract and output sxn

=
∏n

j=0 xj . In total, two additional random bits
were generated by P0, bringing the total randomness complexity to six bits.

The three-party case. Reading the above, it seems that the protocol requires
at least four parties, since Pn−3 to Pn are involved. However, Pn−3 is involved
solely because Pn should receive Rn−1 · (1 + r), but P0 might not know the
value Rn−1. In the three party case, where P0 = Pn−2, this is actually not an
issue, because R1 = Rn−1 is the first rerandomizer, generated by P0 during
the initialization. Therefore, in the three party case, we only need to slightly
change the output phase by letting P0 send Rn−1 · (1+r) directly to Pn, without
involving Pn−3 (who does not exist).

5.3 Security Analysis

Consider a static adversary corrupting a party Pi. We exhibit a simulator Sim
which emulates the view of this corrupted party given i, xi, and the output of the
function,

∏n
j=0 xj . First, if

∏n
j=0 xj = 1, then the simulation is trivial, since Sim

knows all inputs: Sim can simply honestly emulate the role of all honest parties.
Therefore, we assume without loss of generality that

∏n
j=0 xj = 0. The proof is

somewhat different depending on which is the corrupted player, whether it is a
“middle" player, one of the “end" players, or one of the two “starting" players.

Case 1: i /∈ {0, 1, n − 1, n}. This case corresponds to parties Pi which par-
ticipate only in the main phase, except for n − 3, which receives an additional
bit from P0 in the output phase. We first prove the simulation of the views at
the end of the main phase.
In the real protocol, each Pi receives exactly four bits by the end of the main
phase:

– From player Pi−1: a mask αi−1 and a rerandomizer Ri−1; and
– From player Pi−2: Pi−2’s random share of

∏i−2
j=0 xj and of αi−2 ·

∏i−2
j=0 xj .

The simulation is straightforward: Sim samples and sends to Pi two random
bits on behalf of Pi−1 and two other random bits on behalf of Pi−2. It remains
to show that this simulation is perfectly indistinguishable from a real protocol
execution. For αi−1, observe that by construction, αi−1 = α0+

∑i−1
j=1 xj , where α0

is a uniform random bit sampled by (the honest party) P0; hence, the simulated
αi−1 is distributed exactly as in the real protocol.

For the three remaining bits, the proof proceeds by induction on i, i = 2 being
the base case. For i = 2, P2 receives in the real protocol the red random bit from
P1 and the green and the orange random random bits from P0; i.e., in the real
protocol, P2 receives three independent random bits, as in the simulation.

28 Geoffroy Couteau and Adi Rosén

Assume now that it has already been established that the simulation is correct
for all players P2 to Pi−1. Let (u, u′) denote the two values sent by Pi−3 to Pi−1

in the protocol, and let (v, v′) be the two corresponding shares held by Pi−2.
Let αi−3 be the mask received by Pi−2, and let (αi−2, Ri−2) be the two bits
sent by Pi−2 to Pi−1. By the induction hypothesis, it holds that both the joint
distribution of (αi−3, u, v

′, Ri−2) and the joint distribution of (αi−3, v, v
′, Ri−2)

are each exactly the uniform distribution over {0, 1}4. Then, observe that Pi

receives in the real protocol the following:

– From Pi−2: αi−3v + v′ and αi−3(v + v′) +Ri−2; and
– From Pi−1: αi−1 and Ri−1 = u.

By the induction hypothesis, the joint distribution of (αi−3v+ v′, αi−3(v+ v′)+
Ri−2, u, αi−1) is the uniform distribution over {0, 1}3, which completes the in-
duction step.

As to player number n − 3, in addition to the messages received during the
main phase it receives a single additional independent (from all other messages)
random bit from P0. The simulation is trivial by sending on behalf of P0 a fresh
random bit.

Case 2: i ∈ {n − 1, n}. We now look at the parties that are involved in the
output phase. The view of Pn−1 in the protocol consists of (m0, b), where m0 is
an independent random bit, and b = xn + r, where r is an independent random
bit. This is again perfectly simulated by sending a random bit m0 on behalf of
P0 and a random bit b on behalf of Pn. Finally, the view of Pn is the following:

– Pn knows αn−1 and the two shares (u, u′) of Pn−2 (u, u′ are Pn−2’s shares
of

∏n−2
i=0 xi and αn−2 ·

∏n−2
i=0 xi with Pn−1);

– Pn receives (r, r ·m0, Rn−1 · (1 + r)) from P0 and Pn−3;
– P0 receives the two OT messages of Pn−1.

The two OT messages of Pn−1 are equal to (sb+Rn−1, s1−b+m0), where s0 = 0,
and s1 is Pn−1’s share of

∏n−1
i=0 xi, the other share being, by construction, αn−1 ·

u+u′. We can open up the terms using b = r+xn and s1 =
∏n−1

i=0 xi+αn−1·u+u′.
Then, two cases can happen: (1) r = 0 or (2) r = 1.

Suppose that r = 0; then Pn got (0, 0, Rn−1) from P0 and Pn−3. By con-
struction, we have

sb+Rn−1 = bs1+Rn−1 = xn·(
n−1∏
i=0

xi+αn−1u+u′)+Rn−1 = xn·(αn−1u+u′)+Rn−1,

where we use that
∏n

i=0 xi = 0 by assumption. On the other hand, if r = 1, then
Pn got (1,m0, 0) from P0 and Pn−3, and by construction, we have

s1−b+m0 = (1+b)s1+m0 = xn·(
n−1∏
i=0

xi+αn−1u+u′)+m0 = xn·(αn−1u+u′)+m0,

Random Sources in Private Computation 29

using again the assumption. Now, to simulate, Sim will sample five random bits
(u, u′, r,m0, Rn−1)

$← {0, 1}5 and send (u, u′) on behalf of P2 and (r, r·m0, Rn−1 ·
(1 + r)) on behalf of P0 and Pn−3. It remains to simulate the two OT messages.
If r = 0, then Sim will construct the sb+Rn−1 term as xn · (αn−1u+u′)+Rn−1,
which is distributed exactly as in the protocol (recall that Sim knows the input
xn of the corrupted party). The remaining term, s1−b + m0, is simulated by
sampling a uniformly random independent bit, which is a perfect simulation since
Pn never received any information about m0 (since it received (0, 0, Rn−1)). If
r = 1, Sim will construct the sb +m0 term as xn · (αn−1u + u′) +m0, which is
distributed exactly as in the protocol, and simulate the s1−b + Rn−1 term by a
uniform random bit, which is a perfect simulation since Pn−1 never received any
information about the random masking bit Rn−1.

Case 3: i ∈ {0, 1}. It remains to deal with the first two parties, which is
straightforward: in the real protocol P1 receives four bits from P0, two of which
are truly random, and two of which are (x0, α0x0) masked by two more inde-
pendent random bits. Sim can perfectly simulate this message by sending four
random bits on behalf of P0. P0 never receives any message throughout the pro-
tocol (except the value of the function), hence privacy against P0 holds trivially.
This concludes the proof.

References

1. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. Journal of Cryptology 30(1), 58–151 (Jan 2017)

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(Aug 1992)

3. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.)
CRYPTO’95. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (Aug 1995)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC. pp. 1–10. ACM Press (May 1988)

5. Blundo, C., De Santis, A., Persiano, G., Vaccaro, U.: Randomness complexity of
private computation. computational complexity 8(2), 145–168 (1999)

6. Chaum, D.: The spymasters double-agent problem: Multiparty computations se-
cure unconditionally from minorities and cryptographically from majorities. In:
Brassard, G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 591–602. Springer, Heidel-
berg (Aug 1990)

7. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC. pp. 11–19. ACM Press (May 1988)

8. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM J. Discret.
Math. 4(1), 36–47 (1991)

9. Data, D., Prabhakaran, V.M., Prabhakaran, M.M.: Communication and random-
ness lower bounds for secure computation. IEEE Transactions on Information The-
ory 62(7), 3901–3929 (2016)

30 Geoffroy Couteau and Adi Rosén

10. Gál, A., Rosén, A.: Lower bounds on the amount of randomness in private com-
putation. In: 35th ACM STOC. pp. 659–666. ACM Press (Jun 2003)

11. Goldreich, O.: Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press (2009)

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987)

13. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M.
(ed.) CRYPTO’86. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (Aug 1987)

14. Jakoby, A., Liśkiewicz, M., Reischuk, R.: Private computations in networks: Topol-
ogy versus randomness. In: Annual Symposium on Theoretical Aspects of Com-
puter Science. pp. 121–132. Springer (2003)

15. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: Kleinberg, J.M. (ed.) 38th ACM STOC. pp.
109–118. ACM Press (May 2006)

16. Kushilevitz, E., Mansour, Y.: Randomness in private computations. In: Burns,
J.E., Moses, Y. (eds.) 15th ACM PODC. pp. 181–190. ACM (Aug 1996)

17. Kushilevitz, E., Ostrovsky, R., Prouff, E., Rosén, A., Thillard, A., Vergnaud, D.:
Lower and upper bounds on the randomness complexity of private computations
of AND. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892,
pp. 386–406. Springer, Heidelberg (Dec 2019)

18. Kushilevitz, E., Ostrovsky, R., Prouff, E., Rosén, A., Thillard, A., Vergnaud, D.:
Lower and upper bounds on the randomness complexity of private computations
of AND. SIAM J. Discret. Math. 35(1), 465–484 (2021)

19. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Amortizing randomness in private multi-
party computations. In: Coan, B.A., Afek, Y. (eds.) 17th ACM PODC. pp. 81–90.
ACM (Jun / Jul 1998)

20. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Characterizing linear size circuits in
terms of privacy. Journal of Computer and System Sciences 58(1), 129–136 (1999)

21. Kushilevitz, E., Rosén, A.: A randomnesss-rounds tradeoff in private computa-
tion. In: Desmedt, Y. (ed.) CRYPTO’94. LNCS, vol. 839, pp. 397–410. Springer,
Heidelberg (Aug 1994)

22. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. IACR Cryptology ePrint Archive 2012, 64 (2012)

23. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM journal on computing 22(4), 838–856 (1993)

24. Nemec, M., Sýs, M., Svenda, P., Klinec, D., Matyas, V.: The return of copper-
smith’s attack: Practical factorization of widely used RSA moduli. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017. pp. 1631–1648

25. Nisan, N., Ta-Shma, A.: Extracting randomness: A survey and new constructions.
Journal of Computer and System Sciences 58(1), 148–173 (1999)

26. Rosén, A., Urrutia, F.: A new approach to multi-party peer-to-peer communication
complexity. In: Blum, A. (ed.) ITCS 2019. vol. 124, pp. 64:1–64:19. LIPIcs (Jan
2019)

27. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986)

	Random Sources in Private Computation
	Introduction
	Preliminaries
	On the Number of Random Sources in Private Computation
	Private Computation of Deterministic Functionalities
	On the Relation Between Randomness Complexity and the Number of Random Sources

