
HAL Id: hal-03869492
https://hal.science/hal-03869492

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Organic Structures Emerging From Bio-Inspired
Graph-Rewriting Automata

Paul Cousin, Aude Maignan

To cite this version:
Paul Cousin, Aude Maignan. Organic Structures Emerging From Bio-Inspired Graph-Rewriting Au-
tomata. 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting (SYNASC 2022), Sep 2022, Linz, Austria. pp.293-296, �10.1109/SYNASC57785.2022.00053�.
�hal-03869492�

https://hal.science/hal-03869492
https://hal.archives-ouvertes.fr


Organic Structures Emerging From Bio-Inspired

Graph-Rewriting Automata

Paul Cousin and Aude Maignan
Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK

Grenoble, France

Abstract

Graph-Rewriting Automata (GRA) are an extension of Cellular Au-
tomata to a dynamic structure using local graph-rewriting rules. This
work introduces linear algebra based tools that allow for a practical in-
vestigation of their behavior in deeply extended time scales. A natural
subset of GRA is explored in different ways thereby demonstrating the
benefits of this method. Some elements of the subset were discovered to
create chaotic patterns of growth and others to generate organic-looking
graph structures. These phenomena suggest a strong relevance of GRA
in the modeling natural complex systems. The approach presented here
can be easily adapted to a wide range of GRA beyond the chosen subset.

Keywords — cellular automata, graph-rewriting automata, dynamical systems,
artificial life, complexity.

1 Introduction

The idea of extending the study of discrete dynamical systems like cellular automata to
systems with evolving typologies has already been approached in several ways. DEM-
Systems [1–3], Structurally Dynamic Cellular Automata [4–6], Generative Network
Automata [7–9] and Graph-Rewriting Automata [10–12] are related concepts sharing
this goal. These systems can produce a range of new behaviors compared to their fixed
topology counterparts, however their implementation is much less straightforward.

In this paper, new linear algebra based tools will be presented, then applied
to study a natural subset of GRA. Links to the Mathematica source code, a more
recent GPU-accelerated Python implementation, and more information can be found
at paulcousin.github.io/graph-rewriting-automata.

1

https://orcid.org/0000-0002-3866-7615
https://orcid.org/0000-0002-0905-2515
https://paulcousin.github.io/graph-rewriting-automata


A GRA consists of an initial graph G0 defined at time step t = 0 and a rule to
iteratively evolve it to any discrete time step t > 0. Gt is the graph obtained at time t.
The studied subset of GRA will be defined by the following restrictions:

1. 3-regular, undirected and finite graphs,

2. binary labeling of vertices v with two possible states s:

• s(v) = 1, called “alive” and colored purple v,
• s(v) = 0, called “dead” and colored orange v,

3. rules local to a vertex and its adjacent vertices, deterministic and applied simul-
taneously on the entire graph,

4. only one type of topology altering operation called division.

Divisions will be operated as follows: 

In this model, vertices can, for example, be seen as cells that divide under specific
local conditions (internal and environmental). An initially simple graph can thus grow
into a large organism with a complex self-organized structure.

→ → → → → . . .

G0 G1 G2 G3 G4

Figure 1: Example of evolution starting from a simple initial graph.

2 Graphs and Rules

A graph G is fully described by an adjacency matrix A and a state vector S:
Gt = {At , St }

G0 ≡ A0 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 S0 =


1
0
0
0


Figure 2: Example of the graph G0 from Figure 1.

The neighborhood N(v) of a vertex v is the set of vertices which are adjacent
to it. The state s of a vertex being either dead or alive and there being from 0 to 3
alive vertices in its neighborhood, there are only 8 possible configurations c, which
can be ordered in this way:

c(v) = 4× s(v) +
∑

i∈N(v)

s(i) (1)

2



For instance, if v is a dead vertex surrounded by 3 dead vertices, c(v) will be equal
to 0 (see Figure 3 for all the other configurations).

0 ≡ 1 ≡ 2 ≡ 3 ≡

4 ≡ 5 ≡ 6 ≡ 7 ≡

Figure 3: Eight possible configurations.

The space of possible rules applicable in the subset of GRA defined in Section 1 is
finite. Every rule must specify, for each configuration, whether the vertex will be alive
or dead at t + 1 and whether it will have undergone a division, leading to 4 possible
final states. Thus, there are 48 = 65, 536 possible rules. Each rule can be described
by two functions:

R : [[0, 7]] → { 0 ≡ v, 1 ≡ v}
R(c(vt)) = s(vt+1)

(2)

R′ : [[0, 7]] → { 0 ≡ , 1 ≡ }

R′(c(vt)) =

{
1, if c leads to a division at t+1

0, otherwise

(3)

Every rule can thus be labeled by a unique rule number n.

n =

7∑
i=0

[
2iR(i) + 2i+8R′(i)

]
(4)

This labeling system, inspired by the Wolfram code [13], is such that a rule number
in its binary form displays the behavior of the rule. Starting from the right, the 8
first digits indicate the future state for each configuration as they have been ordered
previously. The 8 following digits show when a division occurs.

   

   

Figure 4: Rule of the example in Figure 1 (n = 765 = 10, 1111, 11012).

3



3 Implementation

Implementing GRA as described below must leverage a sparse array format to be
efficient.

The application of a rule to a graph will come in several steps which are strictly
equivalent to the rule being applied all at once. o being the order of the graph and
@ being the operator applying a function to every element of a vector, the first step
consists of computing a configuration vector C.

C =

c(v1)
...

c(vo)

 = 4× S +A · S (5)

S can then be updated as follows.

S = R@ C (6)

A division vector D is computed similarly.

D = R′@ C (7)

Divisions can now be performed one by one as a combination of simple operations
on matrices. The first 1 in D signals the vertex to divide. For the state vector, suffice
to triple the line corresponding to this vertex. For the adjacency matrix, both the
line and the column must be tripled. Ones then have to be spread across these lines
and columns and the intersection must be filled with a sub-matrix containing zeros
on the diagonal and ones everywhere else. Finally, the first 1 in the division vector is
turned into a 0 and then tripled. This process must be repeated until D is a null vector.


1
0
0
0

 →


1
0
0
0
0
0



(a) State vector


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 →


0 1 0 0 1 1
1 0 1 1 0 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 1 0 0 1
1 0 0 1 1 0



(b) Adjacency matrix


0
1
1
1

 →


0
0
1
1

 →


0
0
0
0
1
1



(c) Division vector

Figure 5: Division operated on the second vertex of the graph from Figure 2.

4 Exploration

An exhaustive exploration will be performed on the set of rules with exactly one
division. This set being color symmetric, if it is the case as well for G0, considering
the half of it were the division is applied to a dead cell will give the full picture. This
makes a total of 1024 rules to be explored.

n ∈ {i+ 2j | i ∈ [[0, 255]], j ∈ [[8, 11]]} (8)

4



To investigate the behavior of these rules, a simple graph G0 depicted in Figure 6
and containing all 8 configurations will serve as a starting point. This ensures that
G1 ̸= G0.

Figure 6: G0: Initial graph with all 8 configurations.

All the results and plots in this paper were computed in Mathematica 13.0 [14], on
a MacBook Pro 2020 with an Intel Core i5 Quad-Core 2.0GHz and 16GB of memory.
Graphs are displayed by the default graph plotting function in Mathematica and can
be better seen by enlarging this pdf.

5 Growth

One natural way to classify rules is by observing the pattern of growth they produce.
Table 1 shows a classification obtained using several methods, mainly the least squares
method.

Table 1: Number Of Rules By Growth Pattern.

Halted Linear Quadratic Exponential Unclassified
strict periodic chaotic

422 73 19 3 1 374 132

5.1 Halted growth

A total of 422 rules lead to a halt when reaching a cycle. These cycles have periods of
1, 2, 3, 6, or 8.

Table 2: Period distribution in rules leading to cycles.

Period 1 2 3 6 8
Number of rules 310 102 2 6 2

5.2 Linear growth

73 rules produce a strictly linear growth, with the same number of vertices gained at
each time step. 19 rules create a repeating pattern of growth that averages to linearity.
The largest period spanned 42 time steps and was produced by rule 2183. This comes
from the two main structures of the graph: a loop growing in 7 steps {2, 0, 0, 2, 0, 0, 0}
and a braid growing in 6 steps {4, 0, 0, 4, 2, 0}.

5



Figure 7: Rule 2183 at t = 600 along with a close-up of the braid.

More surprising though are the 3 rules giving rise to a chaotic linear growth: 2222,
2238 and 2239. These rules produce ladder-like loops in which states change according
to an Elementary Cellular Automaton rule [15]. For the sake of concision, only rule
2222 will be presented.

Figure 8: Rule 2222 at t = 200.

This rule, although producing a rather simple graph structure, is interesting by
the rhythm of its growth. At any time step, it will either grow of 0, 2, 4 or 6 new
vertices which averages to a linear growth. It can be noted that there are no increase
of 6 vertices at once for t ∈ [[1217, 20608]].

6



50000 100000 150000 200000
time

20000

40000

60000

80000

100000

120000

graph order

Figure 9: Rule 2222: linear growth.

Model fit: o = 72.8095 + 0.630684× t Adjusted R2: 0.999992

What is remarkable here is the fact that this growth does not follow a repeating
pattern but, instead, seems to have chaotic properties. To illuminate the peculiar
aspect of this phenomenon, Figure 10 shows the distribution of the lengths of time
intervals without growth in a log-linear plot.

5 10 15 20 25 30 35

time interval

length

1

10

100

1000

104

occurrences

Figure 10: Rule 2222: length distribution of time intervals without growth
computed for 0 ≤ t ≤ 200, 000.

5.3 Quadratic growth

t = 200 t = 400 t = 600

Figure 11: Rule 2182.

7



Rule 2182 was found to be unique in the set regarding its growth. It produces
a particular structure that grows almost quadratically, the exponent being slightly
above 2.

500 1000 1500 2000 2500 3000
time

100000

200000

300000

400000

500000

600000

graph order

Figure 12: Rule 2182: quasi-quadratic growth.

Model fit: o = 0.0620341× t2.01874 Adjusted R2: 0.999999

5.4 Exponential growth

Rule 256 produces a perfect exponential growth from t = 1. Among the 373 other
exponential rules, some display simple fractal structures, others are more complex.

Figure 13: Examples of fractal structures found in exponential rules.

5.5 Unclassified

132 rules have not allowed for a confident classification. Suspecting interesting behav-
iors to be responsible for these less trivial growth patterns, all of them were observed
individually and a selection of rules producing remarkable graph structures is pre-
sented in Section 6.

8



6 Graph structures

As Figure 11 already hinted at, some rules create organic-looking graph structures.
Figure 14 shows a selection of graphs with this property, labeled with the number
of the rule that produced them. These structures are particularly evocative. Some
even seem familiar, resembling macroscopic algae or related photosynthetic eukaryotes.

549 618

1062 1111

2199 2236

Figure 14: Some organic-looking graph structures.

9



7 Conclusion

In this paper, a new approach to Graph-Rewriting Automata based on linear algebra
was presented. When leveraging a sparse array format, it can be used to implement
GRA much more efficiently than with previous methods. To demonstrate the benefits
of this approach, a natural subset of GRA was explored only using a MacBook Pro
2020.

A focus was first put on the evolution of the number of vertices over time, leading
to a classification of rules by growth pattern. Several noteworthy phenomena were
discovered through this approach. It also led to a category of unclassified growths in
which interesting behaviors were suspected. The graphs of this category were thus vi-
sually inspected on a individual basis and some remarkable structures were discovered.

In future work, the ideas presented here could easily be adapted to cover a variety
of other types of GRA. Here are a few examples of possible trajectories:

• using continuous valued or non-binary discrete states,

• working with d-regular or non-regular graphs,

• reaching an extended neighborhood with powers of A,

• working with directed graphs using A · S and AT · S,
• including other topology altering operations.

Other tools to analyse graphs directly from their adjacency matrix and state vector
could also be developed to gain new insights into the behaviors and properties of GRA.

Acknowledgment

This work was partially supported by the Université Grenoble Alpes, through an
Excellence Internship which took place between June 7th and July 15th 2022.

References

[1] R. Edwards and A. Maignan, “A class of discrete dynamical systems with proper-
ties of both cellular automata and l-systems,” Natural Computing, vol. 19, no. 3,
pp. 609–641, 2020.

[2] ——, “Dem-systems: a new type of adaptive system,” Exploratory papers of
automata, 2016.

[3] ——, “Complex self-reproducing systems,” in ISCS 2013: Interdisciplinary Sym-
posium on Complex Systems. Springer, 2014, pp. 65–76.

[4] A. Ilachinski and P. Halpern, “Structurally dynamic cellular automata.” 2009.

[5] R. Alonso-Sanz and M. Mart́ın, “A structurally dynamic cellular automaton with
memory in the hexagonal tessellation,” in International Conference on Cellular
Automata. Springer, 2006, pp. 30–40.

10



[6] R. Alonso-Sanz, “A structurally dynamic cellular automaton with memory,”
Chaos, Solitons & Fractals, vol. 32, no. 4, pp. 1285–1295, 2007.

[7] H. Sayama, “Generative network automata: A generalized framework for model-
ing complex dynamical systems with autonomously varying topologies,” in 2007
IEEE Symposium on Artificial Life. IEEE, 2007, pp. 214–221.

[8] H. Sayama and C. Laramee, “Generative network automata: A generalized frame-
work for modeling adaptive network dynamics using graph rewritings,” in Adap-
tive networks. Springer, 2009, pp. 311–332.

[9] J. Schmidt and H. Sayama, “Designing and evaluating algorithms for automated
discovery of adaptive network models based on generative network automata,” in
2013 IEEE Symposium on Artificial Life (ALife). IEEE, 2013, pp. 27–34.

[10] K. Tomita, S. Murata, and H. Kurokawa, “Self-description for construction and
computation on graph-rewriting automata,” Artificial Life, vol. 13, no. 4, pp.
383–396, 2007.

[11] ——, “Asynchronous graph-rewriting automata and simulation of synchronous
execution,” in European Conference on Artificial Life. Springer, 2007, pp. 865–
875.

[12] K. Tomita, H. Kurokawa, and S. Murata, “Graph-rewriting automata as a natural
extension of cellular automata,” in Adaptive Networks. Springer, 2009, pp. 291–
309.

[13] S. Wolfram, A New Kind of Science. Wolfram Media, 2002.

[14] W. R. Inc., “Mathematica, Version 13.0,” champaign, IL, 2021.

[15] E. W. Weisstein, “Elementary cellular automaton,” mathworld.wolfram.com,
2002.

11


	Introduction
	Graphs and Rules
	Implementation
	Exploration
	Growth
	Halted growth
	Linear growth
	Quadratic growth
	Exponential growth
	Unclassified

	Graph structures
	Conclusion

