

Activated I-BAR IRSp53 clustering controls the formation of VASP-actin–based membrane protrusions

Feng-Ching Tsai, J. Michael Henderson, Zack Jarin, Elena Kremneva, Yosuke Senju, Julien Pernier, Oleg Mikhajlov, John Manzi, Konstantin Kogan, Christophe Le Clainche, et al.

▶ To cite this version:

Feng-Ching Tsai, J. Michael Henderson, Zack Jarin, Elena Kremneva, Yosuke Senju, et al.. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin–based membrane protrusions. Science Advances , 2022, 8 (41), 10.1126/sciadv.abp8677 . hal-03869467

HAL Id: hal-03869467 https://hal.science/hal-03869467

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

$\frac{1}{2}$	FRONT MATTER		
2 3 4 5 6 7 8 9	 <i>Full title</i> <i>Full title</i> Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions <i>Short title</i> Cell protrusion control by IRSp53 		
10 11 12 13 14	Authors Feng-Ching Tsai ^{1,†,*} , J. Michael Henderson ^{1,2,†} , Zack Jarin ^{3,‡,§} , Elena Kremneva ^{4,‡} , Yosuke Senju ^{5,‡} , Julien Pernier ⁶ , Oleg Mikhajlov ¹ , John Manzi ¹ , Konstantin Kogan ⁴ , Christophe Le Clainche ⁶ , Gregory A. Voth ^{7,*} , Pekka Lappalainen ^{4,*} , Patricia Bassereau ^{1,*}		
15 16 17	 Affiliations 1. Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico- Chimie Curie, 75005 Paris, France. 		
18 19	2. Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France.		
20 21	3. Pritzker School for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA.		
22 23	 Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland. 		
24	5. Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.		
25 26	6. Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.		
27 28	7. Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA.		
29	† These authors contributed equally to this work.		
30	‡ These authors contributed equally to this work.		
31 32	§ Present address: Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.		
33 34 35	* Corresponding authors. Emails: feng-ching.tsai@curie.fr, gavoth@uchicago.edu, pekka.lappalainen@helsinki.fi, patricia.bassereau@curie.fr		

36 Abstract

37 Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and 38 cancer invasion. How cells control filopodia initiation on the plasma membrane remains elusive. 39 We performed experiments in cellulo, in vitro and in silico to unravel the mechanism of filopodia 40 initiation driven by the membrane curvature sensor IRSp53. We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP₂. Using well-controlled in vitro 41 42 reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP 43 to assemble actin filaments locally on membranes, leading to the generation of actin-filled 44 membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, 45 we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly 46 dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its 47 attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal 48 control of filopodia initiation.

49

50

51 Teaser52

Curvature sensing protein IRSp53 synergizes with actin elongator VASP to control actinfilled membrane protrusion formation.

55 MAIN TEXT

56

53

54

57 Introduction

Plasma membrane shaping relies on a precisely controlled coupling of the plasma membrane and 58 59 the actin cytoskeleton (1-3). A prominent example are filopodia: thin, finger-like membrane 60 protrusions with a typical diameter of 100-300 nm which can extend from cell edges with lengths of the order of 10 um (4, 5). Filopodia are filled with parallel actin filaments bundled by fascin 61 62 (typically 10–30 filaments) (6, 7). Cells use filopodia to explore and sense their environment (8). 63 Thus, filopodia are critical in numerous cellular processes, including polarized cell migration and 64 adhesion, and in the tissue environment, embryogenesis, cancer invasion and cell-cell 65 communication (2, 4, 5). Filopodia formation employs different mechanisms involving different sets of actin regulatory proteins (4, 5, 9). So far, two distinct mechanisms of filopodia generation 66 have been proposed: the convergent elongation model relying on the reorganization of the pre-67 68 existing Arp2/3 complex-mediated branched actin network in lamellipodia (10-12), and the tip 69 nucleation model in which de novo actin assembly is triggered by formin-family actin nucleators 70 (4). The two mechanisms are not necessarily mutually exclusive and are most likely cell type 71 dependent (4, 13-15). Moreover, it is likely that other distinct mechanisms remained to be 72 unraveled (13). Notably, recent cell biology studies proposed another filopodia generation 73 mechanism in which the membrane curvature sensing protein IRSp53 (insulin receptor substrate 74 p53) forms local clusters on the plasma membrane to recruit the actin polymerase VASP 75 (vasodilator-stimulated phosphoprotein), which promotes actin filament elongation at the onset 76 of filopodia initiation (16-18). Yet, it remains poorly understood how cells control precisely 77 when and where to trigger actin assembly on the plasma membrane to initiate filopodia (4, 5, 9).

IRSp53 (also known as BAIAP2), an inverse BAR (I-BAR, Bin-AmphiphysinRvs161/167) domain protein, is a crucial player in coordinating actin assembly and membrane
dynamics in filopodia formation (*16-23*). IRSp53 features an N-terminal I-BAR domain (also
known as IMD, IRSp53-MIM homology Domain), followed by a CRIB-PR (Cdc42/Rac

82 interactive binding-proline rich) domain, and a canonical SH3 (Src homology 3) domain. 83 Purified I-BAR domains spontaneously assemble into crescent-shaped dimers (23) that can bind to negatively charged lipids such as PS and $PI(4,5)P_2$ (hereafter as PIP_2) (24, 25). The SH3 84 85 domain of IRSp53 allows it to interact with many actin regulators, such as VASP (16, 17), Eps8 (20), N-WASP (17), WAVE2 (26, 27), and mDia1 (27). Importantly, it was shown that IRSp53 86 87 exhibits a closed, autoinhibited conformation due to the binding of its SH3 domain to its CRIB-88 PR motif (28). The most well-known activator of IRSp53 is Cdc42 (16, 17, 19, 28). Additionally, 89 PIP₂ and cytoskeleton effectors, such as Eps8 and VASP, have been shown to synergize with Cdc42 in IRSp53 activation to its fully open conformation (19, 21, 28-30). Importantly, it has 90 91 been shown that 14-3-3 binds to phosphorylated IRSp53, keeping it in the inhibited state (21, 29, 92 30).

93 Biophysical studies in cellulo and in reconstituted systems have revealed that the I-BAR 94 domain of IRSp53 can sense and generate similar negative membrane curvature that is found in 95 filopodia (25, 31-33). Consistently, when overexpressing either the I-BAR domain or the full-96 length IRSp53 protein in cells, the generation of membrane protrusions reminiscent of filopodia 97 were observed (16-22). The majority of these I-BAR-induced protrusions contain actin filaments, 98 albeit many of them have a low amount of actin (18). Notably, it was shown that full-length 99 IRSp53 forms clusters on the plasma membrane that are followed by the accumulation of VASP 100 for filopodial initiation (16). The tendency of IRSp53 to cluster was suggested by an in vitro 101 study where, by pulling membrane tubes from giant unilamellar vesicles (GUVs) encapsulating 102 the I-BAR domain, it was shown that at low concentrations and low curvature, the I-BAR 103 domain phase separates along the tubes (32). By using MEF cells derived from IRSp53 null mice 104 stably infected with vectors expressing IRSp53 to levels comparable to the endogenous protein, 105 it was shown that IRSp53 is required for the recruitment and further clustering of VASP at the 106 plasma membrane (16). Moreover, theoretical modeling has predicted how IRSp53 and actin cooperatively drive the formation of membrane protrusions (34). Yet, little is known about how 107 108 IRSp53 by itself clusters on the plasma membrane, and recruits VASP and actin. Moreover, we 109 still lack a comprehensive mechanistic description of how IRSp53 and VASP cooperate with 110 actin and its regulatory proteins to initiate filopodia.

111 VASP is a member of the Ena/VASP protein family that has been indicated to contribute to filopodia formation in cells (4, 5, 9, 10, 15, 35). VASP forms homo-tetramers that are weakly 112 113 processive as actin polymerases (36). When forming oligomers or clusters, or when the actin 114 filaments are bundled by fascin, VASP becomes more processive on the barbed ends of the actin 115 filaments (37-40). Consistent with its actin polymerase activity, VASP clusters are part of the 116 filopodial "tip complex", where actin assembly occurs on the plasma membrane to elongate the 117 filopodium (10, 12, 41). Recent cell biology studies have identified protein partners involved in 118 VASP clustering on the plasma membrane, notably IRSp53, lamellipodin and myosin-X (16, 42, 43). While IRSp53-VASP clustering has been proposed to contribute to filopodia formation, 119 120 lamellipodin and myosin-X-dependent VASP clustering appears to be responsible for the 121 formation of another distinct type of protrusion called microspikes (16, 19, 22, 38, 42-44). Yet, 122 how VASP clusters facilitate filopodial initiation remains to be explored (4, 5).

To uncover how IRSp53, VASP and actin cooperate to initiate filopodia, we performed experiments in cellulo, in vitro, and in silico. Using in vitro reconstitution systems, we demonstrated that on PIP₂-membranes, purified full-length IRSp53 self-assembles into clusters that are crucial for the recruitment of VASP to locally trigger actin assembly, giving rise to 127 filopodia-like membrane protrusions. Our coarse-grained simulations showed that PIP₂ is key for IRSp53 clustering. Our in vitro assays revealed that fascin is not required for filopodia initiation; 128 129 however, we observed that in live cells, fascin enhances filopodia elongation and stability.

130 Finally, to unravel the regulation of IRSp53 activity in live cells, we performed an in cellulo 131 biophysical assay in which membrane nanotubes having a membrane geometry reminiscent of

132 cellular filopodia, but initially devoid of actin, are pulled from the cells using optical tweezers.

- 133 This assay allows us to reveal the regulated activation of IRSp53 in cells by detecting two of its 134 functions: its ability to sense the negative membrane curvature of the pulled nanotubes and to 135 trigger actin assembly inside the nanotubes. We found that IRSp53 is active only in membrane 136 nanotubes that are pulled from regions of cell surfaces where the plasma membrane exhibits 137 dynamic shape changes. Taken together, our results provide fundamental insights into how the 138 curvature sensor protein IRSp53 synergizes with the actin polymerase VASP in filopodia 139 initiation. Our findings further suggest that IRSp53 is tightly regulated in cells to have a rigorous control over filopodia initiation.
- 140
- 141

142 **Results**

IRSp53 self-assembles into clusters that recruit VASP on PIP₂-membranes 143

144 Earlier work on MEF cells derived from IRSp53 null-mice provided evidence that IRSp53 is 145 responsible for the formation of VASP clusters at the leading edge of migrating cells (16). It was 146 shown that the accumulation of IRSp53 precedes the recruitment of VASP prior to the formation 147 of filopodia (16). To further examine the roles of IRSp53 and VASP in filopodia initiation, we 148 expressed IRSp53-eGFP and RFP-VASP in live Rat2 cells, which assemble frequent endogenous 149 filopodia (45). By tracking their fluorescence signals at the plasma membrane, we found that 150 IRSp53 is present along filopodia (Fig. 1A, brackets), while VASP tends to enrich at the 151 filopodial tips (Fig. 1A, arrows). Importantly, before the appearance of filopodia, IRSp53 is 152 enriched at the plasma membrane often as small clusters, while VASP displays quite a diffuse 153 cytoplasmic localization with enrichment at focal adhesions (Fig. 1A). At the onset of a 154 filopodium, the emergence of larger IRSp53 clusters occurs, and this is followed by the birth of 155 VASP clusters (Fig. 1B and Movie S1). To reveal the evolution of IRSp53 and VASP clusters at 156 the plasma membrane before and after filopodia formation, we generated adaptive kymographs 157 with a previously developed automated method (42). The adaptive kymographs follow the 158 movement of the plasma membrane (Fig. 1C) and map the signals of IRSp53 and VASP into 159 vertical lines to create space-time plots (Fig. 1D). The kymographs confirm that IRSp53 160 clustering at the plasma membrane precedes VASP accumulation and filopodia initiation (Fig. 161 1D). To quantify the colocalization of IRSp53-eGFP and RFP-VASP during filopodia formation, 162 we used an intensity correlation analysis by following a well-established method (46) (see 163 Materials and Methods for details). This method allows us to obtain, for each pixel, the normalized mean deviation product of florescent signals of IRSp53 and VASP, (I_{IRSp53} -164 $\overline{I_{IRSp53}}(I_{VASP} - \overline{I_{VASP}})/((I_{IRSp53}^{max} - \overline{I_{IRSp53}})(I_{VASP}^{max} - \overline{I_{VASP}}))$, termed the colocalization index, 165 where I, \overline{I} and I^{max} are the intensity of a corresponding pixel, and the mean and the maximum 166 167 intensities of the image, respectively. For each pixel, the colocalization index indicates how the 168 two protein signals are correlated in terms of their fluorescence intensities. The index varies from 169 -1 to 1 with negative values for non-correlated pixels while positive values for correlated ones. 170 By using this method, we found that the colocalization indexes of IRSp53 and VASP were 171 generally higher than 0, thus indicating their colocalization during filopodia formation (N =28 172 filopodia, n = 2 experiments) (Fig. S1, A and B). Moreover, in 46% of the tracked filopodia, we

173 observed that the values of the IRSp53-VASP colocalization indexes globally increased during 174 the onset of filopodia formation (Fig. S1, C and D). Our results support the earlier work by 175 Disanza et al. (16) and indicate the potential synergistic function of IRSp53 and VASP in 176 filopodia initiation. Our data, together with earlier work (16-18), provide evidence supporting a 177 previously proposed mechanism in which IRSp53 clustering at the plasma membrane induces 178 VASP recruitment to locally polymerize actin on the membrane for driving protrusion formation 179 (16-18). In this scenario, the synergistic functions of IRSp53, VASP, actin, and the filopodia-180 specific actin filament bundling protein, fascin, would be sufficient to drive protrusion 181 formation.

182 To test this hypothesis in a better-controlled experimental environment than in live cells, 183 we developed an in vitro reconstitution system composed of giant unilamellar vesicles (GUVs) 184 as model membranes, and purified IRSp53, VASP, actin and fascin, all in full-length forms. We 185 first assessed if IRSp53 can self-assemble into clusters on model membranes without the 186 presence of other proteins. We purified full-length human IRSp53 that is a constitutive dimer 187 (23), and labelled it with AX488 dyes (AX488-IRSp53) for visualization by fluorescent confocal microscopy. We generated GUVs containing 5 mole% of PIP₂, given that it is the key 188 189 phosphatidylinositol for an IRSp53-membrane interaction and thus necessary for filopodia 190 generation (25). We used IRSp53 at 16 nM in its dimer form (i.e., 32 nM as a monomer) to be 191 comparable to the cellular concentration of IRSp53 (29.7 nM to 453 nM, in which 29.7 nM is 192 sufficient for filopodia generation) (17). Interestingly, by incubating AX488-IRSp53 with PIP₂-193 GUVs, we observed clusters of IRSp53 on the GUV membranes (72%, N = 58 GUVs (technique 194 replicates), n = 3 independent sample preparations (biological replicates) (47)) (Fig. 2A, arrows). 195 These clusters are reminiscent of IRSp53 clusters observed in cells at the onset of filopodia 196 formation. Additionally, we observed that a small fraction of GUVs (usually less than 10% of the 197 whole GUV population) have inward membrane protrusions, where IRSp53 is in the interior of the protrusions (Fig. 2A arrowhead, Fig. S2). This observation demonstrates that the full-length 198 199 IRSp53 is functional such that it can generate negative membrane curvature.

200 To explore the role of PIP₂ in IRSp53 clustering, we tested if IRSp53 could form clusters 201 upon interacting with another negatively charged lipid, PS, given that IRSp53-PIP₂ binding is driven by electrostatic interactions (25). We replaced PIP₂ with PS (25 mole%, PS has a net 202 charge of -1) on GUVs while keeping the amount of negative charges comparable to that of PIP₂-203 204 GUVs (5 mole% of PIP₂. At pH 7, the charge of PIP₂ is expected to be around -4 (48)). We 205 found that IRSp53 can form clusters also on PS-GUVs (Fig. 2B). The number of clusters per 206 GUV are comparable on PIP₂-GUVs and PS-GUVs (Fig. S3). However, the clusters are larger on 207 PIP₂-GUVs as compared to PS-GUVs (Fig. 2C). To elucidate the mechanism underlying 208 IRSp53-clustering on PIP₂-membranes, we performed coarse-grained (CG) simulations. We 209 generated PS-like and PIP₂-like membrane sheets. The PS-like membrane is a quasi-monolayer 210 of membrane beads that uniformly interacts with the I-BAR domain membrane binding surface. 211 The PIP₂-like membranes are nearly identical except a subset of membrane beads (2% or 5%)preferably interact with the ends of the I-BAR domains, as previously reported (25). In both 212 213 membrane cases, the I-BAR domains have purely repulsive direct interactions with each other 214 and are attracted to each other due to curvature coupling and Casimir-like forces mediated by the 215 membrane as well as a membrane-composition-mediated force that occurs only as PIP₂-like membrane beads cluster to the ends of the I-BAR domains (25). Thus, the functional difference 216 217 between the PS-like membrane (i.e., 0% PIP₂-like membrane) and the PIP₂-like membrane is the 218 additional attraction to the ends of the I-BAR domain for only a small percentage of the

219 membrane beads. Consistent with our observation on GUVs, we found that I-BAR domain 220 clustering occurs on both PS-like (i.e., 0% of PIP₂-like membrane) and PIP₂-like membranes (2% 221 and 5% of PIP₂-like membranes, Fig. 2D, Top). Moreover, we found that the addition of PIP₂-222 like membrane beads increases the aggregation of I-BAR domains. Without PIP₂-like membrane 223 beads, we found a high probability of free or small aggregates containing less than five I-BAR 224 domains. In the presence of PIP₂-like membrane beads, there is a significant decrease in free or 225 small aggregates and a corresponding increase of larger aggregates with five or more I-BAR 226 domains (Fig. 2D Top, Movie S2, and Fig. 2E). Importantly, it has been shown that I-BAR 227 domains can induce stable PIP_2 microdomains upon membrane binding (31, 49). Indeed, we 228 found an enrichment of PIP₂-like membrane beads near I-BAR domain aggregates (Fig. 2D, 229 Bottom, blue dots, and Movie S3). In the 2% PIP₂-like membranes, we found 27% of 230 neighboring membrane beads are PIP₂-like, which is an approximate 14 times enrichment of 231 PIP₂-like membrane beads around the I-BAR domain aggregates compared to the total 2% 232 concentration of PIP₂-like beads on the membrane. Similarly, in the 5% PIP₂-like membranes, 233 we found 33% of neighboring membrane beads are PIP₂-like, which is a 6.7 times enrichment of 234 PIP₂-like membrane beads to the aggregates compared to the total 5% concentration of PIP₂-like 235 membrane beads. The enrichment of PIP2-like membrane beads around I-BAR domain 236 aggregates depletes PIP₂ in the bulk membrane that is not adjacent to an I-BAR domain 237 aggregate. In other words, the PIP₂ percentages in the membrane adjacent to the I-BAR domain 238 aggregates are enriched to 27% and 33% while the rest of the membrane is depleted to 0.7% and 239 3.4% of PIP₂-like membrane beads for 2% and 5% PIP₂-like membrane systems, respectively. 240 Our results thus indicate positive feedback of the assembly of I-BAR domain aggregates 241 mediated by PIP₂ and the enrichment of PIP₂ around the aggregates facilitate further I-BAR 242 domain recruitment. Altogether, our simulation and experimental reconstitution results indicate 243 the key role of PIP₂ in IRSp53 clustering on membranes.

244 It was reported that in bulk, as well as on small vesicles containing PIP₂, IRSp53 and VASP interact directly via their SH3 domain and PR domain, respectively (16). We thus 245 246 examined this interaction in our reconstituted system. We purified full-length human VASP and 247 labelled it with AX488 dyes (AX488-VASP). When incubating PIP₂-GUVs with AX488-VASP 248 (4 nM of VASP tetramer) together with unlabeled full-length IRSp53 (16 nM of IRSp53 dimer), 249 we observed that VASP is recruited on GUV membranes (Fig. 2F Top, arrows), which is not the 250 case in the absence of IRSp53 (Fig. 2F, Bottom). Consistently, we observed VASP recruitment on GUV membranes when replacing full-length IRSp53 with a truncated version of IRSp53 that 251 252 contains the I-BAR domain and the SH3 domain of IRSp53 (Fig. S4 A); in contrast, no VASP 253 recruitment was observed when replacing full-length IRSp53 with the isolated I-BAR domain of 254 IRSp53 (Fig. S4 B). These findings are consistent with the previous observations that IRSp53 255 and VASP interact directly in solution, on model membranes, and in filopodia (16, 17, 19). 256 Notably, we found clusters of VASP on GUV membranes (Fig. 2F, arrows) that are reminiscent 257 of what has been observed in live cells (Fig. 1B and (16)). Furthermore, for GUVs having 258 IRSp53-generated membrane tubules, we observed that VASP is recruited in these tubules (Fig. 259 S5). Our results indicate that IRSp53 can recruit VASP into clusters on the relatively flat GUV 260 surfaces and to negatively curved membrane tubes, a characteristic of filopodial membranes.

Self-assembly of IRSp53, VASP, fascin and actin on PIP₂-membranes generates actin-filled membrane protrusions

263 We next assessed if IRSp53, VASP, actin and fascin can self-organize on PIP₂-264 membranes to drive protrusion formation, as hypothesized above. We kept the bulk 265 concentration of IRSp53 and VASP relatively low (16 nM of IRSp53 dimer and 4 nM of VASP 266 tetramer) to allow the formation of IRSp53-VASP clusters on PIP₂-membrane as seen in cells. 267 To visualize actin, we used AX488-labelled globular actin (G-actin, ~10% - 27% AX488 268 labelled, total actin concentration 0.5 µM). To ensure that actin polymerization occurs at the 269 membrane only, as in cells, and not in solution, we included capping protein (CP, 25 nM) and 270 profilin (0.6 μ M) in the protein mixture. Capping protein binds to the barbed ends of filamentous 271 actin (F-actin) with high affinity ($K_d = 0.1$ nM) and inhibits F-actin elongation in the bulk (1, 50). In cells, the majority of G-actin is associated with profilin ($K_d = 0.1 \mu M$) (51, 52), which 272 suppresses spontaneous actin nucleation in the bulk. Additionally, it was shown that at high ionic 273 274 strengths, profilin is required for VASP to be more effective in actin polymerization (36). 275 Finally, to introduce actin filament bundling as in filopodia, we used fascin at 250 nM (11).

276 By performing pyrene actin polymerization assays, we verified that in our experimental 277 conditions VASP increases actin polymerization in the presence of profilin, and CP suppresses 278 F-actin elongation (Fig. S6, solid lines). To verify the presence of actin filaments in our 279 reconstitution systems, we performed some experiments using unlabeled G-actin and included 280 AX488 phalloidin (0.66 µM) in the protein mixture, given that AX488 phalloidin binds to F-281 actin and its fluorescence is higher on F-actin than in the bulk (53). We verified by pyrene actin assays that the actin polymerization activity of VASP is preserved when phalloidin is present (by 282 283 comparing the green dashed curve and the black dashed curve in Fig. S6). Also, the suppression 284 of actin polymerization by CP is preserved in the presence of phalloidin, as indicated by the 285 initial actin polymerization rates with 56 pM polymerized actin/sec and 134 pM polymerized 286 actin/sec in the presence and absence of CP, respectively (by comparing the initial slopes of the 287 dashed pink and dashed green curves in Fig. S6. See the Materials and Methods for details of the 288 calculation). Finally, the actin bundling activity of fascin was verified by performing two 289 independent assays: an actin-fascin co-sedimentation assay at low centrifugation speed, showing 290 most of actin filaments were present in the pellet fraction only when fascin was present (Fig. S7 291 A), and an actin-fascin co-polymerization assay observed by confocal microscopy, showing bundles of actin filaments only when fascin was present (Fig. S7 B). 292

293 By incubating PIP₂-GUVs with IRSp53, VASP, actin, fascin, CP and profilin, we 294 observed inward membrane tubes filled with actin on the GUVs (Fig. 3A). The tubes are not 295 static, but move rapidly inside GUVs (Movie S4 and S5). In addition to the tubes, there are actin 296 signals on GUV membranes, indicating the formation of an actin shell on the membrane (Fig. 297 3A). On average, 32% of the GUVs had tubes, and 93% of these tube-positive GUVs had at least 298 one tube filled with actin (N = 140 GUVs, n = 3 sample preparations, Fig. S8 A). By using 299 AX488 phalloidin together with unlabeled G-actin, we observed clear AX488 phalloidin signals 300 inside tubes as well as on GUV membranes, confirming the presence of F-actin (Fig. 3B, Movie S6 and S7). In the presence of phalloidin, on average, 55% of the GUVs had at least one actin-301 302 filled tube (N = 366 GUVs, n = 7 sample preparations, and Fig. S8, B and C). Finally, we 303 verified the presence of IRSp53, VASP and fascin in actin-filled membrane protrusions by using 304 AX488 labelled IRSp53, VASP and fascin. Regardless of phalloidin, we observed that VASP 305 and fascin are present throughout the protrusions while IRSp53 is either present throughout the 306 protrusions or enriched at the tips of protrusions where the fluorescence signal of actin is 307 somewhat weaker compared to the rest of the protrusion (Fig. S9).

308 Using the fluorescence signals of either AX488 actin monomers or AX488 phalloidin, we 309 quantified that on average there are ~ 2 and ~ 11 actin filaments in the tubes, respectively (Fig. 310 S10 A). Although the estimated numbers of filaments in tubes are lower than those in filopodia 311 (typically 10 - 30 filaments) (6, 7), they are comparable to theoretical predictions in which 2 - 3312 growing filaments are required to overcome membrane restoring force to generate extensions 313 (54). Moreover, the membrane enclosing the actin bundles was predicted to stabilize the bundle 314 against buckling in which the minimum number of filaments required for protrusion stability is 315 four (55). In our reconstitution system, given the previously reported ability of the I-BAR domain in stabilizing membrane tubes (32), we anticipate that the presence of IRSp53 in the 316 317 actin-filled tubes could contribute to their stability. We noted that the higher number of filaments in the presence of phalloidin could be due to the previously reported effect of phalloidin in 318 319 promoting actin nucleation (56). Besides, phalloidin was shown to increase the persistence length 320 of actin filaments, thus effectively making them stiffer (57). We thus assessed the orientational 321 properties of the actin-filled tubes by performing image analysis (see Materials and Methods for 322 details). As shown in Fig. S10, color-coded orientation maps showed the presence of dominant 323 orientation directions of the tubes in the presence of phalloidin but not in its absence. 324 Consistently, in the presence of phalloidin, higher coherency values, which indicate one 325 dominant orientation of local structures, can be seen in places where the protrusions are, as 326 readily visible by the white patches in the coherency map (indicated by arrows in Fig. S10, D 327 and E). Thus, consistent with the higher number of actin filaments in the tubes and the above-328 mentioned side effects of phalloidin, our results show that the actin-filled tubes are straighter in 329 the presence of phalloidin

Besides tubes, we observed membrane deformations on the GUV membranes independent of the presence of phalloidin (Fig. S11, arrows). The deformed bulge shape of the GUV membranes is reminiscent of membrane deformation driven by the I-BAR domain of IRSp53 on GUVs (58), and indicates the presence of pushing forces acting on the GUV membranes towards the interior of the GUVs. Altogether, our results show that IRSp53, VASP, actin and fascin can spontaneously organize locally on PIP₂-membranes to generate actin-based membrane protrusions.

337 IRSp53 is indispensable for protrusion formation by recruiting VASP to facilitate actin 338 polymerization in protrusions

339 To reveal the contribution of individual protein components in the generation of actin-340 filled membrane protrusions, we performed loss-of-function assays by removing one protein 341 component at a time. To ensure that protein activities are identical in the loss-of-function assays, 342 we performed paired experiments in which we used the same batches of GUVs and protein 343 stocks in each independent sample preparation. Then, in each sample preparation, we compared 344 the efficiencies of the generation of actin-filled tubes in the absence of a protein of interest, and 345 the reference condition where all the proteins are present. To this end, we counted the number of 346 GUVs with and without tubes, and if an actin signal was readily detected in at least one or more 347 tubes of the GUVs.

When IRSp53 was absent, we found none of the GUVs had tubes (Fig. 3C, N = 57GUVs, n = 3 sample preparations, in the presence of AX488 phalloidin). Thus, in our experimental condition, IRSp53 is essential for the generation of actin-filled membrane tubes. In the absence of VASP, we observed a nearly complete lack of actin signal on the GUV membranes (Fig. 3D and Fig. S12 A), and nearly no GUV had actin-filled tubes (out of a total of 353 116 GUVs, n = 3 sample preparations, only 8 GUVs were found with tubes, in which only 1 354 GUV had actin-filled tubes; Fig. 3E and Fig. S12 B). Our observations thus indicate the key role 355 of VASP in the generation of membrane tubes, via recruiting actin on GUVs. Given that VASP 356 is an actin polymerase, we assessed if VASP facilitates actin polymerization in tubes by using 357 AX488 phalloidin. Indeed, we observed that due to the presence of VASP, there is an increase in 358 the number of GUVs having actin-filled tubes (Fig. S13, A and B) and an increase in the number 359 of actin filaments in the tubes (Fig. S13 C). We note that in the presence of phalloidin, there are 360 actin-filled tubes on GUVs even when VASP is absent (Fig. S13 D). This observation indicates 361 that phalloidin aids actin polymerization even when CP and profilin are present. To understand 362 how phalloidin influences actin polymerization in our system, we performed pyrene actin 363 polymerization assays. We observed that phalloidin enhances VASP-mediated actin nucleation 364 (Fig. S6, compare the magenta solid and dashed curves), consistent with a previous report (56). It 365 was shown in vitro that in the bulk, IRSp53 (after being activated by Eps8) and its I-BAR 366 domain can interact with F-actin and induce actin bundle formation (20, 23). Thus, in the 367 absence of VASP, phalloidin facilitates actin polymerization, and IRSp53 recruits F-actin to 368 GUV membranes, resulting in the formation of actin-filled tubes. Consistently, we found that the 369 percentages of GUVs having actin-filled tubes is higher in the presence of phalloidin compared 370 to its absence (Fig. S8 C). Taken together, our results show that through IRSp53-driven 371 recruitment to PIP₂-membranes, VASP plays a key role in protrusion generation via its actin 372 polymerization activity.

373 Biophysical studies using reconstitution systems and theoretical modelling have revealed 374 how the interplay between the mechanical properties of membranes and actin bundles/networks determines the formation of actin-driven membrane protrusions (12, 59, 60). Given that actin's 375 376 role in the initiation of IRSp53-driven cellular protrusions is not fully understood (18), we 377 assessed if actin facilitates IRSp53-based protrusion formation using our reconstitution systems. 378 In the absence of actin, we observed 2% to 34% of GUVs having tubes (Fig. 3 F and G, 379 regardless of phalloidin). These tubes were generated by IRSp53 since when IRSp53 is absent, 380 no GUV has tubes (Fig. 3C). Notably, we observed a global increase in the amount of GUVs 381 having tubes due to the presence of actin (Fig. 3 F and G). This effect is more pronounced when 382 phalloidin is present (Fig. 3G, N = 127 and 208 total GUVs, without and with actin, respectively. 383 n = 4 sample preparations). In the absence of phalloidin, in a sample preparation where there was 384 a relatively high amount of GUVs with tubes in the absence of actin (34.1%, N = 41 GUVs), the 385 addition of actin did not aid tube generation (25.6%, N = 39 GUVs). However, in experimental sets where the amount of GUVs with tubes was low (less than 10%) in the absence of actin, the 386 387 addition of actin increased the amount of GUVs with tubes (Fig. 3F, N = 99 and 101 total GUVs, 388 without and with actin, respectively, n = 2 sample preparation). Together, these results indicate 389 that actin contributes to IRSp53-based tube generation. Furthermore, given that phalloidin 390 facilitates actin nucleation on membranes in our system, our results point out the essential role of 391 actin nucleation to enhance actin's function in protrusion formation in cells.

Fascin is not required for protrusion generation but enhances protrusion elongation and stability

Given that fascin is the specific actin bundler in filopodia, we assessed its role in protrusion formation. In the presence and absence of fascin, we did not observe significant differences considering the number of GUVs having actin-filled tubes, regardless of the absence (Fig. 4A and Fig. S14 A) or presence of phalloidin (Fig. S14, B and C). Furthermore, there is no 398 significant difference in the amount of F-actin in tubes in the presence and absence of fascin 399 (Fig. S14 D). Due to the rapid movement of tubes inside GUVs, we could not characterize the 400 dynamics of tube generation and elongation. We thus assessed how fascin affects protrusion 401 dynamics in live cells. To this end, we performed experiments using Rat2 cells that expressed 402 eGFP-tagged IRSp53 and mCherry-tagged fascin (Fig. 4B and Movie S8). We observed that the 403 recruitment of fascin in IRSp53-based protrusions coincides with their elongation (Fig. 4 C and 404 D). By tracking IRSp53-based protrusions, we also found that fascin significantly increases the 405 growth rates of the protrusions (Fig. 4D), and that its over-expression decreases the frequency of their retraction (Fig. 4E). Thus, our in vitro reconstitution data demonstrate that actin 406 407 polymerization facilitates the formation of IRSp53-dependent membrane protrusions, while the 408 cell data suggest that fascin increases the growth rate and enhances the stability of these 409 protrusions.

410 IRSp53 regulation in cells revealed by membrane nanotube pulling experiments

411 Our results obtained using the reconstituted system demonstrate the function of IRSp53 412 in the generation of actin-filled membrane protrusions and show that IRSp53 is primed to self-413 assemble into clusters that drive the association of downstream partners (e.g., VASP, fascin) for 414 protrusion growth. However, it remains unclear how cells regulate the activity of IRSp53 to 415 control for instance protrusion formation at specific membrane locations. Indeed, with the 416 abilities of IRSp53 to sense membrane curvature and promote actin assembly mediated by 417 VASP, we expect that any local deformation of the plasma membrane could induce filopodial 418 growth. To reveal IRSp53's possible regulation directly in cellulo, we generated artificial 419 protrusions having identical topologies to filopodia by pulling membrane nanotubes (i.e., tethers) 420 from the plasma membrane of Rat2 fibroblasts using optically trapped polystyrene beads and 421 micromanipulation (Fig. 5A). The pulled nanotubes serve as tractable models to directly assess 422 the recruitment of IRSp53 into tubular geometries and the possible actin assembly inside these 423 nanotubes as a consequence of IRSp53 enrichment. Cells were transfected with either IRSp53's 424 I-BAR domain (I-BAR-eGFP), its putative membrane deforming and curvature sensitive region, or the full-length IRSp53 protein (IRSp53-eGFP). The plasma membrane was exogenously labelled using the lipophilic Cell MaskTM Deep Red stain. Rat2 I-BAR-eGFP expressing cells 425 426 427 show strong I-BAR-eGFP fluorescence in pulled nanotubes (Fig. 5B) that was visible after 428 nanotube formation (Fig. S15 and Movie S9), suggesting an innate preference of the I-BAR 429 domain to sort into these nanotubes. Protein enrichment in the nanotube was quantified by 430 determining the sorting parameter S, which corresponds to the ratio of the protein intensity in the 431 nanotube (at a given pixel) relative to the protein's average intensity measured in the plasma 432 membrane (i.e., the bulk). This nanotube/membrane ratio for the protein is further normalized by the same ratio for a lipid marker (here the Cell MaskTM Deep Red stain) to correct for cell-to-cell 433 signal differences in the membrane and protein fluorescence channels (e.g., differences in 434 435 expression levels, staining efficiencies). This calculation ultimately results in a color-coded 436 image of S values (we term a S map) from which we then can determine a mean enrichment 437 value for a given nanotube (S_{avg}) (Fig. 5C; see Materials and Methods for further details). Note 438 that S_{avg} values greater than 1 indicate preferential protein enrichment for a given nanotube. We measured the S_{avg} of the I-BAR domain for multiple nanotubes (N = 19 nanotubes) and 439 440 determined an ensemble average of 4.5 (Fig. 5D). This value is similar to previously reported 441 sorting values obtained from nanotubes pulled from GUVs encapsulating the purified I-BAR 442 domain (32).

443 Contrary to the robust enrichment of the I-BAR domain, we observed a more complex 444 behavior for the sorting of the full-length IRSp53 protein in nanotubes that is dependent upon the 445 local cellular membrane activity near the sites of the nanotubes. Pulled nanotubes from IRSp53-446 eGFP expressing cells show strong IRSp53 signal only when the nanotube was pulled near zones 447 exhibiting "active" processes of membrane remodeling (Fig. 6A), such as lamellipodia and 448 membrane ruffles, which were frequently found at the cell leading edge. Similar to the fast 449 arrival of the I-BAR domain in pulled nanotubes (Fig. S15), we observed a rapid stabilization of 450 IRSp53 intensity in pulled nanotubes within 30 sec (Fig. S16). However, no IRSp53-eGFP 451 fluorescence was observed in nanotubes when pulled from "non-active" zones (Fig. 6B), such as 452 those found near the cell trailing edge. Subsequent imaging over time showed that nanotubes 453 pulled from "active" and "non-active" regions stably retained either the presence or absence of 454 IRSp53, respectively, indicating an equilibrium situation was reached in our measurements (Fig. 455 S17). As seen in Fig. 6C, nanotube S_{avg} values for IRSp53 near "active zones" (N = 13) 456 nanotubes) averaged 2.8 and was comparable to the I-BAR domain case (Fig. 5D). However, Savg values for IRSp53 near "non-active zones" (N = 20 nanotubes) averaged 0.2, indicating an 457 458 exclusion of the protein from the nanotubes. The dichotomy of sorting behaviors for IRSp53 is 459 completely opposite to the results we observed for the I-BAR domain, where the I-BAR domain 460 sorting is consistently stronger and did not depend on the cellular region where the nanotube 461 pulling was performed. Together, our results highlight that IRSp53's curvature sensing ability is 462 innately part of the I-BAR domain (32, 33) and further suggest that cellular regulation 463 mechanisms are at play in modulating IRSp53's activity.

464 We observed that the sorting of IRSp53 has a direct consequence on the assembly of F-465 actin within the nanotubes. Nanotubes with high IRSp53 sorting (Fig. 6D) exhibited 466 characteristic signatures of F-actin in the measured force profile and behaviors mimicking those 467 of true filopodia. The observed bead displacement within the optical trap (i.e., a rise in the force, 468 ΔF) indicates that F-actin development has reached the end of the nanotube, allowing retrograde 469 and contractile forces to transmit from the cell body to the bead. The magnitude of the force 470 peaks generates traction forces of 5-10 pN (Fig. 6E) and are of the same order of magnitude as 471 those reported for true filopodia (61, 62). Additionally, events of nanotube curling (i.e., helical 472 buckling) were also frequently observed (Fig. S18), as previously shown for filopodia (62). In essence, IRSp53-positive nanotubes eventually mature into a "pseudo" filopodium. However, 473 474 nanotubes with no IRSp53 enrichment (Fig. 6F) exhibit a constant force profile and consequently 475 no F-actin development was observed. Consistent with our GUV results, in IRSp53-positive 476 nanotubes, we also observed the recruitment of both VASP and fascin (Fig. S19 and Movie S10 477 and S11) in cells co-expressing the proteins of interest, confirming bundled F-actin is indeed 478 present within the core of the nanotube. Together, our tube pulling results show that though 479 IRSp53 is curvature sensitive through its I-BAR domain, its activity is tightly controlled within 480 cells to constrain local F-actin development for protrusion generation.

481

482 **Discussion**

How cells control the formation of protrusions such as filopodia and microvilli at specific membrane locations remains largely unclear. Using in vitro reconstitution systems, we demonstrated for the first time that a minimum set of proteins comprised of the membrane curvature sensor IRSp53, the actin polymerase VASP, and actin can spontaneously organize to 487 generate actin-based membrane protrusions. By performing loss-of-function assays, we 488 investigated the function of proteins in protrusion formation. We demonstrated that IRSp53 is the 489 essential player in protrusion generation by recruiting VASP to promote local actin assembly. 490 Thus, by using a precisely controlled reconstitution system, our study provides a strong support 491 to the previously proposed mechanism of IRSp53-VASP-driven filopodia generation that was 492 largely based on cell biology studies (*16*, *17*).

493 A key finding of our in vitro assay is that purified full-length IRSp53 is active in the 494 absence of its activators such as Cdc42. Our results indicate that once IRSp53 binds to the 495 plasma membrane, it can self-assemble into clusters and readily recruit VASP to generate actin-496 filled protrusions. Indeed, it was reported that when expressing a non-regulated constitutively 497 active mutant of IRSp53 in cells, an aberrant explosive formation of filopodia was observed (21). 498 Thus, to prevent generating unwanted protrusions, cells must have a tight regulation of IRSp53, 499 i.e., how much, when, and where to activate IRSp53. To reveal the regulation of IRSp53 activity 500 in cells, we generated filopodia-like membrane geometries in live cells by pulling membrane 501 nanotubes from the plasma membrane. We discovered that IRSp53 can only be recruited to 502 nanotubes pulled from active membrane regions of the cell (e.g., where the membrane exhibits 503 nearby dynamic ruffling, lamellipodia extension, and filopodia formation) but not from regions 504 where no membrane remodeling was observed and thus IRSp53 is presumed inactivated and 505 unable to bind to the plasma membrane to exert its function. Moreover, actin polymerization 506 extending throughout the IRSp53-enriched nanotube was detected, creating in essence a 507 "pseudo" filopodium that was positive for VASP and fascin. Our finding is consistent with the 508 location of IRSp53's activator Cdc42 at the front edge of migratory cells where ruffling and 509 protrusions develop (63, 64), and with IRSp53's function in inducing Rac-dependent membrane 510 ruffling (26, 29). Importantly, our results indicate that to finely regulate IRSp53 activity, it is 511 probably even more important to keep IRSp53 inhibited such that its binding to membranes is 512 prevented. Indeed, it was shown that the binding of 14-3-3 to IRSp53 counteracts the activation 513 by Cdc42 and other downstream cytoskeleton effectors (21). Notably, 14-3-3 binding to 514 phosphorylated IRSp53 keeps it in an inhibited state, resulting in impaired filopodia formation 515 and dynamics (21, 29, 30). Collectively, our results reflect a finely tuned regulatory mechanism 516 where IRSp53 is kept in its inhibition state by phosphorylation and binding to 14-3-3, and 517 activated by binding to activators such as Cdc42. Controlling IRSp53 by three different signaling 518 pathways, phosphorylation, Cdc42 binding and PIP₂ binding thus ensures its precise spatial-519 temporal regulation at the plasma membrane such that IRSp53 is activated only at specific 520 regions of cells.

521 It was shown previously that PIP₂-binding by IRSp53's I-BAR domain is required for the 522 generation of plasma membrane protrusions (25). Indeed, our in vitro work and coarse-grained 523 simulation results showed that PIP₂ is key for the assembly of these IRSp53 clusters: higher PIP₂ concentration results in larger I-BAR domain clusters. Importantly, our simulation results 524 525 showed an at least 7-fold enrichment of PIP₂ around the I-BAR domain clusters. Our finding is consistent with the previous reports of BAR and I-BAR domains inducing local and stable PIP₂ 526 527 clusters (31, 49, 65). Notably, it was proposed that these PIP₂ clusters are transiently interacting 528 with BAR domains such that PIP₂ in the clusters is available for the recruitment of downstream 529 partners having PIP₂ binding motifs (31, 49, 65). We thus propose that besides specific protein-530 protein interactions, IRSp53-induced PIP₂ clusters could facilitate not only the further 531 recruitment of IRSp53 but also other proteins such as actin nucleation promoting factors, actin

532 polymerases and actin-binding proteins for protrusion formation and regulation (*17*, *24*, *27*, *66*-533 68).

534 We observed that clusters of IRSp53 preceding those of VASP on the plasma membrane 535 at the onset of filopodia formation. Our observations are in agreement with what reported by other studies using MEF cells and COS-7 cells (16, 21). VASP clustering has been shown to be 536 537 an important factor to increase the processivity of VASP for actin filament elongation (37, 39). 538 Consistently, using reconstitution systems, we showed that VASP clustering via IRSp53 539 efficiently polymerizes actin on PIP₂-membranes and in protrusions. Moreover, we observed an 540 increased number of actin filaments in protrusions when VASP is present. Notably, VASP 541 clustering has also been attributed to the formation of another type of membrane protrusion 542 called microspikes. As shown previously, despite containing actin bundles, microspikes differ 543 from filopodia by being shorter protrusions, which are generated from and are largely embedded 544 in the lamellipodial actin filament network. By focusing on the formation of microspikes, recent 545 studies using B16F1 cells showed that VASP clustering is initiated by lamellipodin and myosin-546 X, but not by IRSp53 (42). These studies and our work thus suggest that VASP requires specific 547 membrane-interacting partners to bring it to membranes and induce its clustering to drive 548 outward membrane deformation. The differences in the mechanisms of recruiting VASP on 549 membranes may be also cell-type dependent, i.e., cells may utilize different pathways to induce 550 membrane deformation via VASP. Of note, in our current study, IRSp53 and VASP were 551 overexpressed in cells, and the elevated expression levels could potentially influence the 552 regulation of different molecular machineries involved in the generation of membrane 553 protrusions. In the future, it will be important to study the roles of different proteins in VASP 554 clustering during both filopodia and microspike formation in different cell-types by expressing 555 proteins of interest at levels comparable to their endogenous counterparts. This would allow to decipher how and under which physiological conditions cells use different VASP clustering 556 557 pathways to generate distinct membrane protrusions.

558 In our in vitro GUV assays, we observed that IRSp53 is either present throughout the 559 actin-filled protrusions or enriched at the tips of the protrusions. This observation is in agreement 560 with the localization of full-length IRSp53 in cellular filopodia using super-resolution 561 microscopy (69). Consistently, given that IRSp53 is responsible for the recruitment of VASP to GUV membranes, we observed that VASP is present throughout the protrusions. Along the same 562 line, in our cell-tether pulling experiments, we observed that VASP is distributed throughout the 563 564 tethers. These observations are different from the reported localization of VASP in filopodia, 565 where VASP is mostly found at the tips of filopodia and to a lesser extent also along the shaft of 566 filopodia. Of note, in contrast to the very simplified GUV systems, the formation of filopodia in 567 cells involves an overwhelmingly large set of other proteins (70). We thus speculate that in cells 568 after IRSp53 initiates VASP-dependent actin elongation, other binding partners of VASP that are members of the filopodial tip complex could restrict the localization of VASP to be at the 569 570 filopodial tip. Potential VASP partners could be Myosin-X and formin mDia2, which were shown to cooperate with VASP in filopodia formation (43, 71, 72). Our in vitro work provides 571 572 direct evidence that actin filament assembly facilitates IRSp53-based protrusion generation. This 573 is consistent with what was proposed previously based on EM and cell biology experiments (18). 574 In our assay, actin assembly is driven by VASP, given that when VASP was eliminated, we 575 observed nearly no actin signal on GUVs (Fig. 3D). We anticipate that other actin assembly 576 factors can play similar roles as VASP. Indeed, it was reported that IRSp53 interacts directly 577 with formins, such as mDia1, in filopodia formation (27). Moreover, actin nucleation promoting 578 factors WAVE2 and N-WASP were shown to synergize with IRSp53 to generate filopodia (17, 579 27). In our in vitro system, fascin is not essential for protrusion initiation. However, by observing 580 the dynamics of filopodia in Rat2 cells, we found that fascin enhances the elongation rate and 581 stability of filopodia, consistent with the previous observation in cells that used RNA 582 interference of fascin (4-7). Our result thus supports the notion that fascin mechanically 583 strengthens filopodia by bundling actin filaments together, thus facilitating filopodial extension 584 and stabilization (4-7). Notably, Eps8, another actin bundler, has been reported to form a 585 complex with IRSp53 during filopodia formation (20). Besides bundling, Eps8 can cap the 586 barbed end of actin filaments. The dual function of Eps8 on actin filaments is fine-tuned in cells, allowing cells to generate filopodia via different signaling networks depending on cellular 587 588 contexts (20). To understand how the abovementioned proteins regulate dynamic filopodia 589 formation, elongation, retraction, and force generation, future work is required to elucidate the 590 interplay between these proteins in the context of protrusion formation.

Altogether, our work demonstrates that IRSp53 is an efficient protrusion initiator: once being activated, IRSp53 readily triggers the cascade of protrusion formation. Thus, to avoid the uncontrolled formation of protrusions, it is critical for cells to have a strict and precise control on when and where to activate or unlock IRSp53 from its inhibitory state

595

596 Materials and Methods

597 Pyrene actin polymerization assay

598 Polymerization assays were based on measuring the fluorescence change of pyrenyl-labeled G-599 actin (λ_{exc} =365 nm, λ_{em} =407 nm). Experiments were carried out on a Safas Xenius 500 spectrofluorimeter (Safas, Monaco). Polymerization assays were performed in buffer containing 501 60 mM NaCl, 1 mM MgCl₂, 0.2 mM EGTA, 0.2 mM ATP, 10 mM DTT, 1 mM DABCO, 5 mM 502 Tris pH 7.5 and 0.01% NaN₃ in the presence of actin (2 μ M, 5% pyrenyl labeled), profilin (2.4 503 μ M), VASP (15 nM in tetramer), CP (25 nM) and phalloidin (2 μ M).

To reveal the upper limit of the fluorescence intensity for the pyrene actin polymerization, we performed positive control experiments of (1) actin + spectrin-actin seeds, (2) actin alone, (3) actin + phalloidin. As shown in Fig. S6, the sample of actin + spectrin seeds reaches completion with the fluorescence intensity of a value of 50 A.U. after around 1000 sec.

608 To verify that in the presence of VASP, phalloidin does not inhibit/prevent CP from suppressing 609 F-actin elongation, we estimated the initial actin polymerization slopes of two conditions: (1) 610 profilin actin + VASP + CP + phalloidin (dashed pink curve in Fig. S6 B) and (2) profilin actin + 611 VASP + phalloidin (dashed green curve in Fig. S6 B). We considered that the fluorescence 612 reached the plateau value of 48.2 A.U. (obtained by using spectrin-actin seeds as shown in Fig. 613 S6 A) correspond to 1.9 μ M of actin, i.e., the total concentration of actin subtracts 0.1 μ M (the 614 critical concentration for actin polymerization). We obtained the following results: (1) profilin 615 actin + VASP + CP + phalloidin (dashed pink curve): 56 pM polymerized actin / sec, and (2) profilin actin + VASP + phalloidin (dashed green curve): 134 pM polymerized actin / sec. We 616 617 note that

- 618 GUV experiments
- 619 **Reagents**

620 Brain total lipid extract (TBX, 131101P), brain L-α-phosphatidylinositol-4,5-bisphosphate (PIP₂, 621 840046P), 18:1 PS (DOPS, 840035), and Cy5-PC (850483) were purchased from Avanti Polar 622 Lipids. BODIPY-TR-C5-ceramide, (TR-ceramide, D7540) was purchased from Invitrogen. 623 Alexa Fluor 488- and Alexa Fluor 594-tagged phalloidin (AX488 phalloidin and AX594 624 phalloidin) were purchased from Interchim. β-casein from bovine milk (>98% pure, C6905) and 625 other reagents were purchased from Sigma-Aldrich.

626 **GUV preparation**

627 The lipid mixture used contained total brain extract supplemented with 5 mol% $PI(4,5)P_2$ at 0.5 628 mg/mL dissolved in chloroform. To visualize GUV membranes, the lipid mixture was 629 supplemented with either 0.5 mol% TR-ceramide or 0.5 mol% Cy5-PC.

630 GUVs were prepared by using the polyvinyl alcohol (PVA) gel-assisted vesicle formation method as previously described (73). Briefly, a PVA gel solution (5 %, w/w, dissolved in 280 631 632 mM sucrose and 20 mM Tris, pH 7.5) warmed up to 50 °C was spread on clean coverslips 633 $(20\text{mm} \times 20\text{mm})$. The coverslips were cleaned by ethanol and then ddH₂O twice. The PVA-634 coated coverslips were incubated at 50°C for 30 min. Around 5 µL of the lipid mixture was 635 spread on the PVA-coated coverslips and then dried under vacuum at room temperature for 30 636 min to remove the chloroform solvent. The coverslips were then placed in a petri dish and 637 around 500 µL of the inner buffer was pipetted on the top of the coverslips. The inner buffer 638 contains 50 mM NaCl, 20 mM sucrose, 20 mM Tris pH 7.5. The coverslips were kept at room 639 temperature for at least 45 min, allowing GUVs to grow. Once done, we gently "tapped" the bottom of the petri dish to detach GUVs from the PVA gel. The GUVs were collected using a 1 640 641 mL pipette tip with its tip cut to prevent breaking the GUVs.

642 **Protein purification and labelling**

Muscle actin (Uniprot# P68135) was purified from rabbit muscle and isolated in monomeric
form in G-buffer (5 mM Tris-Cl⁻, pH 7.8, 0.1 mM CaCl₂, 0.2 mM ATP, 1 mM DTT, 0.01%
NaN₃) as previously described (74). Actin was labeled with Alexa 488 or Alexa 594 succimidyl
ester-NHS (75).

647 The genes encoding full-length human IRSp53 (Uniprot #Q9UQB8, Homo sapiens) and the I-648 BAR-SH3 domain of IRSp53 (Uniprot #Q9UQB8, Homo sapiens, amino acid 1-452), and the 649 full length human VASP (Uniprot #P70460, Homo sapiens) were provided by Prof. Roberto Dominguez (University of Pennsylvania), and Prof. Jan Faix (Hannover Medical School), 650 651 respectively, and sub-cloned into the pGEX-6P-1 vector (Cytiva). The expression plasmids were transformed into BL21 (DE3) competent cells. A single colony was resuspended in 10 mL LB 652 653 medium containing 100 µg/mL ampicillin, and cultured at 37°C overnight. Then, the starter 654 culture was inoculated into 1 L LB medium containing 100 µg/mL ampicillin, and cultured at 37°C until OD600 reached 0.6. The protein expression was induced with 0.2 mM isopropyl-D-1-655 thiogalactopyranoside (IPTG) overnight at 15°C. After harvesting the cells, the pellets were 656 657 resuspended and sonicated in a buffer containing 20 mM Tris-HCl (pH 7.4), 500 mM NaCl, 1 mM EDTA, 1 mg/mL lysozyme, 1% Triton X-100, 1 mM PMSF, and 1 mM DTT, followed by 658 659 affinity purification with GSTrap FF (Cytiva). The GST-tag was removed with PreScission 660 protease (Cytiva). The proteins were concentrated to $50-100 \mu$ M using Amicon Ultra centrifugal filters (Merck). For protein labelling, Alexa Fluor maleimides (Thermo Fisher Scientific) were 661 662 added to the protein solution, and the reaction was allowed to proceed at 4°C overnight in the dark to protect it from light. The labelled proteins were further purified and separated from free 663

664 Alexa Fluor dye using a Superdex 75 10/300 GL gel filtration column (Cytiva) using either an 665 ÄKTA protein purification system (Cytiva) or NGC Chromatography System (Bio-Rad). The proteins were concentrated using Amicon Ultra centrifugal filters (Merck) by replacing the 666 667 buffer with 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, and 1 mM DTT, then 0.1 % (w/v) methylcellulose (M0512, Sigma, 4000 cPs) was added. The purified proteins were frozen in 668 669 liquid nitrogen and stored at -80°C before use. The labelling efficiency of Alexa 488 IRSp53 670 (dimer) was 0.94, and that of Alexa 488 VASP (tetramers) was 3.0. The purification of the 671 isolated mouse I-BAR domain of IRSp53 (Uniprot #Q8BKX1, mouse, amino acid 1-250) was 672 performed as previously described (31).

673 Recombinant human profilin I was expressed in BL21 (DE3) Star competent bacterial cells and 674 purified as described (76). The plasmid for the expression of mouse capping protein α 1β2 675 (Uniprot #P47753 (α 1) and #P47757 (β 2), mouse) was cloned in a pRSFDuet-1 vector, 676 providing a 6xHis tag at the N terminus of the α 1 subunit. Mouse capping protein α 1β2 was 677 expressed in BL21 (DE3), and was purified as previously described (77).

678 The plasmid expressing GST-HsFascin1 was provided by Prof. David Kovar (University of 679 Chicago). The Homo sapiens Fascin1 full-length protein (Uniprot #Q16658) was produced in 680 BL21(DE3) competent bacterial cells from the pGEX-4T-3 vector as described previously with 681 some modifications (11). In brief, the bacterial cells were grown for 24 hours at RT (around 682 20°C) in auto-induction media (AIMLB0210, Formedium, UK), inoculated with overnight growth starter culture. The cells were harvested by centrifugation and resuspended in PBS buffer 683 684 supplemented with 1 mM DTT, 10 mM CaCl2, cOmpleteTM Protease Inhibitor Cocktail 685 (#11697498001, Merck), and DNAseI (Sigma, DN25-1G). The cells were disrupted by 686 sonication, centrifuged for 1-hour at 18,000 x g and the soluble fraction was then applied to a 687 Glutathione Sepharose 4 Fast Flow purification resin (#17513201, Cytiva). After 2 hours 688 incubation at 4°C, the beads were extensively washed with the same buffer and thrombin 689 protease was added to beads, thoroughly mixed, and incubated over night at 4°C. The next day 690 the cleaved soluble fraction from the beads was collected and subjected to a HiLoad 16/600 Superdex 75 gel filtration chromatography column, preequilibrated with 20 mM HEPES pH 8.0, 691 692 50 mM NaCl, 0.01% NaN₃. The elution fractions containing the protein were collected and 693 concentrated with 30 kDa MWCO VivaSpin columns. Fascin was labelled with the Alexa 694 Fluor[™] 488 C 5 Maleimide (Invitrogen) with a 2x excess dye to protein molar ratio. Samples 695 were left to react overnight at 4°C under agitation. Excess dye was removed using a PD 696 MidiTrap G-25 column (Cytiva) in 20 mM HEPES, pH 8.0, 50 mM NaCl, 0.01% NaN₃. Aliquots 697 were flash-frozen in liquid nitrogen, and stored at -80°C until used for experiments.

698 Actin co-sedimentation assay. Non-muscle actin (#APHL-99, Cytoskeleton Inc.) at a final 699 concentration of 5µM was pre-polymerized in G-Buffer (2mM Tris pH 7.5, 0.2 mM ATP, 0.5 700 mM beta-mercaptoethanol, 0.2 mM CaCl₂) by adding 10x Initiation mix (200 mM HEPES pH 701 7.4, 1 M KCl, 1 mM EGTA, 10mM MgCl₂, 2 mM ATP) and incubating for 30 min at RT. Then, 702 recombinantly produced HsFascin was added at a final concentration of 1 µM for 10 min at RT. 703 The mixture was then centrifuged at low speed (19,000 rpm, equivalent to around 14,000 x g), 704 which sediments only actin filament bundles. As controls, HsFascin alone, and filamentous actin 705 alone was tested side-by-side. At the end of the centrifugation, the supernatant fractions were 706 carefully separated from the pellets, Laemmli sample buffer was added, and fractions were 707 resolved on SDS-PAGE (#4561094, Biorad).

708 **GUV sample preparation and observation**

- 709 For all experiments, coverslips were passivated with a β -case solution at a concentration of 5 g
- L^{-1} for at least 5 min at room temperature. Experimental chambers were assembled by placing a 710
- silicon open chamber (2 well culture inserts, Ibidi) on a coverslip. 711
- 712 Actin polymerization buffer (F-buffer) contained 60 mM NaCl, 1 mM MgCl₂, 0.2 mM EGTA,
- 713 0.2 mM ATP, 10 mM DTT, 1 mM DABCO, 5 mM Tris pH 7.5. Actin polymerization buffer
- 714 without NaCl (F-buffer-no-NaCl) contained 1 mM MgCl₂, 0.2 mM EGTA, 0.2 mM ATP, 10 mM
- 715 DTT, 1 mM DABCO, 5 mM Tris pH 7.5.
- 716 GUVs were mixed sequentially with the ingredients to reach a total volume of 50 µL, if present,
- in the following order: NaCl (3 µL from 1 M stock to reach a final concentration of 60 mM), F-717
- buffer-no-NaCl, IRSp53, VASP, fascin, profilin, capping protein, phalloidin, GUVs (20 µL) and 718
- 719 finally actin. The GUV-protein mixture was then pipetted using a pipette tip with its tip cut into
- the experimental chamber, followed by incubating at room temperature for at least 15 min before 720 721 observation. The final concentration of proteins, if present, were: 16 nM IRSp53, 4 nM VASP,
- 722 250 nM fascin, 0.6 µM profilin, 25 nM capping protein and 0.5 µM actin. If needed, we diluted
- 723 protein stocks in F-buffer so that the final concentrations of salt and ATP in the GUV-protein
- 724 mixtures was held approximately constant. To visualize actin by confocal microscopy,
- 725 depending on the experiments, we either used actin monomers having 10% - 27% fluorescently
- 726 labelled with AX488 or AX594, or unlabeled actin that included AX488- or AX594-conjugated
- 727 phalloidin (AX488 phalloidin or AX594 phalloidin) at a final concentration of 0.66 μ M.
- 728 Single actin filaments were prepared by mixing actin monomers with F-buffer to reach a final 729 actin concentration of 0.5 µM.
- 730 Samples were observed using either spinning disk confocal microscopes or a laser scanning 731 confocal microscope. The two spinning disk confocal microscopes used were: (1) a Nikon 732 eclipse Ti-E equipped with a Yokogawa CSU-X1 confocal head, a 100X CFI Plan Apo VC objective and a CMOS camera, (Prime 95B, Photometrics); and (2) a Nikon eclipse Ti-E 733 equipped with a 100x/1,4 OIL DIC N2 PL APO VC objective and an EMCCD camera (Evolve). 734 735 The laser scanning confocal microscope was a Nikon TE2000 microscope equipped with an C1 736 confocal system and a 60X water immersion objective (Nikon, CFI Plan Apo IR 60XWI ON 737 1.27 DT 0.17).

738 Characterization of the orientational properties of actin-filled membrane tubes

739 To characterize the orientational properties of GUVs with actin-filled membrane tubes, we 740 performed image analysis using the "OrientationJ" Plugin in ImageJ/Fiji (78). This plug-in 741 performs orientation analysis and provides a visual representation of the orientation of the image 742 and coherency of each pixel in the image that indicates if the local structural feature is oriented 743 or not. The coherency index C is between 0 and 1; C = 1 when the local structure has one 744 dominate orientation and C = 0 when the image is locally isotropic.

745 **Quantification of AX488 actin on GUV membranes**

- 746 Membrane fluorescence signals of GUVs were used to detect the contours of the GUVs by using 747 the "Fit Circle" function in ImageJ/Fiji. Then, a 5-pixel wide band centered on the GUV
- 748 contours was used to obtain the actin intensity profile of the band where the x-axis of the profile
- 749
- is the length of the band and the y-axis is the averaged pixel intensity along the band width. 750 Following background subtraction, the actin intensity was then obtained by calculating the mean
- 751 value of the intensity values of the profile. To obtain the background intensity of AX488

fluorescence, we first manually drew a 5-pixel wide line perpendicularly across the GUV membranes (in which the x-axis of the profile is the length of the line and the y-axis is the averaged pixel intensity along the width of the line), and then the background intensity was obtained by calculating the mean value of the sum of the first 10 intensity values and the last 10 intensity values of the background intensity profile.

757 Estimation of the number of actin filaments in protrusions

758 To estimate the number of actin filaments inside protrusions, we extracted fluorescence signals 759 of actin in protrusions and normalized them by the fluorescence signals of single actin filaments 760 in the bulk prepared by using the same actin stock as those in the GUV-protein mixture. The 761 microscope settings for image acquisition were identical for the GUV sample and for the 762 corresponding single actin filaments in the bulk. We performed the following steps to extract 763 actin signals in protrusions and in the bulk. We manually defined the ROI, a line with a width of 764 5 pixels drawn perpendicularly across protrusions or single actin filaments. We then obtained the 765 actin fluorescent intensity profile of the line where the x-axis of the profile is the length of the 766 line, and the y-axis is the averaged pixel intensity along the width of the line. The background intensity was obtained by calculating the mean value of the sum of the first five intensity values 767 768 and the last five intensity values of the intensity profile. Finally, the actin fluorescence intensities 769 were obtained by subtracting the background intensity from the maximum intensity value in the 770 intensity profile. This image process was performed using ImageJ/Fiji (79).

771 Characterization of IRSp53 clustering on GUVs

To define clusters of IRSp53 on a surface of a GUV we segmented fluorescence images of the protein using a custom-made ImageJ/Fiji script based on the Rényi Entropy algorithm (80). We first created a mask of the fluorescent image in the IRSp53 channel using a Rényi Entropy threshold, then used the "Analyze Particles" function in ImageJ/Fiji to define clusters as a set of

- non-connected areas that have non-zero values in the mask image, permitting quantification ofthe number of clusters and their areas.
 - the number of clusters and their areas.

778 Coarse-grained Model and Clustering Analysis

779 The coarse-grained (CG) model used here has been discussed in detail previously (81, 82). The 780 low-resolution, phenomenological CG model contains a 3-bead quasi-monolayer membrane 781 model and a curved I-BAR domain model. The quasi-monolayer model is highly tunable and can 782 accommodate significant remodeling, which makes it appealing for the application to I-BAR 783 domains. The 3-beads interact internally with two harmonic bonds with a force constant of 25 784 k_BT and an equilibrium distance of 0.9 nm and a harmonic angle potential with a force constant 785 of 10 k_BT and an equilibrium angle of 180 degrees. The intermolecular forces were modeled using a soft pair potential, shown below, where A and B dictate the softness of the repulsion and 786 787 the depth of the attraction and r_0 and r_c are the onset of repulsion cutoff and attraction cutoff, 788 respectively.

789
$$F_{pair}(r) = \begin{cases} A \cos\left(r \cdot \frac{\pi}{2r_0}\right), & \text{if } r \le r_0 \\ B \cos\left(\frac{\pi}{2} + (r - r_c) \cdot \frac{\pi}{r_c - r_0}\right), & \text{if } r_0 < r \le r_c \\ 0, & \text{if } r_c < r \end{cases}$$

790 Both the membrane and the protein have an A value of 25 k_BT to maintain an excluded volume 791 and a r_c value of $2 \cdot r_0$, where r_0 differs between the membrane and protein. Hence, r_0 and B 792 distinguish the species in the model. The membrane model is three linear beads: the two on the 793 ends are smaller and only interact with other lipids while the central membrane bead is larger and 794 attracted to other membrane beads as well as the membrane binding interface of the protein. The 795 smaller beads have a B value of 0 (i.e., no attraction), and a r_0 value of 1.125 nm. The central membrane beads have a membrane-membrane B value of 0.6 k_BT and a r_0 value of 1.5 nm. The 796 797 PS-like and PIP₂-like membrane beads interact the same with each other, the key difference 798 being the protein-membrane interaction. With this parameter set, the quasi-monolayer is fluid 799 with a bending modulus around 10 k_BT . The protein model is made of three curved strings of beads to capture the curvature and size of the I-BAR domain of IRSp53 with a r_0 value of 1.7 800 801 nm. There are two outer strings of beads (shown in Red in Fig. 2D Top and Movie S2) that 802 capture the shape with a B value of 0 while the central string is the membrane binding interface. 803 The middle beads of the central string represent a weakly binding surface that is attracted to the all-membrane beads with a B value of 0.235 k_BT (shown in Yellow in Fig. 2D Bottom and 804 805 Movie S3) and the ends of the membrane binding interface have a B value of 0.235 k_BT to PS-806 like membrane beads and a B value of 0.705 k_BT to PIP₂-like membrane beads. The PIP₂-like 807 membrane beads are attracted to the ends of the I-BAR domain model to recapitulate the 808 experimentally observed behavior of PIP₂ clustering by I-BAR domains (31).

All systems were run using the LAMMPS molecular dynamics engine with a timestep of 200 fs (83). The initial positions of the system were a flat membrane of 188,031 membrane beads with 55 I-BAR proteins slightly above the membrane. The systems were equilibrated for 50 million timesteps in the NP_{XY}L_ZT ensemble at 0 surface tension using the Parrinello-Rahman barostat with a dampening constant of 200 ps (91). Temperature was maintained using the Langevin thermostat with a dampening constant of 20 ps (92). The simulations were then run for another 500 million timesteps in the NVT ensemble.

816 Clustering analysis was performed by creating a network of neighbors, where I-BAR domains 817 were neighbors if they were within 2 nm in the xy-plane. Two I-BAR domains were part of the 818 same cluster if and only if a path existed in the network of neighbors. Thus, any I-BAR domain 819 without a neighbor was considered free and not part of any aggregate. The probability density 820 was estimated using kernel density estimation from the histogram of neighbor sizes from the last 821 250 million timesteps of the simulation and subsequently used to calculate the probability of I-BAR domain aggregates containing less than five I-BAR domains and five or more I-BAR 822 823 domains. The PIP₂-like membrane beads were separated into two groups: within 2 nm of an I-824 BAR domain in the xy-plane (neighboring membrane beads) and not within 2 nm of an I-BAR 825 domain (bulk membrane beads). The percent of PIP₂-like membrane beads within each group 826 was quantified to measure the enrichment of PIP₂ near I-BAR domains. The CG model analysis 827 was performed using numpy, scikit-learn, and freud python packages and results plotted using matplotlib python package (84-87). All snapshots of the CG systems were created using VMD 828 829 1.9.2 (88).

830 Live-cell imaging and membrane nanotube pulling experiments

831 Cell culture, plasmids and transfection

832 Rat2 fibroblasts (CRL-1764, ATCC) were cultured in DMEM GlutaMAX high-glucose media

833 (Gibco) supplemented with 1 mM sodium pyruvate (Gibco), 10% fetal bovine serum (Eurobio),

and 1% penicillin and streptomycin (Sigma-Aldrich). Cells were maintained in a humidified incubator with 5% CO_2 at 37°C. Rat2 cells were routinely monitored for mycoplasma contamination and found to be negative.

837 Common plasmids used for mammalian cell transfection include: (1) IRSp53 (human, full-838 length, Uniprot #Q9UQB8) cloned into pmCherry-N1 and pEGFP-N1 vectors (Clonetech) fusing 839 the fluorescent proteins to the C-terminus of IRSp53 (IRSp53-mCherry, IRSp53-eGFP); (2) 840 IRSp53's I-BAR domain (mouse, residues 1–250, Uniprot #Q8BKX1) cloned into a pEGFP-N1 841 vector (I-BAR-eGFP); (3) Fascin 1 (human, full-length, Uniprot #Q16658) cloned into 842 pmCherry-C1 and pEGFP-C1 vectors (Clonetech) fusing the fluorescent proteins to fascin's N-843 terminus (mCherry-fascin and eGFP-fascin); (4) pmTagRFP-VASP (mouse, full-length, 844 Uniprot# P70460) which was a gift from Michael Davidson (Addgene plasmid #58027); and (5) 845 an empty mCherry vector.

For the live-cell imaging experiments (Fig. 1 and Fig. 4), cells were transiently transfected the day before imaging using the XfectTM transfection reagent (Takara Bio) according to the manufacturer's recommendations and replated on fibronectin-coated glass-bottom dishes (35 mm, No. 1.5H, Ibidi) two hours prior to imaging. Fibronectin (from human plasma, >95%, Sigma) coating was done by incubating the dishes 1 hour at RT (or overnight at 4°C) with a 10 μ g/mL fibronectin solution dissolved in PBS.

For the nanotube pulling experiments (Fig. 5 and Fig. 6), stable Rat2 cell lines expressing IRSp53-eGFP or I-BAR-eGFP were generated by antibiotic selection (0.5 mg/mL geneticin (G418), 7 days) post transfection (FuGENE HD, Promega) followed by cell sorting using a SH800 cell sorter (Sony Biotechnology) to collect a pool of fluorescent positive cells. For Fig. S19, wild-type Rat2 cells were transiently transfected using FuGENE HD (Promega) or XfectTM (Takara Bio) reagents to achieve double-expressing IRSp53-eGFP/RFP-VASP or eGFP-Fascin/IRSp53-mCherry cells.

859 Live-cell imaging of filopodia formation

860 Time-lapse image series for double-transfected Rat2 cells expressing IRSp53-eGFP/RFP-VASP, IRSp53-eGFP/mCherry-fascin or IRSp53-eGFP/mCherry were obtained using a GE DeltaVision 861 862 Ultra Widefield microscope equipped with a pco.edge 4.2ge sCMOS camera (PCO GmbH), Solid State Illuminators (SSI) for fluorescence excitation, an incubation system set at 37°C and 863 5% CO₂ and 63x or 100x oil objectives. Deconvolution of acquired time-lapse series was 864 performed using the built-in microscopy software (softWoRxTM). Further analysis was conducted 865 with the Microscopy Image Browser (MIB), a free MATLAB-based software developed by Ilva 866 867 Belevich (University of Helsinki).

868 Filopodia quantification

Each analyzed filopodia was monitored from the initiation of membrane bending (cone formation) until the beginning of active retraction. Changes in spatial coordinates of the positions of base and tip with the times were used to calculate the length of growing filopodia ("Distance"). The rate of growth (µm/sec) was calculated as the first derivative of filopodia length with respect to time $\left(\frac{\partial(Distance)}{\partial(Time)}\right)$. Changes in the rate of growth were used to assess peculiarities of filopodia formation (stops, i.e., when $\frac{\partial(Distance)}{\partial(Time)} = 0$, and instantaneous 875 retractions when $\frac{\partial(Distance)}{\partial(Time)} < 0$). The frequency of each event (sec⁻¹) was calculated as the 876 number of stops or retractions per second registered for the period of active filopodia growth.

877 To assess the effect of fascin accumulation in filopodia on their elongation rates, separate 878 kymographs of growing filopodia (time-space plots) for IRSp53-eGFP and mCherry-fascin 879 generated the "Multi-Kymograph" channels were using plug-in 880 (https://www.embl.de/eamnet/html/kymograph.html) in ImageJ/Fiji. Velocities were measured in 881 ImageJ/Fiji for selected linear intervals of the kymographs (about 10-20 sec) before and after "Velocity 882 the Measurement fascin appearance using Tool" macro 883 (https://dev.mri.cnrs.fr/projects/imagej-macros/wiki/Velocity Measurement Tool).

884 We followed the colocalization analysis as published previously (46) using the "Colocalization 885 colormap" (89) plug-in implemented in ImageJ/Fiji. For each pixel in an image, one calculates 886 the deviation of the fluorescent intensity from the mean intensity of the whole image. Then, one calculates the mean deviation product of the two protein signals, $(I_{IRSp53} - \overline{I_{IRSp53}})(I_{VASP} - I_{IRSp53})$ 887 $\overline{I_{VASP}}$), where I and \overline{I} are the pixel intensity and the mean intensity of the image, respectively. 888 Finally, to compare series of images, one calculates the normalized mean deviation product 889 named nMDP, $(I_{IRSp53} - \overline{I_{IRSp53}})(I_{VASP} - \overline{I_{VASP}})/((I_{IRSp53}^{max} - \overline{I_{IRSp53}})(I_{VASP}^{max} - \overline{I_{VASP}}))$, where 890 I^{max} is the maximum intensity of the corresponding image. A spatial representation of the 891 892 correlation of the two protein signals can be obtained. We manually tracked filopodia and for 893 each time point, we averaged the nMDP values of four pixels located at the filopodial structures. 894 We overlapped the nMDP values, termed the colocalization index, during filopodia formation.

895 Bead functionalization

896 An aliquot of streptavidin-coated polystyrene beads (SVP-30-5, 0.5% w/v, Spherotech) having a 897 nominal diameter of 3 µm was washed three times in a 10X volume of PBS. Between washing 898 steps, beads were pelleted using a centrifuge at 12,000 rpm for 5 min. The final pellet was 899 resuspended in PBS to a concentration of 0.05% w/v. Next, a volume of biotin-conjugated 900 concanavalin A (ConA; C2272, Sigma-Aldrich), having a stock concentration of 1 mg mL⁻¹ in 901 PBS, was added to the bead suspension assuming a binding capacity of 10 µg protein per mg of 902 solid particles. The mixture was incubated overnight at 4°C on a tabletop shaker set to 1,500 903 rpm. The ConA-coated beads were rinsed three times according to the steps above and finally 904 resuspended in PBS to a concentration of 0.5% w/v. ConA-beads were stored at 4°C and 905 generally usable up to one month.

906 Nanotube pulling experiments

907 A custom-built optical tweezer setup coupled to an inverted Nikon C1 Plus laser scanning 908 confocal microscope, as previously described in (61), was used for pulling plasma membrane 909 nanotubes, force measurements, and simultaneous fluorescence imaging. Briefly, a 1064 nm 910 continuous wave Ytterbium fiber laser (IPG Photonics) set to a 3 W input power was modulated 911 to 400 mW (measured at the back aperture of the objective) using a polarizing beam splitter 912 (Thorlabs), expanded through a telescope consisting of two plano-convex lenses with focal 913 lengths of 100 mm and 150 mm (Thorlabs), and directed towards the back aperture of a Nikon 914 CFI Plan Apochromat Lambda 100X 1.45 NA oil immersion objective. The trap stiffness κ was determined using the viscous drag method, including Faxen's correction for calibration near 915 surfaces (90) and averaged 60 pN µm⁻¹. Displacements of a trapped bead from the fixed trap 916 center were recorded using a Marlin F-046B CCD camera (Allied-Vision) at a frame rate of 20 917

918 frames per second, and later analyzed by a custom MATLAB (Mathworks) script utilizing the 919 imfindcircles function to output the center location of the tracked bead (in µm). Forces were 920 calculated from the determined bead positions according to the equation, $F = \kappa \cdot (x - x_0)$, where κ is the trap stiffness, x is the displaced bead position, and x_0 is the equilibrium reference 921 position of the trapped bead. As the optical trap itself was stationary, all relative movements 922 923 were performed using a piezo-driven stage (Nano-LP100, MadCityLabs). Atop the stage, a 924 temperature and CO₂ controllable stage-top incubator (STXG-WELSX, Tokai Hit) was attached, 925 allowing cells to be maintained at 37°C in a humidified, 5% CO₂ atmosphere during 926 experimentation.

- 927 The day before, Rat2 cells expressing I-BAR-eGFP or IRSp53-eGFP were plated on fibronectin-928 coated ($35 \ \mu g \ mL^{-1}$) glass bottom dishes ($35 \ mm$, No. 1.5, MatTek) at a density of ~30,000 cells
- 929 cm⁻². Thirty to sixty minutes prior to experimentation the phenol-containing culture medium was
- 930 removed, cells were rinsed with PBS, and phenol-free DMEM containing ProLongTM Live
- 931 Antifade Reagent (Invitrogen) at a 1:75 dilution, and 2 mg mL⁻¹ β -Casein (>98% pure, from
- bovine milk, C6905, Sigma-Aldrich), for surface passivation, was applied. The cells were taken
- by to the optical tweezer setup and labeled with Cell MaskTM Deep Red plasma membrane stain 12000 J
- 934 (Invitrogen) at a 1:2000 dilution for 10 minutes, and ConA-coated beads were added (1:50–1:100
- dilution). Using a custom LabVIEW (National Instruments) program to control the piezo stage,
 membrane nanotubes were pulled by trapping an isolated floating bead, bringing it into contact
- 937 with the cell for a short period of time (<10 sec), and then moving the cell away from the bead in
- 938 the x direction.

939 Confocal images were acquired using solid-state excitation lasers: a 488 (Coherent), 561 940 (Coherent) and a 642 nm (Melles Griot). The detection pathway consisted of a T560lpxr dichroic 941 beamsplitter (Chroma), an ET525/50 bandpass filter (Chroma), an ET665 longpass filter 942 (Chroma), and two τ -SPAD single-photon avalanche diodes (PicoQuant). The τ -SPADs were 943 controlled by the SymPhoTime 64 software (PicoQuant). Images encompassing the nanotube and 944 some of the cell body (typically 1024 x 512 pixels, 5X zoom) were gathered 5 minutes after the 945 nanotube was pulled for protein sorting analysis; identical acquisition parameters were used 946 when gathering the membrane and protein channel data for an individual nanotube.

947 Sorting analysis

948 Image analysis was performed using custom-written macros in the ImageJ/Fiji software. To 949 quantify protein enrichment in the nanotube (*t*) relative to the bulk plasma membrane of the cell

950 (*ref*), the sorting parameter (*S*) is defined as $S = \frac{l_t^P / l_{ref}^P}{l_t^L / l_{ref}^P}$ where the ratio of the green protein 951 fluorescence (l^P) in the nanotube and in the cell is normalized by the same ratio of the red lipid

- fluorescence (I^{-}) in the nanotube and in the cert is normalized by the same ratio of the red lipid fluorescence (I^{L}) . This is to correct for cell-to-cell differences in both the protein and membrane signal intensity (e.g., protein expression levels, different acquisition parameters between cells, efficiency of membrane staining). Sorting values of S > 1 signify the protein is enriched in the nanotube while S < 1 signify the protein is excluded from the nanotube, with respect to its average density in the cell plasma membrane. Given Rat2 fibroblasts are quite flat, we focused on the ventral side of the cell to obtain reference images of the plasma membrane for both the protein and membrane channels. Images were background subtracted and common regions of
- interest (~20,000 pixels in size) were then manually drawn to encompass homogeneous areas of
- 960 the plasma membrane (near the site of the nanotube and excluding areas where vesicular puncta

were observed) to calculate average protein and lipid reference values, I_{ref}^{P} and I_{ref}^{L} , 961 respectively. The protein and membrane channels of the in-focus nanotube were also subjected to 962 background subtraction and then normalized by their respective reference values to generate a 963 964 heat map of S values. The resulting S map was filtered by a 3x3 adaptive median filter 965 (https://weisongzhao.github.io/AdaptiveMedian.imagej/) to remove spurious pixels in the 966 background; this processing was done given the pixel values of the raw images are discrete 967 values (photon counts, cts) and not continuous values. The width of the nanotube was fit to a 968 Gaussian and a rectangular region of interest (ROI; size $\pm 2\sigma$ of the Gaussian profile) was defined 969 along the length of the nanotube in the S map. Orthogonal cross sections were iteratively 970 generated pixel-by-pixel along the length of the nanotube within the ROI. The maximum S value 971 for each cross section was determined and then averaged to report the mean sorting value of the 972 protein in the nanotube (S_{avg}) .

973 Statistical analysis

All graphs and statistical analyses were performed using the GraphPad Prism software (versions

- 975 9.3.1 or 9.4.0 for Mac or Windows, respectively). p values < 0.05 were considered statistically 976 significant and all p values are indicated in the figures. The specific statistical tests performed.
- 976 significant and all *p* values are indicated in the figures. The specific statistical tests performed, 977 the number of independent experiments and the total number of samples analyzed are indicated
- 977 the number of independent experiments and the total number of samples analyzed are indicated 978 in the figure captions.
- 978 In the figure capito

979 **References**

- L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, J. Plastino, Actin dynamics, architecture, and mechanics in cell motility. *Physiological reviews* 94, 235-263 (2014).
- 82 2. K. Rottner, M. Schaks, Assembling actin filaments for protrusion. *Current opinion in cell biology* 56, 53-63 (2019).
- 3. T. D. Pollard, J. A. Cooper, Actin, a central player in cell shape and movement. *Science*326, 1208-1212 (2009).
- 986 4. J. Faix, D. Breitsprecher, T. E. Stradal, K. Rottner, Filopodia: Complex models for
 987 simple rods. *The international journal of biochemistry & cell biology* 41, 1656-1664
 988 (2009).
- 989 5. P. K. Mattila, P. Lappalainen, Filopodia: molecular architecture and cellular functions.
 990 *Nature reviews Molecular cell biology* 9, 446-454 (2008).
- 991 6. D. Vignjevic, S.-i. Kojima, Y. Aratyn, O. Danciu, T. Svitkina, G. G. Borisy, Role of fascin in filopodial protrusion. *The Journal of cell biology* **174**, 863-875 (2006).
- 7. S. Jansen, A. Collins, C. Yang, G. Rebowski, T. Svitkina, R. Dominguez, Mechanism of
 actin filament bundling by fascin. *Journal of Biological Chemistry* 286, 30087-30096
 (2011).
- 9968.M. B. Steketee, K. W. Tosney, Three functionally distinct adhesions in filopodia: shaft997adhesions control lamellar extension. Journal of Neuroscience 22, 8071-8083 (2002).
- 998
 99. C. Yang, T. Svitkina, Filopodia initiation: focus on the Arp2/3 complex and formins. *Cell adhesion & migration* 5, 402-408 (2011).
- 10. T. M. Svitkina, E. A. Bulanova, O. Y. Chaga, D. M. Vignjevic, S.-i. Kojima, J. M.
 1001 Vasiliev, G. G. Borisy, Mechanism of filopodia initiation by reorganization of a dendritic
 1002 network. *The Journal of cell biology* 160, 409-421 (2003).
- 1003 11. D. Vignjevic, D. Yarar, M. D. Welch, J. Peloquin, T. Svitkina, G. G. Borisy, Formation of filopodia-like bundles in vitro from a dendritic network. *The Journal of cell biology* 1005 160, 951-962 (2003).

- 1006 12. A. Mogilner, B. Rubinstein, The physics of filopodial protrusion. *Biophys. J.* 89, 782-795 (2005).
- 100813.L. E. Young, E. G. Heimsath, H. N. Higgs, Cell type–dependent mechanisms for formin-1009mediated assembly of filopodia. *Molecular Biology of the Cell* 26, 4646-4659 (2015).
- 1010 14. A. Steffen, J. Faix, G. P. Resch, J. Linkner, J. Wehland, J. V. Small, K. Rottner, T. E.
 1011 Stradal, Filopodia formation in the absence of functional WAVE-and Arp2/3-complexes.
 1012 Molecular Biology of the Cell 17, 2581-2591 (2006).
- 1013 15. J. Damiano-Guercio, L. Kurzawa, J. Mueller, G. Dimchev, M. Schaks, M. Nemethova, T.
 1014 Pokrant, S. Brühmann, J. Linkner, L. Blanchoin, M. Sixt, K. Rottner, J. Faix, Loss of
 1015 Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent
 1016 adhesion. *eLife* 9, e55351 (2020).
- 1017 16. A. Disanza, S. Bisi, M. Winterhoff, F. Milanesi, D. S. Ushakov, D. Kast, P. Marighetti,
 1018 G. Romet-Lemonne, H.-M. Müller, W. Nickel, J. Linkner, D. Waterschoot, C. Ampè, S.
 1019 Cortellino, A. Palamidessi, R. Dominguez, M.-F. Carlier, J. Faix, G. Scita, CDC42
 1020 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP.
 1021 The EMBO Journal 32, 2735-2750 (2013).
- 1022 17. K. B. Lim, W. Bu, W. I. Goh, E. Koh, S. H. Ong, T. Pawson, T. Sudhaharan, S. Ahmed,
 1023 The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with
 1024 actin dynamics. *Journal of Biological Chemistry* 283, 20454-20472 (2008).
- 1025 18. C. Yang, M. Hoelzle, A. Disanza, G. Scita, T. Svitkina, Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. *PloS one* **4**, e5678 (2009).
- 1027 19. S. Krugmann, I. Jordens, K. Gevaert, M. Driessens, J. Vandekerckhove, A. Hall, Cdc42
 1028 induces filopodia by promoting the formation of an IRSp53: Mena complex. *Curr. Biol.*1029 11, 1645-1655 (2001).
- A. Disanza, S. Mantoani, M. Hertzog, S. Gerboth, E. Frittoli, A. Steffen, K. Berhoerster,
 H.-J. Kreienkamp, F. Milanesi, P. P. Di Fiore, A. Ciliberto, T. E. B. Stradal, G. Scita,
 Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of
 the Eps8–IRSp53 complex. *Nature cell biology* 8, 1337-1347 (2006).
- 1034 21. D. J. Kast, R. Dominguez, IRSp53 coordinates AMPK and 14-3-3 signaling to regulate
 1035 filopodia dynamics and directed cell migration. *Molecular Biology of the Cell* 30, 12851036 1297 (2019).
- S. Govind, R. Kozma, C. Monfries, L. Lim, S. Ahmed, Cdc42Hs facilitates cytoskeletal
 reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to
 filamentous actin. *The Journal of cell biology* 152, 579-594 (2001).
- T. H. Millard, G. Bompard, M. Y. Heung, T. R. Dafforn, D. J. Scott, L. M. Machesky, K.
 Fütterer, Structural basis of filopodia formation induced by the IRSp53/MIM homology
 domain of human IRSp53. *The EMBO journal* 24, 240-250 (2005).
- 1043 24. S. Suetsugu, S. Kurisu, T. Takenawa, Dynamic shaping of cellular membranes by
 1044 phospholipids and membrane-deforming proteins. *Physiological Reviews* 94, 1219-1248
 1045 (2014).
- P. K. Mattila, A. Pykalainen, J. Saarikangas, V. O. Paavilainen, H. Vihinen, E. Jokitalo,
 P. Lappalainen, Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by
 an inverse BAR domain-like mechanism. *J Cell Biol* **176**, 953-964 (2007).
- 1049
 1050
 26. H. Miki, H. Yamaguchi, S. Suetsugu, T. Takenawa, IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. *Nature* 408, 732-735
- 1050between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732-7351051(2000).

1052	27.	W. I. Goh, K. B. Lim, T. Sudhaharan, K. P. Sem, W. Bu, A. M. Chou, S. Ahmed, mDia1
1053		and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in
1054		filopodium formation. Journal of Biological Chemistry 287, 4702-4714 (2012).
1055	28.	D. J. Kast, C. Yang, A. Disanza, M. Boczkowska, Y. Madasu, G. Scita, T. Svitkina, R.
1056		Dominguez, Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and
1057		downstream effectors. <i>Nature structural & molecular biology</i> 21 , 413-423 (2014).
1058	29.	I. M. Robens, L. Yeow-Fong, E. Ng, C. Hall, E. Manser, Regulation of IRSp53-
1059	_, .	dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated
1060		localization. <i>Molecular and cellular biology</i> 30 , 829-844 (2010).
1061	30.	D. J. Kast, R. Dominguez, Mechanism of IRSp53 inhibition by 14-3-3. <i>Nature</i>
1062		communications 10, 1-14 (2019).
1063	31	I Saarikangas H Zhao A Pykäläinen P Laurinmäki P K Mattila P K Kinnunen S
1064	011	J. Butcher, P. Lappalainen, Molecular mechanisms of membrane deformation by I-BAR
1065		domain proteins. <i>Curr. Biol.</i> 19 , 95-107 (2009).
1066	32.	C. Prevost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A. Callan-Jones, P.
1067		Bassereau, IRSp53 senses negative membrane curvature and phase separates along
1068		membrane tubules. <i>Nature Communications</i> 6 8529 (2015)
1069	33	A Breuer L Lauritsen E Bertseva I Vonkova D Stamou Quantitative investigation
1070	55.	of negative membrane curvature sensing and generation by I-BARs in filopodia of living
1071		cells Soft Matter 15, 9829-9839 (2019)
1072	34	N Gov Guided by curvature: shaping cells by coupling curved membrane proteins and
1072	511	cytoskeletal forces <i>Philos Trans R Soc Lond R Biol Sci</i> 373 20170115 (2018)
1073	35	L E Young C I Latario H N Higgs Roles for Ena/VASP proteins in FMNL3-
1075	55.	mediated filopodial assembly <i>I Cell Sci</i> 131 ics220814 (2018)
1075	36	S D Hansen R D Mullins VASP is a processive actin polymerase that requires
1077	50.	monomeric actin for harbed end association <i>Journal of Cell Riology</i> 191 571-584
1078		(2010)
1079	37	D Breitsprecher A K Kiesewetter I Linkner C Urbanke G P Resch I V Small I
1080	571	Faix Clustering of VASP actively drives processive WH2 domain- mediated actin
1081		filament elongation. <i>The EMBO journal</i> 27 , 2943-2954 (2008).
1082	38.	S. D. Hansen, R. D. Mullins, Lamellipodin promotes actin assembly by clustering
1083	001	Ena/VASP proteins and tethering them to actin filaments. <i>eLife</i> 4 e06585 (2015)
1084	39	S Brühmann D S Ushakov M Winterhoff R B Dickinson U Curth I Faix Distinct
1085	57.	VASP tetramers synergize in the processive elongation of individual actin filaments from
1086		clustered arrays <i>Proceedings of the National Academy of Sciences</i> 114 E5815-E5824
1087		(2017)
1088	40	A I Harker H H Katkar T C Bidone F Aydin G A Voth D A Applewhite D R
1089	40.	Kovar Ena/VASP processive elongation is modulated by avidity on actin filaments
1002		bundled by the filopodia cross-linker fascin <i>Molecular Biology of the Cell</i> 30 , 851-862
1090		(2019)
1091	<i>A</i> 1	K Rottner B Behrendt I V Small I Wehland VASP dynamics during lamellipodia
1092	71.	protrusion Nature cell biology 1 321-322 (1990)
1000	42	K W Chang R D Mulling Initiation and disassembly of filonodia tin complexes
1094	⊣ ∠.	containing VASP and lamellinodin Molecular biology of the cell 31 2021,2034 (2020)
1005	13	T Pokrant I I Hein S Körber & Disanza & Pich G Soita K Rottner I Fair
1000	-IJ.	$F_{na}/V \Delta SP$ clustering at microsnike ting involves I amellipodin but not I RAP protoing
1077		Lina visio clustering at merospike ups involves Lamempoun out not r-DAK proteins,

1098		and absolutely requires unconventional Myosin-X. <i>bioRxiv</i> , doi:
1099		10.1101/2022.1105.1112.491613 (2022).
1100	44.	J. Faix, K. Rottner, Ena/VASP proteins in cell edge protrusion, migration and adhesion.
1101		Journal of Cell Science 135, jcs259226 (2022).
1102	45.	G. Jacquemet, A. Stubb, R. Saup, M. Miihkinen, E. Kremneva, H. Hamidi, J. Ivaska,
1103		Filopodome mapping identifies p130Cas as a mechanosensitive regulator of filopodia
1104		stability. Curr. Biol. 29, 202-216. e207 (2019).
1105	46.	F. Jaskolski, C. Mulle, O. J. Manzoni, An automated method to quantify and visualize
1106		colocalized fluorescent signals. Journal of neuroscience methods 146, 42-49 (2005).
1107	47.	D. A. Pollard, T. D. Pollard, K. S. Pollard, Empowering statistical methods for cellular
1108		and molecular biologists. Molecular Biology of the Cell 30, 1359-1368 (2019).
1109	48.	S. McLaughlin, J. Wang, A. Gambhir, D. Murray, PIP2 and proteins: interactions,
1110		organization, and information flow. Annual review of biophysics and biomolecular
1111		<i>structure</i> 31 , 151-175 (2002).
1112	49.	H. Zhao, A. Michelot, E. V. Koskela, V. Tkach, D. Stamou, D. G. Drubin, P.
1113		Lappalainen, Membrane-sculpting BAR domains generate stable lipid microdomains.
1114		<i>Cell Rep</i> 4 , 1213-1223 (2013).
1115	50.	S. Shekhar, J. Pernier, MF. Carlier, Regulators of actin filament barbed ends at a glance.
1116		Journal of cell science 129 , 1085-1091 (2016).
1117	51.	D. A. Kaiser, V. K. Vinson, D. B. Murphy, T. D. Pollard, Profilin is predominantly
1118		associated with monomeric actin in Acanthamoeba. Journal of cell science 112, 3779-
1119		3790 (1999).
1120	52.	H. J. Kinosian, L. A. Selden, L. C. Gershman, J. E. Estes, Interdependence of profilin,
1121		cation, and nucleotide binding to vertebrate non-muscle actin. Biochemistry 39, 13176-
1122		13188 (2000).
1123	53.	Z. Huang, R. P. Haugland, W. You, R. P. Haugland, Phallotoxin and actin binding assay
1124		by fluorescence enhancement. Analytical biochemistry 200, 199-204 (1992).
1125	54.	E. Atilgan, D. Wirtz, S. X. Sun, Mechanics and dynamics of actin-driven thin membrane
1126		protrusions. Biophys. J. 90, 65-76 (2006).
1127	55.	D. R. Daniels, M. S. Turner, Islands of conformational stability for filopodia. <i>PloS one</i> 8,
1128		e59010 (2013).
1129	56.	P. Sampath, T. D. Pollard, Effects of cytochalasin, phalloidin and pH on the elongation of
1130		actin filaments. Biochemistry 30, 1973-1980 (1991).
1131	57.	H. Isambert, P. Venier, A. C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, MF. Carlier,
1132		Flexibility of actin filaments derived from thermal fluctuations. Effect of bound
1133		nucleotide, phalloidin, and muscle regulatory proteins. Journal of Biological Chemistry
1134		270 , 11437-11444 (1995).
1135	58.	Z. Jarin, FC. Tsai, A. Davtyan, A. J. Pak, P. Bassereau, G. A. Voth, Unusual
1136		Organization of I-BAR Proteins on Tubular and Vesicular Membranes. Biophys. J. 117,
1137		553-562 (2019).
1138	59.	A. P. Liu, D. L. Richmond, L. Maibaum, S. Pronk, P. L. Geissler, D. A. Fletcher,
1139		Membrane-induced bundling of actin filaments. Nature physics 4, 789 (2008).
1140	60.	C. Simon, R. Kusters, V. Caorsi, A. Allard, M. Abou-Ghali, J. Manzi, A. Di Cicco, D.
1141		Lévy, M. Lenz, JF. Joanny, C. Campillo, J. Plastino, P. Sens, C. Sykes, Actin dynamics
1142		drive cell-like membrane deformation. Nature Physics 15, 602-609 (2019).

1143 61. T. Bornschlögl, S. Romero, C. L. Vestergaard, J.-F. Joanny, G. T. Van Nhieu, P. 1144 Bassereau, Filopodial retraction force is generated by cortical actin dynamics and 1145 controlled by reversible tethering at the tip. Proceedings of the National Academy of 1146 Sciences 110, 18928-18933 (2013). 1147 N. Leijnse, L. B. Oddershede, P. M. Bendix, Helical buckling of actin inside filopodia 62. 1148 generates traction. Proceedings of the National Academy of Sciences 112, 136-141 1149 (2015). 1150 63. S. Etienne-Manneville, A. Hall, Rho GTPases in cell biology. Nature 420, 629-635 1151 (2002).1152 64. S. de Beco, K. Vaidžiulytė, J. Manzi, F. Dalier, F. Di Federico, G. Cornilleau, M. Dahan, 1153 M. Coppey, Optogenetic dissection of Rac1 and Cdc42 gradient shaping. Nature 1154 communications 9, 1-13 (2018). 1155 65. L. Picas, J. Viaud, K. Schauer, S. Vanni, K. Hnia, V. Fraisier, A. Roux, P. Bassereau, F. 1156 Gaits-Iacovoni, B. Payrastre, J. Laporte, J. B. Manneville, B. Goud, BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner 1157 1158 dynamin. Nat. Commun. 5, 5647 (2014). 1159 Y. Senju, P. Lappalainen, Regulation of actin dynamics by PI (4, 5) P2 in cell migration 66. and endocytosis. Current Opinion in Cell Biology 56, 7-13 (2019). 1160 1161 Y. Senju, M. Kalimeri, E. V. Koskela, P. Somerharju, H. Zhao, I. Vattulainen, P. 67. 1162 Lappalainen, Mechanistic principles underlying regulation of the actin cytoskeleton by 1163 phosphoinositides. Proceedings of the National Academy of Sciences 114, E8977-E8986 1164 (2017). 1165 68. F.-C. Tsai, A. Bertin, H. Bousquet, J. Manzi, Y. Senju, M.-C. Tsai, L. Picas, S. Miserey-Lenkei, P. Lappalainen, E. Lemichez, E. Coudrier, P. Bassereau, Ezrin enrichment on 1166 1167 curved membranes requires a specific conformation or interaction with a curvature-1168 sensitive partner. eLife 7, e37262 (2018). 1169 T. Sudhaharan, S. Hariharan, J. S. Y. Lim, J. Z. Liu, Y. L. Koon, G. D. Wright, K. H. 69. Chiam, S. Ahmed, Superresolution microscopy reveals distinct localisation of full length 1170 1171 IRSp53 and its I-BAR domain protein within filopodia. Scientific reports 9, 1-17 (2019). 1172 U. Dobramysl, I. K. Jarsch, Y. Inoue, H. Shimo, B. Richier, J. R. Gadsby, J. Mason, A. 70. 1173 Szałapak, P. S. Ioannou, G. P. Correia, Stochastic combinations of actin regulatory proteins are sufficient to drive filopodia formation. Journal of Cell Biology 220, (2021). 1174 H. Tokuo, M. Ikebe, Myosin X transports Mena/VASP to the tip of filopodia. 1175 71. 1176 Biochemical and biophysical research communications **319**, 214-220 (2004). 1177 72. M. Barzik, L. M. McClain, S. L. Gupton, F. B. Gertler, Ena/VASP regulates mDia2initiated filopodial length, dynamics, and function. *Molecular biology of the cell* 25, 1178 1179 2604-2619 (2014). 1180 73. A. Weinberger, F.-C. Tsai, G. H. Koenderink, T. F. Schmidt, R. Itri, W. Meier, T. Schmatko, A. Schröder, C. Marques, Gel-assisted formation of giant unilamellar vesicles. 1181 1182 Biophys. J. 105, 154-164 (2013). J. A. Spudich, S. Watt, The regulation of rabbit skeletal muscle contraction I. 1183 74. 1184 Biochemical studies of the interaction of the tropomyosin-troponin complex with actin 1185 and the proteolytic fragments of myosin. Journal of Biological Chemistry 246, 4866-1186 4871 (1971). 1187 75. C. Ciobanasu, B. Faivre, C. Le Clainche, Reconstituting actomyosin-dependent mechanosensitive protein complexes in vitro. *Nature protocols* **10**, 75 (2015). 1188

- 1189 76. R. Gieselmann, D. J. Kwiatkowski, P. A. Janmey, W. Witke, Distinct biochemical 1190 characteristics of the two human profilin isoforms. *European journal of biochemistry* 1191 **229**, 621-628 (1995).
- 1192 77. H. Wioland, B. Guichard, Y. Senju, S. Myram, P. Lappalainen, A. Jégou, G. Romet1193 Lemonne, ADF/cofilin accelerates actin dynamics by severing filaments and promoting
 1194 their depolymerization at both ends. *Curr. Biol.* 27, 1956-1967. e1957 (2017).
- 119578.Z. Püspöki, M. Storath, D. Sage, M. Unser, Transforms and operators for directional
bioimage analysis: a survey. *Focus on bio-image informatics*, 69-93 (2016).
- 1197 79. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
 1198 Preibisch, C. Rueden, S. Saalfeld, B. Schmid, Fiji: an open-source platform for
- biological-image analysis. *Nature methods* **9**, 676 (2012).
- 1200 80. P. Sahoo, C. Wilkins, J. Yeager, Threshold selection using Renyi's entropy. *Pattern*1201 *recognition* 30, 71-84 (1997).
- 120281.J. Grime, J. J. Madsen, Efficient simulation of tunable lipid assemblies across scales and1203resolutions. arXiv preprint arXiv:1910.05362 (2019).
- 1204 82. Z. Jarin, A. J. Pak, P. Bassereau, G. A. Voth, Lipid-composition-mediated forces can stabilize tubular assemblies of i-bar proteins. *Biophys. J.* 120, 46-54 (2021).
- 120683.S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. Journal of
computational physics 117, 1-19 (1995).
- 1208 84. C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D.
 1209 Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, Array programming with NumPy.
 1210 *Nature* 585, 357-362 (2020).
- 1211 85. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
 1212 P. Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: Machine learning in Python. *the*1213 *Journal of machine Learning research* 12, 2825-2830 (2011).
- 1214 86. V. Ramasubramani, B. D. Dice, E. S. Harper, M. P. Spellings, J. A. Anderson, S. C.
 1215 Glotzer, freud: A software suite for high throughput analysis of particle simulation data.
 1216 *Computer Physics Communications* 254, 107275 (2020).
- 1217 87. J. D. Hunter, Matplotlib: A 2D graphics environment. *Computing in science & engineering* 9, 90-95 (2007).
- 1219 88. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. *Journal of molecular graphics* 14, 33-38 (1996).
- 1221 89. A. Gorlewicz, K. Krawczyk, A. A. Szczepankiewicz, P. Trzaskoma, C. Mulle, G. M.
 1222 Wilczynski, Colocalization colormap–an ImageJ Plugin for the quantification and
 1223 visualization of colocalized signals. *Neuroinformatics* 18, 661-664 (2020).
- 1224 90. K. Neuman, S. Block, Optical trapping. *Review of Scientific Instruments* **75**, 2787-2809 (2004).
- M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. *Journal of Applied physics* 52, 7182-7190 (1981).
- 122892.T. Schneider, E. Stoll, Molecular-dynamics study of a three-dimensional one-component1229model for distortive phase transitions. *Physical Review B* 17, 1302 (1978).
- 1230 1231

1232 Acknowledgments

1233 The computations were supported by the University of Chicago Research Computing Center 1234 (RCC). We thank Evelyne Coudrier and Camille Simon for insightful discussions. We also thank

- 1235 Fahima Di Federico for handling plasmids, Fanny Tabarin-Cayrac for cell sorting and Anne-
- 1236 Sophie Mace for ImageJ programming assistance. F-CT, CLC and PB are members of the CNRS
- 1237 consortium AQV. F-CT and PB are members of the Labex Cell(n)Scale (ANR-11-LABX0038)
- 1238 and Paris Sciences et Lettres (ANR-10-IDEX-0001-02). The authors greatly acknowledge the
- 1239 Cell and Tissue Imaging core facility (PICT IBiSA), Institut Curie, member of the French
- 1240 National Research Infrastructure France-BioImaging (ANR10-INBS-04).

1241 **Funding:**

- 1242 Human Frontier Science Program (HFSP) grant RGP0005/2016 (F-CT, JMH, GAV, PL and PB)
- 1243 Institut Curie and the Centre National de la Recherche Scientifique (CNRS) (F-CT, JMH, and
- 1244 PB)
- 1245 Marie Curie actions H2020-MSCA-IF-2014 (F-CT)
- 1246 EMBO Long-Term fellowship ALTF 1527-2014 (F-CT)
- 1247 Pasteur Foundation Fellowship (JMH)
- 1248 Agence Nationale pour la Recherche ANR-20-CE13-0032 (JMH and PB)
- 1249 Université Paris Sciences et Lettres-QLife Institute ANR-17-CONV-0005 Q-LIFE (PB)
- 1250 FY 2015 Researcher Exchange Program between the Japan Society for the Promotion of Science
- 1251 and Academy of Finland (YS)
- 1252 Takeda Science Foundation (YS)
- 1253 Wesco Scientific Promotion Foundation (YS)
- Agence Nationale pour la Recherche ANR-18-CE13-0026-01 and ANR-21-CE13-0010-03
- 1255 (CLC)
- 1256 Cancer Society Finland 4705949 (PL)
- 1257 United States National Institutes of Health (NIH) Institute of General Medical Sciences
- 1258 (NIGMS) grant R01-GM063796 (GAV and ZJ)
- 1259

1260 Author contributions:

- GAV, PL and PB designed the initial project. F-CT, JMH, ZJ, EK, YS, JP, OM, JM performed experiments and analyzed results under the supervision of CLC, GAV, PL and PB. F-CT and JP developed GUV experiments, and F-CT performed and analyzed data from the GUV experiments. JMH, ZJ, EK and JP performed and analyzed data from nanotube pulling experiments, computer simulations, live-cell imaging experiments, and actin pyrene assays, respectively. YS, JP and JM purified proteins. OM analyzed protein clustering on GUVs. F-CT wrote the original draft with inputs and revisions from JMH and PB.
- 1268 Conceptualization: F-CT, JMH, GAV, PL, PB
- 1269 Methodology: F-CT, JMH, ZJ, JP
- 1270 Investigation: F-CT, JMH, ZJ, EK, JP
- 1271 Resources: YS, JP, JM
- 1272 Visualisation : F-CT, JMH, ZJ, EK
- 1273 Supervision: CLC, GAV, PL, PB
- 1274 Writing—original draft: F-CT, JMH, PB
- 1275 Writing—review & editing: F-CT, JMH, ZJ, EK, YS, JP, OM, JM, CLC, GAV, PL, PB
- 1276 Funding acquisition: GAV, PL, PB
- 1278 **Competing interests:** The authors declare that they have no competing interests.
- 1279

1277

Data and materials availability: All data needed to evaluate the conclusions in the paper are 1281 present in the paper and/or the Supplementary Materials.

- 12981299 Figures and Tables

1301Fig 1. Dynamics of VASP clusters assembled from preexisting IRSp53 clusters on the1302plasma membrane in filopodia initiation.

(A) Widefield fluorescence image of a representative Rat2 cell transfected with IRSp53-eGFP and RFP-VASP. Brackets indicate some filopodia where IRSp53 is present along them. White arrows indicate the same filopodia to demonstrate that VASP is enriched in their tips. Scale bar, 5 µm. (B) Time-lapse images of a filopodium formation. Images are magnifications of the indicated area (cyan boxes) in (A). The white arrow indicates the appearance of an IRSp53 cluster followed by a VASP cluster indicated by a cyan arrow at the onset of filopodia formation. White boxes indicate the selected area used to generate outlines of plasma membrane positions over time shown in (C). Scale bar, 2 µm. (C) Colored outlines of membrane positions in the region indicated by the white boxes shown in (B). Total 27 frames, frame interval 2 sec. (D) Adaptive kymograph maps replot the detected membrane profiles in (C) in the y-axis and the corresponding time points in the x-axis to show the dynamics of IRSp53 (Left) and VASP (Right) on the plasma membrane over time. Y-axis shows the membrane positions of the proteins, and the x-axis shows the time (in second, total 27 frames). Y-axis scale bars, 1 µm. Color maps: low fluorescence intensity in blue, and high fluorescence intensity in red. Circled numbers correspond to the frames indicated in (B).

1318 Fig. 2 IRSp53 self-assembles into clusters and recruits VASP on PIP₂-membranes.

(A) and (B) Representative confocal images of GUVs incubated with AX488-labeled IRSp53 (16
nM). GUVs contain TBX with 0.5% TR-ceramide and either 5% PIP₂ (PIP₂-GUVs) in (A) or
25% DOPS (PS-GUVs) in (B). TR-ceramide in magenta and IRSp53 in cyan. Arrows indicate
IRSp53 clusters on GUV membranes. Arrowhead indicates an inward membrane tube generated

- by IRSp53. (C) Sizes of IRSp53 clusters on PIP₂-GUVs and on PS-GUVs. Each data point
- represents one cluster. PIP_2 -GUV: total 225 clusters, N = 42 GUVs, 3 sample preparations. PS-

- 1325 GUV: total 55 clusters, N = 12 GUVs, 2 sample preparations. Statistical analysis: two-tailed 1326 Mann-Whitney test, p = 0.1125. (D) Top: Representative snapshots of coarse-grained (CG) 1327 simulations from PS-like (0% PIP₂), 2% PIP₂-like, and 5% PIP₂-like membranes. Membrane CG 1328 beads in grey, PIP₂-like CG beads in blue, and I-BAR domains in red. Scale bar, 50 nm. Bottom: 1329 Enlarged areas as indicated by the white boxes. Only the central portion of the I-BAR domain is shown (yellow) to visualize PIP₂ clusters (blue). (E) Probability of I-BAR domain aggregate size 1330 1331 to be < 5 or ≥ 5 molecules for membranes shown in (D). (F) Representative confocal images of 1332 GUVs incubated with AX488-labeled VASP (yellow) together with (Top) or without (Bottom) IRSp53 (unlabeled). Protein concentrations: IRSp53, 16 nM; VASP, 4 nM. GUVs contain TBX 1333 1334 with 0.5% TR-ceramide (magenta) and 5% PIP₂. Heat maps in (A) and (B) for IRSp53 signals, and (F) for VASP signals; low fluorescence intensity in blue, and high intensity in red. Scale 1335
- 1336 bars, 5 μm.
- 1337

1338Fig. 3. IRSp53 and VASP synergistically drive the formation of actin-filled membrane1339protrusions.

1340 (A-D) Representative GUVs (membranes, magenta; actin, green) incubated with: (A) all proteins 1341 and (B) where actin was labelled instead with AX488 phalloidin; and where (C) IRSp53 and (D) 1342 VASP were excluded. Cartoon in (A) depicts GUVs incubated with all proteins (CP and profilin 1343 not shown). All proteins: IRSp53 (16 nM), VASP (4 nM), actin (0.5 µM, 10% - 27% AX488 1344 labelled), fascin (250 nM), CP (25 nM) and profilin (0.6 µM). GUV composition: TBX, 0.5% 1345 TR-ceramide and 5% PIP₂. Scale bars, 5 µm. (D) Right: pixel-averaged actin signals on GUVs. "No VASP" N = 29 GUVs, "With VASP" N = 29, 1 preparation (see Fig. S12A for another two 1346 1347 preparations). (E) Percentages of GUVs having actin-filled tubes with ("With VASP") and without ("No VASP") VASP. "With VASP" N = 56, 39, 45; "No VASP" N = 42, 41, 33; 3 1348 1349 preparations. Statistical analyses: chi-squared test on pooled data, p < 0.0001; paired t test, p =1350 0.0585. (F, G) Percentages of tube-positive GUVs in the absence ("No Actin") and presence ("With Actin") of actin. "With Actin" GUVs were counted only when having actin-filled tubes 1351 (*). (F) "No phalloidin" corresponds to AX488-labelled actin. "No Actin" N = 39, 60; "With 1352 1353 Actin" N = 45, 56; 2 preparations. Statistical analyses: chi-squared test on pooled data, p < p1354 0.0001; paired t test, p = 0.3072. (G) In the presence of AX488 phalloidin, and no AX488labelled actin. "No Actin" N = 31, 31, 26, 39; "With Actin" N = 54, 57, 41, 56; 4 preparations. 1355 1356 Statistical analyses: chi-squared test on pooled data, p < 0.0001; paired t test, p = 0.0054.

1357 Fig. 4. Fascin facilitates filopodia growth and prevents filopodia retraction.

(A) Left: Representative images of GUVs incubated with all protein ingredients (IRSp53, VASP, 1358 1359 actin, CP and profilin) besides Fascin. Right: Percentages of GUVs having actin-filled tubes in the absence ("No Fascin") and presence ("With Fascin") of Fascin. GUV composition: TBX, 1360 0.5% TR-ceramide and 5% PIP₂. "No Fascin" N = 53, 32, 54 GUVs; "With Fascin" N = 56, 45, 1361 1362 39; 3 sample preparations. Statistical analyses: chi-squared test on pooled data, p = 0.8652; 1363 paired t test, p = 0.6906. (B) Widefield fluorescence image of a Rat2 cell transfected with IRSp53-eGFP and mCherry-fascin. (C) Time-lapse images of the formation of a filopodium. 1364 1365 Images are magnifications of the indicated area (white boxes) in (B). White arrows indicate the appearance of IRSp53 clusters followed by fascin recruitment. Time in sec. (D) Left: 1366 Representative kymograph of IRSp53 and fascin fluorescence signals in a growing filopodium 1367 1368 showing the growth before (Number 1) and after (Number 2) the presence of fascin. Right: 1369 Quantification of filopodial growth rate before ("Before Fascin arrived") and after ("After Fascin arrived") fascin recruitment. N = 26 filopodia. Statistical analysis: Mann-Whitney nonparametric 1370 1371 test, p = 0.00001633. (E) Frequency of filopodia retractions in IRSp53-eGFP expressing Rat2 1372 cells transfected with either an empty mCherry plasmid ("Control") or mCherry-fascin ("Fascin"). The frequency of each event was calculated for the period of filopodia growth as the 1373 1374 number of retractions per sec. "Control" N = 13 filopodia; "Fascin" N = 30. Statistical analysis: 1375 Mann-Whitney nonparametric test, p = 0.000083802. Scale bars: (A) 5 µm; (B, C) 2 µm.

1376

1377 Fig. 5. IRSp53's I-BAR domain is robustly recruited into pulled membrane nanotubes.

(A) Experimental setup for pulling membrane nanotubes using a concanavalin A (con-A)-coated
 bead trapped in an optical tweezer (OT). Rat2 fibroblasts, expressing eGFP fusions (green) of
 either IRSp53's I-BAR domain or the full length (FL) IRSp53 protein, were labelled with Cell
 MaskTM Deep Red plasma membrane stain (magenta); protein enrichment in the membrane

1382 nanotube was monitored by confocal fluorescence microscopy using single-photon avalanche 1383 detectors (cts, counts). (B) Representative confocal image of a pulled membrane nanotube from a 1384 Rat2 cell expressing IRSp53's I-BAR domain showing high enrichment of the I-BAR domain. 1385 (C) Top: Calculated sorting map of the nanotube in (B) with low sorting (S) values in blue and high S values in red. Bottom: Plot of the maximum sorting value at each pixel position along the 1386 1387 length of the nanotube (white bracket in the sorting map) and the mean sorting value for the protein (S_{avg}). (D) Measured S_{avg} values for IRSp53's I-BAR domain in pulled nanotubes (N = 19 1388 nanotubes). $S_{avg} > 1$ (dashed black line) indicate protein enrichment. Black solid line, mean of 1389 1390 the data points. Dashed white circles in the figure outline the trapped bead. Scale bars, 5 µm.

Fig. 6. IRSp53 is recruited into membrane nanotubes pulled from highly active cellular zones and coincides with actin filament assembly.

1393 (A) and (B) Representative confocal images of pulled membrane nanotubes from Rat2 cells 1394 expressing the full-length IRSp53 protein (IRSp53-eGFP). (A) Pulled nanotubes near cellular 1395 zones of active membrane remodeling, such as membrane ruffling (white arrowheads), exhibit 1396 recruitment of IRSp53 in the nanotube. (B) Pulled nanotubes near non-active zones instead show no recruitment of IRSp53. (C) Mean sorting values for a given nanotube, S_{avg} , were determined 1397 from active and non-active zones for IRSp53 expressing cells. Dashed black line, $S_{avg} = 1$. Black 1398 solid lines, mean of the data points. Active zone, N = 13 nanotubes; Non-active zone, N = 201399 1400 nanotubes. (D) IRSp53 enrichment corresponds with eventual actin development within the 1401 pulled nanotube. Representative sorting (S) map (left) and the corresponding force plot (center) 1402 for a nanotube showing high IRSp53 sorting. Peaks in the force plot (black arrowheads) are 1403 signatures of actin in the tube, and arise when retrograde flows outcompete actin polymerization 1404 (at the nanotube tip) causing bead displacement towards the cell body and hence a rise in the 1405 force (right, i and ii). (E) Distribution of the force peak magnitudes (ΔF). Sample size, 100 1406 peaks. (F) Representative sorting map (left) and the corresponding force plot (right) for a 1407 nanotube showing no IRSp53 enrichment and hence no actin development. Color maps: low S 1408 values in blue, and high S values in red. Dashed white circles in the figure outline the trapped 1409 bead. Scale bars, 5 µm.

1410

1411

1412

1413