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In absence of external torque, plasma rotation in tokamaks results from a balance between collisional
magnetic braking and turbulent drive. The outcome of this competition and cooperation is essential to
determine the plasma flow. A reduced model, supported by gyrokinetic simulations, is first used to explain
and quantify the competition only. The ripple amplitude above which magnetic drag overcomes turbulent
viscosity is obtained. The synergetic impact of ripple on the turbulent toroidal Reynolds stress is explored.
Simulations show that the main effect comes from an enhancement of the radial electric field shear by the
ripple, which in turn impacts the residual stress.
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Mean flows and especially toroidal rotation play a key
role in confinement properties of tokamak plasmas. Indeed,
numerous experiments have highlighted the link between
plasma rotation and improved plasma performance [1–5].
On most medium-size tokamaks, rotation is controllable
using the external torque exerted by tangential neutral beam
injection. However, in reactor-size tokamaks, including the
International Thermonuclear Experimental Reactor (ITER),
external torque is expected to be small [6], so that the
plasma rotation will likely be driven by intrinsic plasma
mechanisms. Intrinsic generation of rotation results from
symmetry breaking [7]. Therefore, toroidal asymmetry of
the magnetic field plays a leading role in rotation drive, as
realistic magnetic configurations always include nonaxi-
symmetric perturbations. They result from error fields due
to coil misalignment, magnetohydrodynamic instabilities,
externally applied perturbations, or magnetic field modu-
lations due to the finite number of toroidal coils, called
“ripple.” This Letter focuses on the latter. Toroidal mag-
netic ripple constrains the toroidal torque through magnetic
braking, i.e., the force resulting from the magnetic field
inhomogeneity on particle magnetic moments. This force
substantially changes the plasma rotation even for small
amplitude perturbations [8]. The resulting torque, called
neoclassical toroidal viscosity, and its impact on toroidal
rotation have been experimentally observed [9–13] and
widely studied theoretically [14–26] as well as numerically
[27–31]. Turbulence can also be responsible for the
intrinsic rotation of the plasma. However a symmetry
breaking mechanism is also required, which can be either
a background E × B shear [32], an up-down asymmetry
[33], or a shear of turbulent intensity [34]. It has also been
extensively studied [7,32–45]. Yet, the possible competing
and/or synergetic effects of extrinsic (ripple) versus self-
generated (turbulence) asymmetries on rotation has drawn

little [46,47] attention so far. Consequences are of prime
importance, since any modification of mean flows impacts
the radial electric field and, therefore, also the transition
toward improved confinement regimes [48]. In this Letter,
the ripple amplitude threshold δc below which turbulence
governs plasma flows is estimated theoretically, first with-
out any crosstalk between ripple and turbulence. It is in
agreement with nonlinear gyrokinetic simulations using the
GYSELA code [49] and given with a simple expression.
Second, the interplay between turbulence and ripple
regarding the toroidal velocity is studied thanks to com-
prehensive gyrokinetic simulations for the first time. The
modification of the spectral intensity by ripple through
mode coupling is found negligible. However, ripple is
found to modify the toroidal Reynolds stress through the
radial electric field shear.
Based on the complete toroidal angular momentum

conservation [43,50], one can write a simplified expression
of the toroidal momentum evolution, keeping the dominant
terms. Expressed within the large aspect ratio limit, the
ripple and turbulent contributions to the toroidal velocity
VT evolution read as follows:

∂tVT ¼ M − r−1ðrΠÞ0; ð1Þ

where a prime stands for the derivative along the radial
coordinate r, M is the magnetic braking, and Π is the
turbulent radial flux of toroidal momentum, called toroidal
Reynolds stress. Each contribution deserves some atten-
tion. The magnetic braking is derived within neoclassical
theory, i.e., a kinetic derivation describing the resonant
enhancement of collisional transport processes. A well-
established result of this theory in axisymmetric configu-
rations is the degeneracy between the toroidal velocity VT
and the radial electric field Er. Ripple breaks axisymmetry,
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leading to nonambipolar diffusion of particles and heat
[14]. The resulting radial electric field constrains the
toroidal torque through magnetic braking M, removing
the degeneracy. The magnetic braking is defined as the
following fluid moment of the ion distribution function F:

M ¼ −1
nm

�Z
d3vR∇φ · ∇ðμB̃ÞF

�
; ð2Þ

where h:i denotes a flux surface average, φ is the toroidal
angle, μ is the magnetic moment,m is the particle mass, n is
the density, and R is the tokamak major radius. The toroidal
perturbation of the magnetic field amplitude due to ripple
reads B̃ ¼ Bðr; θÞδðr; θÞ cos ðNcφÞ, where θ is the poloidal
angle, B is the axisymmetric magnetic field amplitude, δ is
the ripple amplitude, andNc is the number of toroidal coils.
M is thus the force due to toroidal asymmetry of the
magnetic field. It takes the form of a friction [14],

M ¼ −νφðVT − VneoÞ; ð3Þ

where Vneo is the target velocity fixed by collisional
processes and νφ is the magnetic drag coefficient. The
former, roughly independent of δ, is in the counterdirection
as the nonambipolar particle flux results in a negative Er
[22,24]. Both Vneo and νφ are predicted by neoclassical
theory. Dedicated simulations including ripple perturbation
have found that GYSELA results are consistent with these
theoretical predictions. Ripple perturbation implementation
in GYSELA is detailed in the Supplemental Material [51]. In
the absence of turbulence, the VT dynamic is then governed
by the magnetic drag coefficient νφ, which depends on the
ripple amplitude δ. The other drive mechanism is turbu-
lence through the toroidal Reynolds stress Π. Keeping only
turbulent contributions, the toroidal component of the stress
tensor takes the form [34,36,37]

Π ¼ −χV 0
T þ VVT þ Πres; ð4Þ

where χ is a turbulent viscosity coefficient, V is a pinch
coefficient, and Πres is the residual stress. The latter
describes the momentum exchange between waves and
particles, which acts as the only source of intrinsic plasma
rotation in the axisymmetric case. Combining these mech-
anisms, the equilibrium toroidal velocity VTeq reads

VTeq ¼
νφVneo − r−1ðrΠresÞ0
νφ þ χλv þ Vκv

; ð5Þ

with λv ¼ −ðrχV 0
TeqÞ0=ðrχVTeqÞ and κv ¼ ðrVVTeqÞ0=

ðrVVTeqÞ. As discussed below, this equation allows one
to estimate the ripple amplitude for which magnetic braking
overcomes turbulence. Note that any interplay between
ripple and turbulence is not considered here, but will be
discussed later. Since νφ is an increasing monotonic

function of the ripple amplitude δ, then at low ripple
δ → 0, neoclassical terms vanish so VTeq → V turb ¼
−½r−1ðrΠresÞ0=ðχλv þ VκvÞ�. At high ripple δ → ∞, turbu-
lent terms become negligible so VTeq → Vneo. Computing
the radial profile of VTeq as a function of the ripple
amplitude requires solving a transport equation. However
a “critical ripple” amplitude δc can be devised such that
magnetic braking is dominant when δ > δc. As shown
Fig. 1, this critical value can be roughly defined as
VTeqðδcÞ ¼ ðVneo þ V turbÞ=2 leading to νφðδcÞ ¼ jλvjχeff
with the effective viscosity defined as χeff ¼ χ þ ðκv=
λvÞV. As already mentioned, predictions on νφ and its
dependence on δ are known. Conversely, there are so far no
reliable analytical predictions about χ and V. Determining
these coefficients is actually an active topic of both
experimental and theoretical research. Here they are deter-
mined with four gyrokinetic simulations of ion temperature
gradient driven turbulence, performed with adiabatic elec-
trons, of a typical Tore Supra discharge [52] without ripple
(i.e., δ ¼ 0). Details on simulation parameters can be found
in the Supplemental Material [51]. Taking advantage of the
Π structure Eq. (4), one can determine χ and V for each
radius by initializing the simulations with different toroidal
velocity. A least-squares method using the resulting VT ,
V 0
T , and Π profiles after saturation of turbulence, displayed

in Fig. 2, gives access to these coefficients. As indicated by
the clear correlation between Reynolds stress and toroidal
velocity shear, the viscosity term is dominant. The resulting
turbulent viscous contribution to VTeq is displayed in Fig. 3
(orange lines). In addition, at r=a ≈ 0.5 with a the minor
radius, where V 0

T vanishes and VT is extremal, Π reaches
the same value for each simulation, whereas the pinch
contribution is linear with VT . Therefore, the pinch term in
these simulated cases is negligible, as already observed in
gyrokinetic simulations with adiabatic electrons [7], so that
Π is dominated by the residual stress at vanishing V 0

T .
In experiments, the pinch contribution can, however, be

FIG. 1. Sketch of the modeled ripple-turbulence competition on
the equilibrium toroidal velocity estimated with local momentum
conservation in the case of cocurrent V turb. The synergistic effects
are not accounted for here, but are detailed further below.
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significant and actually plays an important role in deter-
mining the radial profile of VT .
To check the relevance of the prediction regarding δc,

two additional simulations with finite ripple, and conse-
quently, finite magnetic drag, such that νφ ≪ χjλvj and
νφ ≫ χjλvj were run, cf. Fig. 3 (green and blue lines). Since
the physics of the boundary acts as a complex momentum
sink, controlled by orbit losses, momentum flux carried by
waves [35] and scrape-off layer interactions, a model ripple
amplitude is chosen with a radially Gaussian envelope
centered at midradius: δðrÞ ¼ δ0 exp ½−32ðr=a − 0.5Þ2�.
This ensures the disentanglement between boundary con-
ditions and intrinsic physics in a controlled way. In these
simulations, the midradius ripple amplitudes are δ0 ¼ 0.1%
and δ0 ¼ 1%. The time evolution of the toroidal velocity
VT (respectively, of the radial electric field Er) for each
case near midradius is shown in Fig. 4(a) [respectively,
Fig. 4(b)]. The δ0 ¼ 0.1% case exhibits no significant
difference with the axisymmetric case δ0 ¼ 0%, neither
regarding VT nor Er. Conversely, the toroidal velocity in

the δ0 ¼ 1% case, deeply in the countercurrent direction, is
driven by magnetic braking. Also, Er increases roughly by
a factor 1.5. The critical ripple amplitude then stands out as
a practical landmark to determine the main driving flow
mechanism. All the elements of the relation νφðδcÞ ¼
jλvjχeff may not be known, in particular, because the
viscosity and pinch profiles are difficult to obtain exper-
imentally. One can then use the following rule of thumb to
evaluate the order of magnitude of δc. First, one can fairly
approximate the magnetic drag to its asymptotic value in
the so-called “ripple-plateau” regime of collisionality. In
most tokamaks, including ITER, this regime is the most
relevant and states that νφ ∼ ðNcV th=RÞδ2, where V th is the
ion thermal velocity. There is more uncertainty regarding a
proxy for the effective viscosity. One can nevertheless
consider the gyro-Bohm scaling χeff ∼ ðρ2i V th=LTÞ, where
LT is the temperature gradient length and ρi is the ion

FIG. 2. Radial profiles of the toroidal velocity VT, its shear V 0
T, and the stress tensor Π taken at turbulent saturation for simulations

without ripple and with different initial toroidal velocity profiles VTðt ¼ 0Þ ¼ VT0 exp ½−32ðr=a − 0.5Þ2� with a the minor radius.
Velocities are normalized to the ion thermal velocity and lengths to ion Larmor radius ρi.

FIG. 3. Radial profile of magnetic drag νφ for different ripple
amplitudes and the turbulent viscous contribution χλv. Orange
zone represents χjλvj for a=2 ≤ jλvj−1=2 ≤ a. Time is normalized
to the cyclotron period ω−1

c0 .

FIG. 4. Time trace of the (a) toroidal velocity VT and (b) the
radial electric field Er for different ripple amplitudes in
0.45 < r=a < 0.55, shaded areas, and radially averaged in this
same interval, solid lines.
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Larmor radius. The validity of these approximations was
verified with GYSELA simulations and is detailed in the
Supplemental Material [51]. Magnetic braking follows the
standard neoclassical theory and the gyro-Bohm scaling fits
the turbulent viscosity in magnitude. Under these hypoth-
eses, the critical ripple amplitude can be estimated as
δc ∼ ρ⋆ε½ð1=NcÞðR=LTÞR2jλvj�1=2, where ε is the inverse
aspect ratio and ρ⋆ ¼ ρi=a. A naive application on a Tore
Supra Ohmic discharge at r=a ¼ 0.8 with ρ−1⋆ ¼ 700,
R=LT ¼ 12, NC ¼ 18, and jλvj−1=2 ∼ 20 cm [53] gives
δc ≈ 0.4%, which is way lower than the actual ripple
amplitude in Tore Supra at this location. Consistently,
the equilibrium rotation and radial electric field are found to
be ruled by ripple [54]. So far, magnetic braking and
turbulent stress were computed separately, ignoring any
crosstalk. Each mechanism of backreaction between turbu-
lence andmagnetic braking is studied using three simulations
performedwith different ripple amplitudes. On the one hand,
based onEq. (2), the effect of turbulence onmagnetic braking
M is observed to be negligible, as ripple wave numbers are
nonresonant, and hence hardly generated viamode coupling.
On the other hand, the magnetic braking is found to impact
the turbulent momentum transport −r−1ðrΠÞ0. It is known
that the residual stress is predicted to depend on the turbulent
intensity shear and the E × B drift shear [34,36], while
turbulent viscosity depends only on the former. The residual
stress can be expressed as

Πres ¼
X
k

kkkθ

���� eϕk

T

����
2

τk; ð6Þ

whereϕk are the Fourier components of the electric potential,
T is the thermal energy, kk and kθ are the parallel and poloidal
wave number, and τk is a form factor [55]. The modification
of the spectral intensity jϕkj2 by ripple through mode
coupling in simulations is found negligible for large-scale
modes. This implies that the turbulent viscosity is not
affected by ripple. However the E × B shear modifies the
parallel wave number by introducing radial asymmetry [38].
Ripple increases the radial electric field amplitude through
neoclassical effects, so the Er shear depends on the radial
shape of the ripple amplitude. The model Πres from Eq. (6)
comes from a mean field theory that holds when Er is
averaged over multiple turbulent structure lengths and corre-
lation times, defining the coarse-grained average labeled
h:iCG. This is done by time averaging over 105 cyclotron
periods, i.e., about 50 correlation times, and performing a
sliding radial average with a 50ρi window, i.e., about 5–6
correlation lengths. MeanEr and associated shear are plotted
in Figs. 5(a) and 5(b). The effect of ripple on these profiles is
clear: both hEriCG and hE0

riCG increase in amplitude with δ
near the core region. The residual stress profile in Fig. 5(c) is
calculated as Πres ¼ Πþ χV 0

T using the previously obtained
viscosity. As the initial toroidal velocity in these simulation is
zero, theviscous term is subdominant. It then appears thatΠres

grows monotonically with δ and changes sign. hE0
riCG is

correlated with the increase of hΠresiCG up to an offset,
consistent with the numerical study [56]. The offset is likely
explained by the impact of turbulent intensity shear and also
by the effect of diamagnetism [34]. Finally, Fig. 5(d) shows
the averaged −r−1ðrΠÞ0 that appears in momentum conser-
vation, Eq. (1). Regarding plasma rotation, positive and
negative values of hE00

r iCG are found correlated with an
increment of the toroidal velocity in the counter- and
cocurrent direction respectivelydue to turbulence. The critical
ripple expression, derived without interplay, is still valid as it
does not depend on the residual stress.
In summary, the effect of turbulent drive and magnetic

braking has been studied on the same footing thanks to
comprehensive gyrokinetic simulations. The critical ripple
amplitude for which magnetic braking overcomes turbu-
lence has been estimated theoretically and agrees with
gyrokinetic simulations. An estimate for this threshold is
proposed and its value in Tore Supra agrees with exper-
imental measurements. Ripple also modifies the toroidal
velocity by changing the turbulent Reynolds stress through
the residual stress. In fact, the toroidal Reynolds stress is
observed to vary monotonically with the ripple amplitude.

FIG. 5. Solid lines, radial profile of coarse-grained (temporally
and spatially) (a) radial electric field and (b) its shear, as well as
(c) residual stress and (d) the opposite of its divergence for
different ripple amplitudes. Dashed lines, time average only.
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It is observed in simulations that E0
r is enhanced in the

presence of ripple and that E0
r controls the residual stress.

Robust knowledge of this intrinsic physics provides means
to control the rotation. Indeed, recent work [57] demon-
strated that restoring the magnetic symmetry is actually
possible, giving some leverage on the magnetic braking
strength.
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