
HAL Id: hal-03869380
https://hal.science/hal-03869380

Submitted on 24 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diversity, biogeography, and reproductive evolution in
the genus Pipa (Amphibia: Anura: Pipidae)

Antoine Fouquet, Josselin Cornuault, Miguel T. Rodrigues, Fernanda P.
Werneck, Tomas Hrbek, Andrés R. Acosta-Galvis, David Massemin, Philippe

J.R. Kok, Raffael Ernst

To cite this version:
Antoine Fouquet, Josselin Cornuault, Miguel T. Rodrigues, Fernanda P. Werneck, Tomas Hrbek, et al..
Diversity, biogeography, and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae).
Molecular Phylogenetics and Evolution, 2022, 170, pp.107442. �10.1016/j.ympev.2022.107442�. �hal-
03869380�

https://hal.science/hal-03869380
https://hal.archives-ouvertes.fr


 2 

Abstract. The genus Pipa is a species-poor clade of Neotropical frogs and one of the most 29 

bizarre-looking due to many highly derived anatomical traits related to their fully aquatic life-30 

style. With their related African lineages, they form the Pipidae family, which has attracted 31 

much attention, especially regarding its anatomy, reproductive biology, paleontology and 32 

biogeography. However, the actual diversity and relationships within Pipa remain poorly 33 

understood, and thus, so do their historical biogeography and the evolution of striking 34 

features, such as the absence of teeth and endotrophy in some species. Moreover, 35 

phylogenomic results display substantial temporal incongruences suggesting substitution rate 36 

heterogeneity across pipids. Using short mtDNA sequences across the distribution of the 37 

genus we identified 15 OTUs, a two twofold increase compared to the seven nominal species 38 

currently considered valid. Some of the closely related OTUs do not share nuDNA alleles, 39 

confirming species divergence. Time calibrated phylogenies obtained from mitogenomes and 40 

from 10 nuclear loci provide highly similar topologies but strikingly distinct node ages for 41 

Pipa. We identified high dN/dS ratios along the mtDNA stem branch of Pipa, probably 42 

because an acceleration of the substitution rate in Pipa increases the effect of saturation on 43 

fast evolving positions. Focusing on the nuDNA topology, we hypothesize an early Neogene 44 

amazonian origin of the diversification of Pipa, with an initial split between the Guiana-45 

Brazilian Shields and Western Amazonia, a pattern found in many other codistributed groups. 46 

All the western species are edentate, suggesting a single loss in the genus. Each of these 47 

groups diversified further out of Amazonia, toward the Atlantic forest and toward Trans-48 

Andean forest, respectively, and these events are concomitant with palaeogeographic changes 49 

and recovered in codistributed groups. The two amazonian lineages have probably 50 

independently acquired endotrophic larval development.  51 

Keywords. Amazonia; Atlantic Forest; Endotrophy; Neogene; Species delimitation 52 
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1. Introduction 54 

The increasing accumulation of genomic data has permitted unveiling phylogenetic 55 

relationships and divergence times with unprecedented accuracy throughout the tree of life 56 

(Delsuc et al., 2005; Burki et al., 2020). This is the case for amphibians in which 57 

phylogenomic investigations have spectacularly improved our understanding of the 58 

relationships among major lineages (e.g. Neobatrachia, Streicher et al., 2018), and, combined 59 

with fossil calibrations, dramatically narrowed down temporal estimates of their origins (Feng 60 

et al., 2017; Hime et al., 2020). These progresses also notably led to the perception that 61 

mtDNA, which has been used for decades to decipher evolutionary patterns, sometimes 62 

underwent rapid and important shifts in substitution rates (Irisarri et al., 2012; 2017), 63 

sometimes leading to long-branch attraction artefacts (Gissi et al., 2006; Irisarri et al., 2017). 64 

The impact of the variations in substitution rate across loci and along the branches on 65 

phylogenetic reconstructions has been recognized for a long time and methods such as relaxed 66 

clocks implemented in BEAST (Drummond and Rambaut, 2007; Drummond et al., 2012; 67 

Bouckaert et al., 2014) are specifically designed to take into account these variations in order 68 

to provide more reliable time estimates. However, the reliability of these methods still largely 69 

depends on the availability/quality of priors such as node age calibration, for example from 70 

fossils, that are not evenly distributed along the tree of life and are simply absent in many 71 

groups (Donoghue and Yang, 2016).  72 

  The frogs of the family Pipidae are the only ones with a fully aquatic lifestyle, and 73 

harbor many highly derived anatomical traits (Cannatella, 2015) and chromosomal features 74 

(Mezzasalma et al., 2015). Extant taxa of the family Pipidae include Pipa (7 species) in the 75 

Neotropics, and Xenopus (29 species, Silurana being considered a synonym), Hymenochirus 76 

(4 species), and Pseudhymenochirus (1 species) in Africa. The sister-taxon of Pipidae is 77 

Rhinophrynidae, with a single extant fossorial species, Rhinophrynus dorsalis, which occurs 78 
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in central and southern North America. They form altogether the Pipoidea clade, an ancient 79 

group of frogs whose crown age is c.a. 160 Ma old (e.g., Hime et al., 2020). One pipid in 80 

particular, Xenopus laevis, has become a model organism and the focus of a tremendous 81 

amount of medical and fundamental lab research (e.g., Vleminckx, 2018). The relationships 82 

among pipids have also been the focus of many studies (e.g., Irisarri et al., 2011; Bewick et 83 

al., 2012; Hedke et al., 2013; Cannatella et al., 2015) including node and tip dating based 84 

upon what is probably the most abundant fossil record of all amphibian families (e.g., Baez 85 

and Pugener, 2003; Trueb et al., 2005; Gomez, 2016). At the family level, this group has 86 

attracted much attention not only because of their bizarre anatomical features, but also 87 

because of their biogeographic history tightly linked to the break-up of western Gondwana. 88 

Phylogenomic analyses (Hedke et al., 2013; Feng et al., 2017; Irisarri et al., 2017; Hime et al., 89 

2020), either alone or in combination with morphological data and fossils (Cannatella, 2015), 90 

largely support the monophyly of African pipids which form the sister group of Pipa. Time 91 

estimates for the divergence between Pipa and the African pipids obtained from 92 

phylogenomic studies are highly congruent, and generally predate the final stage of the break-93 

up of western Gondwana (c.a. 105 Ma) (Feng et al., 2017; Irisarri et al., 2017; Hime et al., 94 

2020). Nevertheless, an alternative topology, i.e., Pipa + Hymenochirini, has found support in 95 

a few genomic analyses (Bewick et al., 2012; Cannatella, 2015) and mitogenomic data alone 96 

(Irisarri et al., 2017; Zhang et al., 2021). Even though these studies included less genomic 97 

data than the most recent studies recovering Pipa vs. African pipids, this alternative topology 98 

is in line with the morphological similarity between Pipa and Hymenochirini (Cannatella and 99 

Trueb, 1988; Gomez and Perez-Ben, 2019). Given (1) the bias inherent to mtDNA and (2) the 100 

consensus provided by the most recent and most extensive phylogenomic investigations, the 101 

hypothesis of the monophyly of african pipids seems more robust, and thus either implies that 102 
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the morphology of Xenopus is highly derived, and/or that Pipa and Hymenochirini underwent 103 

convergent evolution (Irisarri et al., 2011; Cannatella, 2015).  104 

Paradoxically, despite the attention that pipids have attracted, the phylogenetic 105 

relationships within Pipa have been solely investigated using morphological characters 106 

(Trueb and Cannatella, 1986; Cannatella and Trueb, 1988; Trueb and Massemin, 2001), or 107 

based on short mtDNA sequences with incomplete taxonomic sampling (Vacher et al., 2020; 108 

Lima et al., 2020), and consequently remain poorly understood. Multilocus phylogenetic 109 

studies focusing on pipids have either included a single Pipa terminal or two, and provided 110 

highly inconsistent crown ages for the genus. Among these studies the ones that included the 111 

analysis of mitogenomes (Irissari et al., 2012; Evans et al., 2019; Hemmi et al., 2020) found 112 

crown ages > 50 Ma, which suggests ancient diversification. Conversely, Feng et al. (2017) 113 

using 88 kb of nuDNA loci found a Most Recent Common Ancestor (MRCA) for Pipa spp. to 114 

be only 11 Ma, implying a relatively recent diversification instead. As a corollary, Irissari et 115 

al. (2012) recovered disproportionate branch lengths between mtDNA and nuDNA within 116 

Pipa as compared to other non-Neobatrachia anurans. They also identified such imbalance in 117 

Neobatrachia and demonstrated that this was partly due to an acceleration of the substitution 118 

rate of the mtDNA, possibly resulting from a relaxed purifying selection on mtDNA. 119 

Therefore, incongruences among time estimates within Pipa could be due to a similar 120 

variation of mtDNA substitution rates. However, another paradox is the almost complete 121 

absence of known fossils directly related to Pipa (i.e., branching along the stem or nested 122 

within Pipa), which contrasts with an otherwise very rich Pipidae fossil record. The only 123 

exception is the c.a. 10 My old fossil from Corralito (lower Urumaco formation) of a portion 124 

of the sacrum of a large Pipa, with posteromedial ridges on the dorsal surface of each sacral 125 

diapophyses, suggesting close relationships with Pipa pipa (Delfino and Sanchez, 2018). 126 
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However, given its poor state of preservation, the phylogenetic position of this fossil remains 127 

unclear.  128 

These knowledge gaps hamper an understanding of the biogeographic history as well 129 

as the evolution of reproductive modes and of the morphology of the genus. With four species 130 

occurring in Amazonia (Pipa pipa and P. snethlageae extend further), one in the Atlantic 131 

Forest (P. carvalhoi) and two with a Trans-Andean distribution (P. parva and P. myersi), one 132 

can reasonably assume that the genus originated in Amazonia. However, it remains 133 

conjectural to formulate any biogeographic hypothesis for Pipa in the absence of a robust 134 

time calibrated phylogeny, and since both ancient, i.e., 40–15 Ma (Fouquet et al., 2012a,b; 135 

2013, 2014; Réjaud et al., 2020) and recent, i.e., < 5 Ma (Fouquet et al., 2014) dispersals 136 

events have been documented in anurans and in other vertebrates in the region (e.g. Ledo and 137 

Colli, 2017; Dal Vechio et al., 2018; Prates et al., 2018). It is also noteworthy that some 138 

characters are strikingly variable among Pipa spp., notably habitat and body size. Pipa pipa 139 

and P. snethlageae are large-bodied species (qualified as “macropipa”) and are distributed 140 

throughout Amazonia and even further into the Orinoco (Acosta-Galvis et al., 2016) and the 141 

Cerrado (Vaz Silva and Andrade, 2009; Dantas et al., 2019), occupying many different types 142 

of lotic and lentic aquatic environment, such as seasonally flooded forests. The other species 143 

like the Amazonian P. aspera and P. arrabali are small-bodied (“micropipa”), occupy various 144 

types of small water bodies, are occasionally terrestrial being able to colonize temporary 145 

ponds not connected to any rivers. Pipa parva also occupies temporary water bodies in the 146 

coastal deserts and semi-deserts of the Maracaibo basin and lowlands of the northeastern 147 

Caribbean region of Colombia (Galvis et al., 2011; Blanco et al., 2013). Considering these 148 

traits, we expect dispersal ability of the macropipa (e.g., da Fonte et al. 2021 reported P. pipa 149 

in floating meadows of the Amazon main course) to be high and their genetic structures to be 150 

relatively homogeneous over long distances vs. weaker dispersal abilities and more profound 151 
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genetic structures in micropipa. Moreover, teeth are only present in P. carvalhoi, P. aspera 152 

(Trueb and Massemin, 2001) and in P. arrabali (Trueb and Cannatella, 1986), and although 153 

all the species of Pipa incubate their eggs in a specialized skin layer growing on the female’s 154 

back after complex breeding behaviours (Rabb and Rabb, 1960; Weygoldt, 1976), only the 155 

amazonian species have a completely endotrophic larval development while the tadpoles of P. 156 

carvalhoi, P. parva and P. myersi hatch from the skin of the female and develop freely in the 157 

water instead (Greven, 2011). The evolution of edentulism (Paluh et al., 2021) and of 158 

reproductive mode (Vagi et al., 2019, Furness and Capellini, 2019) has recently attracted new 159 

attention thanks to the availability of extensive phylogenetic sampling and the development of 160 

new methods (Revell, 2012). However, like their biogeographical history, the monophyly of 161 

the edentate and of the endotrophic species has never been tested using molecular data, and 162 

the evolution of these characters remains ambiguous since one or the other of these 163 

characteristics necessarily imply convergent acquisition or loss.  164 

In order to (1) delimit candidate species (2) evaluate phylogenetic relationships and 165 

divergence times within Pipa and (3) investigate biogeographic history, the evolution of 166 

reproductive mode and teeth loss/gain, we gathered mitogenomic and 10 nuDNA loci for all 167 

Pipa species and major Pipoidea lineages. Since temporal discrepancies have been previously 168 

recovered among pipids, we furthermore compared the substitution rate across mt and 169 

nuDNA and tested for variation in the dN/dS ratio across the genes and branches.  170 

 171 

2. Materials and Methods 172 

2.1. Species delimitation 173 

Our first objective was to delimit major mtDNA lineages within Pipa since Vacher et al. 174 

(2020), Motta et al. (2018) and Lima et al. (2020) suggested that unrecognized species exist 175 

Cross-Out

Inserted Text
only 

Cross-Out

Replacement Text
A

Inserted Text
,

Cross-Out

Replacement Text
ies parallel

Sticky Note
The theoretical importance of the dN/dS ratio in testing for rate heterogeneity needs more explanation.



 8 

within P. arrabali, P. aspera, P. pipa and P. carvalhoi. Our sampling included 16S rDNA 176 

sequences from 115 specimens of Pipa (Supplementary table S1) covering the entire 177 

distribution of the genus. These samples were obtained through fieldwork and loans, and 178 

completed with available sequences from GenBank (Supplementary table S1). Newly 179 

acquired sequences were obtained from Sanger sequencing (details of primers are available in 180 

Supplementary table S5). DNA sequences were aligned on the MAFFT online server under 181 

the E-INS-i option with default parameters (Katoh et al., 2017) leading to a matrix of 595 182 

base pairs (bp).  183 

  We applied three DNA-based single-locus species delimitation approaches using this 184 

matrix: (a) a distance-based method, the Automated Barcode Gap Discovery (ABGD; 185 

Puillandre et al., 2012), (b) a multi-rate coalescent-based method, the multi-rate Poisson Tree 186 

Processes model approach (mPTP; Kapli et al., 2017) and (c) a single-threshold coalescent-187 

based method, the Generalized Mixed Yule Coalescent approach (single threshold GMYC; 188 

Pons et al., 2006; Monaghan et al., 2009). The ABGD delimitation was performed using the 189 

online web server (available at https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html) with a 190 

prior of intraspecific divergences (K80) between 0.001 and 0.1 (P = 0.001–0.1), a proxy for 191 

minimum relative gap width of 1 (X = 1), and a number of steps equals to 30 (n = 30). For the 192 

mPTP delimitation, we first reconstructed a ML tree with RAxML v.8.2.4 (Stamatakis, 2014) 193 

using a CAT+Γ model which was estimated to be a suitable model via PartitionFinder V2.1.1 194 

(Lanfear et al., 2017). The mPTP delimitation was undertaken on the tree rooted on 195 

Rhinophrynus, with 5 million Markov chain Monte Carlo (MCMC) iterations, sampling every 196 

10,000th iteration and discarding initial 10% iterations as burn-in. For the GMYC 197 

delimitation, we reconstructed a time-calibrated phylogeny using BEAST 2.5.2 (Bouckaert et 198 

al., 2014). We used a birth and death population model to account for extinction processes 199 

and incomplete sampling. We used a single partition with a GTR+I+Γ substitution model, 200 
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with an uncorrelated relaxed lognormal clock model of rate variation among branches 201 

(Drummond et al., 2006). We used the estimated age of the MRCA of Pipidae of Hime et al. 202 

(2020) as a calibration point, assuming normal prior distributions of 116.0 Ma (SD = 9 Ma). 203 

For the MCMC parameters, we used four independent chains of 100 million iterations, 204 

recording every 10,000th iteration. We combined the log and tree files of the four independent 205 

runs, discarding the first 30% iterations as burn-in, using LogCombiner 2.5 (Bouckaert et al., 206 

2014) and checked the convergence of our parameters, confirmed by all ESS being above 207 

200. We then extracted the maximum clade credibility tree (from 28,004 trees) using Tree 208 

annotator 2.5 (Bouckaert et al., 2014). We performed a GMYC delimitation on the ultrametric 209 

tree using the GMYC function of the {splits} R package (Ezard et al., 2009), with a threshold 210 

interval between 0 and 10 Ma and by using the single threshold method. Operational 211 

Taxonomic Units (OTUs) were defined using a majority-rule consensus from the results of 212 

the three methods, i.e., a lineage is considered as being an OTU if supported by at least two of 213 

the three methods. 214 

 215 

2.2. nuDNA differentiation  216 

We gathered sequences of four nuDNA loci (RAG1, POMC, BDNF, NCX1) for a subset of 217 

individuals in order to evaluate the degree of congruence of differentiation with the mtDNA-218 

based delimitation (Supplementary table S2). Two OTUs (P. sp. “Negro”, P. sp. “Nordeste”) 219 

were not represented by any nuDNA sequences, one (P. parva) by only two nuDNA loci. Six 220 

OTUs were represented in all four datasets, but by a single terminal. Conversely, sequences 221 

from several individuals were obtained for six OTUs (only five OTUs for POMC). The 222 

sequences of NCX1 were incomplete in 3’ for five specimens or in 5’ for five others, 223 

therefore, we considered both subsets independently (NCX1a & b). We reconstructed 224 

Median-Joining networks (Bandelt et al., 1999) from PopArt 1.7 (Leigh and Bryant, 2015). 225 
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We considered the absence of nuDNA allele sharing among specimens assigned to closely 226 

related OTUs as indicative of congruent differentiation. 227 

 228 

2.3. Molecular dating  229 

We selected one representative of each delimited OTU, with the exception of two OTUs that 230 

were only represented by a limited amount of mtDNA and were discarded, for estimation of 231 

phylogenetic relationships and divergence times. We obtained whole mitogenomic data for 232 

representatives of 11 OTUs via shotgun sequencing (Supplementary table S3, GenBank 233 

accession numbers will be added upon manuscript acceptance; methodological details are 234 

available in Supplementary material S4). We completed the mtDNA matrix for the remaining 235 

two Pipa terminals for 12S, 16S, COI and Cytb using data available in GenBank (Table S4). 236 

We further complemented this mitogenomic dataset with 10 nuDNA loci (Supplementary 237 

table S4) via Sanger sequencing and sequences available in GenBank (details of primers are 238 

available in Supplementary table S5). During the matrix building, we noticed two sequences 239 

in GenBank from Irisarri et al. (2011) that appear to be swapped (AY341762=Pipa parva, 240 

AY341763=Hymenochirus), which were thus relabeled. We also retrieved from GenBank 241 

mitogenomes and homologous nuDNA sequences for five outgroups representing each 242 

African Pipidae genus and Rhinophrynus dorsalis, the sister group of Pipidae, including 243 

annotations that were transferred to the new mitogenomes. DNA sequences were realigned on 244 

the MAFFT online server under the E-INS-i option for 12S and 16S and considering the 245 

reading frame option for each CDS with default parameters (Katoh et al., 2017). The control 246 

region and tRNA were discarded as well as flanking regions that were not available for most 247 

terminals. 248 

Cross-Out

Inserted Text
only

Sticky Note
Add the numbers.



 1
1

 

The final alignment consisted of 21,762 bp, comprising 14,115 bp for mtDNA (12S-16S: 249 

2784; 11331 for mtDNA exons) and 7,647 bp for concatenated nuDNA (RAG1: 1374, NCX1: 250 

1278, POMC: 558, BDNF: 693, CXCR4: 630, TYR: 675, SLC8A3: 1092, H3a: 288, RAG2: 251 

744, RHO: 315). Two OTUs (P. parva and P. carvalhoi) had only partial mitogenomic data 252 

(12-16S, COI and Cytb and 16S and COI respectively) and 6 and 3 nuDNA loci available, 253 

respectively. All the other terminals had complete mitogenomes and at least 4 nuDNA loci 254 

(Supplementary table S3). Preliminary Maximum Likelihood analyses of each nuDNA loci 255 

using RAxML (see above for method) suggested overall topological congruence with mtDNA 256 

except the position of P. sp. “Guyana” (see results).  257 

We selected the best-fit partition scheme and model of evolution for each partition 258 

using PartitionFinder V2.1.1 (Lanfear et al., 2017), according to the Bayesian Information 259 

Criterion (BIC) using the greedy scheme and linked branch length. We predefined 14 blocks, 260 

one for rRNA genes (12S and 16S), one for each codon position of concatenated mtDNA 261 

CDS regions, and one for each nuDNA CDS regions. This analysis resulted in a best partition 262 

scheme of seven partitions (1: 12-16S; 2: mtDNApos1, 3: mtDNApos2, 4: mtDNApos3, 5: 263 

POMC+RAG2+CXCR4+RAG1+TYR, 6: NCX1, 7: RHO, BDNF, SLC8A3, H3a). 264 

We reconstructed a time-calibrated gene tree in BEAST 2.5.2 using a birth-death tree 265 

prior to account for extinction processes. We parameterized unlinked substitution models and 266 

unlinked clock models according to the models suggested by the PartitionFinder analysis. 267 

Trees were linked. Divergence time estimation was implemented using an uncorrelated 268 

relaxed lognormal clock model of the distribution of rates among branches for each partition 269 

(Drummond et al., 2006). We relied on secondary calibrations based on Hime et al. (2020), an 270 

extensive nuclear genomic dataset (220 loci 291 kb) of all major frog lineages and the last 271 

land bridge between South America and Africa ca. 105 Ma (Torsvik et al., 2008). We 272 

enforced the monophyly of Pipidae since this clade has been strongly supported in all 273 
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phylogenetic (e.g. Irisarri et al., 2011, 2017; Cannatella, 2015; Feng et al., 2017; Hime et al., 274 

2020) and paleontological analyses (e.g. Gomez, 2016). We also enforced the monophyly of 275 

African Pipidae (Xenopus, Hymenochirus and Pseudhymenochirus), thus favoring the 276 

topology in which Pipa is the sister group of other Pipidae following the results from the 277 

analyses of molecular data of Irissari et al. (2011, 2017); Feng et al. (2017); Hime et al. 278 

(2020) and of Cannatella (2015). This last work used a combination of molecular, 279 

morphological and fossils resulting in higher support for this topology and dates compatible 280 

with phylogenomic studies (Irissari et al., 2011, 2017; Feng et al., 2017; Hime et al., 2020). 281 

We acknowledge that the interrelationships among the three main Pipidae lineages remain 282 

contentious, but the scope of our study being the relationships and the timing of divergence 283 

within Pipa we believe these priors to be reasonable and should have no influence on the 284 

crown age of Pipa or any divergence times within the genus. Specifically, we assumed a 285 

uniform prior distribution for three nodes (1) the MRCA of Pipidae (between 129.1 the lower 286 

HPD from Hime et al., 2020 and 105.0 Ma the western Gondwana final break-up), (2) the 287 

crown age of African Pipidae (between 114.4 Ma and 85.9 Ma HPDs from Hime et al., 2020) 288 

and (3) the crown age of Pipoidae (between 172.6 and 150.0 Ma HPDs from Hime et al., 289 

2020) which corresponds to the root of the tree.  290 

We analyzed independently the four mtDNA partitions and the three nuDNA 291 

partitions because preliminary analyses suggested highly incongruent posterior distribution of 292 

node ages (regardless of the inclusion of 3rd codon position, the use of either Yule or Birth-293 

Death, linkage of the clocks among mtDNA partitions and among nuDNA partitions i.e., two 294 

clock vs seven). The concatenated analyses resulted in intermediary age for the nodes among 295 

Pipa spp. that were thus considered incorrect. We set two independent Markov chain Monte 296 

Carlo (MCMC) runs of 200 million iterations each, recording every 10,000th iteration and 297 

using the first 10% of iterations as burn-in. We combined the log and the tree files and the 298 
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resulting posterior samples of trees of the two independent runs using LogCombiner 2.5 299 

(Bouckaert et al., 2014) and checked convergence of model parameters via time-series plots. 300 

Chain mixing was considered adequate when parameters achieved an effective sample size 301 

above 500 (obtained for all parameters). We extracted a maximum clade credibility tree 302 

(based on the 36,002 resulting trees) using Tree annotator 2.5 (Bouckaert et al., 2014).  303 

 304 

2.4. Biogeographic analyses 305 

We used the time-calibrated phylogeny obtained from nuDNA to infer ancestral areas and 306 

biogeographic events via the BioGeoBEARS package in R (Matzke, 2013). We compared 307 

three models: (i) a likelihood version of the Dispersal-Vicariance model (DIVALIKE; 308 

Ronquist, 1997) (ii) a likelihood version of the BayArea (BBM) model (Landis et al., 2013), 309 

and (iii) the Dispersal-Extinction Cladogenesis model (DEC; Ree & Smith, 2008). We also 310 

compared versions of these models allowing jump-dispersal as described by the J parameter 311 

(Matzke, 2013; Ree and Sanmartín, 2018; Klaus and Matzke, 2020). Models were compared 312 

using the Akaike Information Criterion (AIC).  313 

To identify spatial processes of diversification, we considered five main geographic 314 

areas where known species currently occur: Guiana Shield (GS), Western Amazonia (WA), 315 

Brazilian Shield (BS), Atlantic Forest (AF) and a Trans-Andean region (TA). The three 316 

Amazonian regions correspond to major geological features of Amazonia (Hoorn et al., 2010) 317 

and to the large biogeographic regions known as Wallace’s districts (Wallace, 1854), roughly 318 

delimited by modern riverine barriers: the Madeira River, the Caquetá/Japurá – Solimões, and 319 

the lower course of the Amazon River. This spatial partitioning into three areas allows us to 320 

investigate the putative connectivity across Neotropical regions and dispersal routes across 321 

Amazonia (Réjaud et al., 2020; Fouquet et al., 2021). Even though we only included two 322 
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populations of Pipa snethlageae (French Guiana and central Amazonia), mtDNA sequences 323 

are identical despite geographical distance. This large-sized species is associated with large 324 

swamps and in French Guiana, it reaches a northwestern distributional limit much like several 325 

other species associated with this habitat, such as Leptodactylus intermedius, Hydrolaetare 326 

schmidti, Typhlonectes compressicauda, Dracaena guianensis, Paleosuchus niger, among 327 

others (Lescure and Marty, 2000; Vacher et al., 2020; Gazoni et al., 2021) it is therefore likely 328 

that the range of this species extends throughout the Amazon basin and we thus considered its 329 

range to be panamazonian. 330 

 331 

2.5. Teeth evolution and mode of reproduction 332 

Several works have investigated the evolution of morphological and reproductive features 333 

within Pipa (Trueb and Cannatella, 1986, Canatella and Trueb, 1988, Trueb and Massemin, 334 

2001), although not in the light of a robust molecular phylogeny and without including P. 335 

arrabali (see results, correspondence with the nominal P. pipa remained also ambiguous) and 336 

the candidate species identified herein (see results). We verified the presence (P. sp. “ES”, P. 337 

sp. “Nordeste”, P. sp. “South” and P. arrabali); or absence of teeth (P. pipa; P. sp. “WGU”, 338 

P. sp. “WAM”, P. sp. Negro”, P. sp. “Central”) in specimens corresponding to nine OTUs 339 

(see results) in addition to the ones already examined by Trueb and Cannatella (1986) and 340 

Trueb and Massemin (2001), under stereomicroscope LEICA MZ75.  341 

Data on reproductive mode was available for all the outgroups and most candidate 342 

species (P. aspera: Trueb and Massemin, 2001), P. sp. “Guyana” (RE, pers. obs.), P. arrabali 343 

(Garda et al., 2006), P. carvalhoi (Fernandez et al., 2011), P. myersi (Trueb, 1984), P. pipa 344 

(Linnaeus, 1758); P. sp. “WGU” (RE, pers. obs.), P. snethlageae (Massemin et al., 2007), P. 345 

parva (Sokol, 1977). However, no data could be found for P. sp. “South”, P. sp. “WAM”, P. 346 
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sp. “Central”, P. sp. “Negro”, P. sp. “ES”, P. sp. “Nordeste” for which we assumed they 347 

display the same breeding behaviour than their close relatives 348 

 349 

2.6. Rates shifts 350 

We observed important discrepancies between the temporal estimates in the Pipa genus 351 

obtained from mtDNA vs. nuDNA, while the topologies are almost identical (see results). 352 

This discrepancy may be resolved by invoking two hypotheses: (1) nuDNA temporal 353 

estimates are correct and the mtDNA substitution rate is underestimated i.e. in fact greater in 354 

Pipa relative to the rest of the tree, or (2) mtDNA temporal estimates are correct and the 355 

nuDNA substitution rate is overestimated. In the absence of fossils it remains virtually 356 

impossible to tease these two hypotheses apart. However, given that the biogeographic history 357 

of codistributed frog groups is mostly circumscribed to the Neogene and that previous works 358 

have identified large variations in mtDNA rates across frog lineages (Irissari et al., 2012), we 359 

estimated that the first hypothesis is the most likely.  360 

Consequently, we carried out a second phylogenetic analysis combining mtDNA and 361 

nuDNA, identical to our first analysis, but constraining the crown age of Pipa to the estimate 362 

obtained with nuDNA only (using the nuDNA 95% HPD interval as a uniform calibration 363 

prior). This additional analysis allowed us to estimate the average mtDNA rate within Pipa, 364 

conditional on a Neogene diversification of this genus, and to compare this rate with the rates 365 

found in other branches in the same tree, and with other studies (e.g., in two Neobatrachia 366 

groups Allobates (Réjaud et al., 2020) and Boana gr. albopunctata (Fouquet et al., 2021b) for 367 

which mitogenomic data were analysed in similar ways than for Pipa (i.e., using the same 368 

partitioning and secondary time calibration from phylogenomic studies of Feng et al., 2017 369 

and Hime et al., 2020). BEAST tree files were obtained from the authors. For each partition 370 
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and phylogenetic analysis, we calculated the average rate applying to a specific subtree (e.g., 371 

in Pipa, in African pipids, etc.) as the average of the branch-specific rates (we used a relaxed 372 

molecular clock with one rate per branch) across all the branches of the subtree, weighted by 373 

the lengths of the branches.  374 

 375 

2.7. Detecting changes in dN/dS 376 

Simulation studies have shown that analyses of selection coefficients are rather robust to 377 

sequence divergence (Yang, 2006) (as is the case in the present study), having been 378 

successfully used in various studies with highly divergent species (e.g., Buschiazzo et al., 379 

2012). In order to understand whether acceleration of evolutionary rates in Pipa is due to 380 

changes in selective pressure, we tested alternative models with different assumptions about 381 

ratios of non-synonymous/synonymous substitution rates (ω). The software PAML v.3.15 382 

(Yang, 1997) was used to estimate the likelihood and the ω values of different models derived 383 

from the topologies and sequence information from single-gene alignments with all codon 384 

positions, as well as the mt and nuclear nucleotide data sets. Branch lengths were first 385 

optimized for each data set assuming a single ω for the whole tree, and they were fixed when 386 

all other parameters were estimated under alternative models. The null model had a single ω 387 

value for all branches, and it was compared against four alternatives, which allowed a second 388 

ω value on (i) the stem branch of Pipa, (ii) all Pipa branches. All models were compared 389 

using the AIC. 390 

 391 

3. Results 392 

3.1. mtDNA-based species delimitation 393 
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The phylogenetic trees obtained from the ML and the Bayesian analyses of the 16S locus 394 

strongly supported Pipa as monophyletic as well as the existence of four major clades within 395 

the genus. Two of these clades (Pipa aspera/arrabali and Pipa pipa/snethlageae) are mainly 396 

Amazonian (Figure 1A), one occurs in the Atlantic Forest (Pipa carvalhoi) and one in Trans-397 

Andean regions (Pipa parva/myersi). Several deeply diverging lineages are also supported 398 

within Pipa pipa, Pipa carvalhoi and Pipa arrabali, indicating that the seven currently 399 

recognized species represent a vast underestimation of the actual species diversity within the 400 

genus (Figure 1A, S6). Pipa arrabali in particular is recovered paraphyletic with respect to 401 

Pipa aspera. 402 

Of the three species delimitation methods, mPTP was found to be the most 403 

conservative, delimiting 13 OTUs. With 14 delimited OTUs, ABGD resulted in a very similar 404 

partitioning. We kept the 12–17th partitions (P = 0.0092) based on two criteria: (i) they 405 

correspond to a plateau for group number, and (ii) it is close to the 1% arbitrary threshold of 406 

intraspecific divergence recognized in other vertebrate delimitation studies with the 16S locus 407 

(Puillandre et al., 2012). By contrast, GMYC delimited 21 OTUs (Figure 1A). Mean 408 

interspecific p distances among these OTUs reaches a minimum value of 1.6% between P. 409 

aspera and P. sp. “Guyana” and between P. parva and P. myersi and is below 3% in two 410 

more instances, between P. arrabali and P. sp. “South”, and between P. sp. “Negro” and P. 411 

sp. “Central” (Table S7). The consensus of the results obtained through the three methods led 412 

to the delimitation of 14 DNA-based OTUs (Figure 1A).  413 

 414 

3.2. nuDNA differentiation 415 

The relationships obtained using the four nuDNA loci are overall largely congruent with the 416 

mtDNA-based delimitation. For example, Pipa sp. “Central” is consistently recovered as 417 
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sharing no alleles with the other three OTUs related to P. pipa. These three OTUs delimited 418 

within Pipa pipa are also recovered as sharing no alleles in NCX1, but this case is more 419 

ambiguous since allele sharing is observed on the other loci. The groups delimited within P. 420 

carvalhoi are also differentiated on RAG1 and NCX1. The case of P. aspera and the 421 

populations from Guyana (assigned to P. arrabali) is noteworthy since these species are 422 

recovered as a single OTU based on mtDNA. However, they do not share any alleles on any 423 

nuDNA loci except RAG1. Considering their distinct morphology and their divergence on 424 

nuDNA loci we considered them as distinct, leading to 15 OTUs. 425 

 426 

3.3. Molecular dating 427 

We assigned the best-fit models suggested by the PartitionFinder analysis to each of the seven 428 

partitions. The two combined BEAST analyses of both the mtDNA and the nuDNA data led 429 

to all parameters having ESS > 2000. The resulting phylogenetic relationships are all highly 430 

supported in both the mtDNA and the nuDNA trees (posterior probability pp > 0.99) and 431 

completely congruent between the mtDNA and the nuDNA, except the position of Pipa sp. 432 

''Guyana'', which is supported as the sister species of P. aspera with mtDNA and as the sister 433 

species of the clade formed by P. arrabali and P. sp. ''South'' according to nuDNA. Pipa is 434 

structured in two major clades, one centered in the eastern part of its range (P. carvalhoi - 435 

Atlantic Forest; P. aspera, P. arrabali - Eastern Amazonia), and the other clade in the western 436 

part (P. myersi, P. parva - Trans-Andes and P. pipa, P. snethlageae - Amazonia; Figure 2).  437 

However, major differences are observed in the timing of divergence between the two 438 

trees. The crown age of Pipa is found to date back to ca. 85 Ma (76–94, 95% HPD) according 439 

to mtDNA (Figure 2A), but to ca. 18 Ma (14–22, 95% HPD), i.e., 4.7 times younger 440 

according to nuDNA (Figure 2B). Since these dates are largely incompatible, either the rates 441 
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of the mtDNA, the nuDNA, or both are erroneously estimated. In the absence of fossils 442 

branching along the Pipa stem, this question will remain contentious. Nevertheless, the 443 

mtDNA rates are notoriously more subject to underestimation by BEAST notably for ancient 444 

periods (Molak and Ho, 2015) as it could be the case for Pipa. Therefore, we considered an 445 

additional analysis based on the crown age obtained from the analysis of nuDNA (see below) 446 

and favoured the relationships and temporal estimates of the nuDNA analysis hereafter.  447 

 448 

3.4. Rates shifts  449 

The posterior distributions of the rates of each mtDNA partition analysed alone and with the 450 

three old priors (Cretaceous) is relatively stable across the tree i.e., among African pipids and 451 

for the stem and the crown for Pipa (Figure 3). The only notable exception is the high rate of 452 

the stem of Pipa for pos2 using Cretaceous calibrations compared to the ones of other 453 

branches, while this rate is similar in other partitions. Moreover, when adding the Neogene 454 

prior on the crown age of Pipa (based on the results with nuDNA), the rates were found to be, 455 

for all partitions, about four times higher in crown Pipa, and half as high in the stem, as 456 

compared to the analysis without the Neogene prior. The rate in African pipids was similar in 457 

both analyses. The rates estimated in Allobates and Boana are comparable (although slightly 458 

higher) to the rates we estimated in crown Pipa with the Neogene prior, except for pos 3 459 

(Figure 3). The rates of the nuDNA partitions were similar across branches (Supplementary 460 

figure S9).  461 

 462 

3.5. Changes in dN/dS  463 
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We compared a model with ω constant across the whole tree (single-ω model) with a “three-ω 464 

model” assuming independent ω values in (1) the stem branch of Pipa, (2) the branches 465 

within the crown of Pipa and (3) in other branches of the tree. The ω value estimated with the 466 

single-ω model was well below 1 for all different mt and nuclear genes (0.012–0.194) (Table 467 

1), indicating the action of purifying selection to maintain gene function (Castallena et al. 468 

2011).  469 

With the three-ω model, for all individual mt genes (except atp8 but consists of a short 470 

159 bp locus), ω was always estimated to be higher (ca. X2) in the stem branch of Pipa than 471 

within crown Pipa, or in the other Pipoidea branches (Table 1). The ω estimate for stem Pipa 472 

was also about twice higher than the overall rate estimated with the single-ω model (Table 1). 473 

The three-ω model significantly outperformed (ΔAIC < 2) the single-ω model for seven genes 474 

(cob, nad1, nad2, nad3, nad4, nad4L, nad5), and the single-ω model significantly 475 

outperformed the three-ω model for two genes (atp8 and cox1), as shown in Table 1. When all 476 

mitochondrial genes were considered jointly, the three-ω model was favoured 477 

overwhelmingly (ΔAIC = 124, Table 1). For nuclear genes (h3a having been excluded given 478 

this locus was short - 288 bp - and only represented by six terminals including a single Pipa), 479 

the three-ω model never significantly outperformed (ΔAIC < 2) the single-ω model, and the 480 

single-ω model was best for four genes (bdnf, rag2, rho and slc8a3), see Table 1.  481 

Overall, our results suggest a relaxation of the purifying selection acting on mtDNA in 482 

Pipa which could be responsible, at least in part, for the general acceleration of the mtDNA 483 

substitution rates in Pipa. It is important to note that results derived from the comparison of 484 

different selection regimes should be taken with caution, because the analyzed sequences are 485 

highly divergent and silent substitutions might be saturated, thus compromising the correct 486 

estimation of ω values (Yang 2006). 487 
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 488 

3.6. Biogeography, reproductive mode evolution and teeth loss  489 

Pipa diversified throughout the Neogene with two concomitant splits ca. 13 Ma between 490 

Amazonia and the Atlantic Forest and between Amazonia and Trans-Andes. Subsequent 491 

diversification within Pipa is circumscribed to the Pliocene and Pleistocene i.e., <5 Ma. 492 

Inference of ancestral areas using BioGeoBEARS equally favored the DEC and DEC+J 493 

models (Table S8) and provided very ambiguous results for the early diversification events 494 

within Pipa. Nevertheless, when the three amazonian areas are considered combined an 495 

amazonian origin is supported for the genus and for the two major clades. Concerning the 496 

clade (P. pipa/P. snethlageae) the combined probabilities suggest rather a western Amazonian 497 

origin and a recent (Middle Pleistocene) dispersal to the Guiana Shield. In the opposite 498 

direction but concomitantly, a dispersal from the Guiana Shield toward the Brazilian Shield is 499 

suggested for the clade (P. aspera/P. arrabali). 500 

  Endotrophy has either evolved independently in the two Amazonian clades (the 501 

“macropipa” and the P. arrabali/P. aspera clades) or has been acquired ancestrally and 502 

independently lost in the Atlantic Forest and the Trans-Andean clades. Maxillary teeth 503 

havebeen lost once during the early Miocene in the western clade formed by “macropipa” and 504 

the Trans-Andean clade 505 

 506 

4. Discussion 507 

Our results shed a new light on species diversity, phylogenetic relationships, divergence time, 508 

biogeography and the evolution of edentulism and of reproductive mode in the genus Pipa. 509 

Our comparative results on mt and nuDNA also strikingly exemplify how molecular dating 510 
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based on single locus (even though full mitogenomes) could lead to spurious time estimates 511 

when substitution rates vary drastically along long branches and no fossils are available along 512 

these long branches.  513 

 514 

4.1. Species diversity 515 

Almost all of the studies that have explored the question of how many species exist within 516 

particular amphibian clades in the Neotropics have uncovered high numbers of candidate 517 

species. Most oftenthese cases correspond to populations that were previously considered to 518 

belong to species with wide distributions (e.g., Fouquet et al., 2014; 2021a,b; Gehara et al., 519 

2014; Carvalho et al., 2021; Vacher et al., 2020). This situation is also exemplified in our 520 

results for Pipa, with a possible 2.1 times increase in species diversity (15 instead of seven) 521 

since eight OTUs possibly correspond to unnamed species (or taxa requiring revalidation such 522 

as Pipa laevis Cuvier, 1831 from the Rio Negro), in addition to the seven species already 523 

described. This figure is not surprising and even lower than what has been found in many 524 

other codistributed clades. Among these nine candidate species, most are supported as distinct 525 

by nuDNA, however the situation remains ambiguous between some closely related pairs 526 

such as P. arrabali vs. P. sp “South”; P. pipa vs. P. sp. “WGU” and P. sp. “WAM”; P. 527 

carvalhoi vs P. sp. “Nordeste” and P. sp. “Central” vs P. sp. “Negro”, i.e., could represent 528 

false positives, either because allele sharing suggests conspecificity or simply because of the 529 

absence of data. The cases of P. carvalhoi, P. sp. “ES” and P. sp. “Nordeste” were already 530 

documented by Lima et al. (2020) who found little morphological, but clear chromosomal 531 

differences. Interestingly, interspecific genetic distances on 16S among closely related OTUs 532 

are lower than 3% in four instances (Table S7) notably between P. aspera and P. sp. 533 

“Guyana” (1.6%) and between P. parva and P. myersi (1.6%). This 3% threshold in 16S 534 
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rDNA distances has frequently been suggested to be indicative of candidate species in 535 

anurans (Fouquet et al., 2007; Vieites et al., 2009). Nonetheless, these two pairs are 536 

phenotypically distinct (Trueb, 1984; Trueb and Cannatella, 1986), and congruent nuDNA 537 

divergences are recovered, thus confirming their status as distinct species. Pipa aspera and P. 538 

sp. “Guyana” illustrate a case of a false negative since mtDNA-based species delimitation 539 

actually failed to distinguish them. The use of single genetic marker distance criteria may 540 

inherently result in a proportion of false negatives and false positives using short mtDNA 541 

locus and should only be used as a preliminary approximation of species boundaries and with 542 

the necessary precaution in species delimitation. Here more data are needed, notably spatial 543 

sampling, morphology and bioacoustics, and we once more advocate the pertinence of 544 

integrative approaches that combine both genetic and phenotypic data (Padial et al., 2010).  545 

Our results also highlight that the recognized species’ geographic ranges of Pipa pipa 546 

(possibly limited to Eastern Amazonia), P. arrabali (possibly limited to the northern part of 547 

the Madeira-Tapajos interfluvium) and P. carvalhoi (possibly limited to the Brazilian states of 548 

Bahia, Pernambuco and Alagoas) may be much more restricted than currently admitted. 549 

Moreover, it is likely that additional species remain unsampled, notably in southeastern 550 

Amazonia where records of P. arrabali not included in this study have been documented 551 

(e.g., Garda et al., 2006 from Serra do Cachimbo, Para; da Silva et al., 2020 in Tocantins; 552 

Pinheiro et al., 2012 from Carajas, Para), and in the Orinoco basin where two species of 553 

“macropipa” not included here may occur (Acosta-Galvis et al., 2016). The extent of these 554 

basic knowledge gaps for such a charismatic group of frogs is particularly striking and 555 

exemplifies the logistical challenges associated with undertaking fieldwork in remote 556 

Amazonian regions. Nevertheless, even considering 15 candidate species, Pipa remains a 557 

relatively poorly diversified clade as compared to most codistributed clades of terrestrial frogs 558 

(e.g., Réjaud et al., 2020) that also diversified throughout the Neogene.  559 
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 560 

4.2. Acceleration of mtDNA substitution rate in Pipa 561 

Due to their small size, lack of recombination, rapid evolution rate, conserved gene content 562 

and genomic organization, and maternal inheritance, mitogenomes have been commonly used 563 

for analyzing phylogenetic relationships and divergence time (Igawa et al., 2008; Zhang et al., 564 

2021). Although mitogenomes are usually thought to be under neutral or nearly neutral 565 

selection, evidence has accumulated for positive selection associated with environmental 566 

adaptations acting on mitochondrial genes (Carapelli et al., 2019; Shen et al., 2010). When 567 

shifts in selective forces occur in groups with long branches, along which no other constraints 568 

are available, this could lead to important bias in estimating these rates and divergence times. 569 

Here we hypothesize that an acceleration of the substitution rate of mtDNA in Pipa 570 

relative to other pipoids largely explains incongruences across temporal estimates. This 571 

scenario is probable since (1) deviation of ω values is detected on all mtDNA genes, not only 572 

on a few genes which could have indicated positive selection on particular mt loci; (2) 573 

biogeography of codistributed group such as Allobates, Amazophrynella, Adenomera, 574 

Pristimantis, Chiasmocleis for instance display many topological and temporal similarities 575 

with Pipa when considering the nuDNA analysis, implying a mtDNA rate ca. four times 576 

higher than in other pipids, which still remains lower than in Neobatrachia; (3) Irisarri et al. 577 

(2012) already observed this pattern when comparing mt and nuDNA molecular evolution in 578 

anurans.  579 

Irissari et al. (2012) hypothesised that relaxed purifying selection on mtDNA may at 580 

least partly explain the acceleration of mtDNA rates observed in Neobatrachia and discussed 581 

a number of possible reasons for such changes, notably in life history traits. In Pipa, the 582 

acquisition of skin incubation of the eggs and/or endotrophic development in the two 583 
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amazonian clades could be related to that acceleration of substitution rates, although the 584 

precise causality remains totally speculative. Nevertheless, relaxed purifying selection on 585 

mtDNA has been hypothesized in other groups, such as in salamanders, concomitantly with 586 

the acquisition of direct development (Kakehashi and Kurabayashi, 2021). However, a 587 

somewhat more trivial, but not mutually exclusive, hypothesis may explain the observed 588 

variation in dN/dS ratio: the synonymous substitution saturation effect (i.e., several 589 

substitutions occurring sequentially at the same site on the same branch of the phylogenetic 590 

tree). This bias may particularly affect dN/dS estimation on very long branches, since dN/dS 591 

increases with saturation (Cannarozzi and Schneider, 2012). In other words, saturation leads 592 

to underestimate dS for ancient time periods because saturation is reached faster on sites that 593 

have higher substitution rates (e.g., pos1 and pos3) and thus the relative amount of dN (e.g., 594 

pos2) is artificially overestimated. This phenomenon is actually observable on Figure 3, in 595 

which the rate of the stem of Pipa of pos2 using Cretaceous calibrations is the highest. 596 

Consequently, the analysis via BEAST cannot correctly estimate mtDNA substitutions rates 597 

on the long stem of Pipa and overestimates the divergence time. This may also have been the 598 

case in Neobatrachia (Irissarri et al., 2012) and relaxed purifying selection may in fact not be 599 

the main process explaining the acceleration of mtDNA rates. Ancient divergence times (50–600 

100 Ma) may simply be too old to be estimated using mitogenomes of lineages with rapid 601 

substitution rates such as Pipa, in the absence of fossil constraints from the Tertiary allowing 602 

substitution rates to be bounded. 603 

 604 

4.3. Phylogeographic patterns in Amazonian Pipa 605 

Within the Pipa pipa/snethlageae clade, the biogeographic analysis suggests a western 606 

Amazonian origin that is driven by the fact that early diverging lineages occur in western 607 
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Amazonia and in the Negro River. This western origin is expected given the ecology of these 608 

species tightly linked to large bodies of water that are currently widespread in the seasonal 609 

floodplains of the region, contrary to the Guiana and the Brazilian Shields. Moreover, the 610 

historic presence of large lacustrine systems (Acre and Pebas systems; see Hoorn et al., 2010) 611 

in western Amazonia and the increasing eastward expansion of the flooded ecosystems since 612 

late Pleistocene (Aleixo and Rossetti, 2007, Bicudo et al., 2019) also support that hypothesis. 613 

However, the existence of five OTUs recovered within what has been so far considered as P. 614 

pipa is more surprising since it suggests limited connectivity across main amazonian 615 

tributaries whereas one would expect these large aquatic frogs to efficiently disperse along the 616 

vast hydrological network of the Amazon basin. In fact, there is an apparent paradox in P. 617 

pipa because it does display a shallow genetic structure throughout eastern Amazonia (Purus, 618 

Madeira, Tapajos, Xingu), but also including the easternmost part of the Guiana Shield (from 619 

Amapa, Brazil, to a western limit in the Suriname River in Suriname), while distinct lineages 620 

occupy western Amazonia (P. sp. “WAM”) and the Negro River (P. sp. “Negro” and P. sp. 621 

“Central”). The rivers of the Guiana Shield are not directly connected to the Amazon basin 622 

(although recent connection through the Rio Branco existed; de Souza et al., 2020) but the 623 

rivers of western Amazonia and the Negro River are. This pattern, along with the existence of 624 

two diverging lineages along the Negro river, is particularly noteworthy since spatially similar 625 

genetic structures are observed in fish (Piranhas: Hubert et al., 2007), in Chelus fimbriata 626 

(Vargas-Ramirez et al., 2020), with which Pipa pipa may actually be ecologically closer than 627 

to other frogs; but also in birds associated with flooded forests (Thom et al., 2020). Therefore, 628 

we can hypothesize that this pattern originates from either historical or ecological processes. 629 

Avulsion between the Japura and the course of the lower Negro river during Pleistocene 630 

(Ruokolainen et al., 2018) may explain this pattern; i.e., with ancient barriers that no longer 631 

exist; but also major paleo-mega-wetlands that were scattered in Amazonia during late 632 

Cross-Out

Replacement Text
that

Inserted Text
are 

Cross-Out

Replacement Text
 but absent from

Cross-Out

Cross-Out

Replacement Text
A

Inserted Text
 the

Inserted Text
,

Cross-Out

Inserted Text
efficiently

Inserted Text
,

Cross-Out

Replacement Text
R

Inserted Text
and 

Cross-Out

Replacement Text
to

Cross-Out

Replacement Text
R

Cross-Out

Replacement Text
:

Cross-Out

Replacement Text
,



 2
7

 

Neogene (Albert et al., 2018). Currently the strong ecological differences between the main 633 

types of floodplains (white waters in western Amazonia vs. black waters of the Negro, Cooke 634 

et al., 2014; Beheregaray et al., 2015; Oliveira et al., 2019) may also play a role in 635 

maintaining ecological isolation of the Rio Negro populations from the rest of the Amazon 636 

basin. Nevertheless, the nuDNA only support these difference for the Negro River OTUs and 637 

caution should be taken given that the genetic structure observed on mtDNA may not be a 638 

reliable proxy of contemporaneous lack of interconnectivity among populations. Therefore, 639 

more spatial and genomic data are needed to investigate at finer scale the phylogeography 640 

within Pipa pipa. 641 

In contrast, the genetic structure in the P. aspera/arrabali clade was expected to be 642 

more pronounced than within Pipa pipa since these species are associated with smaller water 643 

bodies in terra firme forest of the Brazilian and the Guiana Shields. However, even if a 644 

marked genetic structure exists, divergences remain relatively low among these lineages and 645 

even across the Amazon River. Nevertheless, the distribution of the different OTUs is more 646 

similar to the one found in terrestrial anurans i.e., distribution breaks matching major 647 

Amazonian tributaries and bisecting the Guiana Shield (Vacher et al., 2020). Interestingly, we 648 

recovered a mtDNA/nuDNA topological incongruence in the Pipa aspera/arrabali clade with 649 

the Brazilian Shield OTUs being nested within Guiana Shield ones according to nuDNA vs. 650 

forming two subclades according to mtDNA. These topological differences suggest either (1) 651 

introgression with mtDNA capture among GS lineages after the dispersal of P. arrabali from 652 

the GS or (2) introgression between BS and Guyana populations after dispersal from the BS, 653 

or (3) different coalescent gene histories. The origin of the group in the Guiana Shield was 654 

supported by the biogeographic analysis and the lower diversity among Brazilian Shield 655 

populations on the different nuDNA loci supports the first hypothesis. However, both 656 

topologies imply trans-amazon dispersals, nuDNA suggesting relatively a recent event (<1.4 657 
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Ma) when the transcontinental Amazon river was already established which is surprising 658 

given the ecology of the species.  659 

 660 

4.4. Biogeography 661 

The geographic center of diversification of most Neotropical groups remains difficult to infer 662 

not only because of putative extinctions but also because subsequent dispersals and intense 663 

landscape dynamics reshuffled the spatial distribution of organisms throughout the Cenozoic 664 

(e.g. Antonelli et al., 2018). Consequently, our ability to investigate the spatial origins of focal 665 

groups is usually restricted to more recent periods (Smith et al., 2014; Marques Silva et al., 666 

2019; Cracraft et al., 2020). The case of Pipa is no different, with little signal for the early 667 

ancestral range of the main groups. Nevertheless, since (1) two of the main Pipa lineages 668 

occupy Amazonia and that they possibly originated in the eastern (P. aspera/P. arrabali) and 669 

the western portions (P. pipa/P. snethlageae) of that region, and that (2) their respective sister 670 

groups occupies the Atlantic Forest (P. carvalhoi) on the east and the Trans-Andean region 671 

(P. myersi/P. parva) on the west, a likely scenario consists of an Amazonian origin (14–22 672 

Ma) and subsequent dispersal/vicariance some 12–13 Ma towards neighbouring regions. Such 673 

a scenario seems particularly plausible since several co-occurring amphibians have similar 674 

trajectories with amazonian origin dating back to the early Neogene also displaying an east-675 

west pattern in Amazonia as well as concomitant dispersal/vicariance with Atlantic Forest and 676 

Trans-Andean regions (see below).  677 

The main split in Pipa separates an eastern Amazonia and the Atlantic Forest clade 678 

from a panamazonian (with a likely western Amazonian origin see above) and a Trans-679 

Andean clades. This East-West split dating back to early Neogene (14–22 Ma) coincides with 680 

the Pebas system, a large freshwater system initially connected to the Caribbean Sea, that may 681 
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have covered a surface of up to 13% of current Amazonia (800,000 km²; Albert et al., 2018). 682 

The Pebas system supposedly formed during the early Miocene (23 Mya) and occupied most 683 

of the Western Amazonian lowlands until around 10–9 Ma, when this system was 684 

progressively drained eastward into the Atlantic Ocean and transitioned into the modern 685 

Amazon watershed (Albert et al., 2018; Hoorn et al., 2017). Recent advances in Amazonian 686 

biogeography of amphibians (Rojas et al., 2018; Réjaud et al. 2020; de Carvalho et al., 2021; 687 

Fouquet et al. 2021a,b) and also other groups of terrestrial vertebrates recovered this east-west 688 

pattern within Amazonia. Interestingly, the edantate species of Pipa correspond to this 689 

western clade which suggests a single loss, a much simpler scenario than what was 690 

hypothesised by Trueb and Cannatella (1986). The origin of edentulism in this group of Pipa 691 

remains highly speculative but may be linked with feeding habits in an ancestral habitat in a 692 

large lacustrine system. How these frogs actually feed has been investigated by Fernadez et al. 693 

(2017) and Cundall et al. (2017) but only in P. pipa. A comparison between edantate and 694 

dantate species may provide some insights about the evolution of feeding habits. 695 

The Andes represent a formidable barrier to dispersal between Amazonia and the 696 

Trans-Andean region. The Andean orogeny has been an ongoing process over the last 40 Ma 697 

punctuated by several intensive phases notably 12 Ma (Mora et al., 2010; Hoorn et al., 2010). 698 

The 12–13 Ma dispersal vicariance between Amazonia and the Trans-Andean region in Pipa 699 

coincides with this middle Miocene phase of orogeny. Moreover, similar Trans-Andean 700 

events occurred in other forestrial groups such as Allobates (Réjaud et al., 2020), 701 

Engystomops (Funk et al., 2012) and several lineages of Dendrobatidae (Santos et al., 2009), 702 

Dendropsophus (Pirani et al., 2020) and Pristimantis (Mendoza et al., 2015). Conversely, in 703 

amphibian taxa with higher dispersal abilities, notably having frequently adapted to altitude, 704 

such as glassfrogs or toads, some species have been isolated by the Andes (Bessa-Silva et al., 705 

2020; Castroviejo-Fisher et al., 2014), while other species even display a cross-Andean 706 
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distribution (e.g. Boana boans, Caminer and Ron, 2020; Cochranella resplendens; Molina-707 

Zuluaga et al., 2017). Given that Pipa spp. are exclusively found in lowlands, we hypothesize 708 

that the Andes acted as a barrier to dispersal 12 Ma onward since the intense orogeny phase. 709 

Similarly, the savannas of the Cerrado that today separates Amazonia and the Atlantic 710 

Forest represent a barrier for most forest amphibians. Middle Miocene divergence appears 711 

relatively concomitant with those other Neotropical frog and lizard complexes occurring in 712 

both regions (Adenomera: Fouquet et al., 2014; Adelophryne: Fouquet et al., 2012a; 713 

Dendropsophus: Pirani et al., 2020; Leposoma: Pellegrino et al., 2011), as well as birds 714 

(Batalha-Filho et al., 2013). The occurrence of successive dispersal routes between Amazonia 715 

and the Atlantic Forest has been largely recognized since this pattern has been recovered for 716 

frogs and other vertebrates (Ledo and Colli, 2017). However, both timing and approximate 717 

location of these connections remain largely debated. Nevertheless, there is little doubt that 718 

recurrent phases of forest extension have allowed recurrent connectivity and exchanges of 719 

fauna between these forests notably during the Miocene. The Middle Miocene Climatic 720 

Optimum (MMCO) (17–15 Ma) was a warm and wet period followed by periods of stronger 721 

seasonality associated with open vegetation expansion (Steinthorsdottir et al., 2021). Such 722 

environmental changes may have isolated forest-adapted species. Batalha-Filho et al. (2013) 723 

hypothesized a southern pathway between these biomes during the middle Miocene (Por, 724 

1992; Costa, 2003). Widespread vegetation opening is documented subsequent to the MMCO 725 

(Flower & Kennett, 1994) with drastic climatic changes linked to major uplift of the Andes 726 

(Hoorn et al., 2010) and sea-current modifications (Herold et al., 2009; Le Roux, 2011).  727 

The Pipa species with endotrophic development, which correspond to the two 728 

amazonian clades, are thus paraphyletic. Furness and Capellini (2019) demonstrated that 729 

complex parental investment such as brooding and “viviparity” are very unlikely to undergo 730 

reversals. Therefore, assuming that skin incubation predates endotrophic development, this 731 
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implies two independent acquisitions of endotrophy: one in macropipa and one in the eastern 732 

amazonian P. aspera/arrabali clade. The fact that endotrophy was probably acquired twice 733 

only in Amazonia may not be a simple coincidence but implying any causality, such as more 734 

stable climatic conditions in Amazonia providing long suitable periods for incubation or 735 

stronger selective pressure from predators remains highly speculative. Moreover, some 736 

reversals from endotrophy to exotrophy have been documented in Anomalogossus (Vacher et 737 

al., 2017), and in Adenomera (Fouquet et al., 2014) and since the reproductive mode of many 738 

species remain undocumented, the occurrence of endotrophy-exotrophy shifts may have in 739 

fact be more common than currently considered. Given that there are only two pairs of 740 

lineages with both modalities in Pipa, reversals from endotrophy to exotrophy in the Atlantic 741 

Forest and Trans-Andes clades remain thus plausible.  742 

 743 

5. Conclusion 744 

These findings shed new light on the diversity, genomic evolution, historical biogeography 745 

and the evolution of morphology and reproductive mode in Pipa. Much still remains to be 746 

investigated on each of these aspects, notably improving the sampling in Amazonia and 747 

combining morphology and bioacoustic with molecular data to delimit species and describe 748 

the actual diversity in the genus. Our understanding of the biogeography and the 749 

morphological evolution of Pipa also harbor large gaps that fossils from Amazonia (Antoine 750 

et al., 2021) and microtomography could help to fill. We hope that this work will foster these  751 
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Table 1 1173 

Results from the CodeML analyses for each locus and mitochondrial and nuclear loci 1174 

combined. The highest ω values are in red and values in bold indicate models significantly 1175 

outperforming the others according to the AIC. 1176 

 1177 

Fig. 1. (A) Maximum Likelihood phylogenetic tree obtained from the analysis of 115 1178 

sequences of 16S (595 bp) of Pipa. Bootstraps > 50 % are indicated on the left side of the 1179 

nodes and depicted with * when >99%. For sake of clarity, terminal branches are collapsed 1180 

according to the results of the DNA-based species delimitation (ABGD, mPTP, GMYC) 1181 

(complete tree given in Supplementary figure S6). Congruence across DNA-based species 1182 

delimitation methods and with nuDNA neworks (absence of allele sharing) is illustrated by 1183 

the use of colored columns on the right. Absence of available data for a given lineage is 1184 

indicated with “NA”. (B) Maps of northern South America showing the distribution of the 1185 

sampled material color-coded as in the ML tree according to the species delimitation. (C) 1186 

Median Joining networks based on four loci (NCX1 being divided in two, because parts of the 1187 

individual sequences mostly overlapped either on 3’ or the 5’ ends) with corresponding colour 1188 

code. 1189 

 1190 

Fig. 2. Maximum clade credibility chronogram inferred in BEAST 2 based on (A) 1191 

mitogenomic and (B) nuDNA, and (C) ancestral areas for Pipa inferred in BioGeoBEARS 1192 

under the DEC model (results of the DEC+J model are available in Supplementary table S8). 1193 

Nodes with maximum posterior probability are indicated with an asterisk under the branches. 1194 

Calibrated nodes are indicated with a red circle. Node bars indicate the 95 % highest posterior 1195 

distribution of node dates. Colored circles on the tips of the tree indicate the geographical 1196 

distribution of sampled OTUs. Pie charts on nodes show the proportion of most likely 1197 

Inserted Text
are 

Inserted Text
Tests for constancy in the ratio ω of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site among branches in the tree. Values of ω are presented for the tree as a whole (null), branches outside Pipa (non-Pipa), branches within Pipa (Pipa crown) and the most recent common ancestral branch of Pipa (Pipa stem).

Inserted Text
 Values of ω well below 1, as recovered here, indicate strong natural selection for conserving the amino acid sequence of the encoded protein. 
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ancestral areas. Colors of node pie charts correspond to the geographic areas shown in the 1198 

map. Changes in teeth, body size and larval development states are indicated with red bars. 1199 

 1200 

Fig. 3. Comparison among posterior distributions, depicted as mustache plots, of the rates 1201 

across the four mtDNA partitions either when mtDNA is analysed with calibrations dating 1202 

back to the Cretaceous or when a Neogene calibration for the Pipa crown age is added (from 1203 

nuDNA results). “Pipa” includes both “crown” and “stem”. Comparative rates for two groups 1204 

of Neobatrachia (Allobates and Boana are also depicted for comparative purposes). 1205 

 1206 

Sticky Note
Comment briefly in the figure legend on the large discrepancy in divergence times between parts A and B, and how this is to be interpreted.

Inserted Text
(ribosomal genes, three codon positions for combined protein-coding genes)

Sticky Note
Identify the units of calibration of the Y axis. 
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Genes 

Single-ω model 

(null) 

Three-ω model 

Delta AIC 

null 
Delta AIC  

three-ω model non Pipa Pipa crown Pipa stem 

atp6 0.07458 0.06117 0.08291 0.13577 1.55 0.00 

atp8 0.16524 0.16417 0.17029 0.12765 0.00 3.79 

cob 0.05246 0.05421 0.04754 0.16684 6.74 0.00 

cox1 0.01312 0.0131 0.0125 0.0272 0.00 2.25 

cox2 0.03999 0.04029 0.03716 0.08989 0.00 0.81 

cox3 0.03549 0.0322 0.03547 0.11395 0.78 0.00 

nad1 0.07213 0.083716 0.061665 0.168248 6.39 0.00 

nad2 0.1235 0.14276 0.10034 0.2643 20.46 0.00 

nad3 0.1159 0.14233 0.0899 0.21379 3.84 0.00 

nad4 0.09141 0.08673 0.08854 0.21757 9.24 0.00 

nad4L 0.09169 0.11485 0.06896 0.12563 2.43 0.00 

nad5 0.09683 0.10923 0.08168 0.20561 23.26 0.00 

nad6 0.13259 0.15081 0.11618 0.15133 0.00 0.42 

all mt prot-

cod genes 0.08258 0.09028 0.07151 0.19111 123.86 0.00 

bdnf 0.0518 0.05395 0.01992 0.06853 0.00 2.63 

cxcr4 0.05564 0.04489 0.10037 0.07888 0.85 0.00 

pomc 0.13991 0.15623 0.07654 0.10665 0.00 0.12 

ncx1 0.04037 0.03954 0.06772 0.0263 0.00 1.35 

rag1 0.08992 0.08365 0.12903 0.07478 0.52 0.00 

rag2 0.1939 0.20566 0.13296 0.16237 0.00 2.46 

rho 0.09248 0.0968 0.12761 0.04355 0.00 2.50 

slc8a3 0.03126 0.02816 0.03978 0.04252 0.00 3.11 

tyr 0.15588 0.12673 0.2416 0.18597 0.33 0.00 

all nuclear 

genes 0.09206 0.08986 0.11794 0.08305 1.66 0.00 
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