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Research Article

Diversification of the Pristimantis conspicillatus group (Anura:
Craugastoridae) within distinct neotropical areas throughout
the neogene
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Determining the relative importance of dispersal and vicariance events across neotropical regions is a major goal in
biogeography. These events are thought to be related to important landscape changes, notably the transition of
Amazonia toward its modern hydrological configuration ca. 10 million years ago. We investigated the spatio-temporal
context of the diversification of one of the major lineages of Pristimantis, a widespread and large genus of direct-
developing Neotropical frogs. We gathered a spatially and taxonomically extensive sampling of mitochondrial DNA
sequences from 754 Pristimantis gr. conspicillatus specimens, which led to delimiting 75 Operational Taxonomic Units
(OTUs). Complete mitogenomes of 35 of these OTUs were assembled and collated with two nuDNA loci to reconstruct
a time-calibrated phylogeny. We identified five major clades that diverged around the Oligocene-Miocene transition and
that are largely restricted to distinct Neotropical regions i.e. Western Amazonia (P. conspicillatus clade), the Brazilian
Shield (P. fenestratus clade), the Atlantic Forest (P. ramagii clade), the Guiana Shield (P. vilarsi clade) and the
northern Andes (P. nicefori clade). The majority of the diversification events within these clades occurred in-situ from
the early Miocene onward. Yet, a few ancient dispersal/vicariance events are inferred to have occurred among trans-
Andean forests, the Atlantic Forest, the Brazilian and the Guiana Shields, but almost none in the last 10Ma. The radical
landscape transformations during the Miocene caused by the Andean orogeny and hydrological barriers such as the
Pebas System and the subsequent transcontinental configuration of the Amazon drainage is a likely explanation for the
isolation of the different clades within the P. gr. conspicillatus.

Key words: historical biogeography, miocene, mitogenomics, Pebas, species delimitation

Introduction
Amazonia is thought to be a major source of diversity
for the remaining Neotropical regions (e.g. Antonelli
et al., 2018a; Musher et al., 2019). However, counterex-
amples abound, with many Amazonian lineages having
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dispersed from the Andes (e.g. Santos et al., 2009;
Antonelli et al., 2009; Mendoza et al., 2015), the
Pantepui region (e.g. Marques-Souza et al., 2018;
Fouquet et al., 2021) and others dispersed more recently
from the Atlantic Forest (e.g. Batalha-Filho et al., 2013;
Dal Vechio et al., 2018; Prates et al., 2018). These
examples suggest that the role of Amazonia as a source
of biodiversity for the rest of the Neotropics veils a far
more complex evolutionary history, notably lineage and
time-period dependent.
The Andes currently act as a barrier to dispersal, iso-

lating Amazonian populations to that of the Pacific coast
moist forests such as the Choc�o (trans-Andean Forest).
Yet, the Andean uplift was a protracted process that
propagated from South to North and was punctuated by
several intensive phases, notably around 12 and 4.5Ma
(Boschman, 2021). The consequence of this gradual pro-
cess is exemplified on the biogeography of some low-
land species that display an ancient divergence dating
back to the early Neogene. In frogs, for instance, such
examples of ancient divergences are found in the genera
Allobates (R�ejaud et al., 2020), Engystomops (Funk
et al., 2012), Dendropsophus (Pirani et al., 2020) and
Pristimantis (Mendoza et al., 2015), while other exam-
ples displaying much more recent divergences have also
been documented (see Guarnizo et al., 2015).
The uplift of the Andes also had an indirect role in

the patterns of Amazonian diversification, by promoting
novel habitats and complex hydrological changes during
the Neogene (Hoorn et al., 2010). These changes were
spatially heterogeneous, with a relative stability in
Eastern Amazonia’s cratons, while Western Amazonian
landscapes were heavily transformed (Shephard et al.,
2010). The hydrology of the nearby lowlands was heav-
ily transformed. The Pebas System, a large mega-wet-
land, drained to the Caribbean Sea occupied most of
Western Amazonia between around 23 and 10Ma, and
then transitioned to the modern transcontinental drainage
toward the Atlantic Ocean (Figueiredo et al., 2009;
Hoorn et al., 2010; Hoorn et al., 2017; Hoorn et al.,
2022). Subsequently, during the Pliocene and the
Pleistocene, additional hydrological events such as river
captures reshaped the Western Amazonian landscape
(Albert et al., 2018). Pleistocene climatic fluctuations
also have impacted the Eastern cratons of Amazonia
(Fouquet et al., 2012a) but also patterns of land cover
within the ‘dry diagonal’ (Cheng et al., 2013), a region
currently characterized by a dominance of open vegeta-
tion biomes considered a barrier to forest species migra-
tion between Amazonia and the Atlantic Forest
(Batalha-Filho et al., 2013; Mori et al., 1981). Many
genera or even families of vertebrates are endemic to
Amazonia or to the Atlantic Forest, and only a few

species groups occur in both. These species groups have
likely dispersed during the late Tertiary or Quaternary,
favored by recent forest expansion and climatic fluctua-
tions (Ledo & Colli, 2017). However, ancient (>20Ma)
dispersals from Amazonia toward the Atlantic Forest
have also been hypothesized, notably in anuran groups
(Fouquet et al., 2012b, Fouquet et al., 2012c, R�ejaud
et al., 2020).
Frogs generally have reduced dispersal abilities and

strong association with specific microhabitats (Zeisset &
Beebee, 2008) leading to small distribution ranges,
therefore it is assumed that their diversification has been
influenced by historical climatic and landscape changes.
This is the case of Pristimantis species which are direct-
developing frogs that generally require narrow biocli-
matic conditions, and occur in terra firme forests across
small geographical ranges (Rivera-Correa et al., 2016).
The diversification of the frog genus Pristimantis
(Anura: Craugastoridae) seems to mirror the one of
some other frog groups, notably the well-studied den-
drobatids (Santos et al., 2009) that started to diversify
along the Andes and Western Amazonia (Canedo &
Haddad, 2012; Mendoza et al., 2015; Rivera-Correa
et al., 2016; Waddell et al., 2018). However, the extant
diversity of Pristimantis remains under-documented
(e.g. P�aez & Ron, 2019; Vacher et al., 2020), and con-
sequently so is its evolutionary history. This genus is
the largest among vertebrates, with 588 recognized spe-
cies (Frost, 2022) distributed throughout the Neotropics
and divided into 11 currently defined species groups
(Padial et al., 2014). One of them, the Pristimantis gr.
conspicillatus, encompasses 47 currently recognized
taxa occurring mainly at low and mid elevation in
Amazonia but also in the Andes, the Atlantic Forest, the
Dry Diagonal (Cerrado) and the trans-Andean forests
(Choco, Central America) (Padial et al., 2014 updated
from recent species descriptions: Padial et al., 2016; de
Oliveira et al., 2020; Taucce et al., 2020; Acosta-Galvis
et al., 2020; Acevedo et al., 2020; K€ohler et al., 2022;
Roberto et al., 2022 and preliminary results,
Supplemental Appendix 1). The species richness of this
species group seems particularly high in Western
Amazonia notably along the Andean foothills. However,
the actual number of species probably remains vastly
underestimated, as suggested by recent studies (e.g.
Taucce et al., 2020; Vacher et al., 2020). Given that
early branching lineages might be missing, phylogenetic
relationships remain speculative and so do divergence
times, currently indicative of an early diversification
predating Neogene and the crown age of genus
Pristimantis estimated to date back some 29.0Ma (95%
HDP ¼ 21.6–37.3Ma, Waddell et al., 2018; Mendoza
et al., 2015).
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According to de Oliveira et al. (2020), eastern
Amazonian species of Pristimantis gr. conspicillatus
mostly originated in situ, suggesting limited connectivity
between the biogeographical areas, notably within
Amazonia. Similarly, recent phylogenetic reconstruc-
tions have suggested that the Atlantic Forest species of
the P. gr. conspicillatus form an ancient clade that could
date back to the Paleogene (Trevisan et al., 2020). This
also suggests an ancient connectivity between Amazonia
and the Atlantic Forest, and mirrors the pattern found in
several other Neotropical frog clades (Fouquet et al.,
2012b, Fouquet et al., 2012c, Fouquet et al., 2014;
Fouquet et al., 2022; R�ejaud et al., 2020; Moraes et al.,
2022). The higher species richness of the group in
Western Amazonia is also suggestive of an intense
diversification in this region, although alternatives could
be imagined (ex-situ diversification in neighboring
regions followed by immigration).
We hypothesize that the diversification of the

Pristimantis gr. conspicillatus took place within Western
Amazonia, the Brazilian and the Guiana Shields during
the Neogene considering the ecology of the species and
the barrier formed by the Pebas wetland system, that
occupied a large part of Western Amazonia between 23
and 10Ma (Antonelli et al., 2009; De-Silva et al.,
2016). We thus expect to recover distinct clades in dif-
ferent neotropical regions surrounding western
Amazonia with crown ages preceding the demise of the
Pebas (<10Ma), and only a few dispersals after that
period. The alternative is that widespread clades have
diversified via intense dispersals.
We test this hypothesis by exploring the temporality

and directionality of the biotic exchanges across neo-
tropical biogeographic areas of occurrence for the P. gr.
conspicillatus, and at investigating the impact of histor-
ical landscape changes on the diversification of the
group. We first evaluated species boundaries within the
group, then reconstructed a time-calibrated phylogeny
and finally inferred spatiotemporal patterns of
diversification.

Materials and methods
Species delimitation
We delimited all major mtDNA lineages within the
Pristimantis gr. conspicillatus using a sampling that
included 192 tissue samples, obtained through our own
fieldwork and loans from collaborators. We chose to
sequence a fragment of the 16S rDNA region, because
it is a classical marker for Neotropical amphibian tax-
onomy and systematics and was available for many add-
itional populations (Vacher et al., 2020). Sampling was

complemented with all the available homologous
sequences retrieved from GenBank (622 accessions). In
total, 754 sequences of 16S were obtained for this study
(sequencing protocols can be found in Supplemental
Appendix 2 and database details are provided in
Supplemental Appendix 3). These samples cover the
entire distribution range of the Pristimantis gr. conspi-
cillatus, and includes 36 out of 44 valid taxa (details
about missing taxa are available in Supplemental
Appendix 1). DNA sequence alignment was conducted
on the MAFFT online server under the E-INS-i option
with default parameters, which is designed for sequen-
ces with multiple conserved domains and long gaps
(Katoh et al., 2019). We used 16 outgroups including
Craugastor, Strabomantis, Holoaden and 12
Pristimantis from other clades. The final matrix thus
comprised 770 terminals and 580 bp.
Three DNA-based single-locus species delimitation

approaches were applied on this dataset: (a) a distance-
based method, the Automated Barcode Gap Discovery
(ABGD; Puillandre et al., 2012; b) a single-threshold
coalescent-based method, the Generalized Mixed Yule
Coalescent approach (single threshold GMYC;
Monaghan et al., 2009; Pons et al., 2006); and (c) a
multi-rate coalescent based method, the multi-rate
Poisson Tree Processes model approach (mPTP; Kapli
et al., 2017). We defined Operational Taxonomic Units
(OTUs) using a majority-rule consensus, i.e. a lineage is
considered as being an OTU if supported by at least
two of these three methods. Details of the species
delimitation analyses, incongruences and possible false
positives and negatives are provided in Supplemental
Appendix 2. The use of only mtDNA for species delimi-
tation generates known pitfalls (Moritz et al., 2004), and
thus this method only provides a first hypothesis that
requires confirmation based on other lines of evidence
such as nuDNA, bioacoustics and morphological data.
Nevertheless, most cases of putative species boundaries
based on mtDNA that have been tested turned out to be
confirmed, representing well differentiated phenotypic-
ally and reproductively isolated species for instance in
recent contributions in Pristimantis (Fouquet et al.,
2022; K€ohler et al., 2022; Roberto et al., 2022).

Time-calibrated species phylogeny
One representative for each OTU (n¼ 75, see Results)
was selected to obtain a time calibrated phylogenetic
hypothesis. To this end, high-quality mitochondrial
genomes were obtained through low-coverage shotgun
sequencing for 35 OTU representatives (see
Supplemental Appendix 2 for details regarding mitoge-
nomes sequencing, assembling and annotation). OTUs
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for which we could not obtain tissue samples (n¼ 40)
were represented with available mtDNA sequences in
GenBank (12S, 16S, ND1, COI and Cytb; see database
details in Supplemental Appendix 4). Twelve of these
OTUs were represented by 16S only. We also selected
18 Pristimantis terminals belonging to other species
groups (danae, unistrigatus, lacrimosus, devillei,
myersi, ridens, rubicundulus) and 17 additional
Brachycephaloidea terminals as outgroups (all 35 out-
groups but one have complete mitogenomes, including
30 newly produced). Finally, we gathered TYR and
RAG1 nuDNA sequences from GenBank that were
available for most outgroups, and at least one terminal
of each major lineage was included in our reconstruction
(n¼ 50 TYR; n¼ 39 RAG1) (Supplemental
Appendix 4).
All coding sequence regions (CDS) and 12S, 16S

were extracted from the complete mitogenomes (thus
removing D-loop and t-RNAs) and were subsequently
aligned with the sequences obtained from GenBank. The
alignments were performed gene by gene using the
MAFFT7 online server. For rDNA regions, the E-INS-i
alignment strategy was used, which is designed for
sequences with multiple conserved domain and long
gaps, while for the protein-coding genes the G-INS-i
strategy was used, recommended for sequences with
global homology (Katoh et al., 2019). Coding regions
were realigned considering reading-frame and concaten-
ated in Geneious V9.1.8.
We selected the best-fit partition scheme and model

of evolution for each predefined partition (12S–16S and
each codon position of mtDNA and each nuDNA locus)
using Modelfinder in IQTREE (Kalyaanamoorthy et al.,
2017), with the merging option and with the selection
according to the Akaike Information Criterion (AIC).
The time-calibrated tree was reconstructed with

BEAST 2.5 (Bouckaert et al., 2014), using a birth-death
tree prior to account for extinction processes and incom-
plete sampling. We parameterized unlinked substitution
models according to best model search. Calibration was
implemented using an uncorrelated relaxed lognormal
clock model of distribution of rate variation among
branches for each partition (Drummond et al., 2006).
There is no available Craugastoridae fossil evidence,
therefore we relied on secondary calibration. We favored
secondary calibration over more distant fossil calibration
since it would have implied expanding the matrix to dis-
tantly related lineages within Hyloidea which would have
probably overestimated node ages (Molak & Ho, 2015;
Papadopoulou et al., 2010). Three secondary calibration
ages were set as uniform priors from Hime et al. (2021),
an extensive phylogenomic analysis for anurans: the
crown age for Brachycephaloidea excluding

Ceuthomantis (43.0–51.2Ma), Brachycephaloidea exclud-
ing Ceuthomantis, Brachycephalidae and
Eleutherodactylidae (39.6–47.8Ma), the crown age of the
clade formed by OreobatesþPhrynopus and
Pristimantis (36.4–44.7Ma).
The Markov Chain Monte Carlo (MCMC) parameters

were set with two independent runs of 100 million itera-
tions, recording every 10,000th iteration and discarding
the first 15% iterations as burn-in. We combined the log
files of the independent runs using LogCombiner 2.5
(Bouckaert et al., 2014) and checked the convergence of
our parameters, confirmed by all ESS being above 200.
Then, we extracted the maximum clade credibility tree
using Tree annotator 2.5 (Bouckaert et al., 2014) resam-
pling 10% of the trees (for a total of 1700 trees).

Biogeographic analysis
Biogeographic inferences were based on a subtree (the
full P. gr. conspicillatus and two representatives of its
sister clade, the P. gr. danae) of the time-calibrated
phylogeny in the BioGeoBEARS R package (Matzke,
2013). BioGeoBEARS infers ancestral geographic distri-
butions of ancestral species and explores the role of
each biogeographic event with a maximum likelihood
algorithm. We compared three types of models: (i) a
likelihood version of the Dispersal-Vicariance model
(DIVALIKE; Ronquist, 1997; (ii) a likelihood version
of the BayArea (BBM) model (Landis et al., 2013); and
(iii) the Dispersal Extinction Cladogenesis model (DEC;
Ree & Smith, 2008). We also compared versions of
these models allowing jump dispersal, using the þJ par-
ameter, mindful of the debate about the use of this par-
ameter in biogeographical inference (Klaus & Matzke,
2020; Ree & Sanmart�ın, 2018; Matzke, 2022). We
modified the list of geographic ranges in order to forbid
state transitions between disjunct areas. Models were
compared with the Akaike Information Criterion (AIC).
We considered four non-Amazonian Neotropical areas

(Fig. 2); Atlantic Forest, Dry Diagonal, Andes (consid-
ering a ca. 1000m asl limit with Amazonia), and trans-
Andean forests and three regions within Amazonia cor-
responding to major geological features of the region
and to the large biogeographic regions known as
Wallace’s districts (Hoorn et al., 2010; Wallace, 1854).
They include Brazilian Shield, Guiana Shield and
Western Amazonia. This results in a total of seven
Neotropical areas. It is noteworthy that these subdivi-
sions into West-East-South have been recently con-
firmed to correspond to major breaks in species
composition in birds (Oliveira et al., 2017) and amphib-
ians (Godinho & da Silva, 2018). This partitioning also
matches early Neogene East/West and North/South
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patterns of diversification (Fouquet et al., 2014; Sheu
et al., 2020). Boundaries for the three Amazonian areas
correspond to three important modern riverine barriers:
the Madeira River, the Negro River and the lower
course of the Amazon River. We assigned the different
terminals to each of these regions according to their
range estimated from the species delimitation. If a OTU
was distributed in several regions, we coded the matrix
accordingly. We assigned the terminals of the danae
group to the Andes and Western Amazonia considering
all documented species occur in these areas with the
exception of one record in the Brazilian Shield.

Results
Species delimitation
The results obtained from the three methods of delimita-
tion were overall congruent, with no hard conflict
among partitions i.e. only nested partitioning, ABGD
being more conservative with 66 OTUs, while the two
other methods, mPTP and GMYC, delimited 72 and 107
OTUs, respectively (Supplemental Appendix 3; Fig. 1).
The majority-rule consensus of the three methods
yielded 74 OTUs. We further checked the taxonomic
identification of these OTUs mostly considering the
proximity of our material to type localities since closely
related species are generally allopatric but also other
taxonomic considerations that are explained in
Supplemental Appendix 5). A single OTU was found to
lump Pristimantis giorgii and P. moa, two recently
described species that were recovered as distinct OTUs
with GMYC (Supplemental Appendix 5). This false
negative was avoided following the GMYC delimitation,
thus reaching a final number of 75 OTUs. With the
exception of P. koehleri, all OTUs exhibit small distri-
bution ranges circumscribed to single biogeographic
regions. Among these 75 OTUs, 38 were allocated to
recognized taxa (out of the 47 currently one for the spe-
cies group). Closely related OTUs spatially overlap in
very rare instances (P. conspicillatus, P. malkini, P.
condor; P. latro, P. giorgii), leading to a strikingly allo-
patric pattern (Fig. 1). The reevaluation of the species
richness and of the species distributions confirmed that
the P. gr. conspicillatus is heterogeneously distributed
with a higher diversity in Western Amazonia (25 OTUs)
than in the Brazilian (14 OTUs) and the Guiana Shield
(11 OTUs).

Time-calibrated species phylogeny
The genus Pristimantis was strongly supported as the sis-
ter group of a clade formed by OreobatesþPhrynopus

(Fig. 2). Other major clades within the Brachycephaloidea
(Brachycephalidae, Eleutherodactylidae, Craugastoridae
and Strabomantidae) were also strongly supported. The
inferred phylogenetic tree was well-resolved within
Pristimantis: only 11 nodes had posterior probability
<0.90, most of them corresponding to recent relationships
and at least one terminal with incomplete genomic data
(Fig. 2). The P. gr. conspicillatus was strongly supported
as the sister group of the P. gr. danae. Together, these
two lineages form the sister group of all the other
Pristimantis lineages included in this study (assigned to P.
gr. unistrigatus, P. gr. lacrimosus, P. gr. devillei, P. gr.
myersi, P. gr. ridens, P. gr. galdi according to Padial
et al., 2014). We inferred the crown age of Pristimantis to
be 30.6 My old (HDP 95%: 27.6–33.6; Fig. 2), an age
concordant with Waddell et al. (2018; M¼ 29Ma) and
the one of the P. gr. conspicillatus to be 27.6 My old
(HDP 95%: 24.9–30.4; Fig. 2).
We recovered five major clades within the P. gr. con-

spicillatus that diverged before 23Ma and are mainly
associated to distinct Neotropical regions i.e. the north-
ern Andes (P. nicefori clade; 9 OTUs), Western
Amazonia (P. conspicillatus clade; 25 OTUs), the
Brazilian Shield (P. fenestratus clade; 13 OTUs), the
Guiana Shield (P. vilarsi clade; 12 OTUs) and
the Atlantic Forest (P. ramagii clade; 15 OTUs). Only
the P. ramagii clade is widespread, with species in the
Atlantic Forest, the Guiana Shield (P. gutturalis),
Trinidad (P. charlottevillensis), Western Amazonia (P.
ardilae) and trans-Andean Forests (P. gaigei) and the
deepest relationships within this clade are poorly sup-
ported. The P. conspicillatus and P. fenestratus clades
form a strongly supported group, as well as the P.
vilarsi and P. ramagii clades; while the P. nicefori clade
forms the sister group of all the other clades of the P.
gr. conspicillatus. These different clades have diverged
around the Oligocene-Miocene transition and each of
them diversified from the early Miocene
(22.7–17.3Ma) onward.

Ancestral area reconstructions
Model comparisons identified DECþJ as the model gen-
erating the most likely scenario and the DEC as the best
model without the J parameter (Supplemental Appendix
6). The ancestral range of the most recent common
ancestor of the Pristimantis gr. conspicillatus is ambigu-
ous (Fig. 3; Supplemental Appendix 7) since it is shared
across Amazonia and the Andes in both biogeographic
inferences. The P. nicefori clade first diverged some
27Ma from these ancestors apparently in the region that
will become the Northern Andes. The four other main
clades (P. conspicillatus, P. fenestratus, P. ramagii and
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P. vilarsi) of the P. gr. conspicillatus emerged during
the Oligocene-Miocene transition some 23Ma. The P.
conspicillatus clade diversified starting around 20Ma in
Western Amazonia and its sister group, the P. fenestra-
tus clade probably emerged from a dispersal/vicariance
event and diversified in the Brazilian Shield as sug-
gested by both DEC and DECþJ models (Fig. 3;
Supplemental Appendix 7). The origin of the other clade
formed by the P. vilarsi clade and the P. ramagii clade
remains ambiguous since the two models provide
contradictory results. It is also the case for the ancestral
states of both clades since the DECþJ model favors a
Brazilian Shield origin of the P. vilarsi clade and an
Atlantic Forest origin of the P. ramagii clade, while the
DEC model favors a Guiana Shield origin of both the
vilarsi clade and the P. ramagii clade. These two clades
harbor early divergences corresponding to dispersal-vic-
ariance events complexifying the inferences: (1) Guiana
Shield vs Brazilian Shield divergence some 20Ma for
the vilarsi clade; (2) Atlantic Forest, Andes, trans-
Andean forests and Guiana Shield whose relationships
remain ambiguous some 20–23Ma for the P. ramagii
clade. It is also noteworthy that diversification within
the Atlantic Forest occurred early, with three distinct
lineages predating 20Ma.
Most subsequent dispersal events occurred during the

Middle Miocene (10–15Ma); between the Andes and
Western Amazonia in the P. conspicillatus and P. nice-
fori clades, as well as between the Brazilian Shield and
both the Guiana Shield and the Dry Diagonal. Very few
subsequent dispersal events were recovered over the last
10Ma. All species’ distributions are restricted to a sin-
gle Amazonian area, except P. koehleri that stands out
as it is distributed in all three of them (Fig. 1).
Concomitantly, most diversification events within each
clade occurred in-situ (Fig. 3).

Discussion
Species diversity in the Pristimantis
conspicillatus species group
Almost all attempts to investigate how many species actu-
ally exist within a particular neotropical amphibian group
have uncovered high numbers of candidate species.

Similarly, our exploration of the diversity within the
Pristimantis gr. conspicillatus highlights that it remains
largely undocumented, as already suggested by other stud-
ies (Vacher et al., 2020; de Oliveira et al., 2020; Taucce
et al., 2020). Considering that we found 75 putative spe-
cies, this represents a two fold increase in species diversity
as compared to the 38 currently recognized taxa that we
have included, out of 47 existing nominal species assigned
to the group. This rough extrapolation is in line with what
has been found in many other co-distributed clades (e.g.
Adelophryne; Fouquet et al., 2012c; Allobates R�ejaud et al.
2020; Bolitoglossa Jaramillo et al., 2020; Amazophrynella
Moraes et al., 2022; Pipa Fouquet et al., 2022). In the
case of Pristimantis gr. conspicillatus, this estimation still
most likely represents an underestimation of the extent of
the unknown diversity since large parts of Amazonia and
the Andes remain poorly sampled (Mayer et al., 2019) and
given species distributions are circumscribed to narrow
areas (at the single exception of P. koehleri).
Eight OTUs are not closely related to any valid nom-

inal species (see Supplemental Appendix 5), notably one
that may correspond to P. karcharias (Flores &
Rodriguez, 1997), and 29 more are found related to nom-
inal species that were included (see Supplemental
Appendix 5). Since we did not examine morphological or
acoustic data we cannot rule out the possibility that some
of these unnamed OTUs correspond to non-included valid
taxa instead (see Supplemental Appendix 5). However,
we consider that this remains likely marginal considering
the type localities of the missing taxa are almost only
located outside of sampled areas notably in isolated
Andean areas or Andean foothills (Supplemental
Appendix 1). These uncertainties highlight the need for
investigation focusing on these subclades integrating
acoustic, phenotypic and genomic data to test whether
these OTUs actually agree with the general lineage con-
cept of species (De Queiroz, 1998). We are confident
that our study will contribute to fostering such extended
studies. We briefly refer to additional taxonomic implica-
tions of our results in Supplemental Appendix 5.

Connectivity among neotropical areas
Because of extinctions, dispersals, vicariances as well as
successive landscape changes that reshuffled the spatial
distribution of organisms throughout the Cenozoic, our
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Fig. 1. DNA-based species delimitation and distribution of resulting OTUs. (A) Maximum clade credibility chronogram inferred in
BEAST 2 obtained from the analysis of 754 sequences of 16S (580 bp) of the Pristimantis gr. conspicillatus. Posterior probabilities
of the nodes are indicated on the left side of the nodes when >0.7 and depicted with � when >0.98. For sake of clarity, terminal
branches are collapsed according to the consensus of the DNA-based species delimitation (ABGD, mPTP, GMYC), to which
correspond the numbers before the names of the OTUs. (B) Maps of northern South America showing the distribution of the sampled
material color-coded as in the tree according to the species delimitation.
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ability to infer the geographic center of diversification
of most Neotropical groups generally remains restricted
to relatively recent periods i.e. the Plio-Pleistocene
period (e.g. for birds: Smith et al., 2014; Silva et al.,
2019; Cracraft et al., 2020). Possibly because of their
reduced dispersal abilities and their generally strong
association with specific microhabitats (Zeisset &
Beebee, 2008), amphibians often unraveled much older
diversification events (tens of millions of years) than
generally found in codistributed groups of birds. The
case of the P. gr. conspicillatus is unique in this matter
since the biogeographic pattern recovered within the
group displays a strikingly ancient (early Neogene
onward) signal of in-situ diversification within each
Neotropical region, with only a few subsequent
exchanges. Moreover, the distribution and phylogenetic
relationships of these lineages suggest that the origin of
the entire group is shared between the Andes and
Amazonia and predates Neogene. Reinforced by the sis-
ter relationship with the P. danae group centered on
southern Andes and Southwestern Amazonia and the
early divergence of the P. nicefori clade in the northern
Andes, this result points to an origin of the group in the
western part of the continent during the late Oligocene.
In fact, the whole Pristimantis genus is believed to have
originated along the Andes during late Oligocene
(Waddell et al., 2018).
The five main clades in the group had already

diverged at the Paleogene-Neogene (Oligocene-
Miocene) transition, some 23Ma and each of these
clades seem to have a distinct spatial origin across the
Neotropics. This period corresponds to a global cooling
event and dramatic landscape changes in the western
part of the continent with large-scale marine incursions
(Pozo System) and subsequent presence of large lacus-
trine systems in Western Amazonia (Hoorn et al., 2010),
isolating the Andes and their foothills from the rest of
the continent (Bicudo et al., 2019). These changes have
been followed by the set-up of the Pebas System which
lasted until approximately 9Ma (Hoorn et al., 2017;
Albert et al., 2018) and may have isolated the ancestors
of each of these groups that subsequently diversified
mainly within each region such as the P. vilarsi clade in
the Guiana Shield and the P. fenestratus clade in the
Brazilian Shield. Nevertheless, because of uncertainties
regarding ancient paleo-topologic reconstructions

(Bicudo et al., 2019) and dates recovered from time-
calibrated phylogenies, it is important to remain cautious
on putative causality.
However, the spatial origin of one of these groups,

the Pristimantis ramagii clade, suggested as being
located in the Atlantic Forest by the DECþ J model,
actually remains largely uncertain because relationships
among early diverging (20–23Ma) are poorly supported
and because these lineages occur in four distinct biogeo-
graphic areas. It is therefore possible that Atlantic
Forest lineages may in fact form a clade and given (1)
the ancestral distribution of the group is centered on the
western part of continent, (2) the sister group of the
ramagii clade is centered on the Brazilian and the
Guiana Shield (P. vilarsi clade), (3) a similar ca. 23Ma
dispersal from the Guiana Shield and Amazonia have
been found in Allobates (R�ejaud et al., 2020);
Adelophryne (Fouquet et al., 2012c), Cophomantini
(Duellman et al., 2016); Adenomera (Fouquet et al.,
2014); Pipa (Fouquet et al., 2022) and Chiasmocleis (de
S�a et al., 2019), and (4) the early divergence of P. gai-
gei in trans-Andean Forest and P. ardilae þ P. charlot-
tevillensis from the northern Andes suggest an early
diversification in the northern part of the continent, we
find more likely that the entire clade find its origin in
this area and subsequently dispersed to the Atlantic
Forest via the Guiana and/or Brazilian Shields (Fig. 3).
In any cases, our results imply that a dispersal route,
suggested several times already for frogs (e.g.
Adelophryne, Fouquet et al., 2012b; Adenomera,
Fouquet et al., 2014; Allobates, R�ejaud et al., 2020;
Pipa, Fouquet et al., 2022) and other vertebrates (Ledo
& Colli, 2017), may have existed between Amazonia
and the Atlantic Forest at this period (Early Miocene)
which is characterized by higher temperature (Zachos
et al., 2001). The spatial and temporal similarity of this
Amazonia/Atlantic Forest dispersal pattern with the one
of Adelophryne is particularly remarkable; further simili-
tudes are found in the position of a Western Amazonian
related group (Phyzelaphryne and P. conspicillatus
clade, respectively); as well as an early divergence
within the Atlantic Forest and within the Guiana Shield
with similar time frames. Both groups share similar eco-
logical features as they are direct-developing leaf litter
frogs; and thus, a possible parallel history of isolation
and dispersal (Fouquet et al., 2012b).
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Fig. 2. Maximum clade credibility chronogram inferred in BEAST 2 based on concatenated mitogenomic and nuDNA. Nodes with
maximum posterior probability are indicated with black dots under the branches and lower support with distinct shaded gray.
Calibrated nodes are indicated with a red circle. Node bars indicate the 95% highest posterior distribution of node dates. Squares on
the tips of the trees indicate the geographical distribution of extant species sampled in the phylogeny and the corresponding regions
are coloured accordingly on the top left map (Llanos, Marajo Island and southern pacific coast being let gray).
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The origin of the Pristimantis conspicillatus clade is
supported in Western Amazonia by both biogeographic
models (DEC, DECþ J). However, its subsequent diver-
sification, as well as the one of the P. nicefori clade, is
characterized by multiple exchanges with the adjacent
Andean highlands (three independent dispersals from
western Amazon to Andes for the former, and one dis-
persal from the Andes to Western Amazon for the
second), which secondarily led to trans-Andean disper-
sals in the P. conspicillatus clade (two dispersals from

Andes to Trans Andean forest). Exchanges between the
Andes and Amazonia have previously been identified as
an important process in the diversification of
Pristimantis (Mendoza et al., 2015; Waddell et al.,
2018), but also of Dendrobatoidea (Santos et al., 2009),
Centrolenidae (Castroviejo-Fisher et al., 2014) and
Bolitoglossa (Jaramillo et al., 2020). The Andean
orogeny induced important climatic changes in this area,
notably by altering the moisture transports and precipita-
tions (Insel et al., 2010). These climatic changes
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Fig. 3. Ancestral area reconstruction of the Pristimantis conspicillatus group using BioGeoBears assuming a DECþ J model for the
seven Neotropical biogeographic areas. Squares on the tips of the trees indicate the geographical distribution of extant species
sampled in the phylogeny. Pie charts on nodes show the most likely reconstructions of ancestral areas, the size of each slice being
proportional to the maximum likelihood. Colors corresponding to the different geographical distributions are depicted in Fig. 2.
Hypothetical scenario of dispersal/vicariance depicting 15 events.
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coupled with an elevational gradient created a mosaic of
new environments, a context highly favorable to speci-
ation (Fjeldså et al., 2012; Weir & Price, 2011).
Additionally, the complex topography with partially iso-
lated valleys provided high potential for speciation by
geographic isolation (Mu~noz-Ortiz et al., 2015). We
acknowledge that our analyses cannot identify the diver-
sification drivers of the P. gr. conspicillatus within the
Andean foothills, we notably cannot disentangle
between geographic isolation and ecological adaptation
(Wiens & Graham, 2005). However, OTUs occurring in
the foothills display small distribution ranges that are
not overlapping among closely related species (Fig. 1)
suggesting a pattern of speciation by geographic isola-
tion. Guayasamin et al. (2017) hypothesized that the
low vagility as well as the high mutation rate of
Pristimantis species could explain why geographic isola-
tion is such an important diversification driver for this
genus. The limited proportion of sympatric/ecological
speciation in amphibians is similarly observed as an
overall niche conservatism (Rolland et al., 2018) which
is particularly striking in the P. gr. conspicillatus.
There are probably many unsampled species in the

Pristimantis conspicillatus clade and the effect of such
bias hampers many further interpretations. Nevertheless,
this clade remained tightly linked to the western part of
the continent. Its sister group, the P. fenestratus clade,
is conversely tightly linked to the eastern part of
Amazonia, a situation that is spatially and temporally
concordant (ca. 20Ma) with many other groups such as
Allobates (R�ejaud et al., 2020), Amazophrynella
(Moraes et al., 2022) and Pipa (Fouquet et al., 2022). A
distribution gap between the Madeira River and the
westernmost part of Amazonia is also recovered by our
reevaluation of the species range, a situation strikingly
similar to the one found in Amazophrynella (Moraes
et al., 2022). The current diversity within the part of
Western Amazonian lowlands previously occupied by
the Pebas system mainly originated in the last 10Ma
possibly from dispersals from Andean foothills (Fig. 3).
Altogether, this suggests that the Pebas system did pre-
vent dispersals during a period ranging between its for-
mation and the beginning of its conversion to forest
ecosystems (23–10Ma; Hoorn et al., 2010) that might
only have been recently suitable for Pristimantis gr.
conspicillatus species. Several dispersal events predating
10Ma are recovered between the Guiana and the
Brazilian Shield (P. chiastonotus and P. sp. Rondonia)
but none subsequently. It suggests that at some point in
the last 10Ma, the hydrological transformations leading
to the formation of a transcontinental Amazon River
system prevented exchanges that were previously pos-
sible between the Guiana Shield and the Brazilian

Shield for the Pristimantis gr. conspicillatus (Albert
et al., 2018).

Conclusion
We recovered five major clades that formed before
20Ma and diversified mostly within distinct biogeo-
graphical areas throughout the Neogene. Most of the
group diversity accumulated in Western Amazonia and
the Andeans foothills appear to have played a central
role in the diversification. The profound geomorpho-
logical changes due to the Andean orogeny induced an
alteration of climatic conditions and landscape, setting a
favorable context to speciation in the foothills.
Conversely, the Pebas system seems to have prevented
dispersal across main Amazonian regions as well as
diversification in the floodplain until today.
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