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Jean-Michel Roger , Jean-Philippe Steyer

PII: S0043-1354(22)01253-2
DOI: https://doi.org/10.1016/j.watres.2022.119308
Reference: WR 119308

To appear in: Water Research

Received date: 23 August 2022
Revised date: 10 October 2022
Accepted date: 27 October 2022

Please cite this article as: Alexandre Mallet , Cyrille Charnier , Éric Latrille , Ryad Bendoula ,
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Highlights 

 Multiple non-linear methods are evaluated for raw organic waste characterization 

 Local linear models and non-linear models override water effects 

 Calibrations on raw samples (no drying or grinding) were successfully built 

 This opens the door to at-site NIRS-based characterization of raw organic waste 

  

                  



Graphical abstract 

 

Graphical Abstract – A comprehensive comparison of non-linear calibration methods for 

NIRS-based characterization of diverse organic waste in raw form. 
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Abstract 

Fast characterization of organic waste using near infrared spectroscopy (NIRS) has 

been successfully developed in the last decade. However, up to now, an on-site use of 

this technology has been hindered by necessary sample preparation steps (freeze-

drying and grinding) to avoid important water effects on NIRS. Recent research studies 

have shown that these effects are highly non-linear and relate both to the biochemical 

and physical properties of samples. To account for these complex effects, the current 

study compares the use of many different types of non-linear methods such as partial 

least squares regression (PLSR) based methods (global, clustered and local versions of 

PLSR), machine learning methods (support vector machines, regression trees and en-

semble methods) and deep learning methods (artificial and convolutional neural net-

works). On an independent test data set, non-linear methods showed errors 28% lower 

than linear methods. The standard errors of prediction obtained for the prediction of total 

solids content (TS%), chemical oxygen demand (COD) and biochemical methane po-

tential (BMP) were respectively 8%, 160 mg(O2).gTS-1 and 92 mL(CH4).gTS-1
. These 

latter errors are similar to successful NIRS applications developed on freeze-dried sam-

ples. These findings hold great promises regarding the development of at-site and 

online NIRS solutions in anaerobic digestion plants. 

Keywords 

Near infrared spectroscopy; anaerobic digestion; biochemical methane potential; water 

effects; non-linear modeling, neural network. 

                  



1. Introduction 

In bioprocesses such as composting, anaerobic digestion (AD) or pyro-gasification, the 

ability to effectively characterize the input organic waste is a necessary condition for 

optimizing the process (Jacobi et al., 2011; Jimenez et al., 2015). Unfortunately, the 

input feedstock may cover a tremendously wide range of biochemical and physical 

properties, thus making the development of fast and robust analytical procedures a 

challenging issue. In the last decade, near infrared spectroscopy (NIRS), in combination 

with sound multivariate statistical calibrations, has emerged as the most reliable and 

fast solution for characterizing organic materials. Amongst the developed applications 

on organic waste, the technology has been used to monitor the maturity of compost 

(Albrecht et al., 2008; Vergnoux et al., 2009), to assess the biochemical methane poten-

tial (BMP) and biodegradability (Doublet et al., 2013; Fitamo et al., 2017; Godin et al., 

2015; Lesteur et al., 2011; Mortreuil et al., 2018; Triolo et al., 2014; Yang et al., 2021), 

but also to predict important variables such as carbohydrates content, nitrogen content 

and chemical oxygen demand (COD) (Charnier et al., 2017a), cellulose/hemicellulose 

(Liu et al., 2021), or hydrolysis kinetics (Charnier et al., 2017b). Thanks to these devel-

opments, a full description of an organic waste can now be provided by NIRS in less 

than three days (instead of one to two months for a characteristic like BMP). However, 

the analytical process still involves cumbersome sample preparation steps (freeze-

drying and grinding) to avoid the effects of water and particle size on NIRS, which ex-

plains the limited adoption of NIRS for on-line or at-site industrial applications. 

 

                  



Water effects on NIRS were shown to be highly non-linear and resulting from complex 

interacting physical and chemical effects (Mallet et al., 2021a). These physical effects 

were shown to result from light path-length modifications directly related to moisture 

content by a power law (Mallet et al., 2021c). This brings keys to better understand the 

low performance obtained with linear model-based calibrations made on organic waste 

with diverse biochemical compositions and humidity levels. While traditional methods 

such as PLSR have the advantage of simplicity, interpretability and robustness, these 

methods are not able to cope with non-linear water effects as they rely on the assump-

tion that a linear relationship exists between the predicted characteristic and the spec-

trum. On the other hand, non-linear methods can consider more complex non-linear 

relationships and thus may provide usable models (Ni et al., 2014; Pérez-Marín et al., 

2007). Different methods can be classified in three categories: PLSR-based methods, 

machine learning methods and deep learning methods. 

 

Within chemometrics, the founding block of non-linear techniques remains PLSR (Wold 

et al., 2001). Indeed, clustered and local approaches of PLSR have been developed, 

where models are built based only on a subset of the dataset. This subset can be cho-

sen based on spectral characteristics or using expert knowledge and metadata. In local 

methods based on spectra, there is the clustered PLSR approach where a clustering 

method (k-means (Preda and Saporta, 2005), hierarchical clustering (Tøndel et al., 

2011), decision tree (Narayanan et al., 2019)) is used to identify groups on which to 

train PLSR models. When predicting a new observation, it is assigned to its cluster 

based on a spectral distance (Euclidean or Mahalanobis (Shen et al., 2019)) or a 

                  



trained classification method, and the corresponding cluster’s model is used for predic-

tion. In strictly speaking local approaches, such as the local PLSR (Shenk et al., 1997) 

or the k-nearest neighbors locally weighted PLSR (kNN-LW-PLSR) (Lesnoff et al., 

2020), the subset is selected on-the-fly (i.e., just in time for each new observation) 

based on a spectral distance and the model based on this subset is also built on-the-fly. 

This type of local approach has been successfully applied for the NIRS-based prediction 

of BMP in plant biomasses (Godin et al., 2015). 

 

Within machine learning methods, a first group of methods are based on the regression 

tree concept with a binary recursive partitioning where models are built within each par-

tition (usually a simple average (Holmes et al., 1999), but it can be a PLSR(Eriksson et 

al., 2009)). The power of regression trees owes to its simplicity and interpretability. 

Based on this regression tree structure, ensemble methods have been proposed where 

forests of such tree models are built based on bagging (Random Forest) or boosting 

(XGBoost). Such models have been assessed and compared for NIRS-based prediction 

of soil composition (de Santana et al., 2018; Nawar and Mouazen, 2017) or biodiesel 

blends composition (Cunha et al., 2020). 

A second group of methods concerns support vector machines (SVM) regression meth-

ods (Drucker et al., 1996), which is essentially a constrained version of linear regression 

where the L2-norm of the coefficient vector is minimized with constraints on the hyper-

plane (maximal margin). SVM regression is made non-linear using kernel functions 

(such as polynomial or gaussian radial basis functions) that transform the original data 

into a higher dimensional feature space to make it possible to perform the linear regres-

                  



sion. SVM regression has been applied in combination with NIRS data (Belousov et al., 

2002; Borin et al., 2006; Devos et al., 2009), and more recently for BMP prediction on 

algae substrates (Yao et al., 2020). 

 

A last category of non-linear methods includes deep learning methods. Artificial neural 

network (ANN) has been applied to NIRS in the last twenty years (Berzaghi et al., 2002; 

Marini et al., 2008; Nørgaard et al., 2013), but the increase of dataset size as well as 

computational capabilities has recently made it a practical predictive tool. In particular, 

one-dimensional convolutional neural networks (1D-CNN) is an architecture that has 

been found the most suitable for NIRS data (Acquarelli et al., 2017; Cui and Fearn, 

2018; Malek et al., 2018). One reason is that the 1D-convolution layer plays the role of 

spectral preprocessor (Cui and Fearn, 2018). The power of neural networks lies in its 

flexible and customizable architecture defined by the number of layers, the type of lay-

ers (dense, convolutional), and the layers’ parameters (dimensionality, padding/stride, 

dropout rate, activation function) (Mishra and Passos, 2022). But the challenge of such 

models is also its complexity and the important number of parameters to tune which 

makes it prone to overfitting. To avoid this, the learning hyperparameters (mainly batch 

size, number of epochs, and learning rate) need to be soundly selected. Another chal-

lenge of deep learning methods concerns the low interpretability of the obtained models, 

though some authors propose some numerical tools to investigate the feature impor-

tances (Cui and Fearn, 2018). 

 

                  



In this study, the suitability of non-linear models is assessed comprehensively for di-

verse raw organic waste characterization. Can the higher complexity of machine learn-

ing and non-linear algorithms provide models usable directly on raw organic materials? 

To answer this, non-linear methods from the three communities (chemometrics, ma-

chine learning and deep learning) are evaluated for the prediction of total solids (TS%), 

chemical oxygen demand (COD) and biochemical methane potential (BMP) on different 

types of organic waste and without any sample preparation (drying, grinding). The cali-

brated models are evaluated based on their prediction performance (root mean squared 

error (RMSE), median absolute error (MAD), coefficient of determination (R2)), but also 

based on their robustness towards water effects (i.e., moisture content variations). 

2. Materials and Methods 

2.1. Samples and reference analyses 

The dataset consists of 501 different organic waste samples that have been collected in 

rural, territorial and industrial anaerobic digestion plants in France. These samples cov-

er a very wide range of biochemical and physical properties: solid ligno-cellulosic mate-

rials (like silage, cereals, ramial wood chips, and corn cobs), liquid ligno-cellulosic sus-

pensions (such as manure, pig slurry), liquid high-fat content suspensions (catering 

waste or biowaste), sweet emulsions (such as lactoserum or syrup), or protein and fat 

solid pastes (such as egg waste, cacao butter, or primary and secondary sludges from 

wastewater treatment plants). The visual aspect of some of these samples is presented 

in Appendix A. 

                  



 

Biochemical characterization of samples was obtained by using NIRS-based calibration 

models (Charnier et al., 2017a) applied to freeze-dried and ground samples. The errors 

of these models on independent test sets were evaluated at 128 mg(O2).gTS-1 for COD 

and 78 mL(CH4).gTS-1  for BMP. However, for samples which contained volatile mole-

cules (e.g., volatile fatty acids, ammonia NH3) that can disappear during the drying pro-

cess (such as silage or biowaste), standard BMP and COD measurements were made 

as described in (Angelidaki et al., 2009; Charnier et al., 2017a). The total solids content 

was measured on all samples using the standard protocol (48 hours of oven-drying at 

105°C) and the standard error of laboratory was evaluated at 5%. The histograms of 

obtained reference values are presented in Figure 1. 

 

Figure 1 - Histograms of biochemical composition values (total solids - TS%, biochemical methane potential - BMP, 
chemical oxygen demand – COD). Respective number of observations (labeled as nobs), mean (labeled as μ), 
standard deviation (labeled as σ), and range (min/max) are provided. 

Furthermore, in order to evaluate the robustness of developed NIRS models towards 

moisture content effects, a dataset of NIRS measurements acquired during N2-drying 

experiments of various organic substrates was used as described in (Mallet et al., 

2021a). The oven-drying was not used because of possible chemical modifications at 

                  



high temperatures (Maillard reactions), and freeze-drying was not used because it re-

quires to freeze the sample and temperature strongly modifies the measured near infra-

red spectra. This dataset consists of 89 substrates of various biochemical and physical 

types, covering a wide range of moisture content levels (from 1% to 99%). The predic-

tions made on these NIRS measurements are presented and discussed in Figure 7. 

2.2. Spectroscopic system 

Triplicate spectra were collected on the raw samples with an NIR-Flex N-500 solids FT-

NIR spectrophotometer with a (10 cm diameter) petri dish accessory (Buchi, Flawil, 

Switzerland), scanning in reflectance mode with a spectral range of 4 000 cm-1 to 

10 000 cm-1 (1000-2500 nm) and a resolution of 4 cm-1. The cost of such instrument 

ranges between 50 000 € and 80 000 €.An external white reference (Spectralon®) signal 

  ( ) is automatically taken every 10 minutes. For each sample, an intensity signal  ( ) 

was collected during the rotation of the sample (average of 96 scans), and the pseudo-

absorbance signal  ( ) was computed: 

 

 
 ( )         ( ( ))          (

 ( )

  ( )
)  

(Eq. 1) 

2.3. Model architectures 

Ten different model types were evaluated: 

1) A simple PLSR(referred here as “plsr”) using the NIPALS algorithm (Næs and 

Martens, 1984; Wold, 1973) served as a control linear model, to which non-linear 

                  



methods were benchmarked. One model hyperparameter was considered for 

tuning: the number of latent variables (from 1 to 20). 

2) A k-nearest neighbor regression (referred here as “knnr”) which consisted for 

each sample to select k-nearest neighbors based on minimal Euclidean distance 

or Mahalanobis distance, and then take the average of the y values of this neigh-

borhood as the predicted value. Two model hyperparameters were considered 

for tuning: the distance type (Euclidean or Mahalanobis) and the number of 

neighbors   (3, 5, 10, 50, 100). 

3) A local PLSR method called the k-nearest neighbors locally weighted PLS re-

gression (referred here as “knnlwplsr”) (Lesnoff et al., 2020) consisted of the 

similar procedure as the knnr, but instead of the average, a locally weighted 

PLSR (Kim et al., 2011) was calculated for each neighborhood. The calculated 

PLSR was weighted using a normalized (sum to one) version of the Gaussian 

radial basis function   applied to distances    between the predicted observation 

and its neighbors: 

 
 (  )      ( 

  

   
)  

(Eq. 2) 

with    the standard deviation of distances, and   the similarity index. 

Simply said, this weighing ensures that the closest neighbors to the predicted 

observation will influence more the final model. Parameter   controls how much 

the closest neighbors will weigh more in the model (when   = ∞, this is equivalent 

to a simple PLSR, with identical weights given to all neighboring observations). 

Three hyperparameters were considered for tuning: the number of neighbors (10, 

                  



50, 100, 300), the similarity   parameter (10-3, 10-2, 10-1, 100, 101, 102), and the 

number of latent variables (1 to 20). 

4) A clustered local approach method (referred here as “clusteredplsr”) where a 

clustering method is first applied (k-means, or hierarchical clustering analysis - 

HCA) and within each cluster, a simple PLSR is trained. Three model hyperpa-

rameters were considered for tuning: the clustering method (k-means or HCA), 

the number of clusters (2, 3, 4, 5), and the number of latent variables of clusters’ 

PLSR model (1 to 20). 

5) A support vector machines (SVM) regression (referred here as “svmr”) was 

calculated using the radial basis function (RBF) kernel type. Two hyperparame-

ters were considered for tuning: the kernel coefficient Γ (10-5, 10-4, 10-3, 10-2, 10-1, 

100, 101, 102, 103) and the regularization parameter C (10-3, 10-2, 10-1, 100, 101, 

102, 103). 

6) A decision tree regression (referred here as “rtree”) which involves a binary re-

cursive partitioning, where the prediction for a given observation is based on a 

simple average of the fold (group of observations) in which it lies. Two hyperpa-

rameters were considered for tuning: the maximum depth of tree (5, 10, 30, 50, 

100), the minimum number of observations in a fold (5, 10, 30). 

7) An ensemble random forest method (referred here as “rf”) which consists in 

growing multiple regression trees based on random sub-selections of features 

and observations, and then bagging all these tree models by averaging its pre-

dictions. Various hyperparameters were fixed: the minimum number of samples 

within each leaf (5), the number of features drawn for each tree (1501) (Geurts et 

                  



al., 2006), and the number of samples drawn for each tree (90% of total number 

of samples). Two hyperparameters were considered for tuning: the maximum 

depth of trees (5, 10, 20, 30, 50, 100), and the total number of trees (5, 20, 50, 

100, 150). 

8) An ensemble extreme gradient boosting method (referred here as “xgb”) 

which consists in growing multiple regression trees based on random sub-

selections of features and observations but based on a boosting principle where 

each new tree is grown to predict the residuals from the sum of predictions made 

by the existing trees. Three hyperparameters were considered for tuning: the 

number of trees (5, 20, 50, 100, 150), the maximum depth of trees (5, 10, 20, 30, 

50, 100) and the learning rate (0.01, 0.05, 0.1, 0.5). 

9) An artificial neural network (ANN) model (referred here as “nn”) with a simple 

dense structure. A unique dense layer of 25 neurons was chosen with rectified 

linear unit (ReLU) activation functions which guarantee the non-linearity of the 

method. The architecture is presented in Figure 2. Three hyperparameters were 

considered for tuning: the learning rate (0.001, 0.005, 0.01), the number of 

epochs (100, 300, 500, 1000), and the batch size (5, 10, 30). 

10)  A convolutional neural network (CNN) model (referred here as “cnn”) with 

Three hyperparameters were considered: the learning rate (0.001, 0.005, 0.01), 

the number of epochs (100, 300, 500, 1000), and the batch size (5, 10, 30). 

 

For each of these methods, the impact of adding a prior dimension reduction step to the 

model pipeline was evaluated. Indeed, models were built not only on the original varia-

                  



bles, but also on the scores of a global principal components analysis (PCA) or a global 

PLSR, respectively referred as “pca_” and “pls_”. In the case of PCA, a singular value 

decomposition (SVD) is applied to the centered spectra X, leading to X = UkΣkVk
T, with k 

the number of components chosen, Σ the singular values, and U and V the left and right 

singular vectors with VTV=I. The scores Tk are calculated as Tk=XVk. The number of 

components of the PCA or PLSR was set to 25 components. This prior dimension re-

duction step allowed to reduce the computation time and to stabilize the tuning of non-

linear methods which are prone to overfitting. 

 

 

Figure 2 – Architecture of neural networks (models “pca_nn” and “cnn”). The shape of data at 

each step of the neural network is highlighted in yellow, the number of parameters/coefficients 

to be trained is highlighted in purple, and the other hyperparameters are highlighted in orange. 

2.4. Data analysis and model calibration 

All the data analysis (presented in Figure 3) was performed using Python 3.7.11: data 

wrangling with Pandas 1.3.4, NumPy 1.19.5, SciPy 1.7.1, Scikit-learn 1.0.1, Tensorflow 

                  



2.7.0, and plotting with Matplotlib 2.2.2 (Abadi et al., 2016; Hunter, 2007; McKinney, 

2010; Oliphant, 2010; Pedregosa et al., 2015; van Rossum and Drake, 2009; Virtanen 

et al., 2020).  

 

A variety of preprocessing methods can be applied on NIR spectra to reduce the ran-

dom and systematic variations unrelated to the characteristic of interest (Roger et al., 

2020). Here, only simple preprocessing methods were evaluated: a simple standard 

normal variate (Barnes et al., 1989) (referred as “snv”), the second-order detrend 

(Barnes et al., 1989) (referred as “dt2”), the first-order Savitzky-Golay (Savitzky and 

Golay, 1964) derivation (referred as “sg1”), the second-order Savitzky-Golay derivation 

(referred as “sg2”), and a simple combination of detrend and standard normal variate 

(referred as “dt2_snv”) to get rid of additive and multiplicative effects (Roger et al., 

2020). The raw (absorbance) signal (referred as “a”) was used directly as well, which 

resulted overall in testing six different preprocessing conditions. The preprocessed 

spectra are presented in Appendix B. 

To evaluate the built models, a validation test set was constituted. With the aim of pro-

ducing a representative validation test set, the Duplex algorithm (Snee, 1977) was run 

for each reference characteristic (TS%, COD, BMP). Triplicates remained grouped to-

gether within the train or test sets. 

For all methods, the tuning of hyperparameters was done using a repeated randomized 

grouped k-fold cross-validation with     the fold number and              the repe-

tition number. Sample triplicates were always kept within one fold to ensure independ-

ence between splits within cross-validation. For each cross-validation run, various met-

                  



rics were then calculated: the root-mean-squared-error (RMSE), the mean absolute er-

ror (MAE) (Willmott and Matsuura, 2005), the coefficient of determination (R2). The 

choice of the hyperparameters was made by analyzing all these metrics together (i.e., 

choosing the set of hyperparameters minimizing RMSE and MAE, while maximizing R2). 

The final performances of the obtained models were evaluated on the validation test 

set, based on various complementary statistics: the root-mean-squared error (RMSE), 

the mean absolute error (MAE), the median absolute deviation (MAD), the relative mean 

absolute error (RMAE), the squared Pearson correlation coefficient (r2), the determina-

tion coefficient (R2), the bias (b), and the standard error of prediction (SEP). The formu-

las are provided in Appendix C. 

To evaluate the robustness of each model towards TS% variations (i.e. moisture con-

tent), the models were applied on the dataset of N2-drying experiments (presented in 

section 2.1) (Mallet et al., 2021a). The total error of the models can be seen as the re-

sult of the average error per substrate (inter-substrate error), and the standard deviation 

of the errors within each substrate (intra-substrate error). For each substrate, the aver-

age of the absolute residuals was calculated, as well as the standard deviation of abso-

lute residuals.  

Let s be the substrate number (s ∈ [1 89]), and Ms the space of moisture content levels 

covered by this substrate. For each substrate number s and moisture content level k 

(with k ∈ Ms), an absolute residual can be calculated (as in equation 3). The inter-

substrates and intra-substrates errors are calculated for each substrate and correspond 

respectively to the average and the standard deviation of these residuals for k ∈ Ms 

(Eq.4 and Eq.5). 
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(Eq. 5) 

The inter-substrate error is related to how well the model predicts the biochemical com-

position, while the intra-substrate error is related to how much the model is sensitive to 

the varying TS%. The boxplots of these inter-substrate and intra-substrate errors are 

plotted in Figure 7. 

 

 

                  



Figure 3 - Flow diagram of data analysis. The process is repeated for all model types (plsr, knnr, 

knnlwplsr, clusteredplsr, svmr, rtree, rf, xgb, nn, cnn). 

3. Results & Discussion 

3.1. Data overview 

The distributions of the biochemical variables (TS%, COD, BMP) of the substrates are 

provided in Figure 4 with histograms of train and test sets respectively in blue and or-

ange. The ranges are very wide, with TS% values between 0.5% and 100%, BMP val-

ues between 21 and 847 mL(CH4).gTS-1 and COD values between 456 and 2 800 

mg(O2).gTS-1. The distributions of train and test sets are similar, thanks to the Duplex 

algorithm applied to each reference variables (TS%, COD, BMP). While the distributions 

of BMP and COD appear to follow normal distributions, the distribution of TS% values 

appear to follow a bi-normal distribution with a group of substrates with TS% values be-

low 30% and a group of substrates with TS% values above 80%. Indeed, this latter 

group of substrates corresponds to naturally low moisture content samples such as 

high-fat content substrates (e.g., oil, slaughterhouse waste), or agro-industrial waste 

(e.g., flour, sucrose, paper), as well as samples that were simply freeze-dried to extend 

the range of TS% on which the models can work (i.e., increase robustness). 

 

                  



 

Figure 4 - Histograms of biochemical composition values (total solids - TS%, biochemical methane potential - BMP, 
chemical oxygen demand – COD) for train (blue) and test sets (orange). Respective number of observations (labeled 
as nobs), mean (labeled as μ), standard deviation (labeled as σ), and range (min/max) are provided in blue (train set) 
and orange (test set). 

 

3.2. Model performances: linear methods, PLSR-based methods, 

machine learning methods and deep learning methods 

For each model type, the results (RMSE and R2) on train and test sets for the best ob-

tained models amongst the six preprocessing pipelines that were evaluated (a, a_sg1, 

a_sg2, a_snv, a_dt2, a_dt2_snv) are presented in Figure 5. The results for all the six 

preprocessing pipelines are presented in Appendix D and Appendix E. The RMSE and 

R2 for the best obtained linear PLSR models were respectively 10.31% and 0.89 for 

TS% prediction, 240 mg(O2).gTS-1 and 0.77 for COD prediction, and, 127 mL(CH4).gTS-

1 and 0.63 for BMP prediction. For TS% prediction, the difference in error between the 

NIRS-based method and the reference method (+5.31%) is rather low and acceptable. 

This is especially true knowing the huge benefit of being able to measure such variable 

in only a couple of minutes with NIRS instead of 24 hours with the reference method. 

                  



However, for COD or BMP prediction, the errors obtained with NIRS-based linear mod-

els are significantly higher than the errors of the reference methods (+112 mg(O2).gTS-1 

for COD, and +49 mL(CH4).gTS-1  for BMP). 

In most cases, non-linear methods allowed to build models with significantly lower er-

rors than with the linear methods. Indeed, non-linear models showed RMSE values 

lowered by up to 23% for TS% prediction, up to 33% for COD prediction and up to 28% 

for BMP prediction. The best models were obtained with k-nearest neighbors locally 

weighted PLSR (knnlwplsr) and convolutional neural networks (cnn), with RMSE and R2 

respectively equal to 8% and 0.94 for TS% prediction, respectively equal to 160 

mg(O2).gTS-1 and 0.90 for COD prediction, and respectively equal to 92 mL(CH4).gTS-1 

and 0.80 for BMP prediction. 

For some models, a prior PCA was applied to reduce the dimensionality of the input 

signals (pca_nn, pca_xgb, pca_rf). In most cases, this resulted in slightly lower model 

performances compared to models with the raw signal as input (xgb, rf). For example, 

for TS% prediction, applying a PCA reduction before a random forest (pca_rf) resulted 

in an RMSE and R2 of 9.3% and 0.91 instead of 8.5% and 0.93 without PCA reduction 

(rf). For BMP prediction, applying a PCA reduction before an extreme gradient boosting 

(pca_xgb) resulted in an RMSE and R2 of 101 mL(CH4).gTS-1 and 0.76 instead of 96 

mL(CH4).gTS-1 and 0.79 without PCA reduction (xgb). However, in some cases, the 

PCA reduction did not deteriorate the models. For example, for BMP prediction, apply-

ing a random forest with (pca_rf) or without (rf) a PCA reduction resulted in equal RMSE 

and R2 (respectively 111 mL(CH4).gTS-1 and 0.71). In such cases, one advantage of 

applying the dimension reduction method is the gain in computation time. Indeed, not 

                  



only the method is faster because there are less weights to optimize (20x25 weights 

instead of 1501x25 weights, which results in 25% less time for 500 samples), but be-

cause there are less weights to optimize, the number of iterations needed to find a satis-

factory model is also reduced (for a batch size of 10, 100 epochs are needed instead of 

500); which results in a final reduction in computation time of 85% for 500 samples. It 

must be pointed out that a dense neural network without prior dimension reduction (nn) 

was not evaluated because such model architecture results in too many coefficients to 

optimize, and therefore an unstable learning process. 

                  



                  



 

Figure 5 – Barplots of RMSE and R
2
 obtained on train and test sets (respectively hatched with circles and lines) for all 

obtained models for the prediction of TS%, COD, and BMP. Bars are colored by model type (clustered K-Means 
PLSR – “clusteredkmeans_autoplsr”, k-nearest neighbors locally-weighted PLSR – “knnlwplsr”, k-nearest neighbors 
regression – “knnr”, PCA followed by dense neural network – “pca_nn”, PCA followed by random forest – “pca_rf”, 
PCA followed by extreme gradient boosting – “pca_xgb”, regression tree – “rtree”, support vector machine regression 
– “svmr”, PLSR – “plsr”). Only the results obtained with the best preprocessing pipeline is presented here (labeled in 
abscissa: “a”, “a_sg1”, “a_sg2”, “a_snv”, “a_dt2”, “a_dt2_snv”). Results for all preprocessing pipelines are presented 
in Appendix E and all the other metrics (RMAE, MAE, MAD, r

2
, SEP, Bias) are presented in a table in Appendix D. 

 

A closer look at the models is provided in Figure 6. The observed and predicted values 

are shown for the three predicted variables (TS%, COD, BMP), for the best obtained 

models (linear and non-linear respectively to the left and right of the figure). The best 

non-linear models were obtained using convolutional neural networks (cnn) though, as 

already mentioned, the models obtained with k-nearest neighbors locally weighted 

PLSR (knnlwplsr) showed similar performances. These models when built directly on 

preprocessed data (i.e., sg2, snv or dt2 for respectively TS%, COD and BMP) happen 

to be more performant than the models built on raw spectra. This puts into perspective 

some observations made in previous studies (Cui and Fearn, 2018) that highlighted the 

                  



fact that the advantage of convolutional neural networks is that they can be applied 

without any preprocessing steps (and that the preprocessing will be found automatical-

ly). Nevertheless, for all predicted variables (TS%, COD, BMP), the prediction points 

from the non-linear models appear much closer to the diagonal line than linear models 

which shows how non-linear models are much more suited for raw organic waste char-

acterization. As expected, the train observations (in blue) are closer to this diagonal line 

than the test observations (in orange), because models were built on these train obser-

vations. However, the more significant differences observed between train and test ob-

servations for non-linear models could imply that these models are still slightly overfit. 

This would imply that these models leave further room for improvements (through fur-

ther hyperparameter tuning). Nevertheless, the obtained errors on the test set (in or-

ange) are already highly promising. The mean absolute deviation (MAD) is provided and 

complements the RMSE and R2 by providing an idea of the error to expect for most 

samples. For BMP prediction, while the RMSEP equals to 91.8 mL(CH4).gTS-1, the 

MADP equals to only 52 mL(CH4).gTS-1. This shows how well the non-linear models 

perform, and how in most cases, the error made on BMP prediction is very low. 

                  



 

                  



Figure 6 – Scatter plots of predicted and observed values for train and test sets (respectively in blue and orange). For 
each predicted variable (TS%, COD, BMP), the best obtained linear model (on the left) is compared with the best 
obtained non-linear model (on the right). The performance metrics (RMSE, MAE, RMAE, MAD, R

2
, r

2
, SEP, Bias) are 

provided for train and test sets (respectively with a subscript “C” for calibration/train and a subscript “P” for 
prediction/test). 

3.3. Robustness towards moisture content effects 

One of the questions regarding the use of these non-linear models, is whether the accu-

racy gain that was demonstrated here is due to a lower sensitivity to water effects (TS% 

differences), or due to better considering the differences in biochemical types when es-

timating the relationship between the signal and the variable to predict. As presented in 

section 2.1, in order to evaluate the robustness of developed NIRS models towards 

moisture content effects, a dataset of NIRS measurements acquired during N2-drying 

experiments of various organic substrates was used (Mallet et al., 2021a). 

For COD prediction, as indicated by the red arrow in Figure 7, switching from a linear to 

a non-linear model results in a decrease of 23% of the average inter-substrate error, but 

an increase of 13% of the average intra-substrate error. Similarly, for BMP prediction, 

as indicated by the red arrow in Figure 7, switching from a linear to a non-linear model 

results in a decrease of 14% of the average inter-substrate error, but an increase of 

67% of the average intra-substrate error. 

In other words, for COD or BMP prediction, the gain in accuracy that was previously 

observed for non-linear models results from a better modeling of the different substrate 

types (physical and biochemical differences) more than higher robustness towards TS% 

variations. 

Theoretically, the ideal absorption law (the Beer-Lambert law) states that the relation-

ship between concentration and the signal is linear, but because here there are so 

                  



many different substrates, the scattering levels are very different, and this makes this 

law poorly adapted. For example, the reflectance of highly absorbing samples such as 

raw biogas slurry, but also forward-scattering transparent liquids (oils) may have low 

general levels of measured reflectance. These samples will surely not have the same 

reflectance level than highly scattering samples such as straw, flour or biowaste. While 

linear models have difficulties coping with these big differences in signal levels, the 

power of non-linear models lies precisely in the ability to work by clusters of substrates, 

finding specific relationships between the signal and the predicted variable locally.  

Indeed, the relationship between BMP (or COD) and the measured signals on raw bio-

gas slurry will be different than the relationship between the BMP (or COD) and the 

measured signals on straw, flour or biowaste; and using non-linear models this relation-

ship can be modeled differently contrarily to linear models. The non-linear methods al-

low to account for these scattering differences between substrates, finding different (lin-

ear) relationships for each substrate types. In the end, non-linear methods allowed to 

reduce the errors that were previously made by linear models between substrate types. 

Another aspect related to moisture content effects concerns the OH absorption region 

around 1430 nm and 1940 nm. Many studies show that this region is in fact full of indi-

rect information related to chemical composition, due to the multiple OH-bonding types 

that water makes with the molecules present in the substrate (Mallet et al., 2021a; 

Tsenkova et al., 2018). Future investigations should be oriented towards interpreting the 

non-linear models to better understand how this region is used by the models. 

                  



 

Figure 7 – Boxplots of absolute residuals (between observed and predicted) for the average per substrate (inter-
substrate error), and the standard deviation per substrate (intra substrate error). The COD and BMP prediction results 
correspond respectively to the left and right subplots. The boxplots are colored by model type (linear in blue, non-
linear in orange). Median values are presented with bold and black horizontal lines. The box limits represent the first 

and third quartile values (respectively Q1and Q3), and the lines that extend from the box show the lowest and largest 

data points excluding any outliers (respectively Q1−1.5×(Q3−Q1) and Q1−1.5×(Q3−Q1)). Outliers, if existing, are 
presented in empty black circles. The mean of each boxplot is represented by a white dot surrounded by red. 

 

This result redefines the scientific questions and technical challenges related to building 

NIR applications on raw (wet) and diverse organic waste. While water effects are cer-

tainly a high source of variance with non-linearities to be dealt with (Mallet et al., 2021a, 

2021c), it appears that the non-linearity due solely to the diversity of organic waste (i.e., 

biochemical and physical types) is very high, and that therefore applying non-linear 

models on such datasets can allow a significant gain in accuracy that allows these 

models to show similar final errors as linear calibrations built on dry samples.  

 

                  



4. Conclusions 

In this study, non-linear methods including PLSR-based methods, machine learning 

methods and deep learning methods were successfully leveraged to build satisfactory 

TS%, COD and BMP prediction models based on NIRS and applicable on raw and di-

verse organic waste. A general gain in accuracy of 28% (based on RMSEP) was ob-

tained compared to models built with linear methods. This significant gain was shown to 

be mostly due to better modeling the diversity of biochemical and physical types, more 

than being more robust to moisture content variations. Though not detailed in this study, 

the presented modeling approach based on non-linear methods could be successfully 

applied to other important parameters such as N-related parameters (total nitrogen con-

tent, proteins content), lipids content or carbohydrates content. This means that today, a 

full characterization of the organic waste is possible using NIRS and non-linear model-

ing. The demonstrated feasibility of applying NIRS on raw and diverse substrates, with-

out any required sample preparation (freeze-drying and grinding), has huge implications 

for the industry. Indeed, this finally opens the door to online and at-site applications in 

the organic waste recovery industry (AD, composting, pyrogasification). From an applic-

ative and industrial perspective, future steps will be to demonstrate equivalent perfor-

mance on low-resolution and low-cost portable spectrometers, as already shown on 

dried samples (Mallet et al., 2021b). Indeed, while the current study has demonstrated 

the feasibility based on lab-scale spectrometers with costs ranging between 50 000 € 

and 100 000 €, the feasibility of the approach on low-cost spectrometers (below 10 000 

€) should be validated for it to be fully suitable on full-scale biogas plants. Transfer 

strategies from standard benchtop spectrometers to online spectrometers will also need 

                  



to be evaluated. From a more fundamental perspective, future steps should focus on 

the interpretability of these non-linear models, in particular better understand how the 

OH absorption regions are used by these non-linear models. 
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