Amir Kafshdar Goharshady
email: goharshady@cse.ust.hk

Ahmed Khaled Zaher
email: akazaher@cse.ust.hk

Efficient Interprocedural Data-Flow Analysis using Treedepth and Treewidth

Keywords: Static Analysis, Data-flow Analysis, IFDS, Parameterized Algorithms

We consider interprocedural data-flow analysis as formalized by the standard IFDS framework, which can express many widelyused static analyses such as reaching definitions, live variables, and nullpointer. We focus on the well-studied on-demand setting in which queries arrive one-by-one in a stream and each query should be answered as fast as possible. While the classical IFDS algorithm provides a polynomialtime solution for this problem, it is not scalable in practice. More specifically, it will either require a quadratic-time preprocessing phase or takes linear time per query, both of which are untenable for modern huge codebases with hundreds of thousands of lines. Previous works have already shown that parameterizing the problem by the treewidth of the program's control-flow graph is promising and can lead to significant gains in efficiency. Unfortunately, these results were only applicable to the limited special case of same-context queries. In this work, we obtain significant speedups for the general case of ondemand IFDS with queries that are not necessarily same-context. This is achieved by exploiting a new graph sparsity parameter, namely the treedepth of the program's call graph. Our approach is the first to exploit the sparsity of control-flow graphs and call graphs at the same time and parameterize by both the treewidth and the treedepth. We obtain an algorithm with a linear preprocessing phase that can answer each query in constant time wrt the size of the input. Finally, our experimental results demonstrate that our approach significantly outperforms the classical IFDS and its on-demand variant.

Introduction

Data-flow. Data-flow analysis is a catch-all term for a wide and expressive variety of static program analyses that include common tasks such as reaching definitions [START_REF] Collard | A comparative study of reaching-definitions analyses[END_REF], points-to and alias analysis [START_REF] Shang | On-demand dynamic summary-based points-to analysis[END_REF][START_REF] Sridharan | Refinement-based context-sensitive points-to analysis for Java[END_REF][START_REF] Sridharan | Demand-driven points-to analysis for Java[END_REF][START_REF] Xu | Scaling cfl-reachability-based points-to analysis using context-sensitive must-not-alias analysis[END_REF][START_REF] Yan | Demand-driven context-sensitive alias analysis for Java[END_REF][START_REF] Zheng | Demand-driven alias analysis for C[END_REF], null-pointer dereferencing [START_REF] Nanda | Accurate interprocedural null-dereference analysis for java[END_REF][START_REF] Meyer | Ending null pointer crashes[END_REF][START_REF] Das | Precise null pointer analysis through global value numbering[END_REF], uninitialized variables [START_REF] Nguyen | Automatic detection of uninitialized variables[END_REF] and dead code elimination [START_REF] Gupta | Path profile guided partial dead code elimination using predication[END_REF], as well as several other standard frameworks, e.g. gen-kill and bit-vector problems [START_REF] Knoop | Efficient and optimal bit-vector data flow analyses: A uniform interprocedural framework[END_REF][START_REF] Knoop | Parallelism for free: Efficient and optimal bitvector analyses for parallel programs[END_REF][START_REF] Kildall | A unified approach to global program optimization[END_REF]. The common thread among data-flow analyses is that they consider certain "data facts" at each line of the code and then try to ascertain which data facts may/must hold at any given point [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF]. This is often achieved by a worklist algorithm that keeps discovering new data facts until it reaches a fixed point and converges to the final solution [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Kildall | Global expression optimization during compilation[END_REF]. Variants of data-flow analysis are already included in most IDEs and compilers. For example, Eclipse has support for various data-flow analyses, such as unused variables and dead code elimination, both natively [START_REF]Eclipse Foundation: Eclipse documentation, Java development user guide[END_REF] and through plugins [START_REF] Pessoa | An eclipse plugin to support code smells detection[END_REF]31]. Data-flow analyses have also been applied in the context of compiler optimization, e.g. for register allocation [START_REF] Kurdahi | REAL: a program for register allocation[END_REF] and constant propagation analysis [START_REF] Grove | Interprocedural constant propagation: A study of jump function implementations[END_REF][START_REF] Sagiv | Precise interprocedural dataflow analysis with applications to constant propagation[END_REF][START_REF] Callahan | Interprocedural constant propagation[END_REF]. Additionally, they have found important use-cases in security [START_REF] Chang | Efficient and extensible security enforcement using dynamic data flow analysis[END_REF], including in taint analysis [START_REF] Arzt | FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps[END_REF] and detection of SQL injection attacks [START_REF] Gould | JDBC checker: A static analysis tool for SQL/JDBC applications[END_REF]. Due to their apparent importance, data-flow analyses have been widely studied by the verification, compilers, security and programming languages communities over the past five decades and are also included in program analysis frameworks such as Soot [START_REF] Bodden | Inter-procedural data-flow analysis with IFDS/IDE and soot[END_REF] and WALA [START_REF] Zaher | Watson libraries for analysis, with frontends for Java, Android, and JavaScript, and many common static program analyses[END_REF].

Intraprocedural vs Interprocedural Analysis. Traditionally, data-flow analyses are divided into two general groups [START_REF] Khedker | Data flow analysis: theory and practice[END_REF]:

-Intraprocedural approaches analyze each function/procedure of the code in isolation [START_REF] Kildall | A unified approach to global program optimization[END_REF]31]. This enables modularity and helps with efficiency, but the tradeoff is that the call-context and interactions between the different procedures are not accounted for, hence leading to relatively lower precision. -In contrast, interprocedural analyses consider the entirety of the program, i.e. all the procedures, at the same time. They are often sensitive to call context and only focus on execution paths that respect function invocation and return rules, i.e. when a function ends, control has to return to the correct site of the last call to that function [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Chow | The design of a data flow analyzer[END_REF]. Unsurprisingly, interprocedural analyses are much more accurate but also have higher complexity than their intraprocedural counterparts [START_REF] Reps | Undecidability of context-sensitive data-dependence analysis[END_REF][START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Rountev | Interprocedural dataflow analysis in the presence of large libraries[END_REF][START_REF] Späth | Context-, flow-, and field-sensitive data-flow analysis using synchronized pushdown systems[END_REF].

IFDS. One of the most classical and widely-used frameworks for interprocedural data-flow analysis is that of Interprocedural Finite Distributive Subset problems (IFDS) [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Reps | Program analysis via graph reachability[END_REF]. IFDS is an expressive framework that can perform all the analyses enumerated above by assigning a set D of data facts to each line of the program and then applying a reduction to a variant of graph reachability with side conditions ensuring that function call and return rules are enforced. For example, in a null-pointer analysis, each data fact d i in D is of the form "the pointer p i might be null". See Section 2 for details. Given a program with n lines, the original IFDS algorithm in [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] solves the data-flow problem for a fixed starting point in time O(n • |D| 3). Due to its elegance and generality, this framework has been thoroughly studied by the community. It has been extended to various platforms and settings [START_REF] Arzt | FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps[END_REF][START_REF] Naeem | Practical extensions to the IFDS algorithm[END_REF][START_REF] Bodden | SPLLIFT: statically analyzing software product lines in minutes instead of years[END_REF], notably the on-demand setting [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF] and in presence of correlated method calls [START_REF] Rapoport | Precise data flow analysis in the presence of correlated method calls[END_REF], and has been implemented in standard static analysis tools [START_REF] Zaher | Watson libraries for analysis, with frontends for Java, Android, and JavaScript, and many common static program analyses[END_REF][START_REF] Bodden | Inter-procedural data-flow analysis with IFDS/IDE and soot[END_REF]. On-demand Data-flow Analysis. Due to the expensiveness of exhaustive data-flow analysis, i.e. an analysis that considers every possible starting point, many works in the literature have turned their focus to on-demand analysis [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF][START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF][START_REF] Babich | The method of attributes for data flow analysis: Part II. demand analysis[END_REF][START_REF] Sridharan | Demand-driven points-to analysis for Java[END_REF][START_REF] Yan | Demand-driven context-sensitive alias analysis for Java[END_REF][START_REF] Zheng | Demand-driven alias analysis for C[END_REF][START_REF] Duesterwald | Demand-driven computation of interprocedural data flow[END_REF][START_REF] Reps | Demand interprocedural program analysis using logic databases[END_REF]. In this setting, the algorithm can first run a preprocessing phase in which it collects some information about the program and produces summaries that can be used to speedup the query phase. Then, in the query phase, the algorithm is provided with a series of queries and should answer each one as efficiently as possible. Each query is of the form (ℓ 1 , d 1 , ℓ 2 , d 2) and asks whether it is possible to reach line ℓ 2 of the program, with the data fact d 2 holding at that line, assuming that we are currently at line ℓ 1 and data fact d 1 holds1 . It is also noteworthy that on-demand algorithms commonly use information found in previous queries to handle the current query more efficiently. On-demand analyses are especially important in just-in-time compilers and their speculative optimizations [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF][START_REF] Chen | Data dependence profiling for speculative optimizations[END_REF][START_REF] Lin | A compiler framework for speculative optimizations[END_REF][START_REF] Bebenita | SPUR: a trace-based JIT compiler for CIL[END_REF][START_REF] Flückiger | Correctness of speculative optimizations with dynamic deoptimization[END_REF], in which having dynamic information about the current state of the program can dramatically decrease the overhead for the compiler. In addition, on-demand analyses have the following merits (quoted from [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF][START_REF] Reps | Program analysis via graph reachability[END_REF]):

-narrowing down the focus to specific points of interest, -narrowing down the focus to specific data-flow facts of interest, -reducing the work in preliminary phases, -side-stepping incremental updating problems, and -offering on-demand analysis as a user-level operation that helps programmers with debugging. On-demand IFDS. An on-demand variant of the IFDS algorithm was first provided in [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF]. This method has no preprocessing but memoizes the information obtained in each query to help answer future queries more efficiently. It outperforms the classical IFDS algorithm of [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] in practice, but the only theoretical guarantee is that of same worst-case complexity, i.e. the on-demand version will never be any worse than running a new instance of the IFDS algorithm for each query. Hence, the worst-case runtime on m queries is O(n•m•|D| 3). Recall that n is the number of lines in the program and |D| is the number of data facts at each line. Alternatively, one can push all the complexity to the preprocessing phase, running the IFDS algorithm exhaustively for each possible starting point, and then answering queries by a simple table lookup. In this case, the preprocessing will take O(n 2 • |D| 3). Unfortunately, none of these two variants are scalable enough to handle codebases with hundreds of thousands of lines, e.g. standard utilities in the DaCapo benchmark suite [START_REF] Blackburn | The DaCapo benchmarks: Java benchmarking development and analysis[END_REF] such as Eclipse or Jython. Same-context On-demand IFDS. The work [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] provides a parameterized algorithm for a special case of the on-demand IFDS problem. The main idea in [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] is to observe that control-flow graphs of real-world programs are sparse and tree-like and that this sparsity can be exploited to find faster algorithms for same-context IFDS analysis. More specifically, the sparsity is formalized by a graph parameter called treewidth [START_REF] Robertson | Graph minors. ii. algorithmic aspects of tree-width[END_REF][START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF]. Intuitively speaking, treewidth is a measure of how much a given graph resembles a tree, i.e. more tree-like graphs have smaller treewidth. See Section 3 for a formal definition. It is proven that structured programs in several languages, such as C, have bounded treewidth [START_REF] Thorup | All structured programs have small tree-width and good register allocation[END_REF] and there are experimental works that establish small bounds on the treewidth of control-flow graphs of real-world programs written in other languages, such as Java [START_REF] Gustedt | The treewidth of Java programs[END_REF], Ada [START_REF] Burgstaller | On the tree width of Ada programs[END_REF] and Solidity [START_REF] Chatterjee | The treewidth of smart contracts[END_REF]. Using these facts, [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] provides an ondemand algorithm with O(n • |D| 3) preprocessing time and O ⌈ |D| lg n ⌉ time per query 2 . In practice, |D| is often tiny in comparison with n and hence this algorithm is considered to have linear preprocessing and constant query time. Unfortunately, the algorithm in [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] is not applicable to the general case of IFDS and can only handle same-context queries. Specifically, the queries in [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] provide a tuple (ℓ 1 , d 1 , ℓ 2 , d 2) just as in standard IFDS queries but they ask whether it is possible to reach (ℓ 2 , d 2) from (ℓ 1 , d 1) by an execution path that preserves the state of the stack, i.e. ℓ 1 and ℓ 2 are limited to being in the same function and the algorithm only considers execution paths in which every function call returns before reaching ℓ 2 .

Our Contribution. In this work, we present a novel algorithm for the general case of on-demand IFDS analysis. Our contributions are as follows:

-We identify a new sparsity parameter, namely the treedepth of the program's call graph, and use it to find more efficient parameterized algorithms for IFDS data-flow analysis. Hence, our approach exploits the sparsity of both call graphs and control-flow graphs and bounds both the treedepth and the treewidth. Treedepth [START_REF] Nesetril | Tree-depth, subgraph coloring and homomorphism bounds[END_REF][START_REF] Bodlaender | Rankings of graphs[END_REF] is a well-studied graph sparsity parameter. It intuitively measures how much the graph resembles a star, i.e. a shallow tree [START_REF] Nešetřil | Sparsity: graphs, structures, and algorithms[END_REF]Chapter 6]. -We provide a scalable algorithm that is not limited to same-context queries as in [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] and is much more efficient than the classical on-demand IFDS algorithm of [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF]. Specifically, after a lightweight preprocessing that takes O(n • |D| 3 • treedepth 2) time, our algorithm is able to answer each query in O(|D| 3 •treedepth). Thus, this is the first algorithm that can solve the general case of on-demand IFDS scalably and handle codebases and programs with hundreds of thousands or even millions of lines of code. -We provide experimental results on the standard DaCapo benchmarks [START_REF] Blackburn | The DaCapo benchmarks: Java benchmarking development and analysis[END_REF] illustrating that:

• our assumption of the sparsity of call graphs and low treedepth holds in practice in real-world programs; and • our approach comfortably beats the runtimes of exhaustive and ondemand IFDS algorithms [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF] by two orders of magnitude.

Novelty. Our approach is novel in several directions: -Unlike previous optimizations for IFDS that only focused on control-flow graphs, we exploit the sparsity of both control-flow graphs and call graphs. -To the best of our knowledge, this is the first time that the treedepth parameter is exploited in a static analysis or program verification setting. While this parameter is well-known in the graph theory community and we argue that it is a natural candidate for formalizing the sparsity of call graphs (See Section 3), this is the first work that considers it in this context. -We provide the first theoretical improvements in the runtime of general ondemand data-flow analysis since [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF], which was published in 1995. Previous improvements were either heuristics without a theoretical guarantee of improvement or only applicable to the special case of same-context queries. -Our algorithm is much faster than [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF] in practice and is the first to enable on-demand interprocedural data-flow analysis for programs with hundreds of thousands or even millions of lines of code. Previously, for such large programs, the only choices were to either apply the data-flow analysis intraprocedurally, which would significantly decrease the precision, or to limit ourselves to the very special case of same-context queries [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF].

Limitation. The primary limitation of our algorithm is that it relies on the assumption of bounded treewidth for control-flow graphs and bounded treedepth for call graphs. In both cases, it is theoretically possible to generate pathological programs that have arbitrarily large width/depth: [START_REF] Gustedt | The treewidth of Java programs[END_REF] shows that it is possible to write Java programs whose control-flow graphs have any arbitrary treewidth. However, such programs are highly unrealistic, e.g. they require a huge number of labeled nested while loops with a large nesting depth and break/continue statements that reference a while loop that is many levels above in the nesting order. Similarly, in Section 3, we construct a pathological example program whose call graph has a large treedepth. Nevertheless, this is also unrealistic and real-world programs, such as those in the DaCapo benchmark suite, have both small treewidth and small treedepth, as shown in Section 5 and [START_REF] Thorup | All structured programs have small tree-width and good register allocation[END_REF][START_REF] Gustedt | The treewidth of Java programs[END_REF][START_REF] Burgstaller | On the tree width of Ada programs[END_REF][START_REF] Chatterjee | The treewidth of smart contracts[END_REF].

Organization. In Section 2, we present the standard IFDS framework and formally define our problem. This is followed by a presentation of the graph sparsity parameters we will use, i.e. treewidth and treedepth, in Section 3. Our algorithm is then presented in Section 4, followed by experimental results in Section 5.

The IFDS Framework

In this section, we provide an overview of the IFDS framework following the notation and presentation of [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF][START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and formally define the interprocedural dataflow problem considered in this work.

Model of Computation. Throughout this paper, we consider the standard word RAM model of computation in which every word is of length w = Θ(lg n), where n is the length of the input. We assume that common operations, such as addition, shift and bitwise logic between a pair of words, take O(1) time.

Note that this has no effect on the implementation of our algorithms since most modern computers have a word size of at least 64 and we are not aware of any possible real-world input to our problems whose size can potentially exceed 2 64 .

We need this assumption since we use the algorithm of [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] -a call-to-start edge from the call vertex c l to the start vertex s j of the called function f j , and -an exit-to-return-site edge from the endpoint e j of the called function f j back to the return site r l . Call Graphs. Given a supergraph G as above, a call graph is a directed graph C whose vertices are the functions f 1 , . . . , f k of the program and there is an edge from f i to f j iff there is a function call statement in f i that calls f j . In other words, the call graph models the interprocedural edges in the supergraph and the supergraph can be seen as a combination of the control-flow and call graphs. Example. Figure 1 shows a program consisting of two functions (left) and its supergraph (right). Valid Paths. The supergraph G potentially contains invalid paths, i.e. paths that are not realizable by an actual run of the underlying program. The IFDS framework only considers interprocedurally valid paths in G. These are the paths that respect the rules for function invocation and return. More concretely, when a function's execution ends, control should return to the correct return-site vertex in its parent function. Formally, consider a path Π in G and let Π * be the subsequence of Π that is obtained by removing any vertex that was not a call vertex c l or a return-site vertex r l . Then, Π is called a same-context interprocedurally valid path if Π * can be generated from the non-terminal S in the following grammar: In other words, any function call in Π that was invoked in line c l should end by returning to its corresponding return-site r l . A same-context valid path preserves the state of the function call stack. In contrast, the path Π is interprocedurally valid or simply valid if Π * is generated by the non-terminal S ′ in the following grammar:

S → ϵ | c l S r l S. b = a ; 3 }
S ′ → S | S ′ c l S.
A valid path has to respect the rules for returning to the right return-site vertex after the end of each function, but it does not necessarily keep the function call stack intact and it is allowed ot have function calls that do not necessarily end by the end of the path. Let u and v be vertices in the supergraph G. We denote the set of all same-context valid paths from u to v by SCVP(u, v) and the set of all interprocedurally valid paths from u to v by IVP(u, v). In IFDS, we only focus on valid paths and hence the problem is to compute a meet-over-all-valid-paths solution to data-flow facts, instead of the meet-over-all-paths approach that is usually taken in intraprocedural data-flow analysis [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF].

IFDS Arena [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF]. An arena of the IFDS data-flow analysis is a tuple (G, D, Φ, M, ⊓) wherein: -M : E → Φ is a function that assigns a distributive flow function to every edge of the supergraph. Informally, M (e) models the effect of executing the edge e on the set of data facts. If the data facts that held before the execution of the edge e are given by a subset D ′ ⊆ D, then the data facts that hold after e are M (e)(D ′) ⊆ D. We can extend the function M to any path Π in G. Let Π be a path consisting of the edges e 1 , e 2 , . . . , e π . We define

-G = (V, E) is
M (Π) := M (e π) • M (e π-1) • • • • • M (e 1).
Here, • denotes function composition. According to this definition, M (Π) models the effect that Π's execution has on the set of data facts that hold in the program's current state. Problem Formalization. Consider an initial state (u, D 1) ∈ V × 2 D of the program, i.e. we are at line u of the program and we know that the data facts in D 1 hold. Let v ∈ V be another line, we define

MIVP(u, D 1 , v) := Π∈IVP(u,v) M (Π)(D 1).
We simplify the notation to MIVP(v), when the initial state is clear from the context. Our goal is to compute the MIVP values. Intuitively, MIVP corresponds to meet-over-all-valid-paths. If the meet operator is intersection, then MIVP(v) models the data facts that must hold whenever we reach v. Conversely, if we use union as our meet operator, then MIVP(v) is the set of data facts that may hold when reaching v. The work [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] provides an algorithm to compute MIVP(v) for every end vertex v in O(n • |D| 3), in which n = |V |. Same-context IFDS. We can also define a same-context variant of MIVP as follows:

MSCVP(v) := Π∈SCVP(u,v) M (Π)(D 1).
The intuition is similar to MIVP, except that in MSCVP we only consider samecontext valid paths that preserve the function call stack's status and ignore other valid paths. The work [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] uses parameterization by treewidth of the control-flow graphs to obtain faster algorithms for computing MSCVP. However, its algorithms are limited to the same-context setting. In contrast, in this work, we follow the original IFDS formulation of [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and focus on MIVP, not MSCVP. Our main contribution is that we present the first theoretical improvement for computing MIVP since [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF].

Dualization. In this work, we only consider the cases in which the meet operator is union. In other words, we focus on may analyses. IFDS instances in which the meet operator is intersection, also known as must analyses, can be reduced to union instances by a simple dualization. See [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Kildall | Global expression optimization during compilation[END_REF] for details. Data Fact Domain. In our presentation, we are assuming that there is a fixed global data fact domain D. In practice, the domain D can differ in every function of the program. For example, in a null-pointer analysis, the data facts in each function keep track of nullness of the pointers that are either global or local to that particular function. However, having different D sets would reduce the elegance of the presentation and has no real effect on any of the algorithms. So, we follow [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] and consider a single domain D in the sequel. Our implementation in Section 5 supports different domains for each function.

Graph Representation of Functions [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF]. Every union-distributive function φ : 2 D → 2 D can be succinctly represented by the following relation

R φ ⊆ (D ∪ {0}) × (D ∪ {0}) : R φ := {(0, 0)} ∪ {(0, d) | d ∈ φ(∅)} ∪ {(d 1 , d 2) | d 2 ∈ φ({d 1 }) \ φ(∅)}.
The intuition is that, in order to specify the union-distributive function φ, it suffices to fix φ(∅) and φ({d}) for every d ∈ D. Then, we always have

φ({d 1 , d 2 , . . . , d r }) = φ({d 1 }) ∪ φ({d 2 }) ∪ • • • ∪ φ({d r }).
We use a new item 0 to model φ(∅), i.e. 0 R φ d ⇔ d ∈ φ(∅). To specify φ({d}), we first note that φ(∅) ⊆ φ({d}), so we only need to specify the elements that are in φ({d}) but not φ(∅). These are precisely the elements that are in relation with d. In other words, φ({d}

) = φ(∅) ∪ {d ′ | d R φ d ′ }.
We can further represent the relation R φ as a bipartite graph H φ in which each part consists of the vertices D ∪ {0} and R φ defines the edges.

Example. Figure 2 shows the graph representation of several union-distributive functions.

Optimal and Parallel On-demand Data-flow Analysis 9

Remark 1. We note two points about the IFDS framework:

-As in [START_REF] Knoop | Efficient and optimal bit-vector data flow analyses: A uniform interprocedural framework[END_REF], we only consider IFDS instances in which the meet operator is union. Instances with intersection can be reduced to union instances by dualization [START_REF] Knoop | Efficient and optimal bit-vector data flow analyses: A uniform interprocedural framework[END_REF]. -For brevity, we are considering a global domain D, while in many applications the domain is procedure-specific. This does not affect the generality of our approach and our algorithms remain correct for the general case where each procedure has its own dedicated domain. Indeed, our implementation supports the general case.

Succinct representations. A distributive function f : 2 D → 2 D can be succinctly represented by a relation R f ⊆ (D ∪ {0}) × (D ∪ {0}
) defined as:

R f := {(0, 0)} ∪ {(0, b) | b ∈ f (∅)} ∪ {(a, b) | b ∈ f ({a}) -f (∅)}.
Given that f is distributive over union, we have

f ({d 1 , . . . , d k }) = f ({d 1 })∪• • •∪ f ({d k }).
Hence, to specify f it is sufficient to specify f (∅) and f ({d}) for each d ∈ D. This is exactly what R f does. In short, we have: Bounded Bandwidth Assumption. Following [START_REF] Knoop | Efficient and optimal bit-vector data flow analyses: A uniform interprocedural framework[END_REF], we assume that the bandwidth in function calls and returns is bounded by a constant. In other words, there is a small constant b, such that for every edge e that is a call-to-start or exit-toreturn-site edge, every vertex in the graph representation H M (e) has degree b or less. This is a classical assumption in IFDS [START_REF] Knoop | Efficient and optimal bit-vector data flow analyses: A uniform interprocedural framework[END_REF][START_REF] Bebenita | SPUR: a trace-based JIT compiler for CIL[END_REF] and models the fact that every parameter in a called function is only dependent on a few variables in the callee Composition of Graph Representations [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF]. What makes this graph representation particularly elegant is that we can compose two functions by a simple reachability computation. Specifically, if φ 1 and φ 2 are distributive, then so is

f (∅) = {b ∈ D | (0, b) ∈ R f } and f ({d}) = f (∅) ∪ {b ∈ D | (d, b) ∈ R f }. Moreover,
φ 2 • φ 1 . By definition chasing, we can see that R φ2•φ1 = R φ1 ; R φ2 = {(d 1 , d 2) | ∃d 3 (d 1 , d 3) ∈ R φ1 ∧(d 3 , d 2) ∈ R φ2 }.
Thus, to compute the graph representation H φ2•φ1 , we simply merge the bottom part of H φ1 with the top part of H φ2 and then compute reachability from the top-most layer to the bottom-most layer.

Example. Figure 3 illustrates how the composition of two distributive functions can be obtained using their graph representations. Note that this process sometimes leads to superfluous edges. For example, since we have the edge (0, a) in the result, the edge (b, a) is not necessary. However, having it has no negative side-effects, either.

(and conversely, every returned value is only dependent on a few variables in the called function).

Composition of distributive functions. Let f and g be distributive functions and R f and R g their succinct representations. It is easy to verify that g • f is also distributive, hence it has a succinct representation R g•f . Moreover, we have Example 5. Consider a null pointer analysis on the program in Figure 2. At each program point, we want to know which pointers can potentially be null. We first Fig. 3. Composing two distributive functions using reachability [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF].

R g•f = R f ; R g = {(a, b) | ∃c (a, c) ∈ R f ∧ (c, b) ∈ R g }.
Exploded Supergraph [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF].

-E = {(u 1 , d 1 , u 2 , d 2) ∈ V × V | (u 1 , u 2) ∈ E ∧ (d 1 , d 2) ∈ R M (u1,u2) }.
In other words, every edge between vertices u 1 and u 2 in the supergraph G is now replaced by the graphic representation of its corresponding distributive flow function M (u 1 , u 2). Naturally, we say a path Π in G is interprocedurally (same-context) valid, if the path Π in G, obtained by ignoring the second component of every vertex in Π, is interprocedurally (same-context) valid. Reduction to Reachability. We can now reformulate our problem based on reachability by valid paths in the exploded supergraph G. Consider an initial state (u, D 1) ∈ V × 2 D of the program and let v ∈ V be another line. Since the exploded supergraph contains representations of all distributive flow functions, it already encodes the changes that happen to the data facts when we execute one step of the program. Thus, it is straightforward to see that for any data fact d 2 , we have d 2 ∈ MIVP(u, D 1 , v) if and only if there exist a data fact d 1 ∈ D 1 such that the vertex (v, d 2) in G is reachable from the vertex (u, d 1) using an interprocedurally valid path [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF]. Hence, our data-flow analysis is now reduced to reachability by valid paths. Moreover, instead of computing MIVP values, we can simplify our query structure so that each query provides two vertices (u, d 1) and (v, d 2) in the exploded supergraph G and asks whether there is a valid path from (u, d 1) to (v, d 2). Example. Figure 4 shows the same program as in Figure 1, together with its exploded supergraph for null-pointer analysis. Here, we have two data facts: d 1 models the fact "the pointer a may be null" and d 2 does the same for b. Starting from line 5, i.e. the beginning of the main function, and knowing no data facts, i.e. D 1 = {0}, we would like to see if either a or b might be null at the end of the main function. Using a reachability analysis on the exploded supergraph, we can identify all vertices that can be reached by a valid path (green) and conclude that neither a nor b may be null by the end of the program. On-demand Analysis. As mentioned in Section 1, we focus on on-demand analysis and distinguish between a preprocessing phase in which the algorithm can perform a lightweight pass over the input and a query phase in which the algorithm has to respond to a large number of queries. The queries appear in a stream and the algorithm has to handle each query as fast as possible. Based on the discussion above, each query is of the form (u 1 , d 1 , u 2 , d 2) ∈ V ×D * ×V ×D * and the algorithm should report whether there exist an interprocedurally valid path from (u 1 , d 1) to (u 2 , d 2) in the exploded supergraph G. Bounded Bandwidth Assumption. Following previous works such as [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF][START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF][START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF], we assume that the "bandwidth" in function calls and returns is bounded. More concretely, we assume there exists a small constant β such that for every interprocedural call-to-start or exit-to-return-site edge e in our supergraph G, the degree of each vertex in the graph representation H M (e) is at most β. This is a classical assumption made in IFDS and all of its extensions. Intuitively, it models the idea that every parameter in a called function depends on only a few variables in the call site line c of the callee, and conversely, that the return value of a function is only dependent on a few variables at its last line.

Treewidth and Treedepth

In this section, we provide a short overview of the concepts of treewidth and treedepth. Treewidth and treedepth are both graph sparsity parameters and we will use them in our algorithm in the next section to formalize the sparsity of control-flow graphs and call graphs, respectively. Tree Decompositions [START_REF] Robertson | Graph minors. ii. algorithmic aspects of tree-width[END_REF][START_REF] Robertson | Graph minors. iii. planar tree-width[END_REF][START_REF] Bodlaender | A tourist guide through treewidth[END_REF]. Given an undirected graph G = (V, E), a tree decomposition of G is a rooted tree T = (B, E T) such that: i. Every node b ∈ B of the tree T has a corresponding subset V b ⊆ V of vertices of G. To avoid confusion, we reserve the word "vertex" for vertices of G and use the word "bag" to refer to nodes of the tree T . This is natural, since each bag b has a subset V b of vertices. ii. Every vertex appears in some bag, i.e. b∈B V b = V . iii. For every edge {u, v} ∈ E, there is a bag that contains both of its endpoints, i.e. ∃b ∈ B {u, v} ⊆ V b . iv. Every vertex v ∈ V appears in a connected subtree of T . Equivalently, if b is on the unique path from b

′ to b ′′ in T, then V b ⊇ V b ′ ∩ V b ′′ .
When talking about tree decompositions of directed graphs, we simply ignore the orientation of the edges and consider decompositions of the underlying undirected graph. Intuitively, a tree decomposition covers the graph G by a number of bags 3 that are connected to each other in a tree-like manner. If the bags are small, we are then able to perform dynamic programming on G in a very similar manner to trees [START_REF] Bodlaender | Dynamic programming on graphs with bounded treewidth[END_REF][START_REF] Chatterjee | Algorithms for algebraic path properties in concurrent systems of constant treewidth components[END_REF]39,[START_REF] Goharshady | An efficient algorithm for computing network reliability in small treewidth[END_REF][START_REF] Meybodi | Optimal mining: Maximizing Bitcoin miners' revenues from transaction fees[END_REF]. This is the motivation behind the following definition.

Treewidth [START_REF] Robertson | Graph minors. ii. algorithmic aspects of tree-width[END_REF]. The width of a tree decomposition is defined as the size of its largest bag minus 1, i.e. w(T) := max b∈B |V b | -1. The treewidth of a graph G is the smallest width amongst all of its tree decompositions. Informally speaking, treewidth is a measure of tree-likeness. Only trees and forests have a treewidth of 1, and, if a graph G has treewidth k, then it can be decomposed into bags of size at most k + 1 that are connected to each other in a tree-like manner. Example. Figure 5 shows a graph G on the left and a tree decomposition of width 2 for G on the right. In the tree decomposition, we have highlighted the connected subtree of each vertex by dotted lines. This tree decomposition is optimal and hence the treewidth of G is 2. Computing Treewidth. In general, it is NP-hard to compute the treewidth of a given graph. However, for any constant k, there is a linear-time algorithm that decides whether the graph has treewidth at most k and, if so, also computes an optimal tree decomposition [START_REF] Bodlaender | A linear time algorithm for finding tree-decompositions of small treewidth[END_REF]. As such, most treewidth-based algorithms assume that an optimal tree decomposition is given as part of the input.

Treewidth of Control-flow Graphs. In [START_REF] Thorup | All structured programs have small tree-width and good register allocation[END_REF], it was shown that the controlflow graphs of goto-free programs in a number of languages such as C and Pascal have a treewidth of at most 7. Moreover, [START_REF] Thorup | All structured programs have small tree-width and good register allocation[END_REF] also provides a linear-time algorithm that, while not necessarily optimal, always outputs a tree decomposition of width at most 7 for the control-flow graph of programs in these languages by a single pass over the parse tree of the program. This algorithm is implemented in [START_REF] Chatterjee | JTDec: A tool for tree decompositions in soot[END_REF], and is the algorithm we use for obtaining our tree decompositions in Section 5. Alternatively, one can use the algorithm of [START_REF] Bodlaender | A linear time algorithm for finding tree-decompositions of small treewidth[END_REF] to ensure that an optimal decomposition is used at all times. The theoretical bound of [START_REF] Thorup | All structured programs have small tree-width and good register allocation[END_REF] does not apply to Java, but the work [START_REF] Gustedt | The treewidth of Java programs[END_REF] showed that the treewidth of control-flow graphs in real-world Java programs is also bounded. This bounded-treewidth property has been used in a variety of static analysis and compiler optimization tasks to speed up the underlying algorithms [START_REF] Chatterjee | Algorithms for algebraic path properties in concurrent systems of constant treewidth components[END_REF][START_REF] Obdrzálek | Fast mu-calculus model checking when tree-width is bounded[END_REF][START_REF] Aiswarya | How treewidth helps in verification[END_REF][START_REF] Chatterjee | Quantitative verification on product graphs of small treewidth[END_REF][START_REF] Ferrara | Treewidth in verification: Local vs[END_REF][START_REF] Chatterjee | Faster algorithms for quantitative verification in constant treewidth graphs[END_REF][START_REF] Chatterjee | Faster algorithms for dynamic algebraic queries in basic rsms with constant treewidth[END_REF][START_REF] Chatterjee | Efficient parameterized algorithms for data packing[END_REF][START_REF] Asadi | Faster algorithms for quantitative analysis of MCs and MDPs with small treewidth[END_REF][START_REF] Goharshady | Parameterized and Algebro-geometric Advances in Static Program Analysis[END_REF][START_REF] Ahmadi | Efficient approximations for cache-conscious data placement[END_REF]. Nevertheless, one can theoretically construct pathological examples with high treewidth.

Balancing Tree Decompositions. The runtime of our algorithm in Section 4 depends on the height of the tree decomposition. However, [START_REF] Bodlaender | Parallel algorithms with optimal speedup for bounded treewidth[END_REF] provides a lineartime algorithm that, given a graph G and a tree decomposition of constant width t, produces a binary tree decomposition of height O(lg n) and width O(t). Combining this with the algorithms of [START_REF] Thorup | All structured programs have small tree-width and good register allocation[END_REF] and [START_REF] Bodlaender | A linear time algorithm for finding tree-decompositions of small treewidth[END_REF] for computing low-width tree decompositions allows us to assume that we are always given a balanced and binary tree decomposition of bounded width for each one of our control-flow graphs as part of our IFDS input.

We now switch our focus to the second parameter that appears in our algorithms, namely treedepth. [START_REF] Nesetril | Tree-depth, subgraph coloring and homomorphism bounds[END_REF]. Let G = (V, E) be an undirected connected graph. A partial order tree (POT) 4 over G is a rooted tree T = (V, E T) on the same set of vertices as G that additionally satisfies the following property:

Partial Order Trees

-For every edge {u, v} ∈ E of G, either u is an ancestor of v in T or v is ancestor of u in T. The intuition is quite straightforward: T defines a partial order ≺ T over the vertices V in which every element u is assumed to be smaller than its parent p u , i.e. u ≺ T p u . For T to be a valid POT, every pair of vertices that are connected by an edge in G should be comparable in ≺ T . If G is not connected, then we will have a partial order forest, consisting of a partial order tree for each connected component of G. With a slight abuse of notation, we call this a POT, too.

Example. Figure 6 shows a graph G (left) together with a POT of depth 4 for G (right). In the POT, the edges of the original graph G are shown by dotted red lines. Every edge of G goes from a node in T to one of its ancestors.

Treedepth [START_REF] Nesetril | Tree-depth, subgraph coloring and homomorphism bounds[END_REF]. The treedepth of an undirected graph G is the smallest depth among all POTs of G. Path Property of POTs [START_REF] Nesetril | Tree-depth, subgraph coloring and homomorphism bounds[END_REF]. Let T = (V, E T) be a POT for a graph G = (V, E) and u and v two vertices in V . Define A u as the set of ancestors of u in T and define A v similarly. Let A := A u ∩ A v be the set of common ancestors of u and v. Then, any path that goes from u to v in the graph G has to intersect A, i.e. it has to go through a common ancestor.

Sparsity Assumption. In the sequel, our algorithm is going to assume that call graphs of real-world programs have small treedepth. We establish this experimentally in Section 5. However, there is also a natural reason why this assumption is likely to hold in practice. Consider the functions in a program. It is natural to assume that they were developed in a chronological order, starting with base (phase 1) functions, and then each phase of the project used the functions developed in the previous phases as libraries. Thus, the call graph can be partitioned to a small number of layers based on the development phase of each function. Moreover, each function typically calls only a small number of previous functions. So, an ordering based on development phase is likely to give us a POT with small depth. The depth would typically depend on the number of phases and the degree of each function in the call graph, but these are both small parameters in practice. Pathological Example. It is possible in theory to write a program whose call graph has an arbitrarily large treedepth. However, such a program is not realistic. Suppose that we want a program with treedepth n. We can create n functions f 1 , f 2 , . . . , f n and then ensure that each function f i calls every other function f j (j ̸ = i). In this strange program, our call graph will simply be a complete graph on n vertices. Since every two vertices in this graph have to be comparable, its POT will be a path with depth n. So, its treedepth is Θ(n).

Computing Treedepth. As in the case of treewidth, it is NP-hard to compute the treedepth of a given graph [START_REF] Pothen | The complexity of optimal elimination trees[END_REF]. However, for any fixed constant k, there is a linear-time algorithm that decides whether a given graph has treedepth at most k and, if so, produces an optimal POT [START_REF] Nadara | Computing treedepth in polynomial space and linear FPT time[END_REF]. Thus, in the sequel, we assume that all inputs include a POT of the call graph with bounded depth.

Our Parameterized Algorithm

In this section, we present our parameterized algorithm for solving the general case of IFDS data-flow analysis, assuming that the control-flow graphs have bounded treewidth and the call graph has bounded treedepth. Throughout this section, we fix an IFDS arena (G, D, Φ, M, ∪) given by an exploded supergraph G and assume that every control-flow graph comes with a balanced binary tree decomposition of width at most k 1 . We also assume that a POT of depth k 2 over the call graph is given as part of the input. All these assumptions are without loss of generality since the tree decompositions and POT can be computed in linear time using the algorithms mentioned in Section 3. Before presenting our algorithm, we should first define a few useful notions. Algorithm for Same-Context IFDS. The work [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] provides an on-demand parameterized algorithm for same-context IFDS. This algorithm requires a balanced and binary tree decomposition of constant width for every control-flow graph and provides a preprocessing runtime of O(n • |D| 3), after which it can an-

swer same-context queries in time O ⌈ |D| lg n ⌉ . A same-context query is a query of the form (u 1 , d 1 , u 2 , d 2) ∈ V × D * × V × D *
which asks whether there exists a same-context valid path from (u 1 , d 1) to (u 2 , d 2) in the exploded supergraph G. Below, we use [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF]'s algorithm for same-context queries as a black box. Stack States. Let F be the set of functions in our program. A stack state is simply a finite sequence of functions ξ = ⟨ξ i ⟩ s i=1 ∈ F s . We use a stack state to keep track of the set of functions that have been called but have not finished their execution and returned yet. Persistence. Consider an interprocedurally valid path Π = ⟨π i ⟩ p i=1 in the supergraph G and let Π * = ⟨π * i ⟩ s i=1 be the sub-sequence of Π that only includes call vertices c l and return r l . For each π * i that is a call vertex, let f i be the function called by π * i . We say the function call to f i is temporary if π * i is matched by a corresponding return-site vertex π * j in Π * with j > i. Otherwise, f i is is a persistent function call. In other words, temporary function calls are the ones who return before the end of the path Π and persistent ones are those that are added to the stack but never popped. So, if the stack is at state ξ before executing Π, it will be in state ξ • ⟨f i1 • f i2 • • • f ir ⟩ after Π's execution, in which the f ij 's are our persistent function calls. Moreover, we can break down the path Π as follows:

Π = Σ 0 • Σ 1 • π i1 • Σ 2 • π i2 • • • Σ r • π ir • Σ r+1 (1)
in which Σ 0 is an intraprocedural path, i.e. the part of Π that does not leave the initial function. Note that we either have Π = Σ 0 or Σ 0 should end with a function call. For every i ̸ = 0, Σ i is a same-context valid path from the starting point of a function and π ij is a call vertex that calls the next persistent function f ij . We call (1) the canonical partition of the path Π. Exploded Call Graph. Let C = (F, E C) be the call graph of our IFDS instance, in which F is the set of functions in the program. We define the exploded call graph C = (F , E C) as follows:

-Our vertex set F is simply F × D * . Recall that D * := D ∪ {0}.

-There is an edge from the vertex (f 1 , d 1) to the vertex (f 2 , d 2) in E C iff:

• There is a call statement c ∈ V in the function f 1 that calls f 2 ;

• There exist a data fact d 3 ∈ D * such that (i) there is a same-context valid path from (s f1 , d 1) to (c, d 3) in the exploded supergraph G, and (ii) there is an edge from (c, d 3) to (s f2 , d 2) in the exploded supergraph G.

The edges of the exploded call graph model the effect of a valid path that starts at s f1 , i.e. first line of f 1 , when the function call stack is empty and reaches s f2 , with stack state ⟨f 2 ⟩. Informally, this corresponds to executing the program starting form f 1 , potentially calling any number of temporary functions, then waiting for all of these temporary functions and their children to return so that we again have an empty stack, and then finally calling f 2 from the call-site c, hence reaching stack state ⟨f 2 ⟩. Intuitively, this whole process models the substring Σ • c in the canonical partition of a valid path, in which Σ is a samecontext valid path, and f 2 is the next persistent function, which was called at c. Hence, going forward, we do not plan to pop f 2 from the stack.

Treedepth of C. Recall that we have a POT T of depth k 2 for the call graph

C. In C, every f ∈ C is replaced by |D * | vertices (f, 0), (f, d 1), . . . , (f, d |D|).
We can obtain a valid POT T for C by processing the tree in a top-down order and replacing every vertex that corresponds to a function f with a path of length |D * |, as shown in Figure 7. Preprocessing. The preprocessing phase of our algorithm consists of the following four steps:

It is straightforward to verify that T is a valid POT of depth k 2 • |D * | for C.
1. Same-context Preprocessing: Our algorithm runs the preprocessing phase of [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF]'s algorithm for same-context IFDS. This is done as a black box. See [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] for the details of this step. 2. Intraprocedural Preprocessing: For every vertex (u, d) ∈ G, for which u is a line of the program in the function f , our algorithm performs an intraprocedural reachability analysis and finds a list of all the vertices of the form (c, d ′) such that:

-c is a call-site vertex in the same function f.

-There an intraprocedural path from (u, d) to (c, d ′) that always remains within f and does not cause any function calls. Our algorithm computes this by a simple reverse DFS from every (c, d ′). Intuitively, this is so that we can later handle the first part, i.e. Σ 0 , in the canonical partition in 1. Note that this step is entirely intraprocedural and our reverse DFS is equivalent to the classical algorithms of [START_REF] Kildall | Global expression optimization during compilation[END_REF]. Moreover, we can consider Σ 0 to be a same-context path instead of merely an intraprocedural path. In this case, we can rely on queries to [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] to do this step of our preprocessing. 3. Computing Exploded Call Graph: Our algorithm generates the exploded call graph C using its definition above. It iterates over every function f 1 and call site c in f 1 . Let f 2 be the function called at c. For every pair (d 1 , d 3) ∈ D * × D * , our algorithm queries the same-context IFDS algorithm of [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] to see if there is a same-context valid path from (s f1 , d 1) to (c, d 3). Note that we can make such queries since we have already performed the required same-context preprocessing in Step 1 above. If the query's result is positive, the algorithm iterates over every d 2 ∈ D * such that (c, d 3 , s f2 , d 2) is an edge in the exploded supergraph G, and adds an edge from (f 1 , d 1) to (f 2 , d 2) in C. The algorithm also computes the POT T as mentioned above. Intuitively, this step allows us to summarize the effects of each function call in the call graph so that we can later handle the control-flow graphs and the call graph separately. 4. Computing Ancestral Reachability in T : For every vertex u in T , let T ↓ u be the subtree of T rooted at u and F ↓ u be the set of descendants of u. For every u and every v ∈ F ↓ u , our algorithm precomputes reach(u, v), i.e. whether u is reachable from v in C and also reach(v, u). Informally, the idea is that every path from a vertex a in our exploded call graph to a vertex b has to go through one of the ancestors of a and b (See Section 3). Thus, it is natural to precompute the reachability relations between every vertex and all of its ancestors. To compute this, for every vertex u and every descendant v of u, we define:

up[u, v] := 1 there is a path from v to u in C[F ↓ u] 0 otherwise , down[u, v] := 1 there is a path from u to v in C[F ↓ u] 0 otherwise .
Note that in the definition above, we are only considering paths whose every internal vertex is in the subtree of u. We can find the values of down[u, v] by simply running a DFS from u but ignoring all the edges that leave the subtree T Query. After the end of the preprocessing phase, our algorithm is ready to accept queries. Suppose that a query q asks whether there exists a valid interprocedural path from (u 1 , d 1) to (u 2 , d 2) in G. Suppose that Π is such a valid path and Π is its trace on the supergraph G, i.e. the path obtained from Π by ignoring the second component of every vertex. We consider the canonical partition of Π as

Π = Σ 0 • (Σ 1 • π i1) • (Σ 2 • π i2) • • • (Σ r • π ir) • Σ r+1
and its counterpart in Π as

Π = Σ 0 • Σ 1 • π i1 • Σ 2 • π i2 • • • Σ r • π ir • Σ r+1 .
Let Σ j [START_REF] Zaher | Watson libraries for analysis, with frontends for Java, Android, and JavaScript, and many common static program analyses[END_REF] be the first vertex in Σ j . For every j ≥ 1, consider the subpath

Σ j • π ij • Σ j+1 [1].
This subpath starts at the starting point s f of some function f and ends at the starting point s f ′ of the function f ′ called in π ij . Thus, it goes from a vertex of the form (s f , d 1) to a vertex of the form (s f ′ , d 2). However, by the definition of our exploded call graph C, we must have an edge e j in C going from (f, d 1) to (f ′ , d 2). With a minor abuse of notation, we do not differentiate between f and s f and replace this subpath with e j . Hence, every interprocedurally valid Π can be partitioned in the following format:

Π = Σ 0 • e 1 • e 2 • • • e r • Σ r+1 .
In other words, to obtain an interprocedurally valid path, we should first take an intraprocedural path Σ 0 in our initial function, followed by a path e 1 • e 2 • • • e r in the exploded call graph C, and then a same-context valid path Σ r+1 in our target function. Note that Σ r+1 begins at the starting point of our target function.

Our algorithm uses the observation above to answer the queries. Recall that the query q is asking whether there exists a path from (u 1 , d 1) to (u 2 , d 2) in G. Let f 1 be the function of u 1 and f 2 the function containing u 2 . Our algorithm performs the following steps to answer the query:

1. Take all vertices of the form (c, d 3) such that c a call vertex in f 1 and (c, d 3) is intraprocedurally reachable from (u 1 , d 1). Note that this was precomputed in Step 2 of our preprocessing. 2. Find all successors of the vertices in Step 1 in G. These successors are all of the form (s f ′ , d 4) for some function f ′ , and their corresponding nodes in the exploded call graph are of the form (f ′ , d 4). 3. Compute the set of all (f 2 , d 5) vertices in C that are reachable from one of the (f ′ , d 4) vertices obtained in the previous step. In this case, the algorithm uses the path property of POTs and tries all possible common ancestors of (f 2 , d 5) and (f ′ , d 4) as potential internal vertices in the path. 4. For each (f 2 , d 5) found in the previous step, ask the same-context query from (s f2 , d 5) to (f 2 , d 2). For these same-context queries, our algorithm uses the method of [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] as a black box. 5. If any of the same-context queries in the previous step return true, then our algorithm also answers true to the query q. Otherwise, it answers false.

Intuition. Figure 8 provides an overview of how our query phase breaks an interprocedurally valid path down between G (red) and C (blue). Note that we do not distinguish between the vertex (f 2 , d 5) of C and vertex (s f2 , d 5) of G.

Explicitly, any path from (u 1 , d 1) to (u 2 , d 2) should first begin with an intraprocedural segment in the original function f 1 . This part is precomputed and shown in red. Then, it switches from the exploded control-flow graph to the exploded call graph and follows a series of function calls. This is shown in blue. We have already precomputed the effect of each edge in the call graph and encoded this effect in the exploded call graph. Hence, the blue part of the path is simply a reachability query, which we can answer efficiently using our POT. We would like to see whether there is a path from a = (f ′ , d 4) to b = (f 2 , d 5). However, any such path should certainly go through one of the common ancestors of a and b in the POT. Since the treedepth is bounded, a and b have only a few ancestors. Moreover, we have already computed the reachability between any vertex and all of its ancestors. So, a few table lookups can tell us whether there is a path from a to b. Finally, when we reach the beginning of our target function f 2 , we have to take a same-context valid path to our target state (u 2 , d 2). To check if such a path exists, we simply rely on [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] as a black box.

Runtime Analysis of the Preprocessing Phase. Our algorithm is much faster than the classical IFDS algorithm of [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF]. More specifically, for the preprocessing, we have:

-Step 1 is a black box from [START_REF] Chatterjee | Optimal and perfectly parallel algorithms for on-demand data-flow analysis[END_REF] and takes O(n • |D| 3).

-Step 2 is a simple intraprocedural analysis that runs a reverse DFS from every node (c, d) in any function f . Assuming that the function f has α lines of code and a total of δ function call statements, this will take O(α • δ • |D| 3). Assuming that δ is a small constant, this leads to an overall runtime of

(n • |D| 3 • k 2
2), which has only linear dependence on the number of lines, n. Runtime Analysis of the Query Phase. To analyze the runtime of a query, note that there are O(δ•|D|) different possibilities for (c, d 3). Due to the bounded bandwidth assumption, each of these correspond to a constant number of (f ′ , d 4)'s. For each (f ′ , d 4) and (f 2 , d 5), we should perform a reachability query using the POT T . So, we might have to try up to O(k 2 • |D|) common ancestors. So, the total runtime for finding all the (f 2 , d 5)'s is O(|D| 3 • k 2 • δ). Finally, we have to perform a same-context query from every (s f2 , d 5) to (u 2 , d 2). So, we do a total of at most O(|D|) queries, each of which take O(|D|). So, the total runtime is

O(|D| 3 • k 2 • δ), which is O(|D| 3
) in virtually all real-world scenarios where k 2 and δ are small constants.

Experimental Results

Implementation and Machine. We implemented our algorithm, as well as the algorithms of [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF], in a combination of C++ and Java, and used the Soot [START_REF] Vallée-Rai | Soot -a Java bytecode optimization framework[END_REF] framework to obtain the control-flow and call graphs. Specifically, we use the SPARK call graph created by Soot for the intermediate Jimple representation. To compute treewidth and treedepth, we used the winning open-source tools submitted to past PACE challenges [START_REF] Dell | The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration[END_REF][START_REF] Kowalik | The PACE 2020 Parameterized Algorithms and Computational Experiments Challenge: Treedepth[END_REF]. All experiments were run on an Intel i7-11800H machine (2.30 GHz, 8 cores, 16 threads) with 12 GB of RAM.

Benchmarks and Experimental Setup. We compare the performance of our method against the standard IFDS algorithm [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and its on-demand variant [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF] and use the standard DaCapo benchmarks [START_REF] Blackburn | The DaCapo benchmarks: Java benchmarking development and analysis[END_REF] as input programs. These are real-world programs with hundreds of thousands of lines of code. For each benchmark, we consider three different classical data-flow analyses: (i) reachability analysis for dead-code elimination, (ii) null-pointer analysis, and (iii) possibly-uninitialized variables analysis. For each analysis, we gave each of the algorithms 10 minutes time over each benchmark and recorded the number of queries that the algorithm successfully handled in this time. The queries themselves were randomly generated5 and the number of queries was also limited to n, i.e. the number of lines in the code. We then report the average cost of each query, i.e. each algorithm's total runtime divided by the number of queries it could handle. The reason for this particular setup is that [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF] do not distinguish between preprocessing and query. So, to avoid giving our own method any undue advantage, we have to include both our preprocessing and our query time in the mix.

Treewidth and Treedepth. In our experiments, the maximum encountered treewidth was 10, whereas the average was 9.1. Moreover, the maximum treedepth was 135 and the average was 43.8. Hence, our central hypothesis that real-world programs have small treewidth and treedepth holds in practice and the widths and depths are much smaller than the number of lines in the program.

Results. Figure 9 provides the average query time for each analysis. Each dot corresponds to one benchmark. We use PARAM, IFDS and DEM to refer to our algorithm, the IFDS algorithm in [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF], and the on-demand IFDS algorithm in [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF], respectively. The reported instance sizes are the number of edges in G.

Discussion. As shown in Section 4, our algorithm's preprocessing has only linear dependence on the number n of lines and our query time is completely independent of n. Thus, our algorithm has successfully pushed most of the time complexity on the small parameters such as the treewidth k 1 , treedepth k 2 , bandwidth b and maximum number of function calls in each function, i.e. δ. All these parameters are small constants in practice. Specifically, the two most important ones are always small: The treewidth in DaCapo benchmarks never exceeds 10 and the treedepth is at most 135. This is in contrast to n which is the hundreds of thousands and the instance size, which can be up to around 2 • 10 6 . In contrast, both [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF] have a quadratic dependence on n. Unsurprisingly, this leads to a huge gap in the practical runtimes and our algorithm is on average faster than the best among [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF] by a factor of 158, i.e. more than two orders of magnitude. Moreover, the difference is much starker on larger Comparison of the average cost per query for our algorithm vs [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and [START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF].

benchmarks, in which the ratio of our parameters to n is close to 0. On the other hand, in a few small instances, simply computing the treewidth and treedepth is more time-consuming than the previous approaches and they outperform us.

Conclusion

In this work, we provided a parameterized algorithm for the general case of the on-demand data-flow analysis as formalized by the IFDS framework. We exploited a novel parameter, i.e. the treedepth of call graphs, to reduce the runtime dependence on the number of lines of code from quadratic to linear. This led to significant practical improvements of more than two orders of magnitude in the runtime of the IFDS data-flow analysis as demonstrated by our experimental results. Moreover, this is the first theoretical improvement in the runtime of the general case of IFDS since the original algorithm of [START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF], which was published in 1995.

10 }

 10 Fig. 1. A C++ program (left) and its supergraph (right).

 a supergraph consisting of control-flow graphs and interprocedural edges, as illustrated above. -D is a finite set of data facts. Intuitively, we would like to keep track of which subset of data facts in D hold at any vertex of G (line of the program). -The meet operator ⊓ is either union or intersection, i.e. ⊓ ∈ {∪, ∩}. -Φ is the set of distributive flow functions over ⊓. Every function φ ∈ Φ is of the form φ : 2 D → 2 D and for every pair of subsets of data facts D 1 , D 2 ⊆ D, we have φ(D 1 ⊓ D 2) = φ(D 1) ⊓ φ(D 2).

Fig. 3 :

 3 Fig. 3: Succinct representation of several distributive functions.

Fig. 2 .

 2 Fig. 2. Graph representation of union-distributive functions with D = {a, b} [22].

Fig. 4 :Example 4 .

 44 Fig. 4: Obtaining H g•f (right) from H f and H g (left)

 Consider an IFDS arena (G = (V, E), D, Φ, M, ∪) as above and let D * := D ∪ {0}. The exploded supergraph of this arena is a directed graph G = (V , E) in which: -V = V × D * , i.e. we take |D * | copies of each vertex in the supergraph G, one corresponding to each data fact in D * .

1 2 bFig. 4 .

 24 Fig. 4. A program (left) and its exploded supergraph (right).

Fig. 5 .

 5 Fig. 5. A graph G (left) and one of its tree decompositions (right).

Fig. 6 .

 6 Fig. 6. A graph G (left) and a POT of depth 4 for G (right).

Fig. 7 .

 7 Fig. 7. Obtaining T from T by expanding each vertex to a path.

↓u.

 Similarly, we can find the values of up[u, v] by a similar DFS in which the orientation of all edges are reversed. By the path property of every path ρ from v to u in C either has all of its vertices in the subtree T ↓ u or visits some ancestors of u as internal vertices. Let w be the highest ancestor of u that is visited by ρ. Then, we must have up[w, v] = down[w, u] = 1. Similarly, if there is a path from u to v, we must have up[w, u] = down[w, v] = 1. Our algorithm simply sets: reach(u, v) = w (up[w, u] ∧ down[w, v]) , and reach(v, u) = w (up[w, v] ∧ down[w, u]) .

Fig. 8 .

 8 Fig. 8. An overview of the query phase.

 Fig.9. Comparison of the average cost per query for our algorithm vs[START_REF] Reps | Precise interprocedural dataflow analysis via graph reachability[END_REF] and[START_REF] Horwitz | Demand interprocedural dataflow analysis[END_REF].

 as a black box. Our own contribution does not rely on the word RAM model. Control-flow Graphs. In IFDS, a program with k functions f 1 , f 2 , . . . , f k is modeled by k control-flow graphs G 1 , G 2 , . . . , G k , one for each function, as well as certain interprocedural edges that model function calls and returns. The graphs G i are standard control-flow graphs, having a dedicated start vertex s i modeling the beginning point of f i , another dedicated end vertex e i modeling its end point, one vertex for every line of code in f i , and a directed edge from u to v, if line v can potentially be reached right after line u in some execution of the program. The only exception is that function call statements are modeled by two vertices: a call vertex c l and a return site vertex r l . The vertex c l has only incoming edges, whereas r l has only outgoing edges. There is also an edge from c l to r l , which is called a call-to-return-site edge. This edge is used to pass local information, e.g. information about the variables in f i that are unaffected by the function call, from c l to r l . Supergraphs. The entire program is modeled by a supergraph G, consisting of all the control-flow graphs G i , as well as interprocedural edges between them. If a function call statement in f i , corresponding to vertices c l and r l in G i , calls the function f j , then the supergraph contains the following interprocedural edges:

 O(n • |D|3). Note that this assumption is in line with reality since we rarely, if ever, encounter functions that call more than a constant number of other functions.-In Step 3, we have at most O(n • |D|) call nodes of the form (c, d 3). Based on the bounded bandwidth assumption, each such node leads to constantly many possibilities for d 2 . So, we perform at most O(n•|D| 2) calls to the samecontext query procedure. Each same-context query takes O(⌈|D|/ lg n⌉), so the overall runtime of this step is O(n • |D| 3 / lg n). -In Step 4, the total time for computing all the up and down values is O(n • |D| 3 • k 2). This is because C has at most O(n • |D|) vertices and O(n • |D| 2) edges and each edge can be traversed at most O(|D| • k 2) times in the DFS, where k 2 is the depth of our POT for C. Note that the treedepth of C is a factor |D| larger than that of C. Finally, computing the reach values takes O(n • |D| 3 • k 2 2) time. Therefore, the total runtime of our preprocessing phase is O

Instead of single data facts d1 and d2, we can also use a set of data facts at each of ℓ1 and ℓ2, but as we will see in Section

2, this does not affect the generality.

This algorithm uses the Word-RAM model of computation. The division by lg n is obtained by encoding lg n bits in one word.

void g (int *& a , int *& b) {

The name partial order tree is not standard in this context, but we use it throughout this work since it provides a good intuition about the nature of T . Usually, the term "treedepth decomposition" is used instead.

For generating each query, we randomly and uniformly picked two points in the exploded supergraph. Note that none of our queries are same-context. Even when the two points of the query are in the same function, we are asking for reachability using interprocedurally valid paths that are not necessarily same-context.

Acknowledgments. The research was partially supported by the Hong Kong Research Grants Council ECS Project Number 26208122, the HKUST-Kaisa Joint Research Institute Project Grant HKJRI3A-055 and the HKUST Startup Grant R9272. Author names are ordered alphabetically.