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Abstract

Background. Parallel transmit (pTx) has introduced many benefits to magnetic resonance imaging
(MRI) with regard to decreased specific absorption rates and improved transmit field homogeneity, of
particular importance in applications at higher magnetic field strengths. PTx has also been proposed
as a solution to mitigating dangerous RF induced heating of elongated conductive devices such as
those used in cardiac interventions. In this work we present a system that can augment a conventional
scanner with pTx, in particular for use in interventional MRI for guidewire safety, by adjusting the
amplitude and phase of each channel right before the start of the imaging pulses. Methods. The pTx
system was designed to work in-line with a 1.5 T MRI while the RF synthesis and imaging control was
maintained on the host MR scanner. The add-on pTx system relies on the RF transmit signal,
unblanking pulse, and a protocol driven trigger from the scanner. The RF transmit was split into
multiple fully modulated transmit signals to drive an array of custom transceiver coils. The
performance of the 8-channel implementation was tested with regards to active and real-time control
of RF induced currents on a standard guidewire, heating mitigation tests, and anatomical imaging in
sheep. Results. The pTx system was intended to update RF shims in real-time and it was demonstrated
that the safe RF shim could be determined while the guidewire is moved. The anatomical imaging
demonstrated that cardiac anatomy and neighbouring superficial structures could be fully
characterized with the pTx system inline. Conclusion. We have presented the design and performance
of areal-time feedback control pTx system capable of adding such capabilities to a conventional MRI
with the focus of guidewire imaging in cardiac interventional MRI applications.

1. Introduction

In cardiovascular interventions, magnetic resonance imaging (MRI) provides many benefits over standard x-ray
fluoroscopy. However, not all interventional devices are MRI safe or can be visualized in MRI. Elongated
conductive devices, such as guidewires, that are not ferromagnetic can still cause tissue burns at the proximal tip
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driven by radiofrequency (RF) induced currents (Dempsey et al 2001, Buecker 2006), a phenomenon caused by
the RF coupling between the transmit coil and the interventional device. A proposed solution is to manipulate
the incident electric fields responsible for generating RF induced currents in implanted wires (McElcheran et al
2015, Eryaman et al 2019, Winter et al 2020), such that the net electric field tangential to the wire is forced to zero,
consequently eliminating the potential for localized heating at the tip. This is possible using parallel transmit
(pTx) MR systems which allow spatial manipulation of RF fields by altering the relative amplitude/phase of the
individual transmitters. Using a two-channel birdcage coil (Eryaman et al 2011) demonstrated that a plane
through a point on the implanted device with zero electric field could be achieved. Gudino et al (2015)
demonstrated a similar approach on a guidewire using an eight channel pTx system. Both methods made use of a
numerical model to determine the safe amplitude and phase weightings applied to each channel (RF shim).
However, during interventions the RF coupling to the guidewire is constantly changing (Armenean et al 2004),
which requires updating the safe RF shim in real-time to guarantee safety. A proposed solution is to predict the
safe RF shim based on a quick measurement instead of a numerical prediction. Etezadi-Amoli et al (2015)
proposed a fast method for computing intrinsically safe RF shims [coined the null modes (NM)] based on
measurements made directly on the guidewire using a toroidal current sensor (Zanchi et al 2010). The same
method also produces an unsafe RF shim, coined the coupling mode (CM) that if used carefully can be leveraged
to visualize the guidewire (Godinez et al 2020). To achieve clinical translation this technique would require a pTx
system with a real-time feedback control and be able operate seamlessly with a conventional MRI scanner.

MRI scanners for investigational purposes, with pTx capability, have been built (Hebrank et al 2007,
Vernickel et al 2007). The requirement for a bespoke engineered pTx enabled MRI system for investigation of
interventional MRI is a barrier to advancement of this methodology. An approach is to design a system that can
augment a conventional MRI scanner with pTx functionality for research purposes. One can augment the RF
transmit subsystem only and rely on the host scanner to retain overall control of the imaging experiment.
Examples of such ‘add-on’ pTx systems include a 32-channel system for a 7 T scanner (Orzada et al2019) and a
64 channel system (Feng et al 2012).

This work presents the design and build of a similar ‘add-on’ pTx system designed for interventional MRI
applications, implementing the techniques described in Etezadi-Amoli et al (2015), Godinez et al (2020). The key
feature of this system is the ability to provide real-time RF current control by applying RF shims that can be
updated during a continuing MR image acquisition. Firstly, the system design is presented in detail, followed by
the calibrations used and pertinent methodology, and finally its performance is demonstrated in phantoms and
an animal model in the context of interventional MR. The scope of this work is limited to the presentation of the
PTx system as a useful device to investigate questions relevant to interventional MR and not to make a
comparison with other systems or methods.

2.Methods

2.1. System overview

The proposed system is designed to connect transparently to a conventional MRI scanner with minimal required
connections, so that the RF synthesis, sequence control, and data acquisition is kept by the host scanner.
Meanwhile the pTx system controls the RF subsystem, by levelling and splitting the RF from the scanner across
multiple transmit channels and then independently modulating the amplitude and phase of these (figure 1).
Periodic measurements, once every imaging frame, from a current sensor are used to update the RF shim during
ascan. The system is intended to perform RF shimming only; it can alter the amplitude/phase of each transmit
channel for all RF pulses, but not change the ‘shape’ of the pulse waveforms, which are instead controlled by the
scanner. The RF shim is fixed within a repetition time (TR) period.

To achieve these design goals, access to the scanner’s synthesized RF source, programmed pulse sequence
trigger output, and the RF power amplifier (RFPA) unblank output are required. The pTx system replicates and
modulates the RF signal from the scanner. The pulse sequence trigger initiates the current sensor measurements.
The unblank signal is required to toggle the pTx system’s RF amplifiers on and off during transmit periods.

A further design requirement is that when ‘active’ the device should be ‘transparent’ to the scanner, so that
automated power adjustments and pulse sequences from the scanner operate normally. This was accomplished
by setting the overall gain of the pTx system to unity relative to the scanner. Unit gain was achieved by
attenuating the RF signal before the 8 way split so that the RFPA output after the split can produce an excitation
field level needed to carry out the automatic adjustments.
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Figure 1. Block schematic of system interface with the MRI scanner and the vector modulator box. The scanner’s RF signal was first
split 8 ways followed by an IQ power divider before passing through the VMs for amplitude and phase modulation. The auxiliary port
on the ADC can be used to record signals from a current sensor, to monitor RF induced currents on a guidewire, or a pickup coil to
monitor the coil fields.

2.2. System implementation

The system as implemented has 8 transmit channels and was designed primarily to interface with a Siemens

1.5 T MRI system (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany) using standard connections,
though it has also been connected to other scanners as detailed below.

2.2.1. RF coil interface and power amplification

The system connects to the scanner’s local transmit coil socket, known as the total imaging matrix (‘Tim’)
adaptor, located on the patient bed. The connection is made via an ‘interface box’ (figure 1) that connects to the
transceiver coil. Use of the local transmit coil socket on the scanner causes the built-in body coil to be detuned
and the (high power) RF signal to be routed to the Tim adaptor, and into the interface box. From here the high
power signal is sent to a dummy RF load with 3 kW capacity, via a directional coupler (C9698-23, 3 kW,
Werlatone Inc., NY, USA); the attenuated (—40 dB) ‘forward power’ port on this device is the input to our vector
modulation stage, described in section 2.2.3.

After modulation the individual channel low-power RF signals are each amplified by an RFPA (Barthel HF-
Technik GmbH, Aachen, Germany). The RFPAs each have a peak power limit of 1 kW and flexible ‘energy
control’ capability allowing for 10% duty cycle at peak power, scaling linearly down to 100 W power output at
continuous wave operation.

Finally, the amplified and modulated high power RF signals are sent back to the interface box where they are
routed via transmit-receive switches to the RF coils. Since the RFPAs and the control computer are located in the
control room, all connection are passed through the faraday cage filter panel. The RF load is located in the
technical room.

2.2.2. Transceiver coil array

This work used a custom transceiver surface coil array designed and built by RAPID Biomedical (Rimpar,
Germany) who also supplied the interface box (figure 2(a)). As well as handling the high-power RF as described
above, this interface box routes the received signals via the scanner’s standard receiver path. The transceiver has
two surface coil arrays (anterior and posterior) each consisting of four 50 mm x 200 mm rectangular loops with
no overlap. Nearest and second-nearest-neighbor coil elements were capacitively decoupled.

2.2.3. Vector modulation
The attenuated RF signal coming from the scanner islevelled, using a pre-amp (25 dB) (ZHL-6A+, Mini-
Circuits, Brooklyn NY, USA) and a variable attenuator (AC701, Pascall Electronics Limited, UK), before being
split eight ways (ZCSC-8-1+, Mini-Circuits, Brooklyn NY, USA). Each of the eight signals are passed through a
quad hybrid (PSCQ-2-180+-, Mini-Circuits, Brooklyn NY, USA) to produce the in-phase (I) and quadrature (Q)
signals needed for quadrature modulation using a vector modulator (VM; ADL5390, Analog Devices, Norwood,
MA, USA)—evaluation boards were used. Figure 1 shows the block diagram for the network of VMs, which are
housed in 3U 19’ box, ‘VM box’ (figure 2(b)).

A total of 16 independent baseband control voltages [I,p,, Qpp] are required (two per channel) by the VMs,
and these are supplied by an 8 bit digital-to-analog converter (DAC) card (PXI-6713, National Instruments,
USA) mounted on a PXI chassis (PXI-1033, National Instruments, USA) connected to a PC (control PC)
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Front view
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Figure 2. (a) The 19” box containing the vector modulators and RF gain components. (b) Picture of the coil array used to transmit and
receive. There is an anterior 4-coil array and a posterior 4-coil array that mount into the scanners table. The coils are rectangular loops
50 mm x 200 mm with no overlapping.

running Windows 7. The DAC produces a voltage range of 1.6 V; required I, Qpp] inputs are centered at
0.5V (0-1 V range), such thata setting of [0.5, 0.5] produces zero at the VM output.

2.2.4. Current sensor

The feedback control loop is achieved by monitoring induced currents via a toroidal coil placed around the
segment of the guidewire that is external to the patient’s body, close to the entry point. This sensor was built from
1 mm diameter transformer wire coiled along the long-axis direction through a 5 mm diameter plastic tube,
providing space for the guidewire to pass through. The sensor was wrapped with copper foil to block incident RF
energy and a 10 m shielded balanced twin-pair line was attached to the coil and connected to a balun. The RF
signal from the current sensor is digitized using a four-channel analog-to-digital converter (ADC) (PCI-Gage
RMX-161-G40, Dynamic Signals LLC, USA) housed within the control PC. Direct and asynchronous signal
demodulation based on the Hilbert transform was used, see section 2.3.1. The values recorded at the ADC are
reported in volts as the current sensor calibration was omitted.

2.3. Control architecture

The pTx system performed a calibration, to form the coupling matrix C, at the beginning of the running imaging
frame by measuring the RF coupling between the guidewire and the individual transmit coils with the current
sensor. The calibration was initiated by the pulse sequence trigger followed by a 20 ms block RF pulse, during
which the VM is used to cycle each channel on/off sequentially, while the current sensor output was recorded
(figure 3). The complex current (amplitude and phase) measured in each cycle formsi8 used to compute the
coupling modes according to Etezadi-Amoli et al (2015). By applying the singular value decomposition to Cthe
coupling modes were determined from the matrix of right-singular vectors V. Since this pTx system has 8
channels and 1 current sensor (up to 3 current sensors can be connected), 1 CM and 7 NM were computed,
which was done within a 30 ms time window. If more sensors were used more than 1 CM mode might be found.
The RF shim was set to either CM or NM by the user via the graphical user interface and was implemented in the
nextimage frame. The user controls during acquisition are described in section 2.3.2.

2.3.1. Signal demodulation

Figure 3 summarizes the signal processing used to compute the coupling modes from the current sensor signal.
A reference signal R(¢) from the transmit RF was digitized to perform asynchronous and direct demodulation of
the current sensor signal S(#) (Pérez et al 2001, Gareis et al 2006). The signal acquisition was under sampled ata

4
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Figure 3. Block diagram of the current sensor S(t) and reference R(#) signals processing pipeline used to determine the RF shim w,,, and
coupling modes V. The analytical signals $(t) and R () are created by taking the Hilbert transform of the digitized signals S(f) and R
(#). The elements of the coupling matrix Care complex values determined from the envelope demodulation of § (¢) (VM gain) and the
phase detection (VM phase). The coupling modes are computed as the matrix of right-singular vectors of C and are numbered such
that mode 1 is the high coupling mode while modes 2—8 are null modes.

sample frequency of 500 kHz (RF frequency is 64 MHz). Envelope demodulation was performed by computing
the magnitude of the analytical signal, S(t), created by the Hilbert transform (Xiaozhou et al 2019) of the
digitized real valued signal, S(¢), as follows;

$() =S + jHISM)]
and
m(t) = abs[S (1),
where m(?) is the envelope of S(£). The phase ¢ (¢) of S(¥) was obtained relative to the reference signal R(¢) by

complex division, as
o(t) = tan~! [ S ]

R()

Since the system is controlled by a PC and not a real-time computer, the switching of the VMs occurs with
variable timing. Hence, an edge detection algorithm was employed to set an acceptance window corresponding
to each channel section. Once split, the signal was averaged to attain the final value of the amplitude and phase
per channel, which makeup the elements of the coupling matrix C.

2.3.2. Software
The stand-alone system is controlled by a PC running Windows 7. Software to control these devices was written
in MatLab R2015b (MathWorks Inc., MA, USA), interfaced via a GUI. Its main functions are:

(i) Pre-calibration to correct for nonlinear response of the VMs.

(ii) Control of VM voltages to each channel for RF-shimming.
(iii) Measurement of the current sensors, including demodulation.

(iv) RF shims computation and mode selection by the user.

(v) Monitoring and responding to the pulse sequence trigger.

Since the control software can set the amplitude and phase modulation applied to each channel, it can also
control the overall RF power independently of the scanner’s regulated transmit level.
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Figure 4. (a) Plot of the thin-plate spline transformation function, mapping the prescribed VM gain measurements, real and
imaginary, to the control voltages. The function was determined during calibration usinga5 x 5 constellation of points. (b) The
measured VM gain at the calibration control voltages shown in (a). (c) The interpolated control voltages determined after the
calibration for prescribed target VM gains. (d) The target VM gain (open circles of arbritrary size) points plotted with the measured
VM gain points (solid dots) for channel 1, (¢) channel 4, and (f) chanel 8. The most and least accurate channels are shown. The RMSE
error for channel 1, channel 4 and channel 8 was 0.014, 0.068, and 0.059, respectively.

2.4. Vector modulator calibration
VMs can produce a nonlinear response because of analog mixer imperfections and isolation errors in the
splitting and combining networks at the inputs or outputs. Fortunately, this can be corrected via a feed-forward
correction approach (To$ovsky and Valtch 2010), which requires prior knowledge of the nonlinear distortions
in the output gain and phase. Using this approach, the VMs were calibrated at the start of each session. The
calibration consisted in determining a pre-distortion function; in this work a thin-plate spline function
(Bookstein 1989, Padormo et al 2011) was used, which estimates the pre-distorted control voltages [T;b, 51,;7] that
produce a desired VM output. The function for each VM was determined experimentally by measuring the VM
gain and phase for aninput 5 x 5 Cartesian grid of [I,,, Qpp] values ranging from0to 1 V.

The fully automated calibration was done using a benchtop signal generator as a 64 MHz RF source and the
ADC card to measure the amplitude/phase of the modulated signal. Subsequently, the thin-plate spline function
was fit to the measured data. The thin-plate function used is,

n—3

f® = (x—cjPlog |x — ¢j|aj + xa,—> + %a,_1 + ay
=1

where f(x) is a function that interpolates the control voltages [\IJM,, 51,;,] given the real and imaginary parts of the
desired (the RF shim) VM gain and phase, handled as a complex pointx (x; = real, x, = imaginary). The
variable 7 is the number of data points used during the calibration measurement, and ¢; is the complex Cartesian
coordinate (real, imaginary) of the measured VM gain/phase. The polynomial coefficients a,,, a,_1, a,—,, a;are
computed using the tpaps(c,y) function in MatLab which finds the minimizer fusing the following cost function

E(f) = >_ly(j)) — flei)P,
j

where y is a vector of test control voltages [I,;,, Qub] chosen for the calibration to measure the VM gain, ¢

N
(figures 4(a), (b)). Using the function, f, the [ Iy, Qpp] needed for a prescribed RF shim can be determined by
interpolating between the measured data points (figure 4(c)).
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The accuracy of the calibration was tested by prescribing a set of RF shims and then measuring the resulting
output for each channel (figures 4(d)—(f)). The average absolute RMS error between the prescribed RF shim and
measured gain was computed for each channel using all the points in the Cartesian grid.

2.5.Real-time control

The system’s ability to update the coupling modes in real-time was tested usinga 3 T Achieva MRI scanner
(Philips, The Netherlands) with a built-in 8-channel pTx transceiver array body coil (Vernickel et al 2007). This
system was used for this test because the large built-in pTx body coil allowed a guidewire to be freely moved over
arange of positions. In this experiment the add-on pTx system was connected in a similar manner as described
above for a Siemens 1.5 T system, but directly to the pTx body coil present on the 3 T system, rather than the
local array coil which was not used. The modulated transmit signals were amplified using the 3 T system’s
RFPAs. To operate at 3 T the hybrid splitters were swapped for counterparts at the desired frequency.

A straight guidewire (90 cm long nitinol guidewire, Terumo Corporation, Japan) was placed axially in the
scanner’s bore in air, instrumented with a toroidal current sensor. The test used a turbo spin echo sequence
running at 100% reported specific absorption rate (SAR) with TR = 8 s, modified by adding the coupling matrix
measurement block (30 ms) prior to each echo train. The software of the add-on pTx system could be set to
either use this information to update the coupling mode calculation once per image (8 s) or ignore the new
measurements and fix at a previous value.

A starting coupling matrix measurement was made with the guidewire placed at the left-hand edge of the
scanner bed, position-A with the real-time control enabled. The guidewire was then moved to the right-hand
bed edge, position-B, without updating the modes (i.e. real-time control disabled). After some acquisitions at
position-B the real-time control was enabled to dynamically control the measured guidewire currents. The
guidewire was then moved back to position-A from position-B while dynamically updating the coupling
measurements. At each position and after each coupling measurement the NM and CM were applied in a
random order. The temporal resolution of these measurements was determined by the TR period, 8 s in this case
to allow the operator to move the guidewire between measurements. All measurements where run continuously
and in the same experiment.

2.6. MR imaging
Imaging performance was evaluated on the Siemens 1.5 T MRI system mainly focused on torso imaging
emulating interventional MR both in phantoms and ex vivo.

2.6.1. Heating tests

To demonstrate the efficacy of the pTx system to mitigate guidewire tip heating, a standard 0.89 mm diameter
guidewire (RF + GA35153M, Terumo Corporation, Japan) cut to 140 cm length and stripped 3 mm at the tip,
was equipped with a fiber-optic temperature probe (LumaSense Technologies, Inc. USA). The fiber-optic was
tied directly onto the guidewire using suture string, making sure the guidewire was flush with the tip of the
optical fiber. The guidewire was placed in a poly-acrylic acid gel phantom built according to (ASTM standard F
2182-2002a2011) with the dimensions 45 cm x 36 cm x 9 cm. A high SAR balanced steady-state free
precession (bSSFP) sequence was used to induce heating (Godinez et al 2020). The guidewire was located in the
center of the phantom parallel to the static field and also centered with respect to the coil array.

2.6.2. Anatomical imaging

Anatomical images were obtained on alive sheep (44 kg) with a 164 cm long guidewire, to qualitatively evaluate
system performance under realistic experimental conditions in vivo. The MR images were acquired with a bSSFP
sequence with pixel size of 1.8 mm and TR/TE 2.70 ms/1.16 ms, using the NM RF shim or with the pTx system
set with an RF shim of equal amplitude per channel and phased to achieve a nominal circular polarized mode
(quad mode). All procedures involving animals were approved by the Animal Research Ethics Committee
(CEEA 50—France) and performed in accordance with the European rules for animal experimentation.

3. Results

3.1. Vector modulator calibration

The observed distortion in the VM gain can be characterized as a rotation with a translation, see figure 4. After
calibration the average RMSE across VM channels was 18% (min 6.8% and max 34.0%) of the dynamic range
tested. The average absolute RMSE was 0.036 (min 0.014 and max 0.068). The greatest error was found in
channels 4 and 8—in absolute values this was 0.068 and 0.059, compared to 0.014 for channel 1 (figures 4(e)—
(£)). The RMSE error in channel 1 was 6.8%, calculated as a percent of the range.
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Figure 5. Plot of current measurements on the guidewire while waving in air during real-time control. (a) Schematic of guidewire
positions in pTx body coil with stripline elements. (b) results of real-time test with measurements every 8 s. The guidewire starts at
position A (left-hand side of scanner bore) and without moving the guidewire coupling modes are determined and engaged (partI).
After 70 s the wire is moved from position A to B (right-hand side of scanner bore) with the real-time control off (part II), but with the
null mode still engaged, determined at position A. At 120 s the null mode and coupling mode are switched while the real-time
controller is off. Then at 187 s the real-time controller is turned on (part III) and new coupling modes are measured. Finally at 258 s
the guidewire is moved back to position A while the real-time control is enabled while the null mode is engaged. In this configuration
the real-time accurately updates the null mode as the RF coupling to the guidewire is actively changing with the motion

3.2.Real-time control

Figure 5 shows the real-time performance of the PTx system while moving a guidewire in air while switching
between CM and NM, which should register high and low voltage measurements at the current sensor,
respectively. The number of CM and NM acquisitions was done randomly, and in some cases the measurement
failed because the control software was delayed, these measurements are shown as an empty time point. At the
beginning of the experiment the real-time control is active and the wire is at position A (figure 5(b-I)); the CM
shows current sensor values >1.0 V and the NM shows values <0.1 V, as expected. When the real-time control is
disabled and the guidewire is moved from its original calibration position (figure 5(b-1I)), the measured voltage
is similar for both the CM (0.49 V) and NM (0.39 V). This means the RF coupling has changed and the induced
current is uncontrolled. When it is enabled (figure 5(b-I1I)), the measurements follow the expected response
from the CM (1.05 V) and NM (0.05 V), even when the guidewire is in motion. This test, using a wire in air, is not
indicative of performance in vivo—the field changes experienced here are much more extreme—however it
demonstrates that the feedback control mechanism is working as expected.

3.3. Heating test

Figure 6 shows the measured temperature at the guidewire tip in a phantom experiment while scanning with
either the CM or NM at equivalent RF power. The measured temperature increase was reduced from 23.89 °Cin
CM to 1.65 °Cin NM, demonstrating strong suppression of induced currents. During the NM the temperature
did fully return to baseline until the RF power was turned off. This may be a result of an imperfect calibration or
inaccurate RF coupling estimation.

3.4. MR PTximaging

The image shown in figure 7 demonstrates that standard anatomical imaging is possible while using the pTx
system in quad mode and NM. During this scan the scanner completed its standard power scaling procedure and
reported a reference voltage of 217 V (maximum allowed was 234 V). This demonstrates that when not actively
controlled the system can operate under the full control of the host MR scanner.

4. Discussion

An auxiliary pTx system intended for interventional MRI, was assembled and proven to add parallel transmit
capabilities to a non-pTx scanner. Its key function was to perform RF shimming, operating independently from
the host scanner during imaging with real-time feedback control based on concurrent current measurements.
The results indicate that when set to standard ‘quadrature’ mode the device can be used to produce images using
standard protocols. Active control of induced currents on inserted guidewires was also demonstrated, with
strong attenuation of temperature increases.
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Figure 6. (a) Temperature measurements at the tip of the guidewire during the heating bSSFP sequence while using either the null or
coupling mode. Heating is maximized during the coupling mode and it is minimized with the null mode. (b) Axial view of the
experimental setup used for heating tests.

Figure 7. In vivo MR images of the sheep torso. In vivo MR images acquired with a bSSFP sequence using the (a) quad mode RF shim
and (b) safe mode RF shim.

The maximum RMSE found in the VM calibration was 34%, which was mainly from channels 4 and 8.
However, most of the channels performed better than this. The individual channel error might introduce
inaccuracies to the overall RF shims, which may be observed as a non-zero induced current with the NM.
Nonetheless, given the experimental results, the system can still perform well enough to reduce heating at the
guidewire tip. The source of this error is not clear, but we speculate it comes from inter-channel coupling in the
RF path.

This add-on pTx system was primarily designed for a 1.5 T application but was also connectedtoa3 T
scanner with non-standard body coil. Although the difference in field strength changes the resonant length of
the guidewire, sufficient RF coupling to the 90 cm guidewire was found at 3 T to evaluate the PTx system’s real
time current control performance. In that case some narrow-band RF components (hybrid splitters and RFPAs)
had to be swapped to the appropriate frequency. If such a system is required to work across frequencies, then
broadband components could be selected where available—this was not a design requirement for the device as
presented.

Alimitation for this demonstration device is that SAR monitoring was not implemented, which would be a
requirement for progression of this work to human imaging. The amplifiers used in this work did have
integrated directional couplers and a digitization system that reported average forward and reflected power
based on a short time window, and this could form the basis of a future SAR monitoring framework, as done by
Orzadaetal (2019).

In contrast to the system build by Feng et al (2012), our PTx system is relatively simple with fewer channels.
Some applications may need more than eight channels for the system to be effective. Compared to the system
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presented by Orzada et al (2019), our system is more portable but lacks the ability to do dynamic shimming, a
feature that might increase its utility for more complex protocols and device safety methods. Although dynamic
shimming is possible at base band signals with a bandwidth less than 1.85 kHz, it would not be sufficient to
handle complete RF pulse envelope modulation (Orzada et al 2019), which could demand bandwidths of

100 kHz or more. Since the DAC card in this build has a sampling rate of up to 769 kS s~ ' per channel, the
bandwidth bottle neck is the operating system priority control. The average interval between VM control voltage
updates was 274 + 50 us. The absence of a real-time operating system imposes a non-deterministic
performance on the system, barring the direct shaping of RF pulses and causing coupling matrix measurements
to fail, as seen in the dynamic test.

The presented pTx system is intended for further development of interventional MRI using endovascular
guidewires. In this design a single toroidal current sensor was used to measure currents. In the future this could
be expanded to multiple sensors or other sensors that provide relevant real-time information. These sensors
should also be compact and sterilizable to be integrated in current clinical practice, to be placed over the external
end of a guidewire.

The demonstrated anatomical imaging revealed lower signal at the centre of the field of view because of the
use of surface coils that have strongly surface-weighted sensitivity. The loss of signal strength might also reduce
the electric field, but not to the extent that RF coupling is insignificant (see supporting information figure 1
(available online at stacks.iop.org/PMB/66/21NT05/mmedia)). A method to improve image quality is to
correct for receiver coil inhomogeneity (Murakami et al 1996), which was not done in this experiment but could
be in future work. This issue might also be addressed by improved RF coil design; this is outside the scope of this
work, which focused on the pTx control system development. It should also be noted that for interventional
work the drop in standard imaging performance may still be acceptable should the system allow clinicians to
perform hitherto unavailable procedures. In addition, it would be interesting to compare the local coil against a
body coil to understand the impact on heating of the coil itself. This is the target of future work (Godinez et al
2021).

5. Conclusion

We have built an add-on pTx system that can be used to augment conventional MRI scanners to add pTx
functionality for interventional MRI. The system is capable of RF shimming and functions transparently to the
host MR system.
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