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Abstract 

Evidence suggests that general, non-mathematical knowledge 
about the entities described in an arithmetic word problem may 
interfere with its encoding. We used behavioral and eye-
tracking measures to investigate how the use of specific 
quantities may foster a cardinal representation of the numbers 
mentioned in a problem, whereas other quantities may favor an 
ordinal representation instead. We asked 50 pre-service 
teachers to complete a solution validity assessment task. We 
compared participants’ gaze patterns on isomorphic problems 
to gather insights into their encoded representations. On 
problems featuring cardinal quantities, we found that specific 
sentences describing elements relevant in a cardinal 
understanding of the problems but irrelevant otherwise were 
looked at longer and were the focus of a higher number of 
backward eye movements. Additionally, an increase in pupil 
dilation on correctly solved cardinal problems supported the 
idea that participants need to engage in a recoding process 
when facing semantic incongruence. 

Keywords: arithmetic word problems; encoding effects; eye 
tracking; mathematical cognition; problem solving  

Introduction 

Mathematical word problems are infamously difficult, and 

many students struggle with the delicate exercise consisting 

in applying abstract mathematical notions to concrete, daily-

life situations (Daroczy, Wolska, Meurers, & Nuerk, 2015; 

Verschaffel, Greer, & De Corte, 2000). But what makes some 

mathematical word problems so hard to solve? Several lines 

of work have looked at the interaction between linguistic and 

numerical factors to account for the interpretative processes 

at play in mathematical word problem solving (Thevenot & 

Barrouillet, 2015). 

Notably, the issue of the underlying representations 

accounting for the strategies developed by students to solve 

the problems they encounter has been a recurring question in 

the literature. It has for example been proposed that students 

use problem schemata (Kintsch & Greeno, 1985; Schank & 

Abelson, 1977) or mental models (Johnson-Laird, 1983; 

Staub & Reusser, 1995). It has also been suggested that 

general semantic knowledge about the entities featured in a 

problem interfere with its solving process, by means of an 

interpreted structure describing one’s interpretation of the 

situation depicted in the problem (Bassok, 2001). More 

recently, the SECO framework (Gros, Thibaut, & Sander, 

2020a), suggested that an initial semantic representation is 

encoded based on the problem statement and on the solver’s 

general, non-mathematical knowledge about the entities it 

features. This approach notably predicts that an inappropriate 

encoding of a given problem statement may sometimes be 

semantically recoded into a new representation, in an attempt 

to overcome a dead end and find the solution to an arduous 

problem. Following SECO’s predictions, our paper 

investigates the role of prior knowledge on the encoding, 

recoding, and solving of arithmetic word problems by 

studying the perception of cardinality and ordinality among 

pre-service teachers, using behavioral and eye-tracking data. 

Cardinal encoding versus ordinal encoding 

In common usage, ordinal numbers describe the numerical 

position of an object in an ordered sequence (i.e. 1st, 2nd, 3rd, 

etc.), whereas cardinal numbers refer to the general concept 

of quantity by designating the total number of entities within 

a set (Wasner, Moeller, Fischer, & Nuerk, 2015). The 

difference between these two meanings of numbers is central 

to the notion of number itself (Fuson, 1988) and the 

understanding of cardinality and ordinality has been the focus 

of numerous studies (e.g. Colomé & Noël, 2012; Lyons, 

Vogel, & Ansari, 2016). However, until recently, the 

importance that this distinction holds for the representation 

of word problems had received scant attention in the 

literature. A line of work has aimed to fill this gap, by 

targeting the cardinal and ordinal representations of 

arithmetic word problems. Gamo, Sander, and Richard 

(2010) found that students’ choice of solving algorithms 

varied between number-of-element problems, price problems 

and age problems. They suggested that while number-of-

element problems and price problems feature unordered 

elements that tend to be represented as sets and subsets, age 

problems are more easily represented along an axis (a 

timeline) and the apparent order between the age values 

facilitates the use of a different solving strategy. This 

distinction was framed in terms of ordinal and cardinal 

encodings, thus introducing the idea that quantities 

emphasizing the cardinal aspect of numbers led to different 

representations than quantities emphasizing their ordinal 

aspect.  

To investigate this distinction in a systematic way, new 

arithmetic word problems were created using different types 

of quantities (Gros, Thibaut, & Sander, 2017; Gros, Thibaut, 

& Sander, 2020b). Figure 1 provides a graphical summary of 

the expected encoding of these problems. The problems all 

shared the same abstract mathematical structure (Figure 1, 

box 1.), but they were implemented either with cardinal 

quantities (Figure 1, box 2.a) or with ordinal quantities 

(Figure 1, box 3.a). Consider for instance the cardinal 

problem reproduced in Figure 1, box 2.b: by mentioning 

collections of unordered marbles, this problem is expected to 

emphasize the cardinal aspect of numbers, and thus to elicit a 

cardinal encoding of the situation (Figure 1, box 2.c). This 

representation fosters the idea that to find the number of 



marbles that Jolene has (Whole 2), one needs to add up the 

number of blue marbles she has (Part 2) and the number of 

green marbles she has (Part 3). This representation is thus 

semantically congruent with a 3-step algorithm (Figure 1, box 

3.c) consisting in calculating the value of Part 2 (Whole 1 – 

Part 1 = Part 2), and adding it to the value of Part 3 (Part 1 

– Difference = Part 3), to find the solution to the problem 

(Part 2 + Part 3 = Whole 2).

 
Figure 1: Implementation of the mathematical structure with ordinal versus cardinal quantities, leading to different problem 

statements, representations, and strategy use.

On the other hand, the duration problem in box 3.b describes 

a situation that can easily be represented along an axis (a 

timeline), and it is thus thought to evoke an ordinal encoding 

(Figure 1, box 3.c). This representation facilitates the 

understanding that since the construction of the palace and 

that of the castle started at the same time, and since the 

construction of the castle took 2 years less than the 

construction of the palace, then the castle was completed 2 

years earlier than the palace. Thus, this inference makes it 

easier to use a 1-step algorithm to find the Whole 2 value: 

Whole 1 – Difference = Whole 2 (see Figure 1, box 3.d).  

Depending on the cardinal versus ordinal nature of the 

quantities used, participants were thought to construct a 

different encoding of the situation, which led them to one of 

the two solving algorithms. Both drawing productions 

elicited by Gros et al. (2017), and participants’ report of the 

algorithms they used supported this claim. To evaluate the 

robustness of these effects, Gros, Sander, and Thibaut (2019) 

designed a modified version of these problems, in which the 

value of Part 1 was not provided. For instance, the sentence 

“Paul has 8 red marbles” was replaced by “Paul has some red 

marbles”, and the sentence “The construction of the palace 

took 8 years” was replaced by “The construction of the palace 

took a certain time”. It thus became impossible to use the 3-

step algorithm (Figure 1, box 2.d) since that required 

knowing the value of Part 1, and the only algorithm left to 

solve the problems was the 1-step algorithm (Figure 1, box 

3.d). Gros et al. created a solution-assessment task, in which 

these problems were presented accompanied by their 

solution, and participants had to decide whether the solution 

was correct or whether the problems could not be solved. 

They presented this task to lay adults and to expert 

mathematicians and found, as predicted, that in both cases 

their expertise was not enough to prevent the influence of the 

cardinal versus ordinal distinction: participants made more 

errors and took longer to solve cardinal problems. In the 

current study, we intend to use an eye-tracking setup to get a 

finer understanding of the difference between these 

representations.  

Eye tracking as an index of reasoning processes 

From an educational standpoint, there has been an increasing 

amount of literature using eye tracking to better understand 

students’ learning processes (Lai et al., 2013). In the study of 

mathematical reasoning, eye tracking has been used to 

pinpoint the integration of relevant information while 

performing calculations or solving math problems (Curtis, 

Huebner, & LeFevre, 2016; Merkley & Ansari, 2010). 

However, a surprisingly low number of studies have resorted 

to this methodology to understand mathematical word 

problem solving (Strohmaier, Tatsidou, & Reiss, 2018). 

In fact, ever since De Corte and Verschaffel’s (1986) 

seminal work on the matter, we are aware of less than a dozen 

studies who looked at mathematical word problem solving 

using eye movement recording. For instance, De Corte, 

Verschaffel and Pauwels (1990) used eye tracking to 

discriminate between the initial read-through of arithmetic 

word problems and the subsequent time spent rereading the 

problem statement. Then, Verschaffel, De Corte, and 

Pauwels (1992) showed that students’ longer response times 

on problems featuring relational terms inconsistent with their 

solving algorithms were due to a longer time spent on the 

initial reading of the problems’ first sentences. Similarly, 

eye-tracking has been used to compare high-performing and 

https://link.springer.com/article/10.1007/s11858-015-0742-z#CR31


low-performing students’ reading patterns (Hegarty, Mayer, 

& Green, 1992; Hegarty, Mayer, & Monk, 1995). Later, van 

der Schoot, Bakker Arkema, Horsley and van Lieshout 

(2009) focused on regressive eye movements to evaluate how 

the strategies of successful and less successful problem 

solvers differed. Finally, Dewolf et al. (2015) used looking 

time analysis to investigate how often students looked at 

representational illustrations accompanying word problems.  

Thus, to the best of our knowledge, most of the research 

conducted on arithmetic word problems using eye-tracking 

methodology has focused on looking times, with some works 

counting backward eye-movements to identify specific 

strategies. In our study, we intend to use both metrics to get 

a finer understanding of the differences between cardinal and 

ordinal problems, as well as a third one selected to evaluate 

participants’ effort in the task: pupil dilation.  

Pupillometry concerns the measure of pupil dilation over 

time. Its use in research was initiated by Hess and Polt (1964), 

who found that pupils tended to dilate when individuals were 

asked to solve multiplication non-word problems of 

increasing difficulty. Subsequent works discovered that pupil 

diameter increased with memory load (Goldinger & Papesh, 

2012) and with task demand in general (Beatty, 1982), which 

makes it a valuable index to evaluate participants’ effort 

variations when solving arithmetic word problems. 

Current study 

While it seems that the difference between cardinal and 

ordinal problems runs deep enough to interfere even with 

math experts’ understanding of arithmetic word problems 

(Gros et al., 2019), the question remains as to what exactly 

this distinction entails in terms of solving processes. In this 

study, we strove to probe participants’ representations using 

direct measures that would not solely rely on verbal or written 

productions. 

We analyzed the gaze patterns and pupil dilation of 50 

participants engaging in the solving of problems similar to 

those used in Gros et al. (2019), where the value of Part 1 

was not provided to the participants, and we made the 

following predictions. First, the total looking time (visit 

duration) spent on each line of the problems should vary 

between cardinal and ordinal problems. Since a cardinal 

encoding is supposed to foster the calculation of Part 2 and 

Part 3 to find Whole 2, we expected that cardinal problems 

would lead to longer visit durations on the lines referring to 

Part 2 and Part 3, compared to ordinal problems. Second, 

since the values of Part 2 and Part 3 are not provided in the 

problem statements but are nevertheless deemed necessary 

by participants who construct a cardinal encoding, then 

backward eye movements to the lines referring to these two 

quantities should be more frequent on cardinal problems. 

Third, since participants who manage to solve cardinal 

problems are thought to engage in a costly semantic recoding 

process (Gros et al., 2019), then correctly solving a cardinal 

problem should result in an increase in pupil diameter 

whereas solving an ordinal problem should not. In addition, 

this study aimed at replicating two results from Gros et al. 

(2019): cardinal problems should be solved less frequently 

and require a longer response time than ordinal problems. 

Methods 

Participants. Participants were 50 pre-service teachers (41 

women, M = 27.22 years, SD = 13.95) recruited from the 

Educational Sciences program at the University of Geneva. 

All of them spoke French fluently and volunteered in 

exchange for course credit.  

Materials. The arithmetic word problems used in this 

experiment were taken from the 12 problems created in Gros 

et al. (2019), to which 6 new problems were added, 

constituting a pool of 18 problems to choose from. All 

problems were written in French. Each participant was 

presented with a random selection of 12 target solvable 

problems: 6 with cardinal quantities (2 collection problems, 

2 price problems, and 2 weight problems) and 6 with ordinal 

quantities (2 duration problems, 2 height problems, and 2 

floor problems). A within-subject design was used to allow 

for within-subject comparisons between performance on 

cardinal and ordinal problems. In addition, we introduced 6 

unsolvable filler problems that were similar to the target 

problems but did not provide any value for Whole 2, which 

meant that they could not be solved with any algorithm. Order 

of target and filler problems was randomized between 

participants. The numerical values used were randomized 

across problems. 

Procedure. The stimuli were presented on a 23.8” monitor. 

Participants were seated approximately 65 centimeters from 

the monitor in a soundproofed experimental room. The eye 

movements were registered with a Tobii Pro Spectrum eye 

tracker. There was no window to avoid any natural light 

fluctuation. The first screen displayed the instructions for the 

experiment. They were provided the following instructions: 

“You will be presented with a series of arithmetic problems.  

Some of the problems can be solved using the values 

provided, while other problems cannot be solved with the 

available information. Your task is to tell apart problems that 

can be solved from problems that cannot. Answer as quickly 

as you can, although being correct is more important than 

being fast. Press the space bar when you are ready to start”. 

A fixation cross was displayed for 3 seconds before each 

problem.  

Each problem screen comprised 6 lines of text composing 

the problem statement, and a separate insert displaying the 

response choices. The text was written in size 18, with a line 

spacing of 3.7 to ensure that minor inaccuracies of the eye 

gaze estimation would not be detrimental. The response insert 

presented two possible choices. Choice “A” was the solution 

to the problem (e.g. “14 – 2 = 12. Jolene has 12 marbles.”). 

Choice “B” stated: “There is not enough information to find 

the solution”. Participants answered each problem using two 

keys on a keyboard placed in front of them. A typical session 

lasted between 20 and 30 minutes.  



Results 

Success Rates. We looked at participants’ failures and 

successes on solvable problems. Since each participant gave 

a binary answer to 6 cardinal and 6 ordinal problems, we used 

a generalized linear mixed model (GLMM) with a binary 

distribution to account for the repeated measures in the 

experimental design. We used the cardinal versus ordinal 

nature of the problems as a fixed factor and participants as a 

random effect. The overall model successfully converged and 

had a total explanatory power of 12.60% (conditional R²). In 

line with previous results, participants performed 

significantly worse on cardinal (51.51%) than on ordinal 

problems (82.4%); z = 8.22, p < .001.  

Response Times. We looked at the RTs of correctly solved 

problems (see Figure 2). We had predicted that solving a 

cardinal problem would require a higher RT, due to an extra 

recoding step being necessary to find the solution. We used 

Tukey’s method to remove 16 outliers ranged above and 

below 1.5 interquartile range. We analyzed participants’ RTs 

using a linear mixed model with the cardinal versus ordinal 

nature of the problems as a fixed factor and participants as a 

random effect. The model successfully converged and 

explained 30.43% of the variance (conditional R²). Within 

this model, an ANOVA using Satterthwaite’s method for 

estimation of degrees of freedom revealed that there was a 

significant effect of the cardinal versus ordinal nature of the 

problems on the RTs of correctly solved problems (F(1) = 

25.24, p < .001). Which indicates that solving a cardinal 

problem required more time on average (M = 25.29, SD = 

8.72) than solving an ordinal problem (M = 21.73, SD = 7.73). 

The results from Gros et al. (2019) were thus replicated, both 

in terms of success rate and response times. 

 

Figure 2: Pirate plot of RTs on cardinal and ordinal 

problems. Middle lines indicate mean RT, upper and lower 

lines indicate 95% confidence interval. *** p < .001. 

 

Scoring of eye-fixation data. The sequence of eye fixations 

for each participant was recorded with the software Tobii Pro 

Lab. We partitioned the screen into 7 different areas of 

interest (AOIs): one for each problem line, and one dedicated 

 
1 Due to two thirds of the problems coming from a previous study 

(Gros et al., 2019), we could not perfectly control for the word 

length of every line. While there was no length difference in lines 2 

to 6, there was a higher number of words in line 1 of ordinal 

problems (M = 6.89, SD = 2.15) as compared to line 1 of cardinal 

to the response insert. The seven AOIs of equal height and 

width partitioned the entire screen. 

Visit durations. We had predicted that, since cardinal 

problems are supposed to lead to a cardinal encoding, 

participants will spontaneously try to calculate the 

intermediate values of Part 2 and Part 3 to find the value of 

Whole 2 (See Figure 1, box 2.d). Thus, participants should 

spend more time in sentences referring to these two subsets 

on cardinal problems, that is the lines referring to Part 2 

(lines 2 and 4) and Part 3 (line 5; see Figure 1, box 2.b).  

We extracted the total visit duration per AOI for each 

participant. Since each participant’s gaze was recorded on 12 

different problems, we analyzed the visit duration using a 

GLMM with visit duration as the dependent factor, 

participants as a random effect, the line number as a fixed 

effect and the cardinal versus ordinal nature of the problems 

as a fixed effect. The model successfully converged and had 

a total explanatory power of 31.92% (conditional R²). Within 

this model, an ANOVA using Satterthwaite’s approximation 

for the degrees of freedom revealed that the cardinal versus 

ordinal nature of the problems had a significant effect (F(1) 

= 53.74, p < .001), as well as the line number (F(6) = 202.69 

p < .001). The interaction between those two fixed effects 

was significant as well (F(6) = 12.29, p < .001). In accordance 

with our hypothesis, we computed orthogonal contrasts using 

least square means to identify whether participants did visit 

the lines referring to Part 2 and Part 3 longer on cardinal than 

on ordinal problems: lines 2, 4 and 5. 

 
Figure 3: Visit duration per problem line 

Results revealed that participants spent a longer time visiting 

line 2 on cardinal problems (M = 3.40 seconds, SD = 1.64) 

than they did on ordinal problems (M = 2.58 seconds, SD = 

1.43); t(3922) = 6.49, p < .001. They also spent longer time 

on line 4 on cardinal problems (M = 4.40 seconds, SD = 1.66) 

than on ordinal problems (M = 3.61 seconds, SD = 1.60); 

t(3924) = 6.13, p < .001. Finally, they spent a longer time on 

the 5th line of cardinal problems (M = 3.79 seconds, SD = 

1.75) than on that of the ordinal problems (M = 2.97 seconds, 

SD = 1.67); t(3923) = 6.56, p < .001. On the other hand, there 

was no significant visit duration difference between cardinal 

and ordinal problems on lines 1, 3, 6 nor on the response 

insert (see Figure 3) 1; 0.02 ≤ t-value ≤ 0.96, .33 ≤ p ≤ .98. 

problems (M = 10.22, SD = 2.82); t(16) = 2.82, p < .05. This 

difference was not deemed problematic since our hypotheses 

focused on lines 2, 4 and 5, and since there was no significant 

difference of the visit duration on line 1 between cardinal and 

ordinal problems. 



Regressions. We investigated participants’ number of 

backward eye movements (regressions). Since each problem 

line presented a new piece of information, we could infer 

which pieces of information participants were going back to 

when trying to solve the problems. For each trial, we 

calculated the total number of backward eye movements to 

each line. We had predicted that participants would make 

more regressions to the lines mentioning Part 2 (lines 2 and 

4) and Part 3 (line 5) in their search for the missing values 

needed to use the 3-step algorithm. 

We used a GLMM with number of regressions as the 

dependent factor, cardinal versus ordinal nature of the 

problems as a fixed factor, line number as a fixed factor and 

participants as a random effect. The model successfully 

converged with a total explanatory power of 24.75% (R²cond). 

Within this model, an ANOVA using Satterthwaite’s 

estimation revealed that the effect of the cardinal versus 

ordinal nature of the problems was statistically significant 

(F(1) = 140.11, p < .001). There was also a main effect of the 

line number (F(5) = 94.43, p < .001). The interaction between 

these two fixed factors was significant (F(5) = 16.36, p < 

.001). In accordance with our hypothesis, we computed 

orthogonal contrasts using least square means to identify 

whether participants did make more regressions to lines 2, 3 

and 5 on cardinal problems than they did on ordinal problems 

(see Figure 4). 

 

Figure 4: Mean number of regressions to specific lines. 

Error bars indicate 95% confidence intervals. 

Results revealed that, as predicted, participants made a higher 

number of regressions to line 2 on cardinal problems (M = 

2.03, SD = 1.73) than on ordinal problems (M = 1.05, SD = 

1.16); t(3306) = 9.39, p < .001. Similarly, they made more 

regressions to line 4 on cardinal problems (M = 1.23, SD = 

1.43) than on ordinal problems (M = 0.70, SD = 1.01); t(3306) 

= 5.12, p < .001. Finally, the number of regressions to line 5 

was higher on cardinal problems (M = 0.77, SD = 1.11) than 

on ordinal problems (M = 0.42, SD = 0.76); t(3306) = 3.43, p 

< .001. The contrast analysis also revealed a difference that 

we had not anticipated: participants made a higher number of 

regressions to line 1 on cardinal problems (M = 2.00, SD = 

1.83) than on ordinal problems (M = 1.01, SD = 1.24); t(3306) 

= 9.63, p < .001. There was no such difference between 

cardinal and ordinal problems on line 3 (t(3306) = 1.75, p = 

.08) nor on line 6 (t(3306) = 0.31, p = .76). 

Pupillary dilatation. To evaluate the validity of the claim 

that participants need to semantically recode their initial 

representation of cardinal problems to find the solution, we 

looked at participants’ pupil dilation in relation with their 

successes and failures in solving the problems. We measured 

participants’ pupil diameter at each time step during each 

problem and contrasted it with their answers to the problems. 

We analyzed inter-trial change in pupil diameter using a 

GLMM with pupil diameter during fixations as the dependent 

variable. We used participants as a random effect, the 

cardinal versus ordinal nature of the problems as a fixed 

factor and the participants’ response to the problems as a 

fixed factor. The model successfully converged and 

explained 85.21% of the variance (R²cond). Within this model, 

an ANOVA using Satterthwaite’s approximation revealed 

that the cardinal versus ordinal nature of the problems had a 

significant effect (F(1) = 68.87, p < .001), indicating that 

pupil dilation differed between cardinal and ordinal 

problems. There was no main effect of the response provided 

by the participants (F(1) = 0.38, p = .54). There was however 

an interaction between the type of problem (cardinal/ordinal) 

and the response given by the participants (true/false): F(1) = 

5.73, p < .05. 

 

Figure 5: Pupil dilation on solvable problems. Error bars 

indicate upper margins of 95% confidence intervals. 

 

In accordance with our hypothesis, we computed contrasts 

using least square means to identify whether participants’ 

response was linked to their pupil dilation on cardinal and 

ordinal problems (see Figure 5). Correctly solving a cardinal 

problem was associated with a larger pupil diameter on 

average as compared to correctly solving an ordinal problem 

(t(58838) = 5.34, p < .001), which suggests that finding the 

solution to cardinal problems was more cognitively taxing 

than finding the solution to ordinal problems. Besides, a 

comparison of successes and failures revealed that 

participants’ pupil diameter was significantly larger on 

correctly solved cardinal problems (M = 418.63 μm, SD = 

53.14) than on failed cardinal problems (M = 403.08 μm, SD 

= 49.05); t(58841) = 2.48, p < .05. On the other hand, there 

was no such difference between correctly solved ordinal 

problems (M = 416.83 μm, SD = 54.18) and incorrectly 

rejected ordinal problems (M = 408.90 μm, SD = 55.88); 

t(58841) = 1.09,  p = .28. This suggests an increase in 

cognitive load on cardinal problems correctly solved, but not 

on ordinal problems.  



Discussion 

In this paper, we gathered converging evidence from five 

different sources of information regarding what precisely 

happens when one’s non-mathematical knowledge interferes 

with one’s mathematical expertise in the encoding, recoding, 

and solving of arithmetic word problems. First, the success 

rate analysis confirmed previous results regarding the 

increased difficulty to perceive the validity of the 1-step 

algorithm on cardinal problems as compared to ordinal 

problems. Then, the difference in response times between 

correctly solved cardinal and ordinal problems was also 

replicated, supporting the hypothesis that one needs to engage 

in a semantic recoding step to construct a new representation 

compatible with the 1-step algorithm. 

Third, by studying the visit duration on each line of the 

problem, we were able to take a closer look at what 

differentiates the encoding of cardinal and ordinal problems. 

We hypothesized that problems using cardinal quantities 

would lead participants to abstract a cardinal encoding of the 

situation emphasizing the set/subset structure of the situation 

depicted. Thus, in their attempts to find the value of Whole 2, 

we predicted that participants’ first reaction would be to try 

to find the values of each of its subsets, that is, Part 2 and 

Part 3 (see Fig. 1). Our looking time analysis revealed that it 

was indeed the case, since lines 2, 4 and 5 were visited for a 

longer time on cardinal problems than on ordinal problems. 

Despite the lines presenting the same information in the same 

order across problems, these three specific lines received 

particular attention on cardinal problems, thus suggesting that 

cardinal problems emphasized the importance of Part 2 and 

Part 3 to find the solution. This result supports the idea that 

cardinal quantities evoke a set-based representation. 

Fourth, the analysis of backward eye movements from one 

line to a previous one informed us with regards to the 

information that participants came back to when reading the 

problems. In accordance with the visit duration analysis, 

participants made more regressions to lines 4 (Part 3) as well 

as to lines 2 and 5 (Part 2) on cardinal problems, as compared 

to ordinal problems. This indicates that participants’ strategy 

includes looking back to previous lines for information about 

Part 2 and Part 3, thus supporting the idea that participants 

were actively trying to find the value of Whole 2 by adding 

up the (missing) values of Part 2 and Part 3. This analysis 

confirms that participants tend to look back at information 

regarding Part 2 and Part 3 more often on cardinal problems.  

Finally, a fifth measure provided new insights regarding our 

hypothesis that solving a problem whose initial 

representation is semantically incongruent with its solving 

algorithm requires to engage in a costly semantic recoding 

process to construct a new representation compatible with the 

available algorithm. Since pupil dilation varies closely in 

response to changes in task demands, pupillometry can be 

used as an indirect measure of participants’ effort. By 

studying pupil dilation variations between success and 

failures on cardinal and on ordinal problems, we were able to 

measure how the cognitive load varied between situations. 

We predicted that participants’ engagement in a semantic 

recoding step would result in an increase in pupil diameter on 

successfully solved cardinal problems. The results supported 

this hypothesis, since there was an increase in pupil diameter 

on successfully solved cardinal problems as compared to 

erroneously rejected cardinal problems. In other words, pupil 

dilation indicated an increased effort when participants 

managed to overcome their initial, incongruent 

representation of the problems and to find the solution to the 

cardinal problems. On the other hand, the pupil diameter 

difference between successes and failures on ordinal 

problems was not statistically significant. This can either 

indicate that there was no such difference since no semantic 

recoding was needed on ordinal problems, or it can simply be 

the sign of a lack of statistical power, since failures on ordinal 

problems were relatively scarce. Although we do not have the 

means to arbitrate between these two candidate explanations, 

the fact that there remained a significant difference between 

pupil dilation on correctly solved cardinal problems and on 

correctly solved ordinal problems seems to tip the scale in 

favor of the first interpretation. Indeed, it appears that 

correctly solving a cardinal problem required more effort, on 

average, than correctly solving an ordinal problem, which 

could be a sign of the existence of the hypothesized semantic 

recoding process. 

Overall, our results support the SECO model according to 

which general, non-mathematical knowledge about the 

entities featured in a problem directly influences the 

representations that are constructed by the solvers, as well as 

their ability to find the solution. By showing an increased 

focus on subsets on cardinal problems, the use of eye-

tracking helped support the idea that set-based 

representations are constructed whenever weights, prices, or 

collections are mentioned. Additionally, pupil dilation 

analysis confirmed that a costly semantic recoding process 

may be performed to overcome an incongruent representation 

and find the solution to a semantically incongruent problem. 

By furthering our understanding of the process of semantic 

recoding, we hope to identify ways to help students generate 

transfer between superficially dissimilar situations sharing a 

deeper bond. 

References 

Bassok, M. (2001). Semantic alignments in mathematical 

word problems. In D. Gentner, K. J. Holyoak, & B. 

Kokinov (Eds.), The analogical mind: Perspectives from 

cognitive science (pp. 401–433). Cambridge, MA: MIT 

Press. 

Beatty, J. (1982). Task-evoked pupillary responses, 

processing load, and the structure of processing 

resources. Psychological Bulletin, 91(2), 276. 

Colomé, À., & Noël, M. P. (2012). One first? Acquisition of 

the cardinal and ordinal uses of numbers in preschoolers. 

Journal of Experimental Child Psychology, 113(2), 233-

247. 

Curtis, E. T., Huebner, M. G., & LeFevre, J. A. (2016). The 

relationship between problem size and fixation patterns 



during addition, subtraction, multiplication, and division. 

Journal of numerical cognition, 2(2), 91-115. 

Daroczy, G., Wolska, M., Meurers, W. D., & Nuerk, H. C. 

(2015). Word problems: a review of linguistic and 

numerical factors contributing to their 

difficulty. Frontiers in psychology, 6, 348. 

De Corte, E., & Verschaffel, L. (1986). Eye-Movement Data 

as Access to Solution Processes of Elementary Addition 

and Subtraction Problems. Annual Meeting of the 

American Educational Research Association, San 

Francisco, April 16-20, 1986. 

De Corte, E., Verschaffel, L., & Pauwels, A. (1990). 

Influence of the semantic structure of word problems on 

second graders' eye movements. Journal of Educational 

Psychology, 82(2), 359-365. 

Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. 

(2015). Do students attend to representational illustrations 

of non-standard mathematical word problems, and, if so, 

how helpful are they?. Instructional Science, 43(1), 147-

171. 

Fuson, K. C. (1988). Children's counting and concepts of 

number. New York: Springer-Verlag. 

Gamo, S., Sander, E., & Richard, J. F. (2010). Transfer of 

strategy use by semantic recoding in arithmetic problem 

solving. Learning and Instruction, 20(5), 400-410. 

Goldinger, S. D., & Papesh, M. H. (2012). Pupil dilation 

reflects the creation and retrieval of memories. Current 

Directions in Psychological Science, 21(2), 90-95. 

Gros, H., Sander, E., & Thibaut, J. P. (2019). When masters 

of abstraction run into a concrete wall: Experts failing 

arithmetic word problems. Psychonomic bulletin & 

review, online first. 

Gros, H., Thibaut, J. P., & Sander, E. (2017). The nature of 

quantities influences the representation of arithmetic 

problems: Evidence from drawings and solving 

procedures in children and adults. In R. Granger, U. Hahn, 

& R. Sutton (Eds.), Proceedings of the 39th Annual 

Meeting of the Cognitive Science Society (pp 439–444). 

Austin, TX: Cognitive Science Society. 

Gros, H., Thibaut, J. P., & Sander, E. (2020a). Semantic 

Congruence in Arithmetic: A New Model for Word 

Problem Solving, Educational Psychologist, in press. 

Gros, H., Thibaut, J. P., & Sander, E. (2020b). What we count 

dictates how we count: A tale of two encodings. PsyArxiv. 

doi: 10.31234/osf.io/4jev5. 

Hegarty, M., Mayer, R. E., & Green, C. E. (1992). 

Comprehension of arithmetic word problems: Evidence 

from students' eye fixations. Journal of Educational 

Psychology, 84(1), 76-84. 

Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). 

Comprehension of arithmetic word problems: A 

comparison of successful and unsuccessful problem 

solvers. Journal of educational psychology, 87(1), 18-32. 

Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to 

mental activity during simple problem-

solving. Science, 143(3611), 1190-1192. 

Johnson-Laird, P. N. (1983). Mental models: Towards a 

cognitive science of language, inference, and 

consciousness (No. 6). Cambridge, MA: Harvard 

University Press. 

Kintsch, W., & Greeno, J. G. (1985). Understanding and 

solving word arithmetic problems. Psychological 

Review, 92(1), 109-129. 

Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. 
W. Y., ... & Tsai, C. C. (2013). A review of using eye-
tracking technology in exploring learning from 2000 
to 2012. Educational Research Review, 10, 90-115. 

Lyons, I. M., Vogel, S. E., & Ansari, D. (2016). On the 

ordinality of numbers: A review of neural and behavioral 

studies. In Progress in brain research, 227, 187-221. 

Merkley, R., & Ansari, D. (2010). Using eye tracking to study 

numerical cognition: the case of the ratio 

effect. Experimental Brain Research, 206(4), 455-460. 

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans and 

understanding: An inquiry into human knowledge 

structures. New York, NY: Hillsdale. 

Staub, F. C., & Reusser, K. (1995). The role of presentational 

structures in understanding and solving mathematical 

word problems. In C. A. Weaver III, S. Mannes, & C. R. 

Fletcher (Eds.), Discourse comprehension: Essays in 

honor of Walter Kintsch (pp. 285-305). Hillsdale, NJ, US: 

Lawrence Erlbaum Associates, Inc. 

Strohmaier, A. R., Tatsidou, K., Reiss, K. (2018). Eye 

movements during the reading of word problems. 

Advances in the use of eye tracking data. Fachgruppe 

Didaktik der Mathematik der Universität Paderborn 

(Hrsg.), Beiträge zum Mathematikunterricht 2018 (S. 

1759-1762). Münster: WTM-Verlag. 

Thevenot, C. (2017). Arithmetic Word Problem Solving: The 

Role of Prior Knowledge. In Geary, D. C., Berch, D. B., 

Ochsendorf, J., Mann-Koepke, K. (Eds.), Acquisition of 

Complex Arithmetic Skills and Higher-Order 

Mathematics Concepts (pp. 47-66). Academic Press. 

Thevenot, C., & Barrouillet, P. (2015). Arithmetic word 

problem solving and mental representations. The Oxford 

handbook of numerical cognition, 158-179. 

Van der Schoot, M., Bakker Arkema, A. H., Horsley, T. M., 

& van Lieshout, E. C. (2009). The consistency effect 

depends on markedness in less successful but not 

successful problem solvers: An eye movement study in 

primary school children. Contemporary Educational 

Psychology, 34(1), 58-66. 

Verschaffel, L., De Corte, E., & Pauwels, A. (1992). Solving 

compare problems: An eye movement test of Lewis and 

Mayer's consistency hypothesis. Journal of Educational 

Psychology, 84(1), 85-94. 

Verschaffel, L., Greer, B., & De Corte, E. (2000). Making 

sense of word problems. Lisse: Swets & Zeitlinger. 

Wasner, M., Moeller, K., Fischer, M. H., & Nuerk, H. C. 

(2015). Related but not the same: Ordinality, cardinality 

and 1-to-1 correspondence in finger-based numerical 

representations. Journal of Cognitive Psychology, 27(4), 

426-441. 

View publication stats

https://www.researchgate.net/publication/340090276

