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Abstract

We introduce two synthetic likelihood methods for Simulation-Based In-
ference (SBI), to conduct either amortized or targeted inference from ex-
perimental observations when a high-fidelity simulator is available. Both
methods learn a conditional energy-based model (EBM) of the likelihood
using synthetic data generated by the simulator, conditioned on parameters
drawn from a proposal distribution. The learned likelihood can then be
combined with any prior to obtain a posterior estimate, from which sam-
ples can be drawn using MCMC. Our methods uniquely combine a flexible
Energy-Based Model and the minimization of a KL loss: this is in contrast
to other synthetic likelihood methods, which either rely on normalizing
flows, or minimize score-based objectives; choices that come with known
pitfalls. Our first method, Amortized Unnormalized Neural Likelihood
Estimation (AUNLE), introduces a tilting trick during training that allows
to significantly lower the computational cost of inference by enabling the
use of efficient MCMC techniques. Our second method, Sequential UNLE
(SUNLE), employs a robust doubly intractable approach in order to re-use
simulation data and improve posterior accuracy on a specific dataset. We
demonstrate the properties of both methods on a range of synthetic datasets,
and apply them to a neuroscience model of the pyloric network in the crab
Cancer Borealis, matching the performance of other synthetic likelihood
methods at a fraction of the simulation budget.

1 Introduction

Simulation-based modeling expresses a system as a probabilistic program (Ghahramani, 2015),
which describes, in a mechanistic manner, how samples from the system are drawn given the
parameters of the said system. This probabilistic program can be concretely implemented in
a computer - as a simulator - from which synthetic parameter-samples pairs can be drawn.
This setting is common in many scientific and engineering disciplines such as stellar events
in cosmology (Alsing et al., 2018; Schafer & Freeman, 2012), particle collisions in a particle
accelerator for high energy physics (Eberl, 2003; Sjöstrand et al., 2008), and biological
neural networks in neuroscience (Markram et al., 2015; Pospischil et al., 2008). Describing
such systems using a probabilistic program often turns out to be easier than specifying the
underlying probabilistic model with a tractable probability distribution. We consider the
task of inference for such systems, which consists in computing the posterior distribution
of the parameters given observed (non-synthetic) data. When a likelihood function of the
simulator is available alongside with a prior belief on the parameters, inferring the posterior
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distribution of the parameters given data is possible using Bayes’ rule. Traditional inference
methods such as variational techniques (Wainwright & Jordan, 2008) or Markov Chain Monte
Carlo (Andrieu et al., 2003) can then be used to produce approximate posterior samples
of the parameters that are likely to have generated the observed data. Unfortunately, the
likelihood function of a simulator is computationally intractable in general, thus making the
direct application of traditional inference techniques unusable for simulation-based modelling.

Simulation-Based Inference (SBI) methods (Cranmer et al., 2020) are methods specifically
designed to perform inference in the presence of a simulator with an intractable likelihood.
These methods repeatedly generate synthetic data using the simulator to build an estimate of
the posterior, that either can be used for any observed data (resulting in a so-called amortized
inference procedure) or that is targeted for a specific observation. While the accuracy of
inference increases as more simulations are run, so does computational cost, especially when
the simulator is expensive, which is common in many physics applications (Cranmer et al.,
2020). In high-dimensional settings, early simulation-based inference techniques such as
Approximate Bayesian Computation (ABC) (Marin et al., 2012) struggle to generate high
quality posterior samples at a reasonable cost, since ABC repeatedly rejects simulations that
fail to reproduce the observed data (Beaumont et al., 2002). More recently, model-based
inference methods (Wood, 2010; Papamakarios et al., 2019; Hermans et al., 2020; Greenberg
et al., 2019), which encode information about the simulator via a parametric density (-ratio)
estimator of the data, have been shown to drastically reduce the number of simulations
needed to reach a given inference precision (Lueckmann et al., 2021). The computational
gains are particularly important when comparing ABC to targeted SBI methods, implemented
in a multi-round procedure that refines the estimation of the model around the observed
data by sequentially simulating data points that are closer to the observed ones (Greenberg
et al., 2019; Papamakarios et al., 2019; Hermans et al., 2020).

Previous model-based SBI methods have used their parametric estimator to learn the
likelihood (e.g. the conditional density specifying the probability of an observation being
simulated given a specific parameter set, Wood 2010; Papamakarios et al. 2019; Pacchiardi &
Dutta 2022), the likelihood-to-marginal ratio (Hermans et al., 2020), or the posterior function
directly (Greenberg et al., 2019). We focus in this paper on likelihood-based (also called
Synthetic Likelihood; SL, in short) methods, of which two main instances exist: (Sequential)
Neural Likelihood (Papamakarios et al., 2019), which learns a likelihood estimate using
a normalizing flow trained by optimizing a Maximum Likelihood (ML) loss; and Score
Matched Neural Likelihood (Pacchiardi & Dutta, 2022), which learns an unnormalized (or
Energy-Based, LeCun et al. 2006) likelihood model trained using conditional score matching.
Recently, SNL was applied successfully to challenging neural data (Deistler et al., 2021).
However, limitations still remain in the approaches taken by both SNL and SMNL. One
the one hand, flow-based models may need to use very complex architectures to properly
approximate distributions with rich structure such as multi-modality (Kong & Chaudhuri,
2020; Cornish et al., 2020). On the other hand, score matching, the objective of SMNLE,
minimizes the Fisher Divergence between the data and the model, a divergence that fails to
capture important features of probability distributions such as mode proportions (Wenliang &
Kanagawa, 2020; Zhang et al., 2022). This is unlike Maximimum-Likelihood based-objectives,
whose maximizers satisfy attractive theoretical properties (Bickel & Doksum, 2015).

Contributions. In this work, we introduce Amortized Unnormalized Likelihood Neural
Estimation (AUNLE), and Sequential UNLE, a pair of SBI Synthetic Likelihood methods
performing respectively sequential and targeted inference. Both methods learn a Conditional
Energy Based Model of the simulator’s likelihood using a Maximum Likelihood (ML) objective,
and perform MCMC on the posterior estimate obtained after invoking Bayes’ Rule. While
posteriors arising from conditional EBMs exhibit a particular form of intractability called
double intractability, which requires the use of tailored MCMC techniques for inference, we
train AUNLE using a new approach which we call tilting. This approach automatically
removes this intractability in the final posterior estimate, making AUNLE compatible with
standard MCMC methods, and significantly reducing the computational burden of inference.
Our second method, SUNLE, departs from AUNLE by using a different training objective
suited for targeted inference. While SUNLE returns a doubly intractable posterior, we
show that inference can carried out accurately through robust implementations of doubly-
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intractable MCMC methods. We demonstrate the properties of AUNLE and SUNLE on
an array of synthetic benchmark models (Lueckmann et al., 2021), and apply SUNLE to a
neuroscience model of the crab Cancer Borealis, increasing posterior accuracy over prior art
while needing only a fraction of the simulations required by the most efficient prior method
(Glöckler et al., 2021).

Figure 1: Performance of SMNLE, NLE and AUNLE traing using a simulator with a bimodal
likelihood p(x|θ), and a gaussian prior p(θ) using 1000 samples. Top: Simulator likelihood
p(x|θ0) for some fixed θ0. Bottom: posterior estimate.
2 Background

Simulation Based Inference (SBI) refers to the set of methods aimed at estimating the
posterior p(θ|xo) of some unobserved parameters θ given some observed variable xo recorded
from a physical system, and a prior p(θ). In SBI, one assumes access to a simulator
G : (θ, u) 7−→ y = G(θ, u), from which samples y|θ can be drawn, and whose associated
likelihood p(y|θ) accurately matches the likelihood p(x|θ) of the physical system of interest.
Here, u represents draws of all random variables involved in performing draws of x|θ. By
a slight abuse of notation, we will not distinguish between the physical random variable x
representing data from the physical system of interest, and the simulated random variable y
draw from the simulator: we will use x for both. The complexity of the simulator (Cranmer
et al., 2020) prevents access to a simple form for the likelihood p(x|θ), making naive Bayesian
inference impossible. Instead, SBI methods perform inference by drawing parameters from a
proposal distribution π(θ), and use these parameters as inputs to the simulator G to obtain
a set of simulated pairs (x, θ) which they use to compute a posterior estimate of p(θ|x).
Specific SBI submethods have been designed to handle separately the case of amortized
inference, where the practitioner seeks to obtain a posterior estimate valid for any xo (which
might not be known a priori), and targeted inference, where the posterior estimate should
maximize accuracy for a specific observed variable xo. While amortized inference methods
set their proposal distribution π to be the prior p, targeted inference methods iteratively
refine their proposal π to focus their simulated observations around the targeted xo through
a sequence of simulation-training rounds (Papamakarios et al., 2019).

2.1 (Conditional) Energy-Based Models.

Energy-Based Models (LeCun et al., 2006) are unnormalized probabilistic models of the form

qψ(x) =
e−Eψ(x)

Z(ψ)
, Z(ψ) =

∫
e−Eψ(x)dx,

where Z(ψ) is the intractable normalizing constant of the model, and Eψ is called the energy
function, usually set to be a neural network with weights ψ. By directly modelling the density
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p(x) of the data through a flexible energy function, simple EBMs can capture rich geometries
and multi-modality, whereas other model classes such a normalizing flows may require a
more complex architecture (Cornish et al., 2020). The flexibility of EBMs comes at the cost
of having an intractable density qψ(x) due to the presence of the normalizer Z(ψ), increasing
the challenge of both training and sampling. In particular, an EBM’s log-likelihood log qψ
and associated gradient ∇ψ log qψ both contain terms involving the (intractable) normalizer
Z(ψ):

log qψ(x) = −Eψ(x)−
intractable︷ ︸︸ ︷
logZ(ψ), ∇ψ log qψ(x) = −∇ψEψ(x) +

intractable︷ ︸︸ ︷
Ex∼qψ∇ψEψ(x) .

(1)

making exact training of EBMs via Maximum Likelihood impossible. Approximate likelihood
optimization can be performed using a Gradient-Based algorithm where at each iteration
k, the intractable expectation (under the EBM qψk) present in ∇ψ log qψk is replaced by
one under a particle approximation q̂ = 1

N

∑N
i=1 wiδyi of qψ. The particles y(i) forming q̂

are traditionally set to be samples from a MCMC chain with invariant distribution qψk ,
with uniform weights wi = 1

N , while recent work on EBM for high-dimensional image data
uses an adaptation of Langevin Dynamics (Raginsky et al., 2017; Du & Mordatch, 2019;
Nijkamp et al., 2019; Kelly & Grathwohl, 2021). We outline the traditional ML learning
procedure for EBM in Algorithm 2, where make_particle_approx(q, q̂0) is a generic routine
producing a particle approximation of a target unnormalized density q and an initial particle
approximation q̂0.

Energy-Based Models are naturally extended to both joint EBMs qψ(θ, x) = e−Eψ(θ,x)

Z(ψ) (Kelly
& Grathwohl, 2021; Grathwohl et al., 2020) and conditional EBMs (CEBMs Khemakhem
et al. 2020; Pacchiardi & Dutta 2022) of the form:

qψ(x|θ) =
e−Eψ(x,θ)

Z(θ, ψ)
, Z(θ;ψ) =

∫
e−Eψ(x,θ)dx. (2)

Unlike joint and standard EBMs, conditional EBMs define a family of conditional densities
qψ(x|θ), each of which endowed with an intractable normalizer Z(θ, ψ).

2.2 Synthetic Likelihood Methods for SBI

Synthetic Likelihood (SL) methods (Wood, 2010; Papamakarios et al., 2019; Pacchiardi &
Dutta, 2022) form a class of SBI methods that learn a conditional density model qψ(x|θ) of
the unknown likelihood p(x|θ) for every possible pair of observations and parameters (x, θ).
The set {qψ(x|θ), ψ ∈ Ψ} is a model class parameterised by some vector ψ ∈ Ψ, which recent
methods set to be a neural network with weights ψ. We describe the existing Neural SL
variants to date.

Neural Likelihood Estimation (NLE, Papamakarios et al. 2019) sets qψ to a (normalized)
flow-based model, and is optimized by maximizing the average conditional log-likelihood
Eπ(θ)p(x|θ) log qψ(x|θ). NLE performs inference by invoking Bayes’ rule to obtain an unnor-
malized posterior estimate pψ(θ|x) =

qψ(x|θ)p(θ)∫
qψ(x|θ)p(θ)dθ

∝ p(θ)qψ(x|θ) from which samples can
be drawn either using MCMC, or Variational Inference (Glöckler et al., 2021).

Score Matched Neural Likelihood Estimation (SMNLE, Pacchiardi & Dutta 2022)
models the unknown likelihood using a conditional Energy-Based Model qψ(x|θ) of the form
of Equation (2), trained using a score matching objective adapted for conditional density
estimation. The use of an unnormalized likelihood model makes the posterior estimate
obtained via Bayes’ Rule known up to a θ-dependent term:

qψ(θ|x) ∝ p(θ)qψ(x|θ) ∝ e−Eψ(x,θ)p(θ)

Z(θ)︸︷︷︸
intractable

, Z(θ) =

∫
e−Eψ(x,θ)dx. (3)

Posteriors of this form are called doubly intractable posteriors (Møller et al., 2006). In the
case where the likelihood qψ(x|θ) can be sampled from, Møller et al. (2006); Murray et al.
(2006) have proposed tractable MCMC methods that draw an auxiliary variable y ∼ qψ(x|θ)
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at every iteration to compute the acceptance probability of the proposed sample. Importantly,
these MCMC methods still admit qψ(θ|x) as their invariant distribution, making inference
as exact as in standard MCMC methods. In the case of SMNLE however, qψ(x|θ) cannot be
tractably sampled from; SMNLE instead uses an approximate doubly intractable method,
which replaces the exact sample y by the result of an MCMC chain with invariant distribution
qψ(x|θ). Even though this variant introduces an additional approximation not present in
standard (“singly” intractable) MCMC algorithms, the distance between the true posterior
and the distributions of the MCMC samples can be bounded under specific assumptions
(Alquier et al., 2016).

Both the likelihood objective of NLE and the score-based objective of SMNLE do not involve
the analytic expression of the proposal π, making it easy to adapt these methods for either
amortized or targeted inference. To address the limitations of both methods mentioned in
the introduction, we next propose a method that combines the use of flexible Energy-Based
Models as in SMNLE, while being optimized using a likelihood loss as in NLE.

3 Unnormalized Neural Likelihood Estimation

In this section, we present our two methods, Amortized-UNLE and Sequential-UNLE. Both
AUNLE and SUNLE approximate the unknown likelihood p(x|θ) for any possible pair of (x, θ)
using a conditional Energy-Based Model qψ(x|θ) as in Equation (2), where Eψ is some neural
network. Additionally, AUNLE and SUNLE are both trained using a likelihood-based loss;
however, the training objectives and inference phases differ to account for the specificities of
amortized and targeted inference, as detailed below.

3.1 Amortized UNLE

Given a likelihood model qψ(x|θ), a natural learning procedure would involve fitting a model
qψ(x|θ)π(θ) of the true “joint synthetic” distribution π(θ)p(x|θ), as NLE does. However, we
show that using an alternative – tilted – version of this model allows to compute a posterior
that is more tractable than the ones computed by other SL methods relying on conditional
EBMs such as SMNLE (Pacchiardi & Dutta, 2022). Our method, AUNLE, fits a joint
probabilistic model qψ,π of the form:

qψ,π(x, θ) :=
π(θ)e−Eψ(x,θ)

Zπ(ψ)
, Zπ(ψ) =

∫
π(θ)e−Eψ(x,θ)dxdθ. (4)

by maximizing its log-likelihood La(ψ) := Eπ(θ)p(x|θ) [log qψ,π(x, θ)] using an instance of
Algorithm 2. The gain in tractability offered by AUNLE is a direct consequence of the
following proposition, its joint model.
Proposition 1. Let Pψ := {qψ(·|θ) , ψ ∈ Ψ}, and qψ ∈ Pψ. Then we have:

• (likelihood modelling) qψ,π(x|θ) = qψ(x|θ)

• (joint model tilting) qψ,π(x, θ) = f(θ)π(θ)qψ(x|θ), for f(θ) := Z(θ, ψ)/Zπ(ψ)

• ((Z, θ)-uniformization) If p(·|θ) ∈ Pψ, then the ψ? minimizing La(ψ) satisfies:
qψ(x|θ) = p(x|θ), and Z(θ, ψ?) = Zπ(ψ?).

Proof. The first point follows by holding θ fixed in qψ,π(x, θ). To prove the second point,
notice that qψ,π(x, θ) = Z(θ,ψ)

Z(θ,ψ)
π(θ)e−E(x,θ)

Zπ(ψ)
= Z(θ,ψ)

Zπ(ψ)
π(θ) e

−E(x,θ)

Z(θ,ψ) . For the last point, note that
at the optimum, we have that qψ?,π(x, θ) = π(θ)p(x|θ). Integrating out x on both sides of
the equality yields f(θ)π(θ) = π(θ), proving the result.

Proposition 1 shows that AUNLE indeed learns a likelihood model qψ(x|θ) through a joint
model qψ,π tilting the prior π with f(θ). Importantly, this tilting guarantees that the
optimal likelihood model will have a normalizing function Z(θ;ψ) constant (or uniform) in θ,
reducing AUNLE’s posterior to a standard unnormalized posterior qψ?(θ|x) = p(θ) e

−Eψ? (θ,x)
Zπ(ψ?)

,
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from which samples can be drawn using classical MCMC techniques, as for NLE. AUNLE’s
posterior contrasts with the posterior of SMNLE (Pacchiardi & Dutta, 2022), an amortized
SBI method which also computes a posterior using a conditional EBM of the likelihood,
but that remains doubly intractable, as discussed in Section 2. The gain in tractability of
AUNLE’s posterior is beneficial from an inference accuracy standpoint as it removes the need
to use an otherwise approximate doubly-intractable technique when performing inference.
Importantly, such a property is also beneficial from a computational cost standpoint, since
approximate doubly-intractable methods require running an (inner) MCMC chain with
target qψ?(x|θ) for every iteration of the (outer) MCMC chain with target qψ?(θ|x), roughly
squaring the computational cost of standard MCMC methods. This computational advantage
is all the more important since AUNLE returns an amortized posterior, valid for any observed
data xo, and which may be thus sampled from more than once.

Algorithm 1 Amortized-UNLE

Input: prior p(θ), simulator G, budget N
Output: Posterior estimate qψ(θ|x)

Initialize ψ0, qψ0,π ∝ e−Eψ0
(x,θ)π(θ)

Initialize π = p

for i = 0, . . . , N do
Draw θ ∼ π, x ∼ G(θ, ·)
Add (θ, x) to D

end for
Get ψ? := maximize_ebm_log_l(D, ψ0)

Set qψ?(θ|x) := e−Eψ? (x,θ)p(θ)

Infer using MCMC on qψ?(θ|x)

Algorithm 2 maximize_ebm_log_l(D, ψ0)

Input: Training Data D := {x(i)}Ni=1, Initial
EBM parameters ψ0

Output: Density estimator qψ(x)

Initialize qψ0(x) ∝ e−Eψ0
(x), q̂0 ∝

∑
i δxi

for k = 0, . . . ,K − 1 do
q̂ := make_particle_approx(qψk , q̂)

Ĝ = − 1
N

∑
∇ψEψk(xi) +Eq̂∇ψEψk(x)

ψk+1 = ADAM(ψk, Ĝ)

end for
Return qψK

3.2 Targeted Inference using Sequential-UNLE

In this section, we introduce our second method, Sequential-UNLE (or SUNLE in short),
which performs targeted inference for a specific observation xo. SUNLE follows the traditional
methodology of targeted inference by splitting the simulator budget N over R rounds (often
equally), where in each round r, a likelihood estimate qψ?r (x|θ) in the form of a conditional
EBM is trained using all the currently available simulated data D. This allows to construct a
new posterior estimate qψ?r (θ|x)=e−Eψ?r (x,θ)p(θ)/Z(ψ?r , θ) which is used to sample parameters

θ(i)
N
R

i=1 that are then provided to the simulator for generating new data xi ∼ G(θ(i)). The
new data are added to the set D and are expected to be more similar to the observation of
interest xo. The procedure for training SUNLE, which is summarized in Algorithm 3, allows
to focus the simulator budget on regions relevant to the single observed data of interest xo,
and, as such, is expected to be more efficient in terms of the simulator use than amortized
methods (Lueckmann et al., 2021). Next, we discuss the learning procedure for the likelihood
model and the posterior sampling.

Learning the likelihood. At each round r, the effective proposal π of the training data
available can be understood (provided the number of data points drawn at reach rounds is
randomized) as a mixture probability: π := 1

r (π(0)(θ)+qψ?1 (θ|xo)+ . . .+qψ?r−1
(θ|xo)) which is

used to update the likelihood model. In this case, the analytical form of π is unavailable as
it requires computing the normalizing constants of the posterior estimates at each round,
thus making the tilting approach introduced for AUNLE impractical in the sequential
setting. Instead, our proposed algorithm for targeted inference, Sequential-UNLE, fits a
likelihood model qψ(x|θ) by maximizing the average conditional log-likelihood, an objective
used by Papamakarios et al. (2019) to fit a flow-based model of the likelihood. Approximate
maximization of the average log likelihood of an EBM can be performed by computing the
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intractable term within its gradient:

∇ψL(ψ) = − 1

N

N∑
i=1

(∇ψEψ(xi, θi) +

intractable︷ ︸︸ ︷
Eqψ(·|θi)∇ψEψ(xi, θi)), (5)

where (xi, θi)Ni=1 are the current samples. The average conditional log-likelihood constitutes
a natural extension of the traditional log-likelihood objective for conditional energy-based
models, with similar intractable terms to be approximated. Compared to AUNLE, the
gradient update of SUNLE objective does not require the analytic form of the proposal
π used to draw the training data and can be optimized using Algorithm 4. The average
conditional log-likelihood objective was previously used by Papamakarios et al. (2019) in
the context of SBI for normalizing flows. However, to our knowledge, such an objective was
not used in the context of conditional EBMs which require dealing with intractable terms.
Learning the likelihood using Algorithm 4 allows to use all the existing simulated data during
training, which is critical for good performance on challenging models.

Posterior sampling. Unlike AUNLE, SUNLE’s likelihood estimate qψ does not inherit
the (Z, θ)-uniformization property guaranteed by Proposition 1. As a consequence, its
posterior qψ?R(θ|x) is doubly intractable as it involves the intractable normalizing constant
Z(ψ?r , θ). Nevertheless, we propose to sample from qψ?R(θ|x) using Doubly-Intractable MCMC
techniques. We consider a custom robust doubly intractable implementation that allows
for accurate inference even on challenging posteriors with no parameter tuning other than
compute-related parameters like the number of warmup steps.

Algorithm 3 Sequential-UNLE

Input: prior p(θ), simulator G, budget N , no.
rounds R

Output: Posterior estimate qψ(θ|x)

Initialize π(0) = p, ψ0, qψ0,π ∝ e−Eψ0
(x,θ)π(θ)

Get D = {θ(i) ∼ π(θ), x(i) ∼ G(θ, ·)}N/Ri=1
for r = 1, . . . , R do
Get ψ?r := maximize_cebm_log_l(D, ψ?r−1)
Set πr+1(θ|x) := e−Eψ?r (x,θ)p(θ)/Z(ψ?r ; θ)

Get {θi}N/Ri=1 ∼πψ?r viaDoubly-Intr. MCMC
Get D = D ∪ {θ(i), x(i) ∼ G(θ(i), ·)}N/Ri=1

end for
Infer using Doubly-Intr. MCMC on qψ?R(θ|x)

Algorithm 4 maximize_cebm_log_l(D, ψ0)

Input: Training data D := {θ(i), x(i)}Ni=1, Ini-
tial EBM parameters ψ0

Output: Cond. Density estimator qψ(x|θ)
Initialize qψ0

∝ e−Eψ0
(θ,x), {q̂i = δxi}Ni=1

for k = 0, . . . ,K − 1 do
for i = 0, . . . , N − 1 do
q̂i := make_particle_approx(qψk(·, θi), q̂i)

end for
Ĝ=− 1

N

∑
∇ψEψk(xi, θi)+Eq̂i∇ψEψk(xi, θi)

ψk+1= ADAM(ψk, Ĝ)
end for
Return qψK

4 Experiments

In this section, we study the performance and properties of AUNLE and SUNLE in three
different settings: a toy model that highlights the failure modes of other synthetic likelihood
methods, a series of benchmark datasets for SBI, and a real life neuroscience model.

Experimental details AUNLE and SUNLE are implemented using jax (Frostig et al.,
2018). jax combines vectorization semantics with a Just-In-Time (JIT)-compilation feature
to both CPUs and GPUs, allowing to efficiently simulate multiple MCMC chains. We
approximate expectations of AUNLE’s joint EBM using 1000 independent MCMC chains
with a Langevin kernel parameterised by a step size σ. We make the chains “parameter
free” by having them automatically update their step size to maintain an acceptance rate of
0.5 during a per-iteration warmup period, before freezing the chain and computing a final
particle approximation. Additionally, we introduce a new method which replaces the MCMC
chains by a single Sequential Monte Carlo sampler (Chopin et al., 2020; Del Moral et al.,
2006), which yields a similar performance as the Langevin-MCMC approach discussed above,
but is more robust for lower computational budgets: all details are given in Appendix A.2.
We train UNLE by estimating each intractable expectation in its gradient using a single
MCMC chain per term, with the same auto-tuning procedure as in AUNLE. We provide
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Figure 2: Performance of AUNLE (resp. SUNLE) compared with NLE (resp. SNLE), using
the Classifier Accuracy Metric (Lueckmann et al., 2021) (lower is better). AUNLE and
SUNLE exhibit robust performance across a wide array of problem and posterior structures.

all code1 needed to reproduce the experiments of the paper. Training and inference are
computed using a single RTX5000 GPU. For benchmark models, a single round of EBM
training takes around 2 minutes on a GPU.

4.1 A toy model with a multi-modal likelihood

First, we illustrate the issues that SNLE and SMNLE can face when applied to model certain
distributions using a simulator with a bi-modal likelihood. Such a likelihood is known to
be hard to model by normalizing flows, which, when fitted on multi-modal data, will assign
high-density values to low-density regions of the data in order to “connect” between the
modes of the true likelihood (Cornish et al., 2020). Moreover, multi-modal distributions are
also poorly handled by score-matching, since score-matching minimizes the Fisher Divergence
between the model and the data distribution, a divergence which does not account for mode
proportions (Wenliang & Kanagawa, 2020). Figure 1 shows the likelihood model learned by
NLE and SMNLE on this simulator, which exhibit the pathologies mentioned above: the
score-matched likelihood only recovers a single mode of the likelihood, while the flow-based
likelihood has a distorted shape. In contrast, AUNLE estimates both the likelihood and the
posterior accurately. This suggests that AUNLE has an advantage when working with more
complex, possibly multi-modal, distributions, as we confirm later in Section 4.3.

4.2 Results on SBI Benchmark Datasets

We next study the performance of AUNLE and SUNLE on 4 SBI benchmark datasets with
well-defined likelihood and varying dimensionality and structure (Lueckmann et al., 2021):

SLCP: A toy SBI model introduced by (Papamakarios et al., 2019) with a unimodal gaussian
likelihood p(x|θ). The dependence of p(x|θ) on θ is nonlinear, yielding a complex posterior.

The Lotka-Volterra Model (Lotka, 1920): An ecological model describing the evolution
of the populations of two interacting species, usually referred to as preys and predators.

Two Moons: A famous 2-d toy model with posteriors comprised of two moon-shaped
regions, and yet not solved completely by SBI methods.

Gaussian Linear Uniform: A simple gaussian generative model, with a 10-dimensional
parameter space.

These models encompass a variety of posterior structures: the two-moons and SLCP posteriors
are multimodal, include cutoffs, and exhibit sharp and narrow regions of high density, while
posteriors of the Lotka-Volterra model place mass on a very small region of the prior support.
We compare the performance of AUNLE and SUNLE with NLE and its sequential analogue
SNLE, respectively: NLE and SNLE represent the gold standard of current synthetic

1https://github.com/pierreglaser/unle
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likelihood methods, and perform particularly well on benchmark problems (Lueckmann et al.,
2021). We use the same set of hyperparameters for all models, and use a 4-layer MLP with
50 hidden units and swish activations for the energy function. Results are shown in Figure 2.

While some fluctuations exist depending on the task considered, these results show that
the performance of AUNLE (and SUNLE when targeted inference is necessary) is on par
with that of (S)NLE, thus demonstrating that a generic method involving Energy-Based
models can be trained robustly, without extensive hyperparameter tuning. Interestingly,
the model where UNLE has the greatest advantage over NLE is Two Moons, which is
the benchmark that exhibits a likelihood with the most complex geometry; in comparison,
the three remaining benchmarks have simple normal (or log-normal) likelihood, which are
unimodal distributions for which normalizing flows are particularly well suited. This point
underlines the benefits of using EBMs to fit challenging densities. Finally, we remark that
SMNLE, presented as an amortized inference method by Pacchiardi & Dutta (2022), could
be adapted as targeted inference for the present benchmarks, however we found that the
method struggled in practice for all settings other than simple Gaussian Linear Uniform.

4.3 Using SUNLE in a Real World neuroscience model
We investigate further the performance of SUNLE by running its inference procedure on
a simulator model of a pyloric network located in stomatogastric ganglion (STG) of the
crab Cancer Borealis given an observed neuronal recording (Haddad & Marder). This model
simulates 3 neurons, whose behaviors are governed by synapses and membrane conductances
that act as simulator parameters θ of dimension 31. The simulated observations are composed
of 15 summary statistics of the voltage traces produces by neurons of this network (Prinz
et al., 2003; 2004). Amortized SBI methods require tens of millions of samples, while currently,
the most sample-efficient targeted inference method for this problem is SNVI (a variant of
SNLE that replaces the MCMC-powered posterior sampling by a variational inference step
Glöckler et al. 2021) which uses an initial round of 50000 simulations followed by 30 rounds
of 10000.
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Figure 3: Inference SUNLE on a model of the crab’s pyloric network. Left: simulations
obtained by using the final posterior mean and maximum a posteriori (MAP) as a parameter.
Center: the empirical observation xo: arrows indicate the summary statistics. Top-right:
fraction of simulated observations with well-defined summary statistics (higher is better) at
each round for SNVI and SUNLE, with dashed lines indicating the maximum fraction for
each method. Bottom-right: performance of the posterior using the Energy Scoring Rule
(lower is better).

We perform targeted inference on this model using SUNLE with a MLP of 9 layers and 300
hidden units per layers for the energy Eψ, and perform doubly intractable MCMC with 2000
warm up steps and 500 inner sampler steps to sample from SUNLE’s posterior across rounds.
As shown in Figure 3, SUNLE quickly learns a state-of-the art posterior after only 10 rounds,
reducing by 2 the simulation budget of SNVI. The total procedure takes 10 hours. We report
in Figure 3 the evolution of the rate of simulated obvservations with valid summary statistics,
- a metric indicative of posterior quality - as well as the Energy-Scoring Rule (Gneiting &
Raftery, 2007) of SUNLE and SNVI’s posteriors across rounds. The synthetic observation
simulated using SUNLE’s posterior mean closely matches the empirical observation (Figure 3,
Left vs Center). We stress, however, that, unlike the case of benchmark models, computing
a reliable measure of inference quality is challenging, since neither the true parameters nor
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the true posterior for this model are known. We show in the Appendix that a stable rate of
90% valid samples (with a 92% maximum) can be obtained using an initial round of 100000
samples instead of 50000).

Conclusion The expanding range of applications of Simulation-Based Inference poses new
challenges to the way SBI algorithms model data. In this work, we presented SBI methods
that use an expressive Energy-Based Model as their inference engine, fitted using Maximum
Likelihood. We demonstrated promising performance on synthetic benchmarks and on a
real-world neuroscience model. In future work, we hope to see applications of this method to
other fields where EBMs have been proven successful, such as physics (Noé et al., 2019) or
protein modelling (Ingraham et al., 2018).

Acknowledgements. Pierre Glaser and Arthur Gretton thank the Gatsby Charitable
Foundation for the financial support.
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Supplementary Material for the paper Maximum Likelihood Learning
of Energy-Based Models for Simulation-Based Inference

The supplementary materials includes the following materials:

• A discussion of the computational rationale motivating the tilting approach of
AUNLE.

• We propose a training methods for EBM which uses the family of Sequential Monte
Carlo samplers to efficeiently approximate expectations under the EBM during
approximate likelihood maximization. We show that using this new methods can
lead to increased stability and performance for a fixed budget.

• Finally, we provide additional details on the results of SUNLE on the pyloric network:
we provide an estimation of the pairwise marginals of the final posterior, which
contains patterns also present in the pairwise marginals obtained by Glöckler et al.
(2021). We discuss the performance of another SUNLE run which reaches consistently
90% of valid samples after 10 rounds.

A Methological Details

A.1 Energy-Based Models as Doubly-Intractable Joint Energy-Based
Models

AUNLE learns a likelihood model qψ(x|θ) by minimizing the likelihood of a tillted joint EBM
p(θ)e−Eψ(x,θ)

Zπ(ψ)
. While the gain in tractability arising in AUNLE’s posterior suffices to motivate

the use of this model, another computational argument holds. Consider the non-tilted joint
model:

π(θ)
qψ(x|θ)
Z(θ, ψ)

.

Expectations under this model can be computed by running a MCMC chain implementing a
Metropolis-Within-Gibbs sampling method as in Kelly & Grathwohl (2021), which uses:

• any proposal distribution for qπ,ψ(x|θ) ∝ qψ(x|θ), such a MALA proposal

• an approximate doubly-intractable MCMC kernel step for qπ,ψ(θ|x) ∝ π(θ) e
−Eψ(x,θ)

Zπ(θ)

which is doubly intractable.

However, running the approximate doubly intractable MCMC kernel step requires sampling
from qψ(x|θ), incurring an additional nested loop during training. Thus, naive MCMC-based
Maximum-Likelihood optimization of untilted joint EBM is prohibitive from a computational
point of view.

A.2 Training EBMs using Sequential Monte Carlo

The main technique to compute particle approximations of the EBM iterations (returned
by the generic make_particle_approx) when training an EBM using Algorithm 2 is to run
N MCMC chains in parallel targeting the EBM Song & Kingma (2021); aggregating the
final samples yi of each chain i yields a particle approximation q = 1

N

∑
i δyi of the EBM

in question. In this appendix section, we describe an alternative make_ebm_approx which
efficiently constructs EBM particle approximations across iterations of Algorithm 2 through
a Sequential Monte Carlo (SMC) algorithm (Chopin et al., 2020; Del Moral et al., 2006). In
addition to its efficienty, this new routine does not suffer from the bias of incurred by the
use of finitely many steps in MCMC-based methods. We apply this routine within the EBM
training step of AUNLE’s, and show that the learned posteriors can be more accurate than
MCMC methods for a fixed compute power allocated to training.
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A.2.1 Background: Sequential Monte Carlo Samplers

Sequential Monte Carlo (SMC) Samplers (Chopin et al., 2020; Del Moral et al., 2006) are
a family of efficient Importance Sampling (IS)-based algorithms, that address the same
problem as the one of MCMC, namely computing a normalized particle approximation of a
target density q known up to a normalizing constant Z. The particle approximation q̂SMC

computed by SMC samplers (consisting of N particles yi, like in MCMC methods, but
weighted non-uniformly by some weights wi) is produced by defining a set of L intermediate
densities (νl)

L
l=0 bridging between the target density νl=q and some initial density ν0,

for which a particle approximation νN0 :
∑
i = 1N = wi0δyi0 are readily available. The

intermediate densities are often chosen to be a geometric interpolation between ν0 and
νL, i.e. νl ∝ (ν0)1−

l
L (νl)

l
L , so that νl are also known up to some normalizing constant.

SMC samplers sequentially constructs an approximation νNl :=
∑
wilδyil to the respective

density νl at time l, using previously computed approximations of νl−1 at time l − 1. At
each time step, the approximations are obtained by applying three successive operations:
Importance Sampling, Resampling and MCMC sampling. We provide a vanilla SMC sampler
implementation in Algorithm 5, and refer to this algorithm as make_smc_particle_approx

Algorithm 5 SMC(q, ν0, ν
N
0 )

1: Hyper-parameters: Number of particles N , number of steps L, re-sampling threshold
A ∈ [ 1

N , 1).
2: Input: Target density q, initial density ν0, particle approximations νN0 and ν0
3: Output: Particle approximations to q.
4: Construct geometric path (νl)

L
l=1 from ν0 and q.

5: for l = 1, . . . , L do
6: Compute IS weights wil and W

i
l

7: Draw N samples (Ỹ il )Ni=1 from (Y il−1)Ni=1 according to weights (W i
l )
N
i=1, then setW i

l =
1
N .

8: Sample Y il ∼ Kl(Ỹ il , ·) using Markov kernel Kl.
9: end for

10: Return approximation qNSMC :=
(
Y iL,W

i
L

)N
i=1

.

Importantly, under mild assumptions, the particle approximation constructed by SMC
provides consistent estimates of expectations of any function f under the target q:

N∑
i=1

wif(yi)
P−→ Ey∼q[f(y)].

We briefly compare the role played by the number of steps and particles in both MCMC and
SMC algorithms:

Number of particles SMC samplers differ from MCMC samplers in their origin of their
bias: while the bias of MCMC methods comes from running the chain for a finite number
of steps only, the bias of SMC methods comes from the use of finitely many particles.
Number of steps While it is usually beneficial to use a high number of iterations within
MCMC samplers to decrease algorithm bias and ensure that the stationnary distribution is
reached, the number of steps (or intermediate distributions) is SMC is beneficial to ensure
a smooth transition from the proposal to the target distribution: however, the variance
of SMC samplers as a function of the number of steps is not guaranteed to be decreasing
even if variance bounds that are uniform in the number of steps can be derived by making
assumptions on Kl Chopin et al. (2020). When applying SMC to within AUNLE’s training
loop, we find that using more SMC samplers steps usually increase the quality of the final
posterior.

In the next paragraph, we describe how to use SMC routine efficiently to approximate EBM
expectations within Algorithm 2.
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A.2.2 Efficient use of SMC during AUNLE training using OG-SMC

A naive approach which uses the SMC routine of Algorithm 5 within the EBM training loop
of Algorithm 2 would consist in calling the SMC at every training iteration using a fixed,
predefined proposal density ν0 and associated particle approximation and ν̂0, such as one
from a standard gaussian distribution. However, as training goes, the EBM is likely to differ
significantly from the proposal density q0, requiring the use of many SMC inner steps to
obtain a good particle approximation.

A more efficient approach, which we propose, is to use the readily available particle unnor-
malized EBM density qψk−1 and associated particle approximation q̂k computed by SMC at
the iteration k-1 as the input to the call to SMC targeting the EBM qψk at iteration k.
Algorithm 6 implements this approach.

Algorithm 6 SMC-powered ML training of EBMs

Input: Training Data {x(i)}Ni=1, Initial EBM parameters ψ0

Output: Density estimator qψ(x)

Initialize qψ0
(x) ∝ e−Eψ0

(x), q−1 = ν0, q̂−1 = ν̂0
for i = 0, . . . , max_iter− 1 do

# q̂ := make_particle_approx(qψk , q̂)
q̂k := SMC(qψk , qk−1, q̂k−1)
qk := qψk

Ĝ = − γ
N

∑
∇ψEψk(xi) +Eq̂∇ψE(x)

ψk+1 = ADAM(ψk, Ĝ)

end for
Return qψK

In practice, we find that using 20 SMC intermediate densities (with 3 steps of Kt) in each
call to SMC yields a similar performance as a 250-MCMC steps EBM training procedure. By
considering a more constrained budget, using only 5 SMC intermediates densities outperforms
a 30-steps MCMC EBM training procedure.

Figure 4: Performance of AUNLE, using either a MCMC-powered particle approximation
routine, or a SMC: using 30 MCMC steps or 5 SMC steps

A.3 Additional Experimental and Inferential Details

Use of a Calibration Network Due to the presence of invalid observations, we procede
as in Glöckler et al. (2021) and fit a calibration network that allows to remove the bias
induced by throwing away pairs of (parameters, observations) when the observations do not
have well defined summary statistics. We use a similar architecture as in Glöckler et al.
(2021).
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Figure 5: Performance of AUNLE, using either a MCMC-powered particle approximation
routine, or a SMC: using 200 MCMC steps or 20 SMC steps

A.3.1 Performance of S-UNLE with 100000 prior samples

We provide the performance (in Energy Scoring Rule and in the number of valid samples) of
SBI-EBM when using 100000 prior samples at the first iterations, followed by 10 rounds of
10000 simulations each. We additionally use 1000 inner sampler steps instead of 500 during
the inference procedure. We account for the additional 50000 prior samples by shifting the
evolution curves for a fair comparison. In this case, we see a significant increase in fraction
valid samples at the end of the procedure between SNVI and SNLE. We argue that in our
case, the energy scoring rule cannot be used solely as a metric for posterior quality since it
discards the invalid samples from the simulated observations (on which the scoring rule is
computed).
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Figure 6: Performance of SUNLE using 100000 prior samples in the first round, followed by
10 rounds of 10000 samples. We observe a significant increase in the fraction of valid samples
generated by the model.

A.3.2 Neuroscience Model: Pairwise Marginals

We provide the full pairwise mariginals obtained after computing a kernel density estimation
on the final posterior samples of S-UNLE. We retrieve similar patterns as the one displayed
in the pairwise marginals of SNVI samples. We refer to Glöckler et al. (2021) for more details
on the specificities of this model.

A.3.3 Compute time for the benchmark models

We give the average compute time depending on the simulation budgets for A-UNLE and
S-UNLE. S-UNLE is significantly more compute-hungry, since it uses 10 rounds in lieu of 1
for AUNLE (a fact which holds systematically when comparing multirond sequential methods
and their amortized analogue), and the use of a doubly intractable sampler in lieu of a
standard MCMC or SMC sampler for AUNLE. Between 1000 and 10000 samples, the cost
of inference is dominated by the warmup period of the doubly intractable sampler, which
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Figure 7: Pairwise marginals of SUNLE’s posterior estimate on the C. Borealis simulator
model.
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explains the lack of clear increase in compute time. Between 10000 and 100000 samples, the
time spent running the post-warm up chain starts to influence the total runtime.

Figure 8: Compute time for A-UNLE and S-UNLE as a function of the number of samples.
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