Maximum Likelihood Learning of Energy-Based Models for Simulation-Based Inference
Pierre Glaser, Michael Arbel, Arnaud Doucet, Arthur Gretton

To cite this version:
Pierre Glaser, Michael Arbel, Arnaud Doucet, Arthur Gretton. Maximum Likelihood Learning of Energy-Based Models for Simulation-Based Inference. 2022. hal-03869080

HAL Id: hal-03869080
https://hal.science/hal-03869080
Preprint submitted on 24 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We introduce two synthetic likelihood methods for Simulation-Based Inference (SBI), to conduct either amortized or targeted inference from experimental observations when a high-fidelity simulator is available. Both methods learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator, conditioned on parameters drawn from a proposal distribution. The learned likelihood can then be combined with any prior to obtain a posterior estimate, from which samples can be drawn using MCMC. Our methods uniquely combine a flexible Energy-Based Model and the minimization of a KL loss: this is in contrast to other synthetic likelihood methods, which either rely on normalizing flows, or minimize score-based objectives; choices that come with known pitfalls. Our first method, Amortized Unnormalized Neural Likelihood Estimation (AUNLE), introduces a tilting trick during training that allows to significantly lower the computational cost of inference by enabling the use of efficient MCMC techniques. Our second method, Sequential UNLE (SUNLE), employs a robust doubly intractable approach in order to re-use simulation data and improve posterior accuracy on a specific dataset. We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a neuroscience model of the pyloric network in the crab Cancer Borealis, matching the performance of other synthetic likelihood methods at a fraction of the simulation budget.

1 Introduction

Simulation-based modeling expresses a system as a probabilistic program (Ghahramani, 2015), which describes, in a mechanistic manner, how samples from the system are drawn given the parameters of the said system. This probabilistic program can be concretely implemented in a computer - as a simulator - from which synthetic parameter-samples pairs can be drawn. This setting is common in many scientific and engineering disciplines such as stellar events in cosmology (Alsing et al., 2018; Schafer & Freeman, 2012), particle collisions in a particle accelerator for high energy physics (Eberl, 2003; Sjöstrand et al., 2008), and biological neural networks in neuroscience (Markram et al., 2015; Pospischil et al., 2008). Describing such systems using a probabilistic program often turns out to be easier than specifying the underlying probabilistic model with a tractable probability distribution. We consider the task of inference for such systems, which consists in computing the posterior distribution of the parameters given observed (non-synthetic) data. When a likelihood function of the simulator is available alongside with a prior belief on the parameters, inferring the posterior
distribution of the parameters given data is possible using Bayes’ rule. Traditional inference methods such as variational techniques (Wainwright & Jordan, 2008) or Markov Chain Monte Carlo (Andrieu et al., 2003) can then be used to produce approximate posterior samples of the parameters that are likely to have generated the observed data. Unfortunately, the likelihood function of a simulator is computationally intractable in general, thus making the direct application of traditional inference techniques unusable for simulation-based modelling.

Simulation-Based Inference (SBI) methods (Cranmer et al., 2020) are methods specifically designed to perform inference in the presence of a simulator with an intractable likelihood. These methods repeatedly generate synthetic data using the simulator to build an estimate of the posterior, that either can be used for any observed data (resulting in a so-called *amortized* inference procedure) or that is *targeted* for a specific observation. While the accuracy of inference increases as more simulations are run, so does computational cost, especially when the simulator is expensive, which is common in many physics applications (Cranmer et al., 2020). In high-dimensional settings, early simulation-based inference techniques such as Approximate Bayesian Computation (ABC) (Marin et al., 2012) struggle to generate high quality posterior samples at a reasonable cost, since ABC repeatedly rejects simulations that fail to reproduce the observed data (Beaumont et al., 2002). More recently, model-based inference methods (Wood, 2010; Papamakarios et al., 2019; Hermans et al., 2020; Greenberg et al., 2019), which encode information about the simulator via a parametric density (-ratio) estimator of the data, have been shown to drastically reduce the number of simulations needed to reach a given inference precision (Lueckmann et al., 2021). The computational gains are particularly important when comparing ABC to targeted SBI methods, implemented in a *multi-round* procedure that refines the estimation of the model around the observed data by sequentially simulating data points that are closer to the observed ones (Greenberg et al., 2019; Papamakarios et al., 2019; Hermans et al., 2020).

Previous model-based SBI methods have used their parametric estimator to learn the likelihood (e.g. the conditional density specifying the probability of an observation being simulated given a specific parameter set, Wood 2010; Papamakarios et al. 2019; Pacchiardi & Dutta 2022), the likelihood-to-marginal ratio (Hermans et al., 2020), or the posterior function directly (Greenberg et al., 2019). We focus in this paper on likelihood-based (also called Synthetic Likelihood; SL, in short) methods, of which two main instances exist: (Sequential) Neural Likelihood (Papamakarios et al., 2019), which learns a likelihood estimate using a normalizing flow trained by optimizing a Maximum Likelihood (ML) loss; and Score Matched Neural Likelihood (Pacchiardi & Dutta, 2022), which learns an unnormalized (or *Energy-Based*, LeCun et al. 2006) likelihood model trained using conditional score matching. Recently, SNL was applied successfully to challenging neural data (Deistler et al., 2021). However, limitations still remain in the approaches taken by both SNL and SMNL. One the one hand, flow-based models may need to use very complex architectures to properly approximate distributions with rich structure such as multi-modality (Kong & Chaudhuri, 2020; Cornish et al., 2020). On the other hand, score matching, the objective of SMNL, minimizes the Fisher Divergence between the data and the model, a divergence that fails to capture important features of probability distributions such as mode proportions (Wenliang & Kanagawa, 2020; Zhang et al., 2022). This is unlike Maximum-Likelihood based-objectives, whose maximizers satisfy attractive theoretical properties (Bickel & Doksum, 2015).

Contributions. In this work, we introduce *Amortized Unnormalized Likelihood Neural Estimation* (AUNLE), and *Sequential UNLE*, a pair of SBI Synthetic Likelihood methods performing respectively sequential and targeted inference. Both methods learn a Conditional Energy Based Model of the simulator’s likelihood using a Maximum Likelihood (ML) objective, and perform MCMC on the posterior estimate obtained after invoking Bayes’ Rule. While posteriors arising from conditional EBM s exhibit a particular form of intractability called *double intractability*, which requires the use of tailored MCMC techniques for inference, we train AUNLE using a new approach which we call *tilting*. This approach automatically removes this intractability in the final posterior estimate, making AUNLE compatible with standard MCMC methods, and significantly reducing the computational burden of inference. Our second method, SUNLE, departs from AUNLE by using a different training objective suited for targeted inference. While SUNLE returns a doubly intractable posterior, we show that inference can carried out accurately through robust implementations of doubly-
intractable MCMC methods. We demonstrate the properties of AUNLE and SUNLE on an array of synthetic benchmark models (Lueckmann et al., 2021), and apply SUNLE to a neuroscience model of the crab *Cancer Borealis*, increasing posterior accuracy over prior art while needing only a fraction of the simulations required by the most efficient prior method (Glöckler et al., 2021).

![Performance of SMNLE, NLE and AUNLE training using a simulator with a bimodal likelihood](image)

Figure 1: Performance of SMNLE, NLE and AUNLE training using a simulator with a bimodal likelihood $p(x|\theta)$, and a gaussian prior $p(\theta)$ using 1000 samples. Top: Simulator likelihood $p(x|\theta_0)$ for some fixed θ_0. Bottom: posterior estimate.

2 **BACKGROUND**

Simulation Based Inference (SBI) refers to the set of methods aimed at estimating the posterior $p(\theta|x_o)$ of some unobserved parameters θ given some observed variable x_o recorded from a physical system, and a prior $p(\theta)$. In SBI, one assumes access to a simulator $G: (\theta, u) \mapsto y = G(\theta, u)$, from which samples $y|\theta$ can be drawn, and whose associated likelihood $p(y|\theta)$ accurately matches the likelihood $p(x|\theta)$ of the physical system of interest. Here, u represents draws of all random variables involved in performing draws of $x|\theta$. By a slight abuse of notation, we will not distinguish between the physical random variable x representing data from the physical system of interest, and the simulated random variable y draw from the simulator: we will use x for both. The complexity of the simulator (Cranmer et al., 2020) prevents access to a simple form for the likelihood $p(x|\theta)$, making naive Bayesian inference impossible. Instead, SBI methods perform inference by drawing parameters from a proposal distribution $\pi(\theta)$, and use these parameters as inputs to the simulator G to obtain a set of simulated pairs (x, θ) which they use to compute a posterior estimate of $p(\theta|x)$. Specific SBI submethods have been designed to handle separately the case of amortized inference, where the practitioner seeks to obtain a posterior estimate valid for any x_o (which might not be known a priori), and targeted inference, where the posterior estimate should maximize accuracy for a specific observed variable x_o. While amortized inference methods set their proposal distribution π to be the prior p, targeted inference methods iteratively refine their proposal π to focus their simulated observations around the targeted x_o through a sequence of simulation-training rounds (Papamakarios et al., 2019).

2.1 **(Conditional) Energy-Based Models.**

Energy-Based Models (LeCun et al., 2006) are unnormalized probabilistic models of the form

$$q_\psi(x) = \frac{e^{-E_\psi(x)}}{Z(\psi)}, \quad Z(\psi) = \int e^{-E_\psi(x)}dx,$$

where $Z(\psi)$ is the intractable normalizing constant of the model, and E_ψ is called the energy function, usually set to be a neural network with weights ψ. By directly modelling the density
$p(x)$ of the data through a flexible energy function, simple EBMs can capture rich geometries and multi-modality, whereas other model classes such a normalizing flows may require a more complex architecture (Cornish et al., 2020). The flexibility of EBMs comes at the cost of having an intractable density $q_\psi(x)$ due to the presence of the normalizer $Z(\psi)$, increasing the challenge of both training and sampling. In particular, an EBM’s log-likelihood $\log q_\psi$ and associated gradient $\nabla_\psi \log q_\psi$ both contain terms involving the (intractable) normalizer $Z(\psi)$:

$$\log q_\psi(x) = -E_\psi(x) - \log Z(\psi), \quad \nabla_\psi \log q_\psi(x) = -\nabla_\psi E_\psi(x) + \mathbb{E}_{x \sim q_\psi} \nabla_\psi E_\psi(x).$$ (1)

making exact training of EBMs via Maximum Likelihood impossible. Approximate likelihood optimization can be performed using a Gradient-Based algorithm where at each iteration k, the intractable expectation (under the EBM q_{ψ_k}) present in $\nabla_\psi \log q_{\psi_k}$ is replaced by one under a particle approximation $\tilde{q} = \frac{1}{N} \sum_{i=1}^{N} w_i \delta_{y_i}$ of q_ψ. The particles $y^{(i)}$ forming \tilde{q} are traditionally set to be samples from a MCMC chain with invariant distribution q_{ψ_k}, with uniform weights $w_i = \frac{1}{N}$, while recent work on EBM for high-dimensional image data uses an adaptation of Langevin Dynamics (Raginsky et al., 2017; Du & Mordatch, 2019; Nijkamp et al., 2019; Kelly & Grathwohl, 2021). We outline the traditional ML learning procedure for EBM in Algorithm 2, where make_particle_approx(q, \tilde{q}) is a generic routine producing a particle approximation of a target unnormalized density q and an initial particle approximation \tilde{q}.

Energy-Based Models are naturally extended to both joint EBMs $q_\psi(\theta, x) = \frac{e^{-E_\psi(x, \theta)}}{Z(\psi)}$ (Kelly & Grathwohl, 2021; Grathwohl et al., 2020) and conditional EBMs (CEBMs Khemakhem et al. 2020; Pacchiardi & Dutta 2022) of the form:

$$q_\psi(x|\theta) = \frac{e^{-E_\psi(x, \theta)}}{Z(\theta, \psi)}, \quad Z(\theta; \psi) = \int e^{-E_\psi(x, \theta)} dx. \quad (2)$$

Unlike joint and standard EBMs, conditional EBMs define a family of conditional densities $q_\psi(x|\theta)$, each of which endowed with an intractable normalizer $Z(\theta, \psi)$.

2.2 Synthetic Likelihood Methods for SBI

Synthetic Likelihood (SL) methods (Wood, 2010; Papamakarios et al., 2019; Pacchiardi & Dutta, 2022) form a class of SBI methods that learn a conditional density model $q_\psi(x|\theta)$ of the unknown likelihood $p(x|\theta)$ for every possible pair of observations and parameters (x, θ). The set $\{q_\psi(x|\theta), \psi \in \Psi\}$ is a model class parameterised by some vector $\psi \in \Psi$, which recent methods set to be a neural network with weights ψ. We describe the existing Neural SL variants to date.

Neural Likelihood Estimation (NLE, Papamakarios et al. 2019) sets q_ψ to a (normalized) flow-based model, and is optimized by maximizing the average conditional log-likelihood $\mathbb{E}_{p(x|\theta)} \log q_\psi(x|\theta)$. NLE performs inference by invoking Bayes’ rule to obtain an unnormalized posterior estimate $p_\psi(\theta|x) = \int q_\psi(x|\theta)p(\theta) d\theta \propto p(\theta)q_\psi(x|\theta)$ from which samples can be drawn either using MCMC, or Variational Inference (Glöckler et al., 2021).

Score Matched Neural Likelihood Estimation (SMNLE, Pacchiardi & Dutta 2022) models the unknown likelihood using a conditional Energy-Based Model $q_\psi(x|\theta)$ of the form of Equation (2), trained using a score matching objective adapted for conditional density estimation. The use of an unnormalized likelihood model makes the posterior estimate obtained via Bayes’ Rule known up to a θ-dependent term:

$$q_\psi(\theta|x) \propto p(\theta)q_\psi(x|\theta) \propto \frac{e^{-E_\psi(x, \theta)} p(\theta)}{Z(\theta)} \quad \text{intractable}, \quad Z(\theta) = \int e^{-E_\psi(x, \theta)} dx. \quad (3)$$

Posterior of this form are called doubly intractable posteriors (Møller et al., 2006). In the case where the likelihood $q_\psi(x|\theta)$ can be sampled from, Møller et al. (2006); Murray et al. (2006) have proposed tractable MCMC methods that draw an auxiliary variable $y \sim q_\psi(x|\theta)$.
at every iteration to compute the acceptance probability of the proposed sample. Importantly, these MCMC methods still admit \(q_\psi(x|\theta) \) as their invariant distribution, making inference as exact as in standard MCMC methods. In the case of SMNLE however, \(q_\psi(x|\theta) \) cannot be tractably sampled from; SMNLE instead uses an approximate doubly intractable method, which replaces the exact sample \(y \) by the result of an MCMC chain with invariant distribution \(q_\psi(x|\theta) \). Even though this variant introduces an additional approximation not present in standard ("singly" intractable) MCMC algorithms, the distance between the true posterior and the distributions of the MCMC samples can be bounded under specific assumptions (Alquier et al., 2016).

Both the likelihood objective of NLE and the score-based objective of SMNLE do not involve the analytic expression of the proposal \(\pi \), making it easy to adapt these methods for either amortized or targeted inference. To address the limitations of both methods mentioned in the introduction, we next propose a method that combines the use of flexible Energy-Based Models as in SMNLE, while being optimized using a likelihood loss as in NLE.

3 Unnormalized Neural Likelihood Estimation

In this section, we present our two methods, Amortized-UNLE and Sequential-UNLE. Both AUNLE and SUNLE approximate the unknown likelihood \(p(x|\theta) \) for any possible pair of \((x, \theta) \) using a conditional Energy-Based Model \(q_\psi(x|\theta) \) as in Equation (2), where \(E_\psi \) is some neural network. Additionally, AUNLE and SUNLE are both trained using a likelihood-based loss; however, the training objectives and inference phases differ to account for the specificities of amortized or targeted inference. To address the limitations of both methods mentioned in the introduction, we next propose a method that combines the use of flexible Energy-Based Models as in SMNLE, while being optimized using a likelihood loss as in NLE.

3.1 Amortized UNLE

Given a likelihood model \(q_\psi(x|\theta) \), a natural learning procedure would involve fitting a model \(q_\psi(x|\theta)\pi(\theta) \) of the true “joint synthetic” distribution \(\pi(\theta)p(x|\theta) \), as NLE does. However, we show that using an alternative — tilted — version of this model allows to compute a posterior that is more tractable than the ones computed by other SL methods relying on conditional EBMs such as SMNLE (Pacchiardi & Dutta, 2022). Our method, AUNLE, fits a joint probabilistic model \(q_{\psi,\pi} \) of the form:

\[
q_{\psi,\pi}(x,\theta) := \frac{\pi(\theta)e^{-E_\psi(x,\theta)}}{Z_\pi(\psi)}, \quad Z_\pi(\psi) = \int \pi(\theta)e^{-E_\psi(x,\theta)}dx d\theta.
\]

by maximizing its log-likelihood \(\mathcal{L}_a(\psi) := \mathbb{E}_{\pi(\theta)p(x|\theta)}[\log q_{\psi,\pi}(x,\theta)] \) using an instance of Algorithm 2. The gain in tractability offered by AUNLE is a direct consequence of the following proposition, its joint model.

Proposition 1. Let \(\mathcal{P}_\psi := \{q_\psi(\cdot|\theta) \mid \psi \in \Psi \} \), and \(q_\psi \in \mathcal{P}_\psi \). Then we have:

- (likelihood modelling) \(q_{\psi,\pi}(x|\theta) = q_\psi(x|\theta) \)
- (joint model tilting) \(q_{\psi,\pi}(x,\theta) = f(\theta)\pi(\theta)q_\psi(x|\theta), \) for \(f(\theta) := Z(\theta,\psi)/Z_\pi(\psi) \)
- ((Z, \theta)-uniformization) If \(p(\cdot|\theta) \in \mathcal{P}_\psi \), then the \(\psi^* \) minimizing \(\mathcal{L}_a(\psi) \) satisfies:
 \(q_{\psi^*}(x|\theta) = p(x|\theta) \), and \(Z(\theta,\psi^*) = Z_\pi(\psi^*) \).

Proof. The first point follows by holding \(\theta \) fixed in \(q_{\psi,\pi}(x,\theta) \). To prove the second point, notice that \(q_{\psi,\pi}(x,\theta) = \frac{Z(\theta,\psi)e^{-E(\theta,x)}}{Z_\pi(\psi)} \). For the last point, note that at the optimum, we have that \(q_{\psi^*}(x,\theta) = \pi(\theta)p(x|\theta) \). Integrating out \(x \) on both sides of the equality yields \(f(\theta)\pi(\theta) = \pi(\theta) \), proving the result.

Proposition 1 shows that AUNLE indeed learns a likelihood model \(q_\psi(x|\theta) \) through a joint model \(q_{\psi,\pi} \) tilting the prior \(\pi \) with \(f(\theta) \). Importantly, this tilting guarantees that the optimal likelihood model will have a normalizing function \(Z(\theta,\psi) \) constant (or uniform) in \(\theta \), reducing AUNLE’s posterior to a standard unnormalized posterior \(q_{\psi^*}(\theta|x) = p(\theta)e^{-E_{\psi^*}(\theta,x)} / Z_\pi(\psi^*) \),
from which samples can be drawn using classical MCMC techniques, as for NLE. AUNLE’s posterior contrasts with the posterior of SMNLE (Pacchiardi & Dutta, 2022), an amortized SBI method which also computes a posterior using a conditional EBM of the likelihood, but that remains doubly intractable, as discussed in Section 2. The gain in tractability of AUNLE’s posterior is beneficial from an inference accuracy standpoint as it removes the need to use an otherwise approximate doubly-intractable technique when performing inference. Importantly, such a property is also beneficial from a computational cost standpoint, since approximate doubly-intractable methods require running an (inner) MCMC chain with target \(q_\psi^*(x|\theta) \) for every iteration of the (outer) MCMC chain with target \(q_\psi(\theta|x) \), roughly squaring the computational cost of standard MCMC methods. This computational advantage is all the more important since AUNLE returns an amortized posterior, valid for any observed data \(x_o \), and which may be thus sampled from more than once.

Algorithm 1 Amortized-UNLE

Input: prior \(p(\theta) \), simulator \(G \), budget \(N \)

Output: Posterior estimate \(q_\psi(\theta|x) \)

1. Initialize \(\psi_0, q_{\psi_0, \pi} \propto e^{-E_{\psi_0}(x, \theta)\pi(\theta)} \)
2. for \(i = 0, \ldots, N \) do
 1. Draw \(\theta \sim \pi \), \(x \sim G(\theta, \cdot) \)
 2. Add \((\theta, x) \) to \(D \)
3. Get \(\psi^* := \text{maximize}_e\text{bm}_l\text{og}_l \text{og}_1(D, \psi_0) \)
4. Set \(q_\psi^*(\theta|x) := e^{-E_{\psi^*}(x, \theta)p(\theta)} \)
5. Infer using MCMC on \(q_\psi^*(\theta|x) \)

Algorithm 2 maximize_ebm_log_1(D, \psi_0)

Input: Training Data \(D := \{x^{(i)}\}_{i=1}^N \), Initial EBM parameters \(\psi_0 \)

Output: Density estimator \(q_\psi(x) \)

1. Initialize \(q_{\psi_0}(x) \propto e^{-E_{\psi_0}(x)} \), \(q_0 \propto \sum_i \delta_{x^i} \)
2. for \(k = 0, \ldots, K - 1 \) do
 1. \(\hat{q} := \text{make}_p\text{article}_p\text{approx}(q_{\psi_k}, \hat{q}) \)
 2. \(\hat{G} = -\frac{1}{\hat{q}} \sum \nabla_{\psi} E_{\psi_k}(x^i) + \mathbb{E}_{\hat{q}} \nabla_{\psi} E_{\psi_k}(x) \)
 3. \(\psi_{k+1} = \text{ADAM}(\psi_k, \hat{G}) \)
3. Return \(q_{\psi_K} \)

3.2 Targeted Inference using Sequential-UNLE

In this section, we introduce our second method, Sequential-UNLE (or SUNLE in short), which performs targeted inference for a specific observation \(x_o \). SUNLE follows the traditional methodology of targeted inference by splitting the simulator budget \(N \) over \(R \) rounds (often equally), where in each round \(r \), a likelihood estimate \(q_{\psi^*_r}(x|\theta) \) in the form of a conditional EBM is trained using all the currently available simulated data \(D \). This allows to construct a new posterior estimate \(q_{\psi^*_r}(\theta|x) = e^{-E_{\psi^*_r}(x, \theta)p(\theta)/Z(\psi^*_r, \theta)} \) which is used to sample parameters \(\theta^{(i)} \) that are then provided to the simulator for generating new data \(x^i \sim G(\theta^{(i)}) \). The new data are added to the set \(D \) and are expected to be more similar to the observation of interest \(x_o \). The procedure for training SUNLE, which is summarized in Algorithm 3, allows to focus the simulator budget on regions relevant to the single observed data of interest \(x_o \), and, as such, is expected to be more efficient in terms of the simulator use than amortized methods (Lueckmann et al., 2021). Next, we discuss the learning procedure for the likelihood model and the posterior sampling.

Learning the likelihood. At each round \(r \), the effective proposal \(\pi \) of the training data available can be understood (provided the number of data points drawn at reach rounds is randomized) as a mixture probability: \(\pi := \frac{1}{N} (\pi(\theta) + q_{\psi^*_1}(\theta|x_o) + \ldots + q_{\psi^*_{r-1}}(\theta|x_o)) \) which is used to update the likelihood model. In this case, the analytical form of \(\pi \) is unavailable as it requires computing the normalizing constants of the posterior estimates at each round, thus making the tilting approach introduced for AUNLE impractical in the sequential setting. Instead, our proposed algorithm for targeted inference, Sequential-UNLE, fits a likelihood model \(q_\psi(x|\theta) \) by maximizing the average conditional log-likelihood, an objective used by Papamakarios et al. (2019) to fit a flow-based model of the likelihood. Approximate maximization of the average log likelihood of an EBM can be performed by computing the
We train UNLE by estimating each intractable expectation in its gradient using a single
with a Langevin kernel parameterised by a step size
2006), which yields a similar performance as the Langevin-MCMC approach discussed above,
end for
MCMC chain per term, with the same auto-tuning procedure as in AUNLE. We provide
chains by a single Sequential Monte Carlo sampler (Chopin et al., 2020; Del Moral et al.,
particle approximation. Additionally, we introduce a new method which replaces the MCMC
free” by having them automatically update their step size to maintain an acceptance rate of
AUNLE and SUNLE are implemented using
 Experimental details AUNLE and SUNLE are implemented using jax (Frostig et al.,
4 Experiments
In this section, we study the performance and properties of AUNLE and SUNLE in three
different settings: a toy model that highlights the failure modes of other synthetic likelihood
methods, a series of benchmark datasets for SBI, and a real life neuroscience model.

Experimental details AUNLE and SUNLE are implemented using jax (Frostig et al.,
jax combines vectorization semantics with a Just-In-Time (JIT)-compilation feature to both
CPU and GPUs, allowing them to efficiently simulate multiple MCMC chains. We
approximate expectations of AUNLE’s joint EBM using 1000 independent MCMC chains
with a Langevin kernel parameterised by a step size \(\sigma \). We make the chains “parameter
free” by having them automatically update their step size to maintain an acceptance rate of
0.5 during a per-iteration warmup period, before freezing the chain and computing a final
particle approximation. Additionally, we introduce a new method which replaces the MCMC
chains by a single Sequential Monte Carlo sampler (Chopin et al., 2020; Del Moral et al.,
which yields a similar performance as the Langevin-MCMC approach discussed above,
but is more robust for lower computational budgets: all details are given in Appendix A.2.
We train UNLE by estimating each intractable expectation in its gradient using a single
MCMC chain per term, with the same auto-tuning procedure as in AUNLE. We provide

\[
\nabla_{\psi} \mathcal{L}(\psi) = -\frac{1}{N} \sum_{i=1}^{N} (\nabla_{\psi} E_\psi(x^i, \theta^i) + \mathbb{E}_{q_\psi(\cdot | \theta^i)} \nabla_{\psi} E_\psi(x^i, \theta^i)),
\]

where \((x^i, \theta^i)_{i=1}^{N}\) are the current samples. The average conditional log-likelihood constitutes
a natural extension of the traditional log-likelihood objective for conditional energy-based
models, with similar intractable terms to be approximated. Compared to AUNLE, the
gradient update of SUNLE objective does not require the analytic form of the proposal
\(\pi \) used to draw the training data and can be optimized using Algorithm 4. The average
conditional log-likelihood objective was previously used by Papamakarios et al. (2019) in
the context of SBI for normalizing flows. However, to our knowledge, such an objective was
not used in the context of conditional EBMs which require dealing with intractable terms.
Learning the likelihood using Algorithm 4 allows us to use the existing simulated data during
 training, which is critical for good performance on challenging models.

Posterior sampling. Unlike AUNLE, SUNLE’s likelihood estimate \(q_\psi \) does not inherit
the \((Z, \theta)\)-uniformization property guaranteed by Proposition 1. As a consequence, its
posterior \(q_\psi^\ast(\theta | x) \) is doubly intractable as it involves the intractable normalizing constant
\(Z(\psi^\ast, \theta) \). Nevertheless, we propose to sample from \(q_\psi^\ast(\theta | x) \) using Doubly-Intractable MCMC
techniques. We consider a custom robust doubly intractable implementation that allows
for accurate inference even on challenging posteriors with no parameter tuning other than
compute-related parameters like the number of warmup steps.

Algorithm 3 Sequential-UNLE

| Input: prior \(p(\theta) \), simulator \(G \), budget \(N \), no. rounds \(R \) |
| Output: Posterior estimate \(q_\psi(\theta | x) \) |
| Initialize: \(\pi^{(0)} = p, \psi_0, \pi_{0,\psi_0} \propto e^{-E_{v_0}(x, \theta)} \pi(\theta) \) |
| Get \(\mathcal{D} = \{ \theta(i)^0 \sim \pi(x^i), x^i \sim G(\theta, \cdot) \}_{i=1}^{N/R} \) |
| for \(r = 1, \ldots, R \) do |
| Get \(\psi_r^\ast := \text{maximize}_\text{cebmlog}_{-1}(\mathcal{D}, \psi_{r-1}^\ast) \) |
| Set \(\pi_r^\ast(\theta | x) := e^{-E_{v_r}(x, \theta)} p(\theta) / Z(\psi_r^\ast, \theta) \) |
| Get \(\{ \theta \}_{i=1}^{N/R} \sim \pi_r^\ast \) via Doubly-Intract. MCMC |
| Get \(\mathcal{D} = \mathcal{D} \cup \{ \theta(i)^{i+1} \sim G(\theta(i), \cdot) \}_{i=1}^{N/R} \) |
| end for |
| Infer using Doubly-Intract. MCMC on \(q_\psi^\ast(\theta | x) \) |

Algorithm 4 maximize_cebmlog_{-1}(\mathcal{D}, \psi_0)

| Input: Training data \(\mathcal{D} := \{ \theta(i), x(i) \}_{i=1}^{N}, \text{Initial EBM parameters } \psi_0 \) |
| Output: Cond. Density estimator \(q_\psi(x | \theta) \) |
| Initialize: \(q_{\psi_0} \propto e^{-E_{v_0}(x, \theta)} \), \(\{ \hat{q}_i = \delta_{x^i} \}_{i=1}^{N} \) |
| for \(k = 0, \ldots, K - 1 \) do |
| for \(i = 0, \ldots, N - 1 \) do |
| \(\hat{q}_i := \text{make_particle_approx}(q_{\psi_k} \cdot, \theta^i, \hat{q}_i) \) |
| end for |
| \(G = -\frac{1}{N} \sum_i \nabla_{\psi} E_{\psi_k}(x^i, \theta^i) + \mathbb{E}_{\hat{q}_i} \nabla_{\psi} E_{\psi}(x^i, \theta^i) \) |
| \(\psi_{k+1} := \text{ADAM}(\psi_k, G) \) |
| end for |
| Return \(q_{\psi_k} \) |
Figure 2: Performance of AUNLE (resp. SUNLE) compared with NLE (resp. SNLE), using the Classifier Accuracy Metric (Lueckmann et al., 2021) (lower is better). AUNLE and SUNLE exhibit robust performance across a wide array of problem and posterior structures.

4.1 A toy model with a multi-modal likelihood

First, we illustrate the issues that SNLE and SMNLE can face when applied to model certain distributions using a simulator with a bi-modal likelihood. Such a likelihood is known to be hard to model by normalizing flows, which, when fitted on multi-modal data, will assign high-density values to low-density regions of the data in order to “connect” between the modes of the true likelihood (Cornish et al., 2020). Moreover, multi-modal distributions are also poorly handled by score-matching, since score-matching minimizes the Fisher Divergence between the model and the data distribution, a divergence which does not account for mode proportions (Wenliang & Kanagawa, 2020). Figure 1 shows the likelihood model learned by NLE and SMNLE on this simulator, which exhibit the pathologies mentioned above: the score-matched likelihood only recovers a single mode of the likelihood, while the flow-based likelihood has a distorted shape. In contrast, AUNLE estimates both the likelihood and the posterior accurately. This suggests that AUNLE has an advantage when working with more complex, possibly multi-modal, distributions, as we confirm later in Section 4.3.

4.2 Results on SBI Benchmark Datasets

We next study the performance of AUNLE and SUNLE on 4 SBI benchmark datasets with well-defined likelihood and varying dimensionality and structure (Lueckmann et al., 2021):

SLCP: A toy SBI model introduced by (Papamakarios et al., 2019) with a unimodal gaussian likelihood \(p(x|\theta) \). The dependence of \(p(x|\theta) \) on \(\theta \) is nonlinear, yielding a complex posterior.

The Lotka-Volterra Model (Lotka, 1920): An ecological model describing the evolution of the populations of two interacting species, usually referred to as preys and predators.

Two Moons: A famous 2-d toy model with posteriors comprised of two moon-shaped regions, and yet not solved completely by SBI methods.

Gaussian Linear Uniform: A simple gaussian generative model, with a 10-dimensional parameter space.

These models encompass a variety of posterior structures: the two-moons and SLCP posteriors are multimodal, include cutoffs, and exhibit sharp and narrow regions of high density, while posteriors of the Lotka-Volterra model place mass on a very small region of the prior support. We compare the performance of AUNLE and SUNLE with NLE and its sequential analogue SNLE, respectively: NLE and SNLE represent the gold standard of current synthetic

all code\(^1\) needed to reproduce the experiments of the paper. Training and inference are computed using a single RTX5000 GPU. For benchmark models, a single round of EBM training takes around 2 minutes on a GPU.

\(^1\)https://github.com/pierreglaser/unle
likelihood methods, and perform particularly well on benchmark problems (Lueckmann et al., 2021). We use the same set of hyperparameters for all models, and use a 4-layer MLP with 50 hidden units and swish activations for the energy function. Results are shown in Figure 2.

While some fluctuations exist depending on the task considered, these results show that the performance of AUNLE (and SUNLE when targeted inference is necessary) is on par with that of (S)NLE, thus demonstrating that a generic method involving Energy-Based models can be trained robustly, without extensive hyperparameter tuning. Interestingly, the model where UNLE has the greatest advantage over NLE is Two Moons, which is the benchmark that exhibits a likelihood with the most complex geometry; in comparison, the three remaining benchmarks have simple normal (or log-normal) likelihood, which are unimodal distributions for which normalizing flows are particularly well suited. This point underlines the benefits of using EBMs to fit challenging densities. Finally, we remark that SMNLE, presented as an amortized inference method by Pacchiardi & Dutta (2022), could be adapted as targeted inference for the present benchmarks, however we found that the method struggled in practice for all settings other than simple Gaussian Linear Uniform.

4.3 Using SUNLE in a Real World Neuroscience Model

We investigate further the performance of SUNLE by running its inference procedure on a simulator model of a pyloric network located in stomatogastric ganglion (STG) of the crab *Cancer Borealis* given an observed neuronal recording (Haddad & Marder). This model simulates 3 neurons, whose behaviors are governed by synapses and membrane conductances that act as simulator parameters \(\theta \) of dimension 31. The simulated observations are composed of 15 summary statistics of the voltage traces produced by neurons of this network (Prinz et al., 2003; 2004). Amortized SBI methods require tens of millions of samples, while currently, the most sample-efficient targeted inference method for this problem is SNVI (a variant of SNLE that replaces the MCMC-powered posterior sampling by a variational inference step Glöckler et al. 2021) which uses an initial round of 50000 simulations followed by 30 rounds of 10000.

We perform targeted inference on this model using SUNLE with a MLP of 9 layers and 300 hidden units per layers for the energy \(E_\psi \), and perform doubly intractable MCMC with 2000 warm up steps and 500 inner sampler steps to sample from SUNLE’s posterior across rounds. As shown in Figure 3, SUNLE quickly learns a state-of-the-art posterior after only 10 rounds, reducing by 2 the simulation budget of SNVI. The total procedure takes 10 hours. We report in Figure 3 the evolution of the rate of simulated observations with valid summary statistics, a metric indicative of posterior quality - as well as the Energy-Scoring Rule (Gneiting & Raftery, 2007) of SUNLE and SNVI’s posteriors across rounds. The synthetic observation simulated using SUNLE’s posterior mean closely matches the empirical observation (Figure 3, Left vs Center). We stress, however, that, unlike the case of benchmark models, computing a reliable measure of inference quality is challenging, since neither the true parameters nor

![Figure 3: Inference SUNLE on a model of the crab’s pyloric network. Left: simulations obtained by using the final posterior mean and maximum a posteriori (MAP) as a parameter. Center: the empirical observation \(x_o \): arrows indicate the summary statistics. Top-right: fraction of simulated observations with well-defined summary statistics (higher is better) at each round for SNVI and SUNLE, with dashed lines indicating the maximum fraction for each method. Bottom-right: performance of the posterior using the Energy Scoring Rule (lower is better).](image-url)
the true posterior for this model are known. We show in the Appendix that a stable rate of 90% valid samples (with a 92% maximum) can be obtained using an initial round of 100000 samples instead of 50000).

Conclusion The expanding range of applications of Simulation-Based Inference poses new challenges to the way SBI algorithms model data. In this work, we presented SBI methods that use an expressive Energy-Based Model as their inference engine, fitted using Maximum Likelihood. We demonstrated promising performance on synthetic benchmarks and on a real-world neuroscience model. In future work, we hope to see applications of this method to other fields where EBMs have been proven successful, such as physics (Noé et al., 2019) or protein modelling (Ingraham et al., 2018).

Acknowledgements. Pierre Glaser and Arthur Gretton thank the Gatsby Charitable Foundation for the financial support.

References

Supplementary Material for the Paper Maximum Likelihood Learning of Energy-Based Models for Simulation-Based Inference

The supplementary materials includes the following materials:

- A discussion of the computational rationale motivating the tilting approach of AUNLE.
- We propose a training methods for EBM which uses the family of Sequential Monte Carlo samplers to efficiently approximate expectations under the EBM during approximate likelihood maximization. We show that using this new methods can lead to increased stability and performance for a fixed budget.
- Finally, we provide additional details on the results of SUNLE on the pyloric network: we provide an estimation of the pairwise marginals of the final posterior, which contains patterns also present in the pairwise marginals obtained by Glöckler et al. (2021). We discuss the performance of another SUNLE run which reaches consistently 90% of valid samples after 10 rounds.

A Methodological Details

A.1 Energy-Based Models as Doubly-Intractable Joint Energy-Based Models

AUNLE learns a likelihood model \(q_\psi(x|\theta) \) by minimizing the likelihood of a tilted joint EBM \(p(\theta)e^{-E_\psi(x,\theta)}Z_\pi(\psi) \). While the gain in tractability arising in AUNLE’s posterior suffices to motivate the use of this model, another computational argument holds. Consider the non-tilted joint model:

\[
\pi(\theta)\frac{q_\psi(x|\theta)}{Z(\theta,\psi)}.
\]

Expectations under this model can be computed by running a MCMC chain implementing a Metropolis-Within-Gibbs sampling method as in Kelly & Grathwohl (2021), which uses:

- any proposal distribution for \(q_{\pi,\psi}(x|\theta) \propto q_\psi(x|\theta) \), such a MALA proposal
- an approximate doubly-intractable MCMC kernel step for \(q_{\pi,\psi}(\theta|x) \propto \frac{\pi(\theta)e^{-E_\psi(x,\theta)}}{Z(\theta,\psi)} \) which is doubly intractable.

However, running the approximate doubly intractable MCMC kernel step requires sampling from \(q_\psi(x|\theta) \), incurring an additional nested loop during training. Thus, naive MCMC-based Maximum-Likelihood optimization of untilted joint EBM is prohibitive from a computational point of view.

A.2 Training EBMs using Sequential Monte Carlo

The main technique to compute particle approximations of the EBM iterations (returned by the generic \texttt{make_particle_approx}) when training an EBM using Algorithm 2 is to run N MCMC chains in parallel targeting the EBM Song & Kingma (2021); aggregating the final samples \(y_i \) of each chain \(i \) yields a particle approximation \(q = \frac{1}{N} \sum_i \delta y_i \) of the EBM in question. In this appendix section, we describe an alternative \texttt{make_ebm_approx} which efficiently constructs EBM particle approximations across iterations of Algorithm 2 through a Sequential Monte Carlo (SMC) algorithm (Chopin et al., 2020; Del Moral et al., 2006). In addition to its efficiency, this new routine does not suffer from the bias of incurred by the use of finitely many steps in MCMC-based methods. We apply this routine within the EBM training step of AUNLE’s, and show that the learned posteriors can be more accurate than MCMC methods for a fixed compute power allocated to training.
A.2.1 Background: Sequential Monte Carlo Samplers

Sequential Monte Carlo (SMC) Samplers (Chopin et al., 2020; Del Moral et al., 2006) are a family of efficient Importance Sampling (IS)-based algorithms, that address the same problem as the one of MCMC, namely computing a normalized particle approximation of a target density \(q \) known up to a normalizing constant \(Z \). The particle approximation \(q_{\text{SMC}} \) computed by SMC samplers (consisting of \(N \) particles \(y^i \), like in MCMC methods, but weighted non-uniformly by some weights \(w^i \)) is produced by defining a set of \(L \) intermediate densities \((\nu_l)_{l=0}^L\) bridging between the target density \(q = q_{\nu} \) and some initial density \(\nu_0 \), for which a particle approximation \(\nu_0^N : \sum_i = 1^N = w_0^i \delta_{y^i_0} \) are readily available. The intermediate densities are often chosen to be a geometric interpolation between \(\nu_l \) and \(\nu_L \), i.e. \(\nu_l \propto (\nu_0)^{1-l/L} (\nu_L)^{l/L} \), so that \(\nu_l \) are also known up to some normalizing constant. SMC samplers sequentially constructs an approximation \(\nu_l^N := \sum w^i_l \delta_{y^i_l} \) to the respective density \(\nu_l \) at time \(l \), using previously computed approximations of \(\nu_{l-1} \) at time \(l-1 \). At each time step, the approximations are obtained by applying three successive operations: Importance Sampling, Resampling and MCMC sampling. We provide a vanilla SMC sampler implementation in Algorithm 5, and refer to this algorithm as \texttt{make_smc_particle_approx}.

Algorithm 5 \texttt{SMC}(q, \nu_0, \nu_0^N)

1: \textbf{Hyper-parameters:} Number of particles \(N \), number of steps \(L \), re-sampling threshold \(A \in (0,1) \).
2: \textbf{Input:} Target density \(q \), initial density \(\nu_0 \), particle approximations \(\nu_0^N \) and \(\nu_0 \)
3: \textbf{Output:} Particle approximations to \(q \).
4: Construct geometric path \((\nu_l)_{l=1}^L \) from \(\nu_0 \) and \(q \).
5: for \(l = 1, \ldots, L \) do
6: Compute IS weights \(w^i_l \) and \(W^i_l \)
7: Draw \(N \) samples \((\tilde{Y}^i_l)_{i=1}^N\) from \((Y^i_{l-1})_{i=1}^N\) according to weights \((W^i_l)_i=1^N\), then set \(W^i_0 = \frac{1}{N} \).
8: Sample \(Y^i_l \sim \mathcal{K}_l(\tilde{Y}^i_l, \cdot) \) using Markov kernel \(\mathcal{K}_l \).
9: end for
10: Return approximation \(q_{\text{SMC}}^N := (Y^i_L, W^i_L)_{i=1}^N \).

Importantly, under mild assumptions, the particle approximation constructed by SMC provides consistent estimates of expectations of any function \(f \) under the target \(q \):

\[
\sum_{i=1}^N w^i f (y^i) \xrightarrow{P} \mathbb{E}_{y \sim q} [f(y)].
\]

We briefly compare the role played by the number of steps and particles in both MCMC and SMC algorithms:

Number of particles SMC samplers differ from MCMC samplers in their origin of their bias: while the bias of MCMC methods comes from running the chain for a finite number of steps only, the bias of SMC methods comes from the use of finitely many particles.

Number of steps While it is usually beneficial to use a high number of iterations within MC samplers to decrease algorithm bias and ensure that the stationary distribution is reached, the number of steps (or intermediate distributions) is SMC is beneficial to ensure a smooth transition from the proposal to the target distribution: however, the variance of SMC samplers as a function of the number of steps is not guaranteed to be decreasing even if variance bounds that are uniform in the number of steps can be derived by making assumptions on \(\mathcal{K}_l \) Chopin et al. (2020). When applying SMC to within AUNLE’s training loop, we find that using more SMC samplers steps usually increase the quality of the final posterior.

In the next paragraph, we describe how to use SMC routine efficiently to approximate EBM expectations within Algorithm 2.
A.2.2 EFFICIENT USE OF SMC DURING AUNLE TRAINING USING OG-SMC

A naive approach which uses the SMC routine of Algorithm 5 within the EBM training loop of Algorithm 2 would consist in calling the SMC at every training iteration using a fixed, predefined proposal density ν_0 and associated particle approximation and $\hat{\nu}_0$, such as one from a standard Gaussian distribution. However, as training goes, the EBM is likely to differ significantly from the proposal density q_0, requiring the use of many SMC inner steps to obtain a good particle approximation.

A more efficient approach, which we propose, is to use the readily available particle unnormalized EBM density q_{ψ_k} and associated particle approximation \hat{q}_k computed by SMC at the iteration $k-1$ as the input to the call to SMC targeting the EBM $q_{\psi_{k+1}}$ at iteration k. Algorithm 6 implements this approach.

Algorithm 6 SMC-powered ML training of EBMs

Input: Training Data $\{x^{(i)}\}_{i=1}^N$, Initial EBM parameters ψ_0

Output: Density estimator $q_{\psi_{K}}(x)$

Initialize $q_{\psi_{0}}(x) \propto e^{-E_{\psi_{0}}(x)}$, $q_{-1} = \nu_0$, $\hat{q}_{-1} = \hat{\nu}_0$

for $i = 0, \ldots, \text{max}_\text{iter} - 1$ do

$\hat{q} := \text{make_particle_approx}(q_{\psi_k}, q)$

$q_k := \text{SMC}(q_{\psi_k}, q_{k-1}, \hat{q}_{k-1})$

$q_k := q_{\psi_k}$

$G = -\nabla_{\psi} E_{\psi_k}(x) + E_{\hat{q}} \nabla_{\psi} E(x)$

$\psi_{k+1} = \text{ADAM}(\psi_k, G)$

end for

Return q_{ψ_K}

In practice, we find that using 20 SMC intermediate densities (with 3 steps of K_t) in each call to SMC yields a similar performance as a 250-MCMC steps EBM training procedure. By considering a more constrained budget, using only 5 SMC intermediates densities outperforms a 30-steps MCMC EBM training procedure.

![Figure 4: Performance of AUNLE, using either a MCMC-powered particle approximation routine, or a SMC: using 30 MCMC steps or 5 SMC steps](image)

A.3 ADDITIONAL EXPERIMENTAL AND INFERENTIAL DETAILS

Use of a Calibration Network Due to the presence of invalid observations, we proceed as in Glöckler et al. (2021) and fit a calibration network that allows to remove the bias induced by throwing away pairs of (parameters, observations) when the observations do not have well defined summary statistics. We use a similar architecture as in Glöckler et al. (2021).
A.3.1 Performance of S-UNLE with 100000 prior samples

We provide the performance (in Energy Scoring Rule and in the number of valid samples) of SBI-EBM when using 100000 prior samples at the first iterations, followed by 10 rounds of 10000 simulations each. We additionally use 1000 inner sampler steps instead of 500 during the inference procedure. We account for the additional 50000 prior samples by shifting the evolution curves for a fair comparison. In this case, we see a significant increase in fraction valid samples at the end of the procedure between SNVI and SNLE. We argue that in our case, the energy scoring rule cannot be used solely as a metric for posterior quality since it discards the invalid samples from the simulated observations (on which the scoring rule is computed).

A.3.2 Neuroscience Model: Pairwise Marginals

We provide the full pairwise marginals obtained after computing a kernel density estimation on the final posterior samples of S-UNLE. We retrieve similar patterns as the one displayed in the pairwise marginals of SNVI samples. We refer to Glöckler et al. (2021) for more details on the specificities of this model.

A.3.3 Compute time for the benchmark models

We give the average compute time depending on the simulation budgets for A-UNLE and S-UNLE. S-UNLE is significantly more compute-hungry, since it uses 10 rounds in lieu of 1 for AUNLE (a fact which holds systematically when comparing multirond sequential methods and their amortized analogue), and the use of a doubly intractable sampler in lieu of a standard MCMC or SMC sampler for AUNLE. Between 1000 and 10000 samples, the cost of inference is dominated by the warmup period of the doubly intractable sampler, which
Figure 7: Pairwise marginals of SUNLE’s posterior estimate on the *C. Borealis* simulator model.
explains the lack of clear increase in compute time. Between 10000 and 100000 samples, the
time spent running the post-warm up chain starts to influence the total runtime.

Figure 8: Compute time for A-UNLE and S-UNLE as a function of the number of samples.