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SUPPLEMENTAL METHODS

Mice, diets and blood collection (more detailed information)

Mice were housed in enriched cages on corn cob bedding, and usually euthanized after 3 hours of fasting
from 7 to 10 am. The lovastatin diet was constituted as follows: one hundred lovastatin tablets (200 mg;
each containing 20 mg of lovastatin; DIN 02220172, Aapharma inc, Toronto, Canada, L4K4N7) and 1 kg
of our regular laboratory diet were separaterly grinded and mixed. Food balls were then reconstituted by
adding 500 mL of sterile water. Blood was collected in heparin-coated Microtainer tubes (Becton
Dickinson, Franklin Lakes, NJ) or heparinized micro-hematocrit capillaries (Fisher Scientific, Pittsburg,
PA), centrifuged for 5 min at 3800g at 4°C, and kept at -80°C until assayed.

LDLR immunohistochemistry (more detailed information)

Images were acquired using the LSM700 confocal microscope under ZEN2011 software (Zeiss, Jena,
Germany). Original Zen format images were opened with Imaris software (Oxford Instruments, Zirich,
Switzerland), and data values transferred to custom Matlab (MathWorks Inc, Natick, MA) using the Imaris
XTension module (Oxford Instruments). For every image, pixel values comprised between 21 and 255
(maximum value in non-saturated conditions) were summed, the negative control value was subtracted,
and the final sums were analyzed. Representative pictures are shown in figures. Although intracellular
compartments are exposed in 8 mm-thick cryosections, a quasi-exclusive labeling of cell surface LDLR
was observed. In agreement, the 4-fold increase observed in KO male liver sections by
immunohistochemistry was confirmed by liver subcellular fractionation, and LDLR Western blotting of
plasma membrane-enriched fractions [1].

Western blotting
Total proteins were extracted from liver pieces and analyzed by PAGE, as described previously.

Quantitative RT-PCR

As described previously [1], total RNA was extracted from frozen liver pieces with TRIzol reagent
(Invitrogen, Carlsbad, CA), and reverse transcribed into cDNA using a SuperScript Il cDNA reverse
transcriptase and RNase OUT inhibitor (Invitrogen). QPCR was performed using PowerUp SYBR Green
Master mix (ABI, Fisher Scientific) on Applied Biosystems VIIA 7 Real-Time PCR system. All gene
expressions (see Table of primers) were normalized to that of hypoxanthine-guanine
phosphoribosyltransferase (Hprt) or TATA-binding protein (Tbp).

RNA-SEQ (more detailed information)

Read quality was assessed using FastQC v0.11.5 [2]. Read alignment was performed using STAR v2.5
[3] on the mm10 mouse reference genome. Differential expression analysis was performed with DESeq2
v1.22.2 [4] from the raw alignment counts computed with featureCounts 1.4.6 [5] based on the Ensembl
annotation release 93. Group effect (PCSK9 WT or KO) was added as a fixed-effect in the model to test
for the effect of estradiol E2 (or placebo), while controlling for the known variation linked to the presence or
absence of the PCSK9 gene. Differentially expressed genes were then defined as genes with an adjusted
p-value < 0.05 and Fold change (counts) >1.5. RNA-Seq data are available from GEO
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE205008).
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Primers

Gene Forward Reverse

Hprt 5’ -CCGAGGATTTGGAAAAAGTGTT 5/ -CCTTCATGACATCTCGAGCAAGT
Tbp 5/ -GCTGAATATAATCCCAAGCGATTT 5’ -GCAGTTGTCCGTGGCTCTCT

Ldlr 5’ -GGAGATGCACTTGCCATCCT 5/ -AGGCTGTCCCCCCAAGAC

Hmgcr 5/ ~-GTACGGAGAAAGCACTGCTGAA 5/ -TGACTGCCAGAATCTGCATGTC
Pcsk9 5/ -CACCTTCCGCCGTTGCT 5/ -CCTCTGGGTCTCCTCCATCA
Srepb2 5/ -GTTCTGGAGACCATGGAG 5/ -AAACAAATCAGGGAACTCTC
Esr1 5/ -GCTGCAAGGCTTTCTTTAAGAGA 5/ -TTGGTTTGTAGCTGGACACATGT
Esr2 5/ -CATCAGTAACAAGGGCATGGAA 57 ~CCGGGACCACATTTTTGC

Gper1 5/ -CTCCCCTTAAGCTGCTGGAA 5’ -GGGCACCCAGAGTGTGTGA
Aurkb 5/ -ATGGCTCAGAAGGAGAACGC 5/ -CCGTAGGACTCTCTGGGACA
Bub1b 5’ ~-CCAAGGAGAGACGCGCTATT 5’ ~-GGCAAGGGAAACGCCAATTC
Cenb1 5/ —-TGTGTGAACCAGAGGTGGAAC 5’ -ATGTTTCCATCGGGCTTGGAG
Cdc20 5/ -GAGTGCTGTGGATGTGCATT 5’ ~-GCARAAGCCGTGACCTGAGA
Cenpe 5/ ~GAAAATTCTCTCATGAAGTTCGGA 57 -CTCCACTCTACCTCAGCCAA
Ckap2l 5’ ~-GAACGGGGCAACACCAGTA 5’ -AGCTGAGGTGTCAGAGGTTAC
Dlgap5 5/ ~-GAATGCCACCTTCTTGAACCA 5’ -GAGAACTGTCTGCTGCGATCT
Foxm1 5/ -ATCACGGAGACGTTGGGAC 5/ -CCACTGGATATTGGTTAAGCTGT
Hmmr 57 -AACCAGAGCCAACGAGCTAC 5/ -TCCTGTTTGACCATCATACTCC
Kif20a 5/ -TCTCTGCCTCTCTGGAGGAC 5/ -AAGGAGTCTTTGGGTGCCTG
Kifc1 5’ -GACGCGGGTCTCATCGTC 5/ -TCACTTCCAACAAAGGTGGCCT
Knstrn 5’ -AACCCACCACAGATCACACG 5’ -ACTGGACACTCTCCTCTTCTT
Plk1 5/ -TCACCATCCCACCAAGGTTT 5/ -CTCATTTGTCTCCCGGACCA
Prc1 5’ -AGAAGTCTGGCAAAGTACGCA 5’ -TGACAACTGACTTGCTGCCA
Racgap1 5/ -TACTACAATGGTGAATTTGTGGAC 5’ ~-CGAAGTCCTTCACAACCTGGA
Spag5 5’ ~CAGGCCCTAGAGAAGACACAC 5/ -TCATTGGACAGAGGGTGTTCC
Top2a 5/ ~CCTCGGGGCAAAAGAGTCAT 5/ -CTATTCGTTGCCGGAGGCTT

Ttk 5/ -CACCCCGAAGGCTGACAAAG 5’ -AGCTGGCTGTAAGGTGTTGA
Adam10 5/ ~-CCTACGAATGAAGAGGGACAC 5/ -ACTAAAGCTTCCTTCTTCACCAT
Adam17 5/ -GCAGAATATAACGTAGAGCCACT 5’ -CTCTCTGTCTATGAGCCCTTTTG
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Figure S1. Hepatocyte surface levels of the LDLR are sex-sensitive in PCSK9 KO mice.

In the mouse model used in this study, loxP recombination led to the excision of Pcsk9 proximal promoter and entire
exon 1 (left panels). In the second mouse model (right panels), a neomycin-resistance cassette replaces the region
comprising exons 1 to 3 of Pcsk9. The two mouse strains underwent =12 backcrosses with C57BL/6J mice. A, The
total liver protein levels of the LDLR were assessed by Western blotting in WT and PCSK9 KO littermates and
normalized to those of STIP1 (~65 kDa; 1:1000, Abcam. Toronto, ON), which is not significantly affected by the
absence of PCSK9 (Roubtsova et al., 2015). B, Representative images from LDLR immunohistochemistry on
cryosections from WT or KO male and female livers. C, LDLR labeling quantification. n=5 mice. MeantSEM. P
values were determined using Mann-Whitney U test (non parametric data).
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Figure S2. E2-mediated reduction of LDLR immunohistochemical labeling is transitory.

Ovariectomized PCSK9 KO females received an intraperitoneal injection of vehicle (Veh) or 1 ug of cyclodextrin-
encapsulated E2 (50 ng/kg) at 9:00 am. Mice were euthanized 24, 48 or 96h later. n=6-9 mice. LDLR
immunohistochemical labeling of liver cryosections was quantified. Mean£SEM. P were determined by using 1-way
ANOVA followed by Tukey’s multiple comparisons test.
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Figure S3. Total LDLR liver expression is not regulated by E2 in PCSK9 KO males.

KO male mice did not receive (t = 0) or received an IP injection of 1 ug of E2. A, Representative blot of the analysis
of liver LDLR protein with goat anti-LDR (R&D systems, Minneapolis, MA) and rabbit anti-mouse B-actin (Sigma-
Aldrich, St. Louis, MO). B, mRNA levels were estimated by QPCR. n=3-4 mice. Mean+SEM normalized to t=0.
Absence of significant changes was confirmed using Kruskal-Wallis test followed by Dunn’s multiple comparisons test

(non parametric data).
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Figure S4. In PCSK9 KO mice, E2 reduces LDLR density at the hepatocyte cell surface via ERa..

Mice analyzed in Figure 2 were further characterized. A, PCSK9-deficient female mice were sham-operated or
ovariectomized (Ovx) and injected with vehicle, E2 or the ERa and Gper1 agonists, PPT and G-1, respectively. B,
Ovariectomized or intact PCSK9-deficient female mice were injected with vehicle, ERa. and ER inhibitor ICI 182,780
or Gper1 inhibitor G15. Ovx-related body weight gain (A only) and uterus weight are expressed as percents of the
body weight. As expected, Ovx mice had a higher gain weight in 2 weeks than sham-operated mice. E2, PPT and G-
1 treatment allowed an 80%, 34% and 25% recovery of the uterus weight, respectively. The partial, but highly
significant (P = 0.001) effect of PPT is in agreement with the single low dose injected in this study (Frasor et al.; ref.
51), while G-1-mediated recovery (P = 0.02) may be due to epithelium proliferation (Dennis et al.; ref. 52). n=7-8
mice. Mean+SEM. P values were determined using Kruskal-Wallis test followed by Dunn’s multiple comparisons test
(non parametric data; A, two left panels) or 1-way ANOVA followed by Tukey’s multiple comparisons test (all other

panels).
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Figure S5. The loss of liver PCSK9 or neutralization of its circulating form leads to the same sex-specific
LDLR pattern than the one observed in whole body PCSK9 KO mice. A, LDLR immunohistochemistry was
performed on liver sections from control and liver-specific PCSK9 KO littermates on the C57BL/6J genetic
background.8 Quantitation of the LDLR immunolabeling generated the same pattern than in Figure 1A. n=5 mice. B,
Plasma sLDLR levels were assessed in the same mice, and found similar to those obtained in Figure 3A. n=6-13
mice. C, Plasma cholesterol and D, sLDLR levels were measured in WT male and female mice that received one
subcutaneous injection of saline or alirocumab (50 mg/kg; Praluent, Sanofi Canada Inc.). sLDLR levels were also
measured 8 hours post-ZLDI-8 injection (10 mg/kg). n=17-20 mice. Mean+SEM. P values were determined using
Mann-Withney U test (non parametric data; A), Student’s t-test with Welch’s correction (B), and Kruskal-Wallis test
followed by Dunn’s multiple comparisons test (non parametric data; C and D).
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Figure S6. In the absence of PCSK9, E2 increases LDLR shedding in male mice.

WT or KO male mice received vehicle (Veh) or E2 by intraperitoneal injection (50 ng/kg). At t = 24 h, half of the E2-
treated KO male mice received a second dose of E2 (50 ug/kg) that generated a similar peak of plasma sLDLR,
indicating that surface LDLR density was rapidly replenished after the first shedding peak. n=4-5 mice.
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Figure S7. E2 increases and ZLDI-8 inhibits LDLR shedding in PCSK9 KO ovariectomized or sham-operated
mice, respectively. A. KO female mice were sham-operated or ovariectomized at 7 to 8 weeks of age. At ~3
months, the control group of sham-operated mice received vehicle (Veh), while ovariectomized mice received a
single dose of E2 by intraperitoneal injection (50 pg/kg). n=6-7 mice. Like KO male mice, Ovx KO mice exhibit 2-fold
lower sLDLR levels than sham-operated KO mice (t=0). They also respond to E2 by a peak of shedding culminating
20 hours post-injection. B. Two weeks later, the same mice than above (~3.5 months) received a single injection of
ZLDI-8 (10 mg/kg). ZLDI-8 produced a drop in plasma sLDLR levels 8 hours post-injection in sham-operated mice
only. P values were determined using 2-Way ANOVA followed by Tukey’s multiple comparisons test.
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Figure S8. Neither PCSK9 deficiency nor ZLDI-8 affect ADAM10 and ADAM17 mRNA expression.

Liver mRNA levels of ADAM10 and ADAM17 were assessed by QPCR in the liver of all mouse models. They are
sensitive to sex and/or E2 treatment, but unaffected by genotype or ZLDI-8 treatment. M, male; F, female; P, OvxP;
E2, OvxE2. n= 5 mice. Mean+SEM. Difference between M/F or OvxP/E2 (upper panels) was determined using Mann-
Whitney U test (non parametric data) and during ZLDI-8 treatment (lower panels) using Kruskal-Wallis test followed
by Dunn’s multiple comparisons test (non parametric data).
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Figure S9. High cholesterol feeding increases LDLR shedding in KO male mice.

KO male mice were fed a standard laboratory diet supplemented with 0.45% cholesterol (ENVIGO; TD.08464) for 2
weeks, and liver cholesterol and sLDLR levels were measured. HCD, high cholesterol diet. n=10 mice. Mean£SEM.
P values were determined using unpaired Student’s t-test.
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Figure $10. Lovastatin generates higher levels of sLDLR that are not sensitive to ZLDI-8. PCSK9 KO male
mice were fed a regular laboratory diet containing or not 0.2% lovastatin for 10 days. Effect of lovastatin on: A,
SREBP-2, HMG-CoA reductase and LDLR mRNA levels; B, plasma and liver cholesterol levels. C, sLDLR levels
before of after ZLDI-8 injection. Note that the higher sLDLR levels observed upon lovasatatin treatment remained
non-inhibitable by ZLDI-8. n=9-10 mice. Mean+SEM. P values were determined using unpaired Student’s t-test (A
and second panel in B), Mann Whitney U test (non parametric data; first panel in B), and 1-way ANOVA followed by
Tukey’s multiple comparisons test (C).
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Figure S11. Liver expression of E2 receptors.

A, WT and KO livers were analyzed for their ERo (Esr), ERP (Esr2) or GPER (Gper1) mRNA content normalized to
that of Thp. n=5 mice. B, ERa and B-actin (apparent molecular weights were ~66 kDa and 42 kDa, respectively)
were visualized in 30 ug of protein extracts (pools of 5 mouse extracts). Note that WT and KO female livers exhibit
similar levels of ERa.
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Figure S$12. Regulation in our mouse models of cholesterogenic genes, including Ldlr and Srebf2.
RNA-Seq normalized counts were normalized to the average expression value in WT male livers set to 1. A, The box
plot shows the expression of 22 cholesterogenic genes in WT (green) and KO (red) males (M), females (F), OvxP or
OvxE2 livers. B, The dot plot illustrates the individual normalized expression of Ldlr (o) and Srebf2 (A). n=3. The
combined absence of PCSK9 and estrogen (KO male and OvxP) leads to the lowest cholesterol contents (see Figure
5) without SREBP2 pathway upregulation.
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minimum interaction score 0.700
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Figure S13. Identification of a 54-gene cluster.

Using STRING [1] a cluster of 54 genes was identified. The average expression of these genes is increased by 116%
in the absence of PCSK9, and strongly downregulated by E2 (-66%). Among them, 49 genes are related to the cell
cycle, especially to the G2/M transition. Briefly, the later is controlled by cyclins B1 and B2 (Ccnb1, Ccnb2) that
associate with CDK1 (Cdk1). The Cenpe, Cenpf, Kni1 and Ndc870 genes control the connection of chromosomal
centromeres with spindle microtubules via kinetochores before segregation. Aurkb, Ect2, Plk1, Prc1 and Racgap1
genes are implicated in the preparation of the cleavage furrow, while Bub1b, Cdc20, Mad2/1 and Ttk control the

activity of the Anaphase Promoting Complex/Cytosome complex.
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Figure S14. Gene ontology.
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Figure $15. Genes in the STRING cluster have a pattern of expression associated with the surface LDLR

phenotype.

A, The expression pattern of 18 genes belonging to the 54 gene-cluster was validated by QPCR. Median values are
indicated. B, Box plot of the gene expression of the above 18 genes normalized to the average obtained for WT
female mice and set to 1. Lower and upper boundaries of each box indicate the 25th and the 75th percentile,
respectively. n=5 mice. Medians were compared (%).
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Figure S17. Plasma levels of human shed LDLR in PCSK9 mAb-treated men and premenopausal women.
Plasma from men and pre-menopausal women was analyzed after >2 months of PCSK9 inhibitor treatment. Their
age, plasma LDL-cholesterol and sLDLR content are indicated as median (Q1-Q3). The distribution of the sLDLR
values is shown. n=5-7. Mean+SEM. P value was determined using Mann-Whitney U test (non-parametric).



