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The development of reliable assistive devices for patients that suffer from motor
impairments following central nervous system lesions remains a major challenge in
the field of non-invasive Brain-Computer Interfaces (BCIs). These approaches are
predominated by electroencephalography and rely on advanced signal processing and
machine learning methods to extract neural correlates of motor activity. However,
despite tremendous and still ongoing efforts, their value as effective clinical tools
remains limited. We advocate that a rather overlooked research avenue lies in efforts
to question neurophysiological markers traditionally targeted in non-invasive motor
BCIs. We propose an alternative approach grounded by recent fundamental advances
in non-invasive neurophysiology, specifically subject-specific feature extraction of
sensorimotor bursts of activity recorded via (possibly magnetoencephalography-
optimized) electroencephalography. This path holds promise in overcoming a significant
proportion of existing limitations, and could foster the wider adoption of online BCIs in
rehabilitation protocols.

Keywords: beta bursts, Brain-Computer Interface (BCI), EEG, magnetoencephalography (MEG), motor imagery
(MI), neurological rehabilitation, upper limb

INTRODUCTION

Central nervous system (CNS) lesions have a major socioeconomic impact on modern societies
(World Health Organization, 2011). A grave manifestation involves upper limb motor deficits that
affect the quality of life of patients to various degrees depending on both the extent and the exact
nature of the lesions. Emerging medical technologies may alleviate these deficits and therefore
improve the lives of millions of patients in several ways, diminishing the psychological burden and
societal discrimination against people with disabilities.

A prominent direction lies in the development of Brain-Computer Interfaces (BCIs) whose
output can be translated into motor commands for rehabilitation protocols (Raffin and Hummel,
2017; Coscia et al., 2019), or devices such as wheelchairs, spellers, exoskeletons, and prostheses
(Rosenfeld and Wong, 2017), in order to assist patients in overcoming motor disabilities following
stroke, spinal cord injuries, and other CNS pathologies or peripheral deficits, respectively. However,
despite the attention that such devices have attracted over the last few years and the fact that
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numerous research teams are actively working on improving
them, to date BCIs have not delivered on their promises.
The reasons for this span multiple axes (Chavarriaga et al.,
2016) including issues specific to the brain-signal acquisition
techniques used, the underlying assumptions about the extracted
signals and the targeted mental states, as well as the specific signal
processing and feature extraction methods employed.

Broadly, BCIs can be categorized as invasive or non-invasive
based on the techniques used to extract relevant brain signals
(Daly and Wolpaw, 2008; Hatsopoulos and Donoghue, 2009).
Typically, the former require surgery and enable the recording of
single- or multi-unit activity, or local field potentials, with depth
electrodes or electrocorticography (Hatsopoulos and Donoghue,
2009). The advantages of these techniques are that (a) they allow
for close and precise intra- or supracortical placement of the
electrodes and thus high spatial resolution and signal-to-noise
ratio (SNR), and (b) they can avoid certain sources of noise while
still recording high-frequency signals such as neural spiking or
high-frequency gamma activity.

Nonetheless, these advantages are blunted by potential
risks. As is the case for surgical implantation of electrodes
in patients suffering from pharmacoresistant epilepsy or
other diseases treated via deep-brain stimulation protocols,
invasive techniques are inherently accompanied by risk of
complications such as infections, subdural and intracerebral
bleeding, and brain edema (Hariz, 2002; Wellmer et al., 2012).
Moreover, invasive methods based on electrode implantation
are characterized by instability over large periods of time
due to extensive tissue scaring around the implantation site
and electrode drift, which often reduce the numbers of
recorded units (Hatsopoulos and Donoghue, 2009). In practice,
these drawbacks often require the implanted electrodes to be
removed after a fairly short amount of time [although see
(Hochberg et al., 2012)].

Considering the risks inherent to surgically implanted
electrodes, it is evident that at least for certain applications, non-
invasive BCIs seem to be a more viable option for widespread
adoption in the foreseeable future, a fact reflected in the
predominance of EEG in most BCI applications. Despite the
lower SNR and the lower frequency and spatial resolution of
extracranially recorded brain signals, advanced signal processing
and feature extraction methods (Blankertz et al., 2008; Iturrate
et al., 2020), often paired with sophisticated machine and deep
learning algorithms (Lotte et al., 2018; Mladenović et al., 2019;
Roy et al., 2019), or hybrid BCI designs (Müller-Putz et al., 2015;
Hong and Khan, 2017) have steadily improved the decoding
capabilities of non-invasive BCIs.

However, most efforts have focused on the development of
agent-agnostic algorithms, while only a few studies have focused
on refining the neural correlates that are thought to be relevant
for a given motor task. We propose that future efforts for online
extraction of pertinent brain signals and features should instead
concentrate on (a) redefining the neurophysiological markers
and features to be extracted and, (b) adopting an individualized
and neurophysiologically informed paradigm (Chavarriaga et al.,
2016; Mladenović et al., 2019) specifically targeting these
markers and features.

Taking advantage of recent work that emphasizes the pitfalls
of indiscriminately performing time-frequency analyzes of neural
signals (Jones, 2016; Cole et al., 2017; Cole and Voytek,
2017; Donoghue et al., 2021), the importance of transient
bursts of frequency-specific activity for behavior (Jones, 2016;
Lundqvist et al., 2016, 2018; Sherman et al., 2016; Shin et al.,
2017; Lofredi et al., 2018; Torrecillos et al., 2018; Little et al., 2019;
Anderson et al., 2020; Khawaldeh et al., 2020; Seedat et al., 2020;
Yeh et al., 2020), and the ability to precisely localize these bursts
(Bonaiuto et al., 2021), this line of research could vastly improve
the decoding capabilities of BCIs and serve as a basis for a wide
range of applications that leverage motor-related signals. As a
final note, we discuss why we believe non-invasive BCIs should
primarily target rehabilitation rather than restoration of control
and list a few outstanding questions that remain to be answered.

CURRENT APPROACHES TO
NON-INVASIVE, MOTOR IMAGERY
BASED BRAIN-COMPUTER
INTERFACES

State-of-the-art non-invasive BCI paradigms vary greatly
according to the techniques used to extract signals that are
potentially informative for a task. Depending on the goal
they aim to attain, several setups can exploit different brain
signals sometimes even mixed with other, non-brain signals
like eye movements and muscle activity (Choi et al., 2017).
The recorded brain signals can be electrical, or hemodynamic,
measured using electroencephalography (EEG) possibly
magnetoencephalography (MEG)1, or functional near-infrared
spectroscopy (fNIRS), respectively.

Contrary to hemodynamic signals (Nicolas-Alonso and
Gomez-Gil, 2012), EEG and MEG signals provide direct
measures of neuronal activity and are characterized by high
temporal resolution. They are therefore privileged candidates for
real-time applications. In this section we will briefly discuss these
two techniques as well as the common physiological markers
of motor-related cortical activity they record, highlighting
the steps usually taken to analyze these signals and their
respective shortcomings.

Electroencephalography and
Magnetoencephalography Overview
Electroencephalography measures the electrical activity due to
variations of post-synaptic potentials synchronized across large
populations of cortical neurons (Buzsáki et al., 2012). The signal
is measured as the difference in electric potentials recorded from
electrodes relative to a reference (ground) electrode (Nicolas-
Alonso and Gomez-Gil, 2012). These post-synaptic potentials
also generate weak magnetic fields which are measured by MEG
sensors (Hämäläinen and Hari, 2002; da Silva, 2010; Lecaignard
and Mattout, 2015).

1The emergence of optically-pumped magnetometers (OPMs) could, unlike
currently available systems, render MEG portable and, thus, a very attractive
platform for BCI applications in the future.
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The major goal of any BCI application is to ultimately enhance
and improve the everyday lives of its users. Hence, EEG is
frequently the recording technique of choice for BCIs because
EEG setups have the advantage of being portable and inexpensive
compared to other signal acquisition technologies, thus making
them suitable for a wide range of environments from the
laboratory to the medical office, or even at home. On the contrary,
current SQUID-based MEG systems are more expensive
and inherently constrained to magnetic-shielded laboratory
environments because of technical limitations imposed by the
small amplitude of the measured fields in comparison to multiple
sources of noise.

Electroencephalography electrodes are placed on the scalp
surface and, as a result, must contend with two main challenges.
Firstly, the recorded signals are significantly attenuated and
contaminated by physiological and non-physiological noise as
they have to traverse multiple layers such as the meninges,
cerebrospinal fluid, skull, and muscle tissue before reaching the
scalp (Nicolas-Alonso and Gomez-Gil, 2012). Secondly, each
electrode samples the activity, distorted by the skull (Lopes da
Silva, 2013), of a relatively large cortical area (Krusienski et al.,
2011), therefore leading to poor spatial resolution (Lopes da
Silva, 2013). Conversely, MEG is not affected to the same extent
by either challenge. Although MEG sensors sample magnetic
fields from an equivalent cortical area, these fields are only
attenuated with distance and not distorted by the presence of
layers of tissue and skull between the neural sources and the
MEG sensors. As a consequence, MEG offers a higher spatial
resolution than EEG. However, in practice it is limited by the
head movements that subjects make while performing a task
(Medvedovsky et al., 2007), as well as by co-registration errors
with anatomical images (Hillebrand and Barnes, 2011). Finally,
due to the dynamic nature of brain signals, both EEG and MEG
recordings are characterized by great variability, both between
individuals, and within recordings of the same individual over
long periods of time or different recording sessions.

Motor Imagery in
Electroencephalography and
Magnetoencephalography
Brain-Computer Interfaces that aim to leverage motor-related
brain activity usually depend on two types of signals. For patients,
the signal of interest is occasionally recorded during an attempted
movement (Muralidharan et al., 2011). The other common
strategy for healthy subjects and patients involves asking subjects
to imagine producing movements, known as (kinesthetic) motor
imagery (MI) (Pfurtscheller and Lopes da Silva, 1999), on which
we will focus hereafter. Whereas a signal recorded while a patient
is attempting to perform a movement despite their disability is
thought to reflect purely motor functions, MI may also implicate
other cognitive processes like mental rotation or conscious access
to the motor plan (Jeannerod, 1995; Hanakawa et al., 2003, 2008;
Raffin et al., 2012; Meng et al., 2018).

Traditionally, both movement execution and MI have
been linked to time-locked changes in induced power within
various frequency bands recorded from sensorimotor cortex

(Pfurtscheller and Lopes da Silva, 1999; Friston et al., 2006;
Ramadan and Vasilakos, 2017). In the beta (∼13–30 Hz) and
mu (∼8–12 Hz) frequency bands, these signals are marked by a
gradual reduction in power prior to a real or imagined movement,
named event-related desynchronization (ERD), followed by a
post-movement increase called event-related synchronization
(ERS) in the beta band (Pfurtscheller et al., 1996, 2006;
Pfurtscheller and Neuper, 1997; Neuper et al., 2006; Tam et al.,
2019). In the mu and beta bands, pre-movement ERD has long
been considered to reflect neural processes related to movement
preparation, initiation and realization, while post-movement
ERS was related to the re-establishment of inhibition after the
execution of a motor plan (Pfurtscheller et al., 1997; Pfurtscheller
and Lopes da Silva, 1999). An ERS is also typically observed in the
gamma band (30–120 Hz) around the time of movement onset
(Ball et al., 2008; Darvas et al., 2010; Miller et al., 2010), and is
thought to reflect movement execution or monitoring (Brovelli
et al., 2005; Cheyne and Ferrari, 2013; Gaetz et al., 2013).

Common Techniques in Motor Imagery
Based Brain-Computer Interfaces
Most approaches for MI signal analysis utilize a similar
pipeline (Wolpaw, 2002) that involves preprocessing and time-
frequency decomposition to extract movement-related ERD
and ERS signals, and classification of these signals to predict
some aspect of an imagined movement. A great repertoire of
signal processing and feature extraction methods have been
developed or adapted to particularly address the low SNR
and source localization problems inherent in EEG and MEG
(Lotte et al., 2018; Iturrate et al., 2020). Signal processing
methods aim to improve the quality of the recorded signals
by means of artifact rejection, frequency filtering, or spatial
filtering. Such methods increase SNR by rejecting non-brain
signals, filtering out irrelevant aspects of the signals, and
reducing the contribution of non-pertinent areas in the feature
extraction step. Dimensionality reduction techniques such as
principal component analysis (Zarei et al., 2017) or independent
component analysis (Kachenoura et al., 2008) are typically used to
select artefactual sources to be removed, or relevant components
to be further analyzed (Medeiros de Freitas et al., 2020). Feature
extraction refers to the process of extracting the metrics of
a signal that is most informative of the imagined movement.
Standard procedures include channel selection, and time or
spectral feature estimation. For analyzes of frequency-specific
changes in power, time-frequency decomposition techniques
such as the fast Fourier transform (Herman et al., 2008; Brodu
et al., 2011), Hilbert–Huang transform (Wang et al., 2008),
or Morlet wavelets (Herman et al., 2008; Brodu et al., 2011)
are commonly used.

As the goal of MI based BCI applications is usually to
decode aspects of the intended movement from recorded neural
activity, the extracted features are used as input to some sort of
classifier. Classifiers are trained offline on the sampled activity,
yielding a model that maps the underlying features to a set of
outputs (e.g., left vs. right imagined movement), and are then
employed online to map the recorded activity to an output
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in real time (Iturrate et al., 2020). Common machine learning
algorithms used in BCI applications for decoding a subject’s
imagined movement include neural networks (Pfurtscheller and
Neuper, 2001; Hazrati and Erfanian, 2010), linear discriminant
analysis (Pfurtscheller and Neuper, 2001; Vidaurre et al., 2011;
Llera et al., 2014), and support vector machines (Song et al.,
2013), while during the last few years the field has experienced
a steady shift of interest toward more elaborate deep learning
architectures (Roy et al., 2019).

This general BCI pipeline has been widely adopted, but
important limitations still exist. Most MI based applications
are limited to binary classifications (e.g., left vs. right), or
classifications among a few classes at best, and achieve
modest results even when continuous paradigms are used, as
classification accuracies steeply decrease with an increasing
number of output classes (Hong and Khan, 2017). Notably,
only a few studies have involved patients, and therefore the
real value of BCIs for patients is still unproven. Additionally,
despite the sophisticated methods employed, still about a third
of subjects have great difficulty or are totally unable to control
BCIs, a phenomenon known as BCI illiteracy (Vidaurre and
Blankertz, 2010). We argue that this focus on advanced signal-
processing and feature extraction techniques for MI based BCIs
has effectively rendered ERD and ERS the only signals of interest,
creating a gap between the BCI community and recent advances
in neurophysiology.

PROPOSED ALTERNATIVE

In light of these considerations we believe that significant
progress toward the development of high-fidelity non-invasive
BCIs, suitable for online motor decoding, will be achieved only
if we attempt to bridge the gap between basic neuroscience and
applied neuroengineering. To this end we propose a reassessment
of the neurophysiological features of interest for the decoding of
motor related activity, and a novel methodology that exploits the
advantages of both MEG and EEG in order to take advantage of
subtle, individualized physiological markers of motor processing.

The Quest for Refined
Neurophysiological Markers
While standard non-invasive BCI features such as changes in
frequency band power are somewhat informative of movement,
these approaches discard potentially valuable information in
the temporal domain. Time-frequency analyzes rarely take
into account the temporal variability and waveform shape of
the signals of interest (Donoghue et al., 2021), potentially
overlooking the fact that neural activity can occur as bursts
rather than oscillations (Jones, 2016; Lundqvist et al., 2016,
2018; Sherman et al., 2016; Shin et al., 2017; Lofredi et al., 2018;
Torrecillos et al., 2018; Little et al., 2019; Anderson et al.,
2020; Khawaldeh et al., 2020; Seedat et al., 2020; Yeh et al.,
2020) and that oscillations can have non-sinusoidal waveform
shapes (Cole et al., 2017; Cole and Voytek, 2017). Both of these
potentially rich sources of information are lost in typical time
frequency analyzes.

In the case of beta activity, it has recently been demonstrated
that the majority of sensorimotor activity within this band
occurs as discrete transient bursts (Jones, 2016; Lundqvist et al.,
2016, 2018; Sherman et al., 2016; Shin et al., 2017; Little
et al., 2019; Figure 1A), and that the patterns of pre-movement
beta ERD and post-movement beta rebound are a result of
averaging these bursts over multiple trials (Little et al., 2019;
Wessel, 2020; Figure 1B). Indeed, it has been shown that the
timing of beta bursts in motor cortex are, before movement,
predictive of response times, and after movement, informative
of behavioral errors, more so than changes in beta amplitude
(Little et al., 2019). In the right inferior frontal cortex, beta burst
timing is related to electromyography correlates of movement
cancelation (Hannah et al., 2020), and may coordinate bursts in
sensorimotor cortex following successful movement cancelation
(Wessel, 2020). Beta burst activity can also be modulated
through neurofeedback training (He et al., 2020), making beta
burst timing and spatial distribution a potential rich source of
information for MI decoding.

In contrast to beta, activity in the mu frequency band
is oscillatory even in single trials (Chen et al., 2021). This
activity is typically analyzed using time-frequency decomposition
techniques, which assume that the underlying signal is sinusoidal.
However, there is now growing consensus that oscillatory neural
activity is often non-sinusoidal (Cole and Voytek, 2017, 2019;
Donoghue et al., 2021; Fabus et al., 2021), and that the raw
waveform shape can be informative of movement (Quinn et al.,
2021; Figure 2). Future efforts could take advantage of this
possibility by using recently developed non-parametric cycle-by-
cycle analyzes (Cole and Voytek, 2019).

Subject-Specific, Forward Models of
Dynamic Activity
The major challenges for non-invasive BCIs are to deal with
highly variable and noisy single trial activity, and to overcome
the low SNR and limited spatial resolution in order to improve
online feature extraction and decoding. We anticipate that these
challenges will be even more acute when targeting short-lasting,
potentially non-sinusoidal bursts of frequency specific activity.
To overcome these challenges, we propose that MEG could
be used to complement EEG. Hybrid designs (Allison et al.,
2010; Pfurtscheller, 2010) that combine the two techniques yield
superior results compared to either technique used alone in
certain applications (Corsi et al., 2019; Lecaignard et al., 2021),
however such designs are limited to laboratory settings. To
deploy a system under more naturalistic settings, one alternative
is to use MEG to develop personalized forward models that can
subsequently be used to improve the decoding efficacy of online
EEG-based BCI applications.

The spatial precision of MEG is traditionally limited by
within-session subject movement and between-session co-
registration error. However, recently developed high-precision
MEG (hpMEG) techniques based on the use of 3D printed
individualized head-casts (Meyer et al., 2017), have allowed
for fine-grained analyzes of movement-related signals at
the level of cortical laminae (Troebinger et al., 2014a,b;
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FIGURE 1 | Trial-averaged discrete bursts can appear to be sustained oscillations. Simulated beta burst activity from multivariate Gaussian distributions with a time
varying probability and random peak frequency, frequency span, and time duration. (A) Left: The timing of simulated bursts in each trial (N = 1,000). Right:
Time-frequency decomposition analysis of each single trial level (shown for four random ones) allows for the extraction of features such as the exact timing and peak
frequency (orange circle), the time duration (red vertical arrows) and the frequency span (light blue horizontal arrows) of each burst. (B) Beta band power of the same
four random trials from the right panel of (A) (colored lines) depicted along with the average beta band power over all trials (black line). During each trial, beta power
appears as transient peaks at varying time points. The classically described ERD and ERS phenomena emerge as a consequence of averaging over multiple trials.

FIGURE 2 | Frequency specific activity can be non-sinusoidal. Mu activity from EEG electrode C4. Inset: Cycle-by-cycle analysis (Cole and Voytek, 2019) of the
activity reveals that mu occurs in bursts with significant variability for measures such as peaks (magenta dots) and troughs (pink dots), or rise (yellow dots) and decay
(blue dots) duration between cycles, unlike the corresponding measures of a pure 10 Hz sinusoid (orange and green dots). EEG data from BCI Competition IV (Leeb
et al., 2007) https://www.bbci.de/competition/iv.

Bonaiuto et al., 2018a,b, 2021). Customized forward models
based on offline hpMEG analysis could be used to identify
the neural features most informative of imaged movements

and isolate these features to subsequently optimize EEG-based
real-time decoding. In the near future, optically-pumped
magnetometers (OPMs) may be able to replace hybrid M/EEG
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(Boto et al., 2019, 2021; Iivanainen et al., 2019; Roberts et al., 2019;
Borna et al., 2020; Hill et al., 2020; Paek et al., 2020; Wittevrongel
et al., 2021), as they promise to be more portable and cheaper
while also improving SNR.

A Paradigm Shift Toward Motor
Rehabilitation
Lately the BCI community has been drifting away from the
restoration of motor control to target motor rehabilitation
instead (McFarland et al., 2017; Raffin and Hummel, 2017; Coscia
et al., 2019; MacEira-Elvira et al., 2019; Lennon et al., 2020;
Micera et al., 2020). Motor rehabilitation is a challenging yet
more attainable goal compared to motor restoration, simply
because of the amount of complexity that the control of multiple
degrees of freedom devices introduces both for the BCI designers
and users. Moreover, BCI-assisted rehabilitation protocols are
relevant for a wider group of patients beyond those that need to
overcome a peripheral handicap; from stroke patients with motor
impairments to patients suffering from Parkinson’s disease. The
features extracted through bursts analysis could revolutionize
these protocols.

As an example, the coupling of this design with mirror
therapy based on virtual or augmented reality could be important
for a number of reasons. Visual feedback is known to reduce
movement errors due to impaired proprioception (Ghez et al.,
1995), while it has, also, long been shown in experiments
with non-human primates that the role of vision is crucial
for the formation of the internal representation of upper limb
position, more so than proprioceptive feedback (Graziano, 1999).
Additionally, it is established that erroneous visual feedback
ultimately results in inaccurate movements being regarded as
accurate representations of a subject’s movement intentions
(Preston and Newport, 2014). Therefore, hpMEG-optimized BCI
training accompanied by digital mirror or camera therapy may
soon provide clinicians and, importantly, patients with novel
therapeutic solutions.

CONCLUSION

Despite the significant effort toward the development of
sophisticated algorithms and design paradigms, state-of-the-
art EEG-based BCI applications exploiting MI face many
limitations. To overcome these limitations, we propose that
more subtle neurophysiological markers such as burst timing
and waveform shape be explored, and techniques with
high temporal and spatial resolution such as hpMEG and
OPMs be adopted.

Still, open, outstanding questions related to the proposed
paradigm exist. How is burst activity in the motor cortex
modulated during imagined rather than performed movements,
and how do bursts recorded from different areas of the broader
motor network relate to each other? What is the relationship
between the continuous nature of movements and burst activity,
and how can we exploit it to serve as a reliable marker that
will allow us to go beyond discrete classifications? Does the
waveform of oscillations change with respect to the recorded area
and/or imagined movement, and can it thus give us access to
more, complementary features? Importantly, which features of
the imagined movements are best explained by this analysis?

We believe that embracing the proposed approach will,
in time, provide answers to these questions and significantly
improve non-invasive BCIs by extracting richer features of
interest from signals recorded with sensitive techniques designed
to particularly tackle current limitations.
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