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ABSTRACT

Efficient heat dissipation in micro/nano electronics requires long-distance propagation of heat carriers operated above room temperature.
However, thermal phonons—the primary heat carriers in dielectric nanomaterials—dissipate the thermal energy after just a few hundred
nanometers. Theory predicts that the mean free path of surface phonon-polaritons (SPhPs) can be hundreds of micrometers, which may
improve the overall dissipation of heat in nanomaterials. In this work, we experimentally demonstrate such long-distance heat transport by
SPhPs. Using the 3x technique, we measure the in-plane thermal conductivity of SiN nanomembranes for different heater-sensor distances,
membrane thicknesses, and temperatures. We find that thin nanomembranes support heat transport by SPhPs, as evidenced by an increase
in the thermal conductivity with temperature. Remarkably, the thermal conductivity measured 200 lm away from the heater is consistently
higher than that measured 100 lm closer. This result suggests that heat conduction by SPhPs is quasi-ballistically over at least hundreds of
micrometers. Our findings pave the way for coherent heat manipulations above room temperature over macroscopic distances, which
impacts the applications in thermal management and polaritonics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0100506

Heat conduction in semiconductors is essentially governed by the
mean free path of heat carriers. In nanomaterials of size comparable to
the mean free path, heat conduction can even happen ballistically,1–3

without dissipation of thermal energy, which could be used for cooling
in microelectronics.4 However, even in silicon membranes, the mean
free path of phonons at room temperature is as short as 30–300nm,5,6

which only becomes shorter at higher temperatures.7 Such a short prop-
agation length makes it unfeasible to attain the ballistic regime in the
micro-sized dielectric materials used in modern electronics. Therefore,
heat carriers with a longer propagation length are desirable.

Over the past two decades, the propagation, detection, and
energy transport of surface electromagnetic waves have attracted
attention due to the predominance of surface effects over the volumet-
ric ones in nanostructures with high surface-to-volume ratio.8 Certain

types of surface electromagnetic waves may even carry heat9–12 and,
thus, improve the thermal performance and stability of nanoscale devi-
ces.13–15 One type of such waves is the surface phonon-polaritons
(SPhPs)—evanescent surface waves generated by the coupling of pho-
tons with optical phonons.16–21 SPhPs can be excited with a mono-
chromatic light source with given frequency, which correspond to the
SPhP resonant frequency. It is reported that the SPhPs generated on
SiC are excited and detected optically by using scattering-type near
field optical microscopy (s-SNOM).22 Theoretical works predict that
SPhPs can propagate along the surface of polar dielectric materials
without dissipation for hundreds of micrometers,23,24 which is orders
of magnitude longer than the typical mean free path of phonons.
Moreover, recent experiments demonstrated that in thin dielectric
membranes, SPhPs can even carry heat at least as efficiently as
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phonons.25,26 However, the quasi-ballistically conduction remains to
be experimentally demonstrated.

In this work, we aim to demonstrate that the heat transport via
SPhPs depends on propagation distance over hundreds of micro-
meters. Our experiments compare the thermal conductivity of SiN
membranes measured 100 and 200lm away from the heater. The
SPhPs in the SiN film are expected to exist in the frequency range
between 125 and 225 Trad/s.25 The intrinsic propagation length of
SPhP depends on the sample’s thickness, and their spectra are shown
in the supplementary material. The propagation length scales down as
the thickness increases. Assuming that phonon transport in amor-
phous membranes is purely diffusive at these length scales,27 any dif-
ference in the measured thermal conductivity can only be explained by
the presence of additional heat conduction channels. Thus, by con-
ducting the measurements for different heater-sensor distances, mem-
brane thicknesses, and temperatures, we demonstrate how heat
conduction by SPhPs occurs in thin membranes and remains quasi-
ballistic for hundreds of micrometers.

Samples of amorphous SiN membranes with thicknesses of 50,
100, and 200nm were suspended in a 1� 1mm2 square window on
Si substrates, while the thickness of 30 nm was suspended in a 0:5
� 0:5 mm2 square window. The SiN membranes are commercially
available from the NORCADA company and were suspended by back
etching the silicon substrate. These high-stress (�250MPa) mem-
branes were flat (curvature radius of 4 m) to ensure an ideal measure-
ment for the long-range SPhP propagation. Gold wires of 4lm in
width and 100nm in height are serving as the heater and the sensors.
A layer of 10-nm-thick Cr was deposited between Au and SiN to
enhance the adhesion.

To measure the in-plane thermal conductivity of SiN mem-
branes, we used the 3x method.28,29 Figure 1(a) illustrates the 3x
setup with four probes coupled to a heating stage and placed in a vac-
uum chamber. To probe the thermal conductivity at different propaga-
tion distances, two sensor wires were, respectively, placed 100 and
200lm away from the heater wire, as shown in Figs. 1(b) and 1(c).
Although the SPhPs have intrinsic propagation length up to 1 m,17 in

our designed measurement, the propagation of the SPhPs is truncated
by the sensor, where they thermalize with phonons and raise the tem-
perature detected by the sensor.30 Figure 1(d) illustrates how SPhPs
are excited by the Joule effect in the heater wire. The in-plane thermal
conductivity was extracted by comparing the 3x signal with an analyt-
ical model (supplementary material “Heat diffusion model”). Thermal
radiation losses were taken into account as explained in Supporting
Information “Heat diffusion model.”

Figure 2(a) reports the temperature dependence of in-plane ther-
mal conductivity of SiN membranes of different thicknesses. The data
measured for the heater-sensor distances of 100 and 200lm are joined
by the dashed and solid lines and labeled as j100 and j200, respectively.
Longer heater-sensor distance beyond 200lm was probed, yielding at
too low signal-to-noise ratio and unworkable data. The thickest
membrane (d¼ 200 nm) at 300K has j100 � j200 � 3:1 Wm�1K�1,
which decreases by about 4% at 400K. This reduction above room
temperature is characteristic of the phonon thermal conductivity
driven by the internal scattering processes of phonons. Although the
thermal conductivity of 200-nm-thick membranes also shows a differ-
ence between L¼ 100 and 200lm, this difference is statistically insig-
nificant and lays within experimental uncertainty. Likewise, the
thermal conductivity of the 100-nm-thick membrane is nearly inde-
pendent of the heater-sensor distance and temperature. The indepen-
dence of the heater-sensor distance also indicates that the thermal
transport is mainly driven by the phonons and, thus, is diffusive at this
scale, as predicted by the theory.17 Mean free paths of phonons in SiN
are short but still extend to the 100 nm range27 and are larger than the
thicknesses of the thinner SiN membranes. Consequently, the phonon
mean free path is limited by boundary scattering, leading thermal con-
ductivity to decrease as the membrane thickness reduces.

Interestingly, the thermal conductivity of the two thinner mem-
branes (30 and 50nm) shows a 5% increase with temperature [shown
in Fig. 2(b)], which differs from that of the thicker ones. For the
50-nm-thick membrane, j100 (j200) increases from 2.1Wm�1 K�1

(2.2Wm�1K�1) at 300K to 2.24Wm�1 K�1 (2.29Wm�1K�1) at
400K. For the 30-nm-thick membrane, this enhancement raises to

FIG. 1. Schemes of the 3x experimental setup and the SiN sample. (a) Illustration of the SiN sample in a vacuum chamber. The sample is measured with an improved 3x
setup. AC input current iðxÞ is supplied to the central heater wire to generate a heat flux by Joule heating. On the sensor located at a distance L (100 and 200lm), the tem-
perature raise is calculated from the 2x signal measured with a lock-in amplifier on a DC Wheatstone bridge. (b) Schematic of a suspended SiN sample, where L is the dis-
tance between the heater and the sensor, and d is the thickness of suspended SiN. (c) Scanning electron microscope image of the top view of the SiN sample. The yellow
color highlights the Au wires, and the green color highlights the suspended SiN. (d) Illustration of a SiN membrane supporting the heater-to-sensor propagation of SPhPs
excited by the Joule effect in the heater wire.
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6.6% and 12.4% for the thermal conductivity values j100 and j200,
respectively. The observed increase in the thermal conductivity with
temperature is the sign of the heat conduction by SPhPs. As SPhP con-
tribution becomes stronger at higher temperatures, it compensates for
the thermal conductivity reduction due to the phonon–phonon scat-
tering, thus leading to the overall increase in the thermal conductivity
with temperature. This explains the difference in trends for thicker
and thinner membranes.

Remarkably, the thermal conductivity measured 200lm away
from the heater is higher than that measured 100lm away
(j200 > j100). Since the phonon transport is diffusive at such a long
length scale,27 we attribute the observed difference in the thermal con-
ductivity to the ballistic heat conduction by SPhPs. Indeed, length-
dependent thermal conductivity is one of the signs of ballistic heat
conduction1,3,31,32 and implies that heat carriers propagate ballistically
at least as far as the length dependence is measured.

Figure 2(a) seems to indicate a similar difference between j100

and j200 in the 30 and 50nm cases only because the thermal conduc-
tivities of the 50nm membrane are higher. A clearer perspective is,
indeed, provided when the thermal conductivity ratio j200/j100 is plot-
ted (supplementary material Fig. S9), where the error bars for this ratio

include the unity in the case of the 50nm thick film. A difference due
to heater-sensor distance, therefore, cannot be strictly concluded.
Conversely, the lowest value of the error bars clearly increases beyond
unity in the 30nm case. Hence, the difference between j100 and j200
can only be corroborated in the 30nm thick membrane, which indi-
cates the ballistic SPhP transport occurs in this case.

To better understand the behavior of the measured thermal con-
ductivity, we analyze the SPhP contribution to the heat transport in
SiN membranes. According to the Boltzmann transport equation,
under the relaxation time approximation, the SPhP contribution to
the in-plane thermal conductivity (jSPhP) of a membrane of thickness
d is given by16

jSPhP ¼
1

4pd

ðxH

xL

�hxKebR
@f0
@T

dx; (1)

where �h is the reduced Planck constant, Ke is the effective propagation
length of SPhPs propagating along the membrane surface with a com-
plex wavevector b, bR ¼ ReðbÞ, f0 is the Bose-Einstein distribution
function, T is the average membrane temperature, and xH am xL

stand for the highest and lowest frequencies supporting the propaga-
tion of SPhPs, respectively. Since heat generated by SPhPs inside a
material is proportional to the imaginary part of its dielectric func-
tion,12 this material property is strongly linked to these frequencies
and hence to jSPhP.

To take into account finite lateral size of our SiN membranes, their
effective thermal conductivity is determined using Mathiessen’s rule
K�1e ¼ K�1 þ L�1, where K is the intrinsic propagation length of
polaritons and L is the heater-sensor distance (100 and 200lm). Thus,
the values of L are much shorter than those of K and much longer than
the intrinsic mean free path of phonons in amorphous materials33,34

around room temperature. Equation (1), thus, establishes that the values
of jSPhP are determined by the SPhP dispersion relation bðxÞ driven by
the membrane dielectric function that usually changes with temperature
and membrane thickness.35 However, for the thicknesses and tempera-
tures considered in this work, the dielectric function of our SiN mem-
branes is nearly independent of these parameters.25

Figure 3 shows the SPhP thermal conductivity predicted by Eq. (1)
for different temperatures, heater-sensor distances, and membrane
thicknesses. Thinner and hotter membranes with longer heater-sensor
distances exhibit higher SPhP thermal conductivity. This behavior is
expected as reported for SiO2 and SiC membranes16,17 and opposite to
the typical behavior of the phonon thermal conductivity. Thus, it signals
the SPhP contribution to the heat transport along the membranes.

For the thinnest membrane (d¼ 30nm), the measured thermal
conductivity enhancement DjSPhP ¼ jðTÞ � jð300KÞ is compared
with prediction of the model when the heater-sensor distance is
200lm [Fig. 3(a)]. However, in thicker membranes (d > 30nm), the
phonons make a significant contribution to heat conduction, and the
discrepancy between measured (phonons and SPhPs) and theoretical
(only SPhPs) values increases with membrane thickness. Remarkably,
Fig. 3(b) shows that theoretically, SPhPs can travel ballistically as far as
one meter, and the values measured on the 30-nm-thick membrane
follow the predicted trend. Since the thermal conductivity enhance-
ment is driven by the SPhPs propagation, which is long (>1 cm) in
polar materials, the observed length dependence for SiN films is also
expected to be present for other polar films, such as SiC and SiO2.

36,37

FIG. 2. Thermal conductivity of SiN membranes. (a) Thermal conductivity as a
function of temperature for membranes of different thicknesses. The solid and
dashed lines stand for the measurements performed with the sensors placed 100
and 200 lm away from the heater, respectively. (b) In-plane thermal conductivity
normalized by the values at 300 K.
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In conclusion, we experimentally demonstrated long-distance
heat conduction by SPhPs. We measured the in-plane thermal con-
ductivity of SiN membranes and showed that in thin membranes, the
heat conduction is mainly driven by SPhPs. Moreover, the thermal
conductivity was higher when measured further away from the heater.
The observed difference in the thermal conductivity is attributed to
ballistic heat conduction by SPhPs and is compared with our theoreti-
cal model. Thus, our experimental results suggest that the SPhPs can
carry heat ballistically over hundreds of micrometers. Considering that
the coherence length is comparable to the propagation length,19 new
engineering possibilities might become available using interference of
SPhPs. This work offers an alternative approach to improve the heat
dissipation in microelectronics and efficiency in silicon photonics.

See the supplementary material for the detailed information
about the theoretical background, the analysis of the experimental
results, and the auxiliary measurements. Further discussion is wel-
comed by contacting our corresponding authors.
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