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SUMMARY

The heat transport of surface phonon-polaritons propagating along a polar uniax-
ial anisotropic nanofilm is studied for different orientations of its optical axis, film
thicknesses, and temperatures. For an hBN nanofilm, it is shown that i) the prop-
agation of polaritons can be described in terms of even and odd modes that
generalize the transverse magnetic and transverse electrical ones that typically
appear in isotropic films. ii) The frequency spectrum of polaritons can efficiently
be tunedwith the angle between the film optical axis and their propagation direc-
tion. iii) The polariton thermal conductivity takes higher values for a thinner or
hotter nanofilm. iv) The even and odd modes have a remarkable contribution to
the total polariton thermal conductivity, which takes a value higher than 5.6
Wm�1K�1 for a 25-nm-thick nanofilm at 500 K. The obtained results thus uncover
some key features of the propagation and heat transport of polaritons in uniaxial
nanofilms.

INTRODUCTION

With the continuous development of electronic devices ever thinner, their operation under enhanced rates

generates a significant overheating of the involved nanomaterials, which reduces their lifetime and in-

creases the energy consumption through the use of cooling fans. This overheating is the result of the ther-

mal performance reduction of the usedmaterials as their sizes are scaled down to a few tens of nanometers

(Volz et al., 2016a, 2016b). This problem of heat dissipation is a real industrial challenge that has boosted

the study of nanoscale heat transfer and could partially be resolved by means of surface electromagnetic

waves propagating along the interface of nanomaterials (Agranovich 2012; Chen et al., 2005; Liu et al.,

2021). In polar nanomaterials (i.e. SiO2, SiC, SiN, and hexagonal boron nitride (hBN)), these evanescent

waves are named surface phonon-polaritons (SPhPs) and are generated by the fluctuation of their micro-

scopic electrical dipoles, which under a thermal excitation, oscillate and emit an electromagnetic field.

This field induces the excitation of neighboring dipoles, which keep the propagation of the field along

the material interfaces mainly (Ordonez-Miranda et al., 2014a, 2014b, 2014c; Ordonez-Miranda et al.,

2013). In polar nanofilms, for instance, the increasing surface-to-volume ratio leads to a strong coupling

of the SPhPs propagating along its both interfaces (Yang et al., 1991), which enlarges their propagation dis-

tance and therefore enhances their contribution to the in-plane heat transport (Chen et al., 2005; Greffet

et al., 2002; Ordonez-Miranda et al., 2013). Recent experiments demonstrated that the SPhP thermal con-

ductivity of suspended SiN and SiO2 nanofilms thinner than 50 nm can be comparable or even higher than

their corresponding phonon counterparts (Tranchant et al., 2019; Wu et al., 2020).

Hyperbolic anisotropic media have recently attracted a lot of attention due to their ability to tailor the prop-

agation of surface electromagnetic waves with the orientation of their optical axes (Jacob and Narimanov

2008; Li et al., 2008; Luo et al., 2013; Tao et al., 2021; Wang et al., 2011; Wu and Fu 2021; Zheng et al., 2020).

Based on a sandwich structure made up of a graphene nanolayer deposited between two plates of hBN,

Tao et al., (2021) showed that one can generate anisotropy-induced plasmon modes, whose propagation

and polarization are driven by the angle between the optical axis (OA) of one of the uniaxial plates and the

direction of propagation of the induced surface waves. The OA of a uniaxial crystal is one of its crystallo-

graphic axes in which the permittivity is different than that along the other two crystallographic axes. A uni-

axial hBN film is thus isotropic within the plane orthogonal to its OA, whose direction can accurately be

tuned to control the propagation features of polaritons (Luo et al., 2013; Ma et al., 2021; Wang et al.,

2011). In hBN layers, the orientation of their OA was also used to strengthen the SPhP coupling (Barra-Bur-

illo et al., 2021), control the energy flow in waveguides (Maia et al., 2019), and tune their optical response
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Figure 1. Scheme of a uniaxial anisotropic film supporting the propagation of SPhPs along its interfaces

The film optical axis (OA) can be in the xy, xz, or yz plane.
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(Dai et al., 2014; Segura et al., 2018) in different directions. Biaxial anisotropic media, such as the van der

Waals crystal a-MoO3, also allows us to improve the propagation and detection of surface electromagnetic

waves (Ma et al., 2018; Zheng et al., 2020) through the orientation of their two optical axes and the expan-

sion of the frequency window supporting their propagation to near- and mid-infrared frequencies (Zou

et al., 2018). The orientation of the optical axes of uniaxial or biaxial anisotropic media thus represents a

degree of freedom to tailor the propagation and energy transport of surface electromagnetic waves. As

these parameters determine the thermal energy of SPhPs (Guo et al., 2021), the OA orientation is also ex-

pected to affect the SPhP thermal conductivity of anisotropic nanofilms; however, its impact is not explored

yet.

In this work, we quantify the SPhP thermal conductivity of an hBN nanofilm for different orientations of its

OA, thicknesses, and temperatures. This is done by deriving explicit expressions for the dispersion relation

of SPhPs and finding analytical formulas for their propagation wavevector. It is shown that the OA orienta-

tion has a strong impact on the SPhP frequency spectrum, but a weak one on the overall values of the SPhP

thermal conductivity. Higher conductivities are found for thinner and/or hotter nanofilms, which represents

the fingerprint of the SPhP heat transport.
THEORETICAL MODELING

Let us consider an anisotropic polar film of thickness d supporting the propagation of SPhPs along its in-

terfaces, as shown in Figure 1. The film and its surrounding medium are non-magnetic (magnetic perme-

ability equal to that of vacuum m0), as is the case of air and hBN considered in this work (Caldwell et al.,

2014). We consider that the SPhPs are thermally excited via the heating of the film surfaces x = 0 and l

to activate the phonons supporting the existence and propagation of SPhPs in a broad range of fre-

quencies (Tranchant et al., 2019). Assuming that these film surfaces are uniformly heated up, the heat prop-

agates along the x axis mainly and the in-plane thermal conductivity of the film due to the SPhP propaga-

tion is given by (Guo et al., 2021)

k =
1

2p2d

Z
ZuReðbÞLe

vf

vT
du; (Equation 1)

where Z is the Planck’s constant divided by 2p, Re(b) is the real part of the in-plane SPhP wavevector b, f =

½expðZu=kBTÞ � 1�� 1 is the Bose-Einstein distribution function, T is the film average temperature, kB is the

Stefan-Boltzmann constant, u is the spectral frequency, and Le is the effective propagation length deter-

mined by

Le =
p

2

�
1 � 4jð0Þ

pl

�
L; (Equation 2)

with l = l=L; EnðxÞ =
R p=2
0 cosn� 2ðqÞe� x=cosðqÞdq:, being the SPhP intrinsic propagation length, jðxÞ =

E5ðxÞ � E5ðl � xÞ and EnðxÞ =
R p=2
0 cosn� 2ðqÞe� x=cosðqÞdq. Equations (1) and (2) were derived under the

assumption of one-dimensional heat transport imposed by external boundary conditions and therefore

they are expected to be equally valid for isotropic and anisotropic films (Guo et al., 2021). Equation (2)

thus establishes that the transmission of SPhPs along the film is driven by the ratio l = l=L between its

length l and L. In the diffusive regime ðl [ 1Þ; jð0Þ=l/0; LezpL=2; and Equation (2) reduce to the pre-

vious expression derived by Chen et al., (2005). In the ballistic limit ðl � 1Þ, on the other hand, 1� 4jð0Þ=
plz2l=p and Lezl: Therefore, the effective propagation length of SPhPs cannot exceed the film length l,

even when their intrinsic propagation length L is much longer than l. The SPhP heat transport is hence
2 iScience 25, 104857, September 16, 2022
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enhanced along a film with long length l smaller than the SPhP propagation length ðl � LÞ, as established
by Equation (1). In general, according to Equations (1) and (2), the SPhP thermal conductivity depends on

the material properties through the product ReðbÞLe½2lImðbÞ� determined by the SPhP wavevector I(I),

which is the dispersion relation of SPhPs propagating along the film shown in Figure 1. As k increases

with this product, the optimal material configuration tomaximize the SPhP heat transport is given by a large

wavevector Re(b) and a long propagation length (small Im(I)). According to theMaxwell’s equations of elec-

tromagnetism, these two propagation parameters are expected to strongly depend on the orientation of

the optical axis (OA) of the uniaxial anisotropic film and therefore we are going to consider its three cases

shown in Figure 1.

Considering that there is no electrical source inside the film in Figure 1, the Maxwell’s equations describing

the propagation of the SPhP electromagnetic fields take the form

V 3 E +
vB

vt
= 0; (Equation 3a)
V 3 H � vD

vt
= 0; (Equation 3b)
V $D = 0; (Equation 3c)
V $B = 0; (Equation 3d)

where B = m0H and D = ε0εE, with ε0 being the permittivity of vacuum and ε the film relative permittivity

tensor defined by

ε =

2
4 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

3
5: (Equation 4)

Considering that the solutions of Equations (3a), (3b), (3c), and (3d) are electromagnetic waves with a wave

vector k, the fields can be decomposed as follows Fðx; tÞ = Re½Fexpðiðk $x � utÞÞ�. Under this decompo-

sition, Equations (3a), (3b), (3c), and (3d) reduce to

k 3 E � uB = 0; (Equation 5a)
k 3 H+uD = 0; (Equation 5b)
k $D = 0; (Equation 5c)
k $B = 0: (Equation 5d)

Note that the scalar product of Equations (5a) and (5b) by k yields Equations (5c) and (5d), so from now on,

we are going to consider Equations (5a) and (5b) only. The combination of these two latter equations yields

the following expression for the electrical field amplitude E

k 3 ðk 3 EÞ + k20εE = 0; (Equation 6)

where k0 =u/c k0 = u=c and c = 1=
ffiffiffiffiffiffiffiffiffiffi
ε0m0

p
is the speed of light in vacuum. Taking into account that the SPhPs

propagate along the x axis and must decay as they travel away from the film interfaces, their wave vector

can be written as follows k = ðb;0; ipÞ. The electrical field Eðx; tÞ = Re½Eexpðiðbx �utÞ �pzÞ� thus exhibits
its surface confinement through an exponential decay along the z axis, for Re(p) > 0. Under this condition,

Equation (6) establishes that the components of the electrical field E = ðEx ;Ey ;EzÞ are given by2
6664
p2 + ε11k

2
0 ε12k

2
0 ibp + ε13k

2
0

ε21k
2
0 p2 � p2

22 ε23k
2
0

ibp + ε31k
2
0 ε32k

2
0 �p2

33

3
7775
2
4Ex

Ey

Ez

3
5 = 0; (Equation 7)

where p2
nn = b2 � εnnk

2
0 . As the non-trivial solution of Equation (7) ðME = 0Þ is determined by the vanishing

determinant of its 3 3 3 matrix M, the values of the transverse wavevector p are found from the condition

jMj = 0. After finding p and solving Equation (7) for two components of the electrical field in terms of its

third one, the three components of the magnetic field H = ðHx;Hy ;HzÞ are determined by Equation (5a),

which yields

m0u
�
Hx ;Hy ;Hz

�
=
� � ipEy ; ipEx � bEz ;bEy

�
: (Equation 8)
iScience 25, 104857, September 16, 2022 3
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The amplitude components of the electrical and magnetic fields can thus be expressed in terms of a single

electrical field component that is determined by an external source. The specification of this source is, how-

ever, not required to derive the SPhP dispersion relation b(u) established by the boundary conditions at the

film interfaces z = G d/2 (placing the origin of the z axis at the middle of the film). Considering that the

spatial dependence of the electrical and magnetic fields along the z axis is respectively determined by
~E = Eexpð �pzÞ and ~H = Hexpð � pzÞ, for each value of p (Agranovich 2012), these conditions are given

by the continuity of the tangential field components, which read

z = � d
.
2 : ~Ex = ~Ex

<; ~Ey = ~Ey
<; ~Hx = ~Hx

<; ~Hy = ~Hy
<; (Equation 9a).
z = d 2 : ~Ex = ~Ex
>; ~Ey = ~Ey

>; ~Hx = ~Hx
>; ~Hy = ~Hy

>; (Equation 9b)

where the superscripts ‘‘<’’ and ‘‘>’’ stand for the fields below ðz < �d=2Þ and above ðz >d=2Þ the film. The

proposed methodology will now be applied to find the fields and dispersion relations for each of the three

OA orientations shown in Figure 1.
OA in the xy plane

In this case, the OA is considered to be along x0 axis of the crystallographic coordinate system x0y0z0 of the

uniaxial anisotropic film and therefore its relative permittivity tensor is this reference system can be written

as follows

ε0 =

2
4 εk 0 0
0 εt 0
0 0 εt

3
5: (Equation 10)

where εk and εt are the permittivity components parallel and perpendicular to the OA. Taking into account

that the SPhPs propagate along the x axis, which forms an angle q with the x0 one, the permittivity tensor of

the film in the SPhP coordinate system xyz is determined by a rotation around the z = z0 axis, as follows

ε = Rε0R
� 1 =

2
4 ε11 ε12 0
ε21 ε22 0
0 0 εt

3
5: (Equation 11)

where the rotating matrix R describing the transformation of coordinates in the xy plane is given by (Tao

et al., 2021)

R =

2
4 cosðqÞ � sinðqÞ 0
sinðqÞ cosðqÞ 0
0 0 1

3
5: (Equation 12)

After Equation (12) into Equation (11), one obtains the following nonzero permittivity components: ε11 =

εkcos 2ðqÞ+ εtsin 2ðqÞ; ε22 = εksin 2ðqÞ+ εtcos 2ðqÞ; and ε12 = ε21 = ðεk � εtÞsinðqÞcosðqÞ: The angle q be-

tween the SPhP propagation direction and the film OA thus represents a degree of freedom to tailor

the SPhP propagation through a permittivity tensor with on- and off-diagonal elements. While ε11 and

ε22 allow to combine the pro-polariton features of both εk and εt, ε12 = ε21 inserts new characteristics

that are fundamentally different from those of the non-rotated and isotropic cases, provided that qs 0;

p=2.

After reducing theMmatrix in Equation (7) with the identifies ε13 = ε23 = ε31 = ε32 = 0, the condition jMj = 0

yields

�
p2 � p2

22

��
p2 � ε11

ε33
p2
33

�
+
ε12ε21

ε33
p2
33k

2
0 = 0: (Equation 13)

The transverse wavevector p has therefore four values that are strongly determined by the product ε12ε21 of

the off-diagonal elements of the film permittivity tensor, such that

ε12ε21 = 0 : p = Gp22;p = G

ffiffiffiffiffiffi
ε11

ε33

r
p33; (Equation 14a)

ε ε s0 : p = Ga ;Ga ; (Equation 14b)
12 21 + �

where the roots aGare given by
4 iScience 25, 104857, September 16, 2022
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aG =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � q

qr
; (Equation 15a)

2 ε11 2
2c = p22 +
ε33

p33; (Equation 15b)

2 � �

q =

p33

ε33
ε11p

2
22 + ε12ε21k

2
0 : (Equation 15c)

Note that, in the limit ε12ε21/0, the values of aG reduce to those of p in Equation (14a), as established by

Equation (13).

ε12ε21 = 0

This condition appears for q = 0,p/2 and allows splitting the field components in terms of transverse mag-

netic (TM) and transverse electrical (TE) waves, as shown below.

p = G p22. In this case, Equation (7) ðMGEG = 0Þ written for each value of p = G p22, establishes that

EG
x = EG

z = 0 and therefore HG
y = 0, as predicted by Equation (8). The only non-vanishing electrical field

component Ey is thus perpendicular to the SPhP propagation direction (TE waves) and determines the

magnetic field components Hx and Hz via Equation (8). As there are two values for p, the most general so-

lutions for the tangential fields ~Ey and ~Hx are

~Ey = Ae�p22z +Bep22z ; (Equation 16a)
~ �p22z p22z
m0uHy = ip22ð � Ae + Be Þ; (Equation 16b)

where A = E +
y , B = Ey

�, and the coefficients in Equation (16b) were derived by applying Equation (8). By

analogy, the tangential components of the fields below (~Ey
< ~Hx

<) and above (~Ey
> ~Hx

>) the film can be writ-

ten as follows

~Ey
< = A<e

psðz +d=2Þ; (Equation 17a)
~ < psðz +d=2Þ
m0uHy = ipsA <e ; (Equation 17b)

~ > �psðz�d=2Þ
Ey = A >e ; (Equation 17c)
~ > �psðz�d=2Þ
m0uHy = � ipsA >e ; (Equation 17d)

where p2
s = b2 � εsk

2
0 , with εs being the relative permittivity of the isotropic medium surrounding the film.

The exponential functions in Equations (17a), (17b), (17c), and (17d) were chosen in such a way that the fields

fulfill the physical constraint of decaying to zero for jzj/N and Re ðpsÞ> 0. The combination of Equations

(16) and (17) with the relevant boundary conditions in Equations (9a) and (9b) yields the following dispersion

relations related to even ð~Eyð � zÞ = ~EyðzÞÞ and odd ð~Eyð � zÞ = � ~EyðzÞÞ modes:

Even mode. According to the boundary conditions in Equation (9) and the fields in Equations (16) and

(17), this symmetric mode is determined by ~EyðzÞ = 2Acoshðp22zÞ and the dispersion relation

ps + p22tanh
�
p22d

	
2
�
= 0: (Equation 18)

The SPhP dispersion relation of this mode of the TE waves thus depends on the film permittivity via its ε22
component only. By writing the in-plane wavevector as b = k0

ffiffiffi
ε

p
, the transverse wavevectors take the form

pl = k0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε � εl

p
and Equation (18) becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε � εs

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε � ε22

p
tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε � ε22

p
l
�
= 0; (Equation 19)

where l = k0d=2 is the normalized film thickness. Equation (19) can analytically be solved by means of the

perturbation method for l < 1, which is the case of interest in this work, to strength the coupling of SPhPs

propagating along the film interfaces and therefore to enhance their contribution to the film thermal con-

ductivity defined in Equation (1). In practice, this condition (l < 1) is usually well satisfied by polar nanofilms

thinner than 100 nm (Ordonez-Miranda et al. 2013, 2014b). For an approximation up to l4, Equation (19)

takes the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε � εs

p
+ ðε � ε22Þl

�
1 � ε � ε22

3
l2
�
= 0 (Equation 20)

Equation (20) thus indicates that the effective permittivity ε is given by the following series expansion
iScience 25, 104857, September 16, 2022 5
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ε = εs + ε
ð2Þl2 + ε

ð4Þl4: (Equation 21)

By inserting Equation (21) into Equation (20), one finds

ε
ð2Þ = ðε22 � εsÞ2; (Equation 22a)

4

ε
ð4Þ = �

3
ðε22 � εsÞ3: (Equation 22b)

Equations (21) and (22) establish that the leading terms of the transverse wavevectors are ps/k0ðε22 � εsÞl,
p22/k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εs � ε22

p
, which explicitly indicate that, in a lossless film (Im (ε22) = 0), this evenmode does not sup-

port the surface confinement (Re(ps) = ps > 0 and Re(p22) =p22>0 ) of the TEwaves and therefore there are no

SPhPs. On the other hand, for a lossy film (Im(ε22) > ), as is the case of hBN considered in this work, these TE

waves do support the propagation of SPhPs for frequencies fulfilling the condition Reðε22Þ> εs (Re(ps) >0).

This condition usually appears at frequencies much lower and higher than the resonance one of Reðε22Þ,
for which Imðε22Þ/0. In this case, Reðp22Þ/0:5k0Imðε22Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðε22Þ � εs

p
> 0, which confirms that these TE

waves are actually SPhPs with weak surface confinement.

Odd mode. According to the boundary conditions in Equation (9) and the fields in Equations (16) and

(17), this antisymmetric mode is defined by ~EyðzÞ = 2Bsinhðp22zÞ and the dispersion relation

p22 + pstanh
�
p22d

	
2
�
= 0: (Equation 23)

By applying the perturbation method to Equation (23), as we did it for the even mode in Equation (18), one

can show that the odd mode of the TE waves does not have a solution for l< 1 and therefore it does not

support the propagation of SPhPs along nanofilms. This mode hence does not contribute to the SPhP ther-

mal conductivity of the film.

p = G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11=ε33p33

p
hGq22. In this case, Equation (7) ðMGEG = 0Þ determines that

EG
y = 0 and EG

z = G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11=ε33

p
bEG

x =p33; for which Equation (8) establishes that HG
x = HG

z = 0 and

m0uH
G
y = Gi

ffiffiffiffiffiffiffiffiffiffiffiffi
ε11ε33

p
k20E

G
x =p33. The only non-vanishing magnetic field component Hy is thus perpendicular

to the SPhP propagation direction (TM waves). For the two values of p, the most general solutions for the

tangential fields ~Ex and ~Hy are thus given by

~Ex = Ae�q22z +Beq22z ; (Equation 24a)
~ ffiffiffiffiffiffiffiffiffiffiffiffip 2 �q22z q22z
m0up33Hy = i ε11ε33k0ðAe � Be Þ: (Equation 24b)

Similarly, the components of the tangential fields below (~Ex
< ~Hy

<) and above (~Ex
> ~Hy

>) the film can be writ-

ten as follows

~Ex
< = A<e

psðz +d=2Þ; (Equation 25a)
~ < 2 psðz +d=2Þ
m0upsHy = � iεsk0A<e ; (Equation 25b)
~ > �psðz�d=2Þ
Ex = A >e ; (Equation 25c)
~ > 2 �psðz�d=2Þ
m0upsHy = iεsk0A>e ; (Equation 25d)

where the transverse wavevector ps in the surrounding medium is defined just underneath Equation (17d).

The combination of Equations (24) and (25) with the boundary conditions in Equations (9a) and (9b) yields

the following dispersion relations related to even ð ~Hyð � zÞ = ~HyðzÞÞ and odd ð ~Hyð � zÞ = � ~HyðzÞÞmodes:

Even mode. According to the boundary conditions in Equation (9) and the fields in Equations (24) and

(25), the dispersion relation of this symmetric mode ð ~Hyð � zÞ = ~HyðzÞÞ is
ffiffiffiffiffiffiffiffiffiffiffiffi
ε11ε33

p
ps + εsp33tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11=ε33

p
p33d

.
2
�
= 0: (Equation 26)

In contrast to the even mode of the TE waves (see Equation (18)), the dispersion relation of this even mode

does depends on two film permittivity components ε11 and ε33. This anisotropy has, however, a weak impact

of wavevector b = k0
ffiffiffi
ε

p
of SPhPs propagating along a thin enough nanofilm ðl = k0d=2 < 1Þ, as estab-

lished by the perturbation method. By expanding the hyperbolic tangent in Equation (26) in a power series

of l and following a similar procedure to the one developed in subsection p = G p22 above, this method

yields (for an approximation up to l4)
6 iScience 25, 104857, September 16, 2022
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ε = εs + ε
2
s

�
1 � εs

ε33

�2

l2 + 2ε2s

�
1 � εs

ε33

�3�
ε11

3
� ε

2
s

ε33

�
l4: (Equation 27)

Equation (27) thus explicitly shows that the SPhP propagation is driven by the permittivity component ε33
mainly, as the nanofilm thickness scales down. The confinement condition ReðpsÞ> 0 with ps = k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε � εs

p
establishes that the TM waves of this even mode are SPhPs for all frequencies satisfying the condition

jε33j2 � εsReðε33Þ> 0, which also holds for isotropic nanofilms (Ordonez-Miranda et al., 2021).

Odd mode. According to the boundary conditions in Equation (9) and the fields in Equations (24) and

(25), this antisymmetric mode ð ~Hyð � zÞ = � ~HyðzÞÞ is defined by the following dispersion relation

εsp33 +
ffiffiffiffiffiffiffiffiffiffiffiffi
ε11ε33

p
pstanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11=ε33

p
p33d

.
2
�
= 0: (Equation 28)

By applying the perturbation method, one finds that Equation (28) does not have a solution for the SPhP

wavevector b = k0
ffiffiffi
ε

p
, as is the case of the odd mode of the TE waves. The odd mode of the TM waves

is thus not of interest for determining the SPhP thermal conductivity considered in this work.

ε12ε21s0

In this case, Equation (7) establishes that the amplitude components of the electrical field are related by

p2
33E

G
zG = GibaGEG

xG and ε21k
2
0E

G
xG = ðp2

22 � a2
GÞEG

yG, where ðEG
x + ;E

G
y + ;E

G
z + Þ and ðEG

x�;E
G
y�;E

G
z�Þ are

defined for p = G a+ and p = G a�, respectively. In contrast to the TE and TM waves considered in sub-

sections p = G p22 and p = G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11=ε33p33hGq22

p
above, here any of the electrical field components van-

ishes and therefore the SPhP propagation can no longer be described in terms of these waves, for any of

the four roots of p. The tangential components of the electrical field below ð~Ex
<; ~Ey

<Þ, inside ð~Ex ; ~EyÞ, and
above ð~Ex

>; ~Ey
>Þ the film can therefore be written as follows

~Ey = A+ e
�a+ z +A �e

a+ z +B+ e
�a�z +B �e

a�z ; (Equation 29a)
2 ~

�
2 2

� �a+ z a+ z

ε21k0Ex = p22 � a+ ðA+ e +A �e Þ+�
p2
22 � a 2

�
�ðB+e

�a�z +B �e
a�zÞ; (Equation 29b)

~ < ~ <
Ex

A <
=

Ey

B <
= epsðz +d=2Þ; (Equation 29c)

~ > ~ >
Ex

A >
=

Ey

B >
= e�psðz�d=2Þ: (Equation 29d)

In addition, the corresponding tangential components of the magnetic field can readily be obtained by

means of Equations (8) and (29), and hence its explicit expressions will be omitted here, for the sake of

conciseness. After inserting the tangential components of the electrical and magnetic fields into the

boundary conditions in Equations (9a) and (9b), one obtains a system of eight equations, whose solutions

yields the following dispersion relations

�
p2
22 � a2

+

��ε33psa+ + εsp
2
33tanh

�
a+d

	
2
�

a+ +pstanh
�
a+d

	
2
� �

=

�
p2
22 � a 2

�
��ε33psa � + εsp

2
33tanh

�
a �d

	
2
�

a � +pstanh
�
a �d

	
2
� �

;

(Equation 30a)

� 2
� 	 ��
�

p2
22 � a2

+

� εsp33 + ε33psa+ tanh a+d 2

ps +a+ tanh
�
a+d

	
2
� =

�
p2
22 � a 2

�
��εsp2

33 + ε33psa �tanh
�
a �d

	
2
�

ps +a �tanh
�
a �d

	
2
� �

:

(Equation 30b)

These transcendental equations for the SPhP wavevector b(u) cannot be solved analytically for an arbitrary

film thickness d, due to their hyperbolic tangents. However, for a thin nanofilm ðl = k0d=2 < 1Þ of interest in
this work, the Taylor series expansion of these tangents in power of l enables to find explicit expressions for

b by applying the perturbation method used in subsection . For an approximation up to l4, this method

predicts that the effective permittivity ε = ðb=k0Þ2 of the SPhP mode in Equation (30a) is precisely given

by Equation (27) derived for the even mode of the TM waves found for q = 0;p/2. As the leading coefficient

of l2 in Equation (27) depends on the film permittivity through ε33 = εt only, this fact indicates that the SPhP
iScience 25, 104857, September 16, 2022 7
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mode in Equation (30a) is pretty much independent of the OA orientation for a thin enough nanofilm. On

the other hand, the perturbation solution of Equation (30b) in terms of the effective permittivity ε is given by

Equations (21) and (22) that were derived for the even mode of the TE waves. Therefore, in contrast to the

SPhP mode in Equation (30a), the one in Equation (30b) does depend on the OA orientation, given that the

leading coefficient of l2 in Equation (21) is driven by the film permittivity component ε22(q) that depends on

the angle q, as established just below Equation (12). The SPhP modes in Equations (30a) and (30b) are thus

the respective generalization of the TM and TE modes that show up when the SPhP coordinate axes (x,y,z)

are aligned with the crystallographic ones of the anisotropic film (q = 0;p/2). This is reasonable, given that

the roots of p in Equation (13) reduce to those found for the TM and TE waves, in the limit ε12ε21/0.

Furthermore, the fact that, for each mode, the leading term of the SPhP wavevector b depends on a single

component of the film permittivity tensor indicates that the anisotropic effects are only weakly present on

the SPhP propagation along a thin enough nanofilm.
OA in the xz plane

In this case, the permittivity tensor of the film in the SPhP coordinate system xyz is determined by a rotation

around the y = y0 axis (see Figure 1) and therefore it is given by

ε = Rε0R
� 1 =

2
4 ε11 0 ε13

0 εt 0
ε31 0 ε33

3
5: (Equation 31)

where the rotating matrix R describing the transformation of coordinates in the xz plane is given by (Tao

et al., 2021)

R =

2
4 cosðqÞ 0 � sinðqÞ
0 1 0
sinðqÞ 0 cosðqÞ

3
5: (Equation 32)

The combination of Equations (10), (31) and (32) yields the following nonzero permittivity components:

ε11 = εkcos 2ðqÞ+ εtsin 2ðqÞ, ε33 = εksin 2ðqÞ+ εtcos 2ðqÞ, and ε13 = ε31 = ðεk � εtÞsinðqÞcosðqÞ. As in

the case of the OA in the xy plane, the off-diagonal elements ε13 = ε31 vanish for q = 0,p/2, that is to say,

when the film crystallographic axes are parallel to the SPhP coordinate axes x; y; z. After reducing the M

matrix in Equation (7) with the identifies ε12 = ε21 = ε23 = ε32 = 0, the condition jMj = 0 yields

p = Gp22; (Equation 33a)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

p = pG = icG q � c2; (Equation 33b)

where the parameters c and q are defined by

2c = b
ε13 + ε31

ε33
; (Equation 34a)

2 2
q =
ε11p33 + ε13ε31k0

ε33
: (Equation 34b)

Note that the two roots in Equation (33a) correspond to the ones driving the propagation of TE waves

considered in Equations (14a) and (14b), while those in Equation (33b) reduce to p = G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11=ε33p33

p
, for

ε13 and ε31/0. This fact indicates that the SPhP propagation for q = 0,p/2 can be described in terms of

TE and TM waves, as established by Equation (14a) and the results obtained in Equations (14a) and

(14b). For 0% q%p=2, on the other hand, Equation (33a) establishes that two of the SPhP dispersion rela-

tions are still given by the even and oddmodes of the TE waves in Equations (18) and (23), provided that the

permittivity component ε22 = εt, as defined by Equation (31). After solving Equation (7) for the electrical

field components related to the other two roots of p in Equation (33b) and applying the boundary condi-

tions in Equations (9a) and (9b) for the relevant tangential field components, as we did it in subsection

ε12ε21 = 0, one obtains the following additional dispersion relation

ps

�
ε33p+ � iε31b

�
+ εsp

2
33tanh

�
p+d

	
2
�

εsp
2
33 +ps

�
ε33p+ � iε31b

�
tanh

�
p+d

	
2
� =

ps

�
ε33p � � iε31b

�
+ εsp

2
33tanh

�
p �d

	
2
�

εsp
2
33 +ps

�
ε33p � � iε31b

�
tanh

�
p �d

	
2
�:

(Equation 35)
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In the limit of ε13 = ε31 = 0, Equation (35) splits into the dispersion relations of the TE and TM waves

defined respectively in Equations (26) and (28), as expected. These asymptotic dispersion relations of

the TE and TM waves are the corresponding ones of the ordinary and extraordinary modes reported in

the literature for a uniaxil film (Alvarez-Perez et al., 2019). In addition, the application of the perturbation

method to Equation (35) indicates that SPhP propagation along a thin nanofilm ðl = k0d=2 < 1Þ is driven
by the effective permittivity ε = (b/k0)

2 given in Equation (27). This fact confirms that, as in the case of the

OA in the xy plane, the propagation and therefore the energy transport of SPhPs along a thin enough nano-

film can be described in terms of even (TM-ike) and odd (TE-like) waves, regardless of the orientation of its

OA.
OA in the yz plane

Considering that the OA of the film is along the y0 axis of the crystallographic coordinate system x0y0z0, its

relative permittivity tensor in this reference system can be written as follows

ε0 =

2
4 εt 0 0
0 εk 0
0 0 εt

3
5: (Equation 36)

Therefore, according to Figure 1, the permittivity tensor in the SPhP coordinate system xyz is determined

by a rotation around the x = x0 axis and is given by

ε = Rε0R
� 1 =

2
4 εt 0 0
0 ε22 ε23

0 ε32 ε33

3
5: (Equation 37)

where the rotating matrix R describing the transformation of coordinates in the yz plane reads

R =

2
4 1 0 0
0 cosðqÞ � sinðqÞ
0 sinðqÞ cosðqÞ

3
5: (Equation 38)

The combination of Equations (36), (37), and (38) yields the following nonzero permittivity components:

ε22 = εkcos 2ðqÞ+ εtsin 2ðqÞ, ε33 = εksin 2ðqÞ+ εtcos 2ðqÞ, and ε23 = ε32 = ðεk � εtÞsinðqÞcosðqÞ. As in

the case of the OA in the xy and xz planes, the off-diagonal elements ε23 = ε32 vanish for q = 0;p= 2. Given

that ε12 = ε13 = ε21 = ε31 = 0, the condition jMj = 0 of the M matrix in Equation (7) yields

�
p2 � p2

22

��
p2 � ε11

ε33
p2
33

�
�
�
p2 + ε11k

2
0

�
ε23ε32

ε33
k2
0 = 0: (Equation 39)

For ε23ε32 = 0, the four values of the transverse wavevector are therefore given by the corresponding ones

to TE ðp = Gp22Þ and TM ðp = G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε11=ε33

p
p33Þwaves, as detailed in subsection ε12ε21 = 0. For ε23ε32s0, on

the other hand, the solutions of Equation (39) are

p = Ga+ ;Ga �; (Equation 40a)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqr

aG = cG c2 � q; (Equation 40b)

1 � �

2c = p2

22 +
ε33

ε11p
2
33 + ε23ε32k

2
0 ; (Equation 40c)

ε11
�

2 2 4
�

q =
ε33

p22p33 � ε23ε32k0 : (Equation 40d)

Equations (40a) and (40d) hold for any angle q˛ ½0;p =2�, as the values of p reduces to those of TE and TM

waves for ε23ε32/0, as established by Equation (39). After solving Equation (7) for the electrical field com-

ponents related to the four roots of p in Equation (40a) and applying the boundary conditions in Equations

(9a) and (9b) for the relevant tangential field components, as we did it in subsection ε12ε21 = 0, one obtains

the following dispersion relations 
a2

+ � p2
22

a2
+ + ε11k

2
0

!�
εsa+ + ε11pstanh

�
a+d

	
2
�

a+ +pstanh
�
a+d

	
2
� �

=

 
a 2

� � p2
22

a 2
� + ε11k

2
0

!�
εsa � + ε11pstanh

�
a �d

	
2
�

a � +pstanh
�
a �d

	
2
� �

;

(Equation 41a)
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a2

+ � p2
22

a2
+ + ε11k

2
0

!�
ε11ps + εsa+ tanh

�
a+d

	
2
�

ps +a+ tanh
�
a+d

	
2
� �

=

 
a 2

� � p2
22

a 2
� + ε11k

2
0

!�
ε11ps + εsa �tanh

�
a �d

	
2
�

ps +a �tanh
�
a �d

	
2
� �

:

(Equation 41b)

As in previous cases, for a thin nanofilm ðl = k0d=2 < 1Þ of interest in this work, the solutions of Equations

(41a) and (41b) for the SPhP wavevector b can analytically be obtained through the perturbation method.

For an approximation up to l2, this method determines that the effective permittivity ε = ðb=k0Þ2 of

the SPhP mode in Equation (41a) depends on the film permittivity through its ε11 component only and is

given by

ε = εs +

�� εs

ε11l

�2

: (Equation 42)

The transverse wavevector outside of the film ps = k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε � εs

p
= � k0εs=ε11l hence establishes that the sur-

face confinement of this SPhP mode strengthens ðReðpsÞ > 0Þ for thinner films, provided that Reðε11Þ< 0. In

addition, the real and imaginary parts of the SPhP wavevector b = k0
ffiffiffi
ε

p
= � k0ðεs =ε11l + ε11l =2Þ take

higher values for thinner films, such that its ratio ReðbÞ=ImðbÞz � Reðε11Þ=Imðε11Þ becomes pretty much in-

dependent of the film thickness. This SPhP mode is thus characterized by a short propagation length

L = ð2ImðbÞÞ� 1 � l and appears within a relatively narrow interval of frequencies fulfilling the condition

Reðε11Þ< 0. Therefore, the contribution of the SPhP mode in Equation (41a) to the thermal conductivity

in Equation (1) is expected to be limited if not negligible. The dispersion relation in Equation (41b), on

the other hand, has the following perturbation solutions for an approximation up to l2 on the effective

permittivity

ε = εs +
1

2

�
a2 � 2bG a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p �
l2; (Equation 43a)

2
aε33 = εs � ε22ε33 + ε23ε32; (Equation 43b)

bε = ε ½ðε � ε Þðε � ε Þ � ε ε �: (Equation 43c)
33 s s 22 s 33 23 32

For ε23ε32s0 ð0 < q <p=2Þ, these two asymptotic solutions for ε are different than the typical ones obtained

for the TE and TM waves found when the OA is in the xy and xz planes. This fact indicates that the propa-

gation of SPhPs along a nanofilm with its OA in the yz plane cannot be described in terms of TE and TM

waves. However, when ε23ε32 = 0 ðq = 0;p=2Þ, Equation (43a) reduces to ε = εs + ðε22 � εsÞ2l2 and ε =

εs + ε
2
s ð1 � εs=ε33Þ2l2, which correspond to the effective permittivities for the TE (Equation (21)) and TM

(Equation (27)) waves, respectively. The off-diagonal components of the film permittivity tensor are thus

responsible for the propagation of SPhPs via non-TE and non-TM waves, whose propagation wavevector

b = k0
ffiffiffi
ε

p
is driven by ε22, ε33, and ε23, ε32.
RESULTS AND DISCUSSION

The propagation and thermal conductivity of the SPhPs along an hBN nanofilm is quantified and analyzed

in this section. The hBN is a uniaxial anisotropic material able to support the propagation of SPhPs in a wide

frequency range (Caldwell et al., 2014; Tao et al., 2021) and therefore can be considered as a good SPhP

conductor. The permittivity components parallel ðεkÞ and perpendicular ðεtÞ to the OA of hBN are well

described by the Lorentz model (Tao et al., 2021)

εn = εN;n

 
1 +

u2
L;n � u2

T ;n

u2
T ;n � u2 � ignu

!
; (Equation 44)

where uL,n and uT,n are the respective longitudinal and transverse optical phonon frequencies, εN;n is a

high-frequency permittivity constant, and gn is the damping parameter along the direction n = k;t.

The values of these parameters are summarized in Table 1. The permittivity components of hBN do not

change significantly with temperature, for temperatures between 300 K and 700 K (Zhang et al., 2012)

and therefore the calculations in this work are done with its room temperature values in Equation (44).

The frequency spectrum of the real and imaginary parts of the hBN relative permittivity components par-

allel ðεkÞ and perpendicular ðεkÞ to the OA is shown in Figure 2. The resonance peaks of ImðεkÞ and ImðεtÞ at
23.4 and 41.0 THz indicate that hBN absorbs a significant amount of energy from the SPhP electromagnetic
10 iScience 25, 104857, September 16, 2022



Table 1. Parameters determining the hBN permittivity components in Equation (10) (Caldwell et al., 2014; Wu and

Fu 2021)

n = t n = k
εN;n 4.87 2.95

uL,n (Trad/s) 303 156

uT,n (Trad/s) 258 147

gn (Trad/s) 0.94 0.75
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field and therefore limits its propagation at those frequencies. By contrast, the dips of ReðεkÞ and ReðεtÞ
occur at 23.5 and 41.1 THz that represent the frequencies at which the SPhPs usually exhibit the strongest

confinement to the interface (Ordonez-Miranda et al., 2021; Wu et al., 2020). The colored zones, on the

other hand, stand for the Reststrahlen bands ðReðεnÞ < 0Þ defining the range of frequencies that would sup-

port the propagation of SPhPs via TMwaves in absence of absorption ðImðεnÞ = 0Þ (Ordonez-Miranda et al.,

2021;Wu et al., 2020). However, given that hBN is an absorbingmaterial ðImðεnÞ > 0Þ, SPhPs are expected to

propagate with frequencies inside and outside of these bands, as reported for isotropic nanofilms (Ordo-

nez-Miranda et al., 2021) and is shown below.

According to the results obtained in subsection ε12ε21 = 0 for the OA in the xy axis, the strong coupling

propagation of SPhPs along the upper and lower interfaces of a nanofilm ðl � 1Þ is described by even

(TM-like) and odd (TE-like) modes appearing for an arbitrary angle q. The SPhP confinement condition

ðReðpsÞ > 0Þ along with Equations (21) and (27) establishes that these modes appear in the range of fre-

quencies determined by the inequalities Jn>0, where

Jeven = 1 � εsReðε33Þ
jε33j2

; (Equation 45a)
Jodd = Reðε22Þ � εs: (Equation 45b)

The existence of SPhPs along a thin nanofilm ðl � 1Þ is thus determined by its permittivity components

perpendicular to their propagation direction (x axis) and the permittivity of its surrounding medium. While

the odd mode exists for all frequencies fulfilling the condition Reðε22Þ> εsð = 1 for vacuum or airÞ, the
even one appears for positive and negative values of Reðε33Þ. In this latter case, Equation (45a) shows

that the range of allowed frequencies reduces to those within the negative peak of Reðε33Þ< 0 (Reststrahlen

band) for εs/N only. For any other case of practical interest, the interval of frequencies supporting the

propagation of SPhPs is usually much broader than the Reststrahlen band, as was reported in the literature

(Chen and Chen 2007; Gluchko et al., 2017; Ordonez-Miranda et al., 2021) for isotropic films and is pre-

dicted by the existence function Jeven shown in Figure 3. When the OA is in the xy plane, ε33 = εt (see
Figure 2. Real and imaginary parts of the hBN relative permittivity components parallel ðεkÞ and perpendicular

ðεtÞ to the OA

The colored zones stand for the Reststrahlen bands ðReðεÞ < 0Þ.
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Figure 3. Frequency spectrum of the SPhP existence functions Jeven and Jodd of an hBN nanofilmwith its OA in the

xy plane and surrounded by vacuum ðεs = 1Þ
The colored areas represent the band gaps for the existence and propagation of SPhPs.
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Equation (11)) and therefore the frequency band gap of Jeven (gray zone) is independent of the angle q and

shows up just above the corresponding Reststrahlen band (greenish zone in Figure 2). By contrast, the band

gaps (colored areas) of Jadd in Figure 3 do involve frequencies inside the corresponding Reststrahlen bands

of εt and εk and depend on q Zq due to the function ε22(q) defined just below Equation (12). As SPhPs do not

exist within these frequency band gaps, they have to be excluded from the integral in Equation (1).

The frequency dependence of the in-plane wavevector Re(b) and propagation length L of the even and

odd modes of SPhPs propagating along the interfaces of a 50-nm-thick hBN nanofilm suspended in vac-

uum (or air) are shown in Figures 4A and 4B, respectively. For both modes, Re(b) generally increases

with the film thickness and frequency through values very close to those of the light line (k0 = u/c). The

SPhPs thus show a photon-like behavior characterized by a group velocity V = vu=vReðbÞ close to that of

light in vacuum (V/c). As the frequency increases, V decreases due to the increase of Re(b) through values

higher than those of the light line. The fact that Re(b)(odd mode)>Re(b)(even mode) indicates that the SPhP

oddmode is slower than the even one. In addition, for a given frequency, the propagation length (>0.1 mm)

of the evenmode is much longer than the corresponding one of the oddmode, as shown in Figure 4B. Note

that both modes exhibit frequency band gaps (colored regions) for which there is no propagation of SPhPs,

in agreement with the predictions of the SPhP existence functions shown in Figure 3. As the band gap of the

evenmode is narrower than the thicker one of the oddmode, the formermode supports the propagation of

SPhPs in a wider range of frequencies than the latter one. Based on these facts, it is clear than the trade-off

between Re(b) and L is better optimized by the even mode via the product ReðbÞL, which enhances the

SPhP thermal conductivity defined in Equation (1). Furthermore, as the increase of Re(b) with the film thick-

ness (Figure 4A) is relatively small with respect to the corresponding reduction of L for both modes (Fig-

ure 4B), the product ReðbÞL and hence the SPhP thermal conductivity (Equation (1)) is expected to take

lower values of thicker films.

Figure 5A shows the SPhP thermal conductivity spectrum ku established by Equation (1) ðk =
R
kuduÞ and

calculated with the results shown in Figure 4 for the even and odd modes of SPhPs propagating along an

hBN nanofilm. Even though the spectra of both SPhP modes are pretty much the same for two represen-

tative temperatures, the contribution of the even mode is expected to be higher than that of the odd one,

due to its relatively narrow frequency band gap. The negligible difference between the values of ku for the

even and odd modes, and any of their allowed frequencies, arises from the fact that the effective propaga-

tion length for both modes is nearly equal to the nanofilm length ðLe zlÞ, due to the SPhP ballistic prop-

agation ðL [ lÞ for the considered length l = 1 mm that is typically used in practice (Wu et al., 2020), for a

suspended nanofilm. Note that themajor contribution to ku arises from frequenciesu/2p<100 THz in which

the SPhPs propagate with pretty much the same wavevector (and speed) than light, as shown in Figure 4A.

The photon-like nature of SPhPs is thus responsible of their main contribution to the SPhP thermal
12 iScience 25, 104857, September 16, 2022
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Figure 4. Propagation parameters of SPhPs

SPhP in-plane (a) wavevector Re(I) and (b) propagation length L = ½2ImðbÞ�� 1 as functions of frequency (Ordonez-Miranda

et al., 2013), for the even and odd modes propagating along an hBN nanofilm with its OA in the xy plane and surrounded

by vacuum (εs = 1). The legend is (a) also holds for (b), where the colored regions represent the range of frequencies for

which there is no propagation of SPhPs. Calculations were done for q = p/4.
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conductivity. Given that in the ballistic regime the product ReðbÞLezk0l, Equation (1) establishes that the

maximum contribution to ku shows up at the characteristic frequency uc=2p (THz) = 0:05367T (K), which

represents the Wien’s displacement law for ballistic SPhPs. This linear relation of uc with T drives the in-

crease of the SPhP thermal conductivity k with temperature, as shown in Figures 5B and 5C. While

the contribution of the even mode is independent of the angle q, as predicted by Equation (27) for

ε33 = εt, the one of the odd mode exhibits a slight increase with q, specially at high temperature. For a

given temperature, the minimum thermal conductivity is obtained with the OA aligned (q = 0) with the

SPhP propagation direction (x axis), while its maximum is achieved when the OA is along the y axis (q =

p/2) and therefore perpendicular to the SPhP direction. The increase of kðodd modeÞ with q is, however,

less significant than those observed with the rising of temperature and reduction of the film thickness.

This behavior of kðodd modeÞ and kðeven modeÞ with T and d is opposite to the typical one exhibited

by the phonon thermal conductivity and therefore it represents the fingerprint of the SPhP heat transport,

as reported in the literature (Chen et al., 2005; Ordonez-Miranda et al., 2013; Tranchant et al., 2019; Wu

et al., 2020). Furthermore, note that for any T and d, the contributions of the even and odd modes are quite

similar and therefore both have a sizable contribution to the total ðkðeven modeÞ + kðodd modeÞÞ SPhP
thermal conductivity. Very similar results for the propagation parameters and SPhP thermal conductivity

are obtained for an hBN nanofilm with its axis in the xz and yz planes, as shown in the supplementary ma-

terial. This fact numerically confirms that the SPhP heat transport along an anisotropic hBN nanofilm is

pretty much independent of the orientation of its OA and therefore has a nearly isotropic behavior.
iScience 25, 104857, September 16, 2022 13
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Figure 5. SPhP thermal conductivity of an hBN nanofilm

SPhP thermal conductivity spectrum along with its integrated values for the (b) even and (c) odd modes as functions of the

average temperature of an hBN nanofilm with its OA in the xy plane and surrounded by vacuum (εs = 1). Calculations were

done for d = 50 nm, q = p/4, l = 1 mm, and two representative temperatures.
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The near-isotropic SPhP thermal conductivity values obtained for an hBN nanofilm thicker than 25 nm

are much smaller than the typical ones (from 200 to 300 Wm�1K�1) of the phonon counterpart for a sus-

pended nanofilm with a thickness of a few nanometers and temperatures higher than room temperature
14 iScience 25, 104857, September 16, 2022
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(Jo et al., 2013). However, since the SPhP thermal conductivity is proportional to d�3, as established by

Equation (1) for the ballistic regime, the SPhP heat transport is expected to be comparable to that of pho-

nons in a crystalline hBN film with a thickness d of a few nanometers. On the other hand, in amorphous hBN

with a relatively low phonon thermal conductivity (around 3 m�1K�1), the SPhP thermal conductivity could

even become the dominant contribution as the film thickness reduces to nanoscales.

Conclusions

We have theoretically shown that the heat transport of surface phonon-polaritons propagating along a uni-

axial anisotropic nanofilm is nearly isotropic despite of the strong anisotropy of its permittivity compo-

nents. This has been done by deriving simple and analytical expressions for the polariton in-plane wave-

vector, whose real and imaginary parts drives the polariton thermal conductivity of a polar nanofilm. It

has been shown that the propagation of polaritons is determined by even and odd modes that generalize

the transverse magnetic and transverse electrical ones that typically appear in isotropic films. The fre-

quency spectrum of these generalized modes can efficiently be tuned with the angle between the nanofilm

optical axis and their propagation direction. For an hBN nanofilm, both the even and odd modes have a

remarkable contribution to the total polariton thermal conductivity, which takes a value higher than 5.6

Wm�1K�1 for a 25-nm-thick nanofilm at 500 K, when the optical axis is in its plane. Even though the polariton

thermal conductivity increases for a thinner and/or hotter nanofilm, its dependence on the orientation of its

optical axis is weak, even at high temperature. This near-isotropic response of an hBN nanofilm results from

the polariton ballistic behavior induced by the ultra-long propagation lengths (> 1 mm) for most fre-

quencies. The obtained results thus highlight key features of the propagation and heat transport of anisot-

ropy-driven polaritons and could be useful for improving the heat dissipation along polar nanostructures.

Limitations of the study

As pointed out in section Theoretical modeling, the obtained analytical expressions for the effective permit-

tivity are valid for nanofilms typically thinner than 200 nm. For these thicknesses, the temperature gradient

across the nanofilm can be neglected and Equation (1) accurately predicts its SPhP thermal conductivity.
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