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Contextual Bandits for Advertising Campaigns:

A Diffusion-Model Independent Approach

Alexandra Iacob ∗ Bogdan Cautis † Silviu Maniu ‡

Abstract

Motivated by scenarios of information diffusion and ad-
vertising in social media, we study an influence maxi-
mization problem in which little is assumed to be known
about the diffusion network or about the model that
determines how information may propagate. In such a
highly uncertain environment, one can focus on multi-
round diffusion campaigns, with the objective to max-
imize the number of distinct users that are influenced
or activated, starting from a known base of few influ-
ential nodes. During a campaign, spread seeds are
selected sequentially at consecutive rounds, and feed-
back is collected in the form of the activated nodes at
each round. A round’s impact (reward) is then quan-
tified as the number of newly activated nodes. Over-
all, one must maximize the campaign’s total spread, as
the sum of rounds’ rewards. In this setting, an explore-
exploit approach could be used to learn the key underly-
ing diffusion parameters, while running the campaign.
We describe and compare two methods of contextual
multi-armed bandits, with upper-confidence bounds on
the remaining potential of influencers, one using a gen-
eralized linear model and the Good-Turing estimator
for remaining potential (GLM-GT-UCB), and another one
that directly adapts the LinUCB algorithm to our set-
ting (LogNorm-LinUCB). We show that they outperform
baseline methods using state-of-the-art ideas, on syn-
thetic and real-world data, while at the same time ex-
hibiting different and complementary behavior, depend-
ing on the scenarios in which they are deployed.

1 Introduction

Social media advertising is a booming domain, gradu-
ally replacing advertising over traditional channels. It
is enabled by the highly effective word-of-mouth mecha-
nisms that are embedded in social applications, such as
likes, shares, reposts, or notifications. Social network-
ing applications are therefore an unprecedented medium
for advertising, be it with a commercial intent or not,
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as products, news, ideas, political manifests, etc., can
propagate easily to a large yet well-targeted audience.

Motivated by advertising in social media, the class
of algorithmic problems under the generic name of in-
fluence maximization (IM) [18] encompasses all scenar-
ios that aim to maximize the spread of information in
a diffusion network, by identifying the most influen-
tial nodes from which the diffusion of specific message
should start. IM mirrors an increasingly used and highly
effective form of marketing in social media, targeting a
sub-population of influential people, instead of all users
of interest, known as influencer marketing [6].

IM usually has as objective the expected spread
under a stochastic diffusion model, which describes a
diffusion as a probabilistic process. The seminal work
of [18] introduced two such models – Linear Threshold
(LT) and Independent Cascade (IC) – which have been
adopted by most of the literature (see the survey of
[24]). Such models rely on diffusion graphs with edges
weighted by a spread probability.

As selecting the seed nodes maximizing the ex-
pected spread is NP-hard under such diffusion models,
approximation algorithms that exploit the objective’s
monotonicity and sub-modularity have been studied ex-
tensively, yet scaling IM to realistic graphs remains diffi-
cult. While most of the IM literature focuses on improv-
ing efficiency and scalability (see benchmarks [2, 1]),
other major obstacles have limited the practical impact
of this research. First, it is hard to obtain meaningful in-
fluence probabilities, as it is hard and data-intensive to
learn them from past diffusions. [16, 13, 11]. Also, the
effectiveness of most IM algorithms depends on diffu-
sion models and their key parameters – whether known
or learned in online manner – aspects which are most of-
ten hard to align with real-life diffusion dynamics. It is
commonly agreed that such parametric diffusion models
represent elegant yet coarse interpretations of a reality
that is complex and uncertain.

For these reasons, the focus of the IM literature
has shifted recently towards online and diffusion-model
independent methods [19, 28, 20] where, during a multi-
round influence campaign, a learning agent sequentially
selects at each round seeds from which a new diffusion



of the campaign’s message is initiated and observed in
the network. A round’s feedback is then used to update
the agent’s knowledge. To balance between exploration
(of uncertain aspects of the diffusion environment)
and exploitation (e.g., focusing on the most promising
seeds), such methods rely on multi-armed bandits.

Our work follows in this path, as we study an IM
problem in which the diffusion topology, the influence
probabilities, and the model that determines how in-
formation may spread are all assumed to be unknown.
Instead, what is known are the potential spread initia-
tors, a set of few influential nodes called hereafter the
influencers. In such a highly uncertain environment, un-
der budget limitations (number of seedings and number
of rounds), the campaign aims to maximize the number
of distinct users that are influenced or activated, start-
ing from the influencers. Seeds are selected sequentially
(at each round) among the influencers, and an influencer
may be re-seeded, i.e., selected at multiple rounds. After
a round’s diffusion, the assumed feedback are all the ac-
tivated nodes from that round, i.e., only the diffusion’s
effects are observed (the who), but not their causes (the
why). Generically, this feedback is used to refine the
estimations for the influencers’ remaining spread poten-
tial, which will guide future seeding decisions. Matching
the overall objective, a round’s reward is the number of
newly activated nodes, i.e., those that were not already
activated at previous rounds. The campaign’s objective
is to maximize the sum of rounds’ rewards.

Our problem setting is directly inspired by influ-
encer marketing scenarios where marketers have only
access to a few influencers who can spread information,
where the only feedback that can be realistically gath-
ered are activations (e.g., who purchased or subscribed),
and where the goal is to maximize the number of distinct
activated users (instead of the number of activations).

We follow a contextual multi-armed bandits [27] ap-
proach, assuming that contextual information is known
and exploitable in the sequential learning process, as
features of influencers or of the information being dif-
fused. The intuition is that within a campaign, whose
overall goal is to get a specific “message” to as many
users as possible, the ways in which that message may be
formulated, presented, or diffused may vary from round
to round, and such contextual variations will lead to
different propagation dynamics. E.g., the campaign’s
message may be a political manifesto, while the to-be-
diffused items may pertain to different aspects thereof,
to connections with societal issues, may be framed in
news, op-eds, data analysis, multimedia content, etc.

Contribution. We propose two UCB-like algorithms,
GLM-GT-UCB and LogNorm-LinUCB, for the problem of
selecting influencers in advertising campaigns, where

newly activated nodes make up the reward. They
follow optimism in the face of uncertainty in sequen-
tial learning [8], deriving an upper-confidence bound
on the estimator of the remaining spread potential of
each influencer. This enables to alternate in a princi-
pled way between explore and exploit steps when tak-
ing seeding decisions at the campaign’s rounds. Our
solutions are diffusion-model agnostic and follow dif-
ferent assumptions on the rewards distribution: Pois-
son for GLM-GT-UCB, log-normal for LogNorm-LinUCB.
GLM-GT-UCB uses a Good-Turing estimator [14, 7] for
new activations, to which it applies an external factor
function modeling an influencer’s fatigue (diminishing
returns) and potential in a given context. The parame-
ter of the external factor is assumed to be a linear com-
bination of the context and an unknown feature vector
learned through linear regression. LogNorm-LinUCB as-
sumes a linear structure for the scale of rewards, esti-
mated by the inner product of the context and the in-
fluencer’s learned feature vector. We experimented with
synthetic and real-world data, comparing with state-of-
the-art solutions adapted to our problem. The exper-
iments show that our methods successfully learn from
the available side-information and achieve higher cumu-
lative rewards. These results are complemented by the-
oretical regret guarantees for a LogNorm-LinUCB variant
that learns from independent samples.

2 Main Related Work

The work of [23] proposed a solution for the generalized
linear contextual bandit problem, earlier considered also
in a practical scenario of news recommendation [22].
The solution is based on the work of [12] – considering
non-linear rewards for the MAB problem – and it
improves it by adapting the algorithm of [3] to use MLE
for estimating the unknown parameters, and uses the
same approach to create the independent samples.

In [29], the authors proposed an UCB-based algo-
rithm, IMLinUCB for the online influence maximization
problem in social networks. They assume that the diffu-
sion of information follows the independent cascade (IC)
edge semi-bandit model. The algorithm selects multiple
influencers per round without suffering from an expo-
nential increase in the combinatorial action space due to
the cardinality of the source node set. Efficiency is ob-
tained through the linear generalization of a probability
weight function that yields the activation probabilities.

The cumulative regret bounds for IMLinUCB are
topology dependent; this is also confirmed by the exper-
iments performed on different types of graph topologies.

In [21], the authors consider the weariness of an
influencer’s effectiveness over time and introduce the so
called rotting bandits. It assumes that the expected



reward decays as a function of the number of times
an arm has been selected, thus the optimal policy
being one of choosing different arms. Our problem
bears similarities to the non-parametric rotting bandit
problem of [21], as we also do not make assumptions
about the structure of the reward, but only about its
non-increasing nature in the number of selections. To
this end, [21] proposed the Sliding-Window Average
(SWA) algorithm. In the initialization phase, each arm
is chosen for a fixed number of times, and for the rest
of the “campaign” their empirical average reward is
adjusted by a given quantity. SWA is thus able to
detect early the significantly sub-optimal arms, while
preserving theoretical guarantees.

The work that is most related to ours is [19]. Placed
in a similar setting, it focuses on Online Influence Max-
imization with Persistence (OIMP). [19] has a similar
objective formulation, and proposes an algorithm called
GT-UCB (for Good-Turing Upper Confidence Bound).
The approach is inspired by the work of [7], which used
the Good-Turing estimator in a setting where a learning
agent needs to sequentially select experts that only sam-
ple one of their potential elements at each round. Simi-
lar to rotting bandits, an adaptation of GT-UCB (called
FAT-GT-UCB) is considered for scenarios where influ-
encers may experience fatigue, i.e., a diminishing ten-
dency to activate their user base as they are re-seeded
during a campaign. The key aspect that distinguishes
our study from the one of [19] is that we assume contex-
tual information is known and exploitable in the sequen-
tial learning process, as features of the influencers or of
the information being diffused. In doing so, we provide
solutions that are no longer agnostic to the information
being diffused nor to the profiles of influencers, as was
the case in [19]. The contextual assumption leads to
entirely different theoretical and algorithmic construc-
tions, and is supported by our empirical evaluation.
FAT-GT-UCB is one of our experimental baselines.

Finally, we stress that in our bandit approach the
parameters to be estimated throughout a campaign
must capture how good an influencer still is (its remain-
ing potential). Hence a key difference with other multi-
armed bandit studies for IM ([30, 29, 9, 28]) is that they
look for a constant optimal seed set, while in our setting
a round’s best action (choice of seeds) depends on the
number of previous rounds and on the context.

3 Problem Statement

We formalize the IM problem, set in a discrete-time
campaign consisting of T rounds, with K influencers
among which the algorithm chooses seeds at each round.

We model each influencer k as having access to Ak

basic nodes, each one being influenced by k with a prob-

Table 1: Summary of notations.
T total number of rounds in a campaign
K total number of available influencers
Yt the context in round t
It the set of L influencers selected in round t
Ak set of basic nodes reachable by influencer k
S(It, Yt) the spread given by the environment in round t
pk,j(t) the probability of influencer k to activate basic node j in round t
θk,j feature vector that explains the probability of influencer k

to activate basic node j in round’s context Yt

nk(t) the history of number of selections of influencer k in round t
p(j) the basic node’s j intrinsic probability of activating itself
α the external factor function which adjusts the basic node’s

activation probability; e.g. defined as in Equation 4.17.
Ft the set of IDs of the activated basic nodes at the end of round t
rt the reward at the end of round t
r′k(t) the reward for the external factor’s linear regression problem
Cj(t) the cumulative Poisson count of activations for node j in round t
θk the influencer k’s feature vector

θ̂k(t) the estimator of the influencer k’s feature vector in round t
λj the Poisson intensity of activations for basic node j
λk the Poisson intensity of activations due to influencer k
Rk(t) the influencer k’s remaining potential (i.e. the feasible reward) in round t
Gk(t) Good-Turing estimator of the remaining potential for influencer k
Vk(t) design matrix updated by the context vectors in rounds when influencer k is played
sk(t) the rewards history factor for linear regression
γ the regularization factor for linear regression
bk(t) the UCB computed for influencer k in round t

ability pk,j(t),∀j ∈ [1, . . . , Ak]. We assume that pk,j(t)
depends on each basic node’s inner probability p(j) of
activating itself, on some d-dimensional profile θk,j , and
on the round’s context. In each round, a d-dimensional
context Yt ∈ [0, 1]d is provided by the environment, in
a similar manner to the contextual multi-armed ban-
dit setting [27]. Considering that in our setting the re-
ward is the number of newly activated nodes, we assume
also the impact of the number of selections of the influ-
encer up to round t, nk(t), on the probability pk,j(t).
Therefore, the probability of a basic node j to be in-
fluenced by influencer k is well-approximated by a func-
tion α(⟨θk,j , Yt⟩, nk(t)) applied as a modifier to the basic
node’s inner activation probability p(j). The modifier
α is a function of the relation between the influencer,
the basic node, and the round’s context. Formally, the
problem we study in this paper is defined as follows:

Problem 1. [Contextual Influence Maximization]
Given a set of influencers [K] = 1, . . . ,K, a budget
of N rounds (or trials), and a number 1 ≤ L ≤ K of
influencers to be activated at each round, the objective
is to solve the following optimization problem:

(3.1) argmax
It⊆[K],|It|=L,∀1≤t≤N

E|
⋃

1≤t≤N

S(It, Yt)|,

where S(It, Yt) is the spread of the chosen set of influ-
encers for round t, and the probability that influencer k
activates basic node j depends on the round’s context Yt

and the number of k’s selections nk(t):

(3.2) pk,j(t) = α(⟨θk,j , Yt⟩, nk(t))p(j).

A similar variant of this problem, which does not
use contexts, was proven to be NP-hard in [19], and this
hardness result immediately transfers to our problem
(e.g., with a constant context for all rounds).



We now formulate the problem in a contextual
bandit setting. We assume a semi-bandit feedback at
the end of each round, denoted Ft, consisting of the set
of IDs of the activated basic nodes. The reward for the
round is the number of new activations:

(3.3) rt =

⋃
k∈It

Ak∑
j=1

I{Cj(t) > 0} − rt−1; r0 = 0,

where Cj(t) =
∑t

s=1 I{j ∈ Fs} denotes for each basic
node the number of times it has been activated.

Given that the reward in each round is the number
of newly activated basic nodes, Problem 1 exhibits a
diminishing returns property : for each influencer, the
expected number of new basic nodes it can activate
decreases with each of its selections.

For each basic node j, its cumulative count of ac-
tivations Cj(t) up to round t is a random quantity de-
pending on the node’s probability pk,j(t) of being acti-
vated by the played influencer; these activation proba-
bilities are assumed to be unknown. As estimating all
user profiles θk,j is computationally expensive, our goal
will be instead – given that the objective is to select the
best influencer(s) at each round – to directly estimate
the influencers’ potential based on the context at each
round, as proxy for the probabilities of individual nodes.

To achieve this, we propose two algorithms that
both assume a generalization θk of the unknown pa-
rameters θk,j , and two different assumptions on the dis-
tribution of new activations for each influencer. More
precisely, we assume that activations follow either (i)
a Poisson distribution, given that they are counts of
nodes, or (ii) a log-normal distribution, assuming that
the scales of the rewards are normally distributed (in
line with observations on the distribution of real-world
social phenomena [25]). In Section 4 we present the
UCB-based solution that uses the Poisson distribution
assumption, and in Section 5 we present the LinUCB-
based solution that assumes a log-normal distribution.

4 GLM-GT-UCB Algorithm

The main idea behind the GLM-GT-UCB algorithm is
to estimate the potential of each influencer, at each
round, by some proxy measure. Here, by an influencer’s
potential we understand the number of nodes that it
can still activate (i.e., the reward); more formally, each
influencer’s remaining potential of activating new basic
nodes in round t is:

(4.4) Rk(t) = Ak −
Ak∑
j=1

I{Cj(t− 1) > 0}

The stochasticity of Cj(t−1) means that the remaining
potential is a random variable too. While this has been

analyzed in the non-contextual case [19], the challenge
here is to account for the contextual dimension. The
proxy we choose is the Good-Turing estimator [14],
estimating the proportion of unseen items in a random
process as the fraction of items seen only once (hapaxes).

There are two main technical challenges to modeling
the remaining potential using Good-Turing estimators:
(i) we are counting only new activations, so a fatigue
factor needs to be added to the estimator, and (2) the
contextual case forces us to make an assumption on the
model – in our case, we opted for a generalized linear
model using a Poisson distribution.

4.1Good-Turing with Poisson and External Fac-
tor An influencer’s remaining potential is an unknown
random variable. The Good-Turing estimator [14], ad-
justed with a fatigue function, was shown to successfully
model an influencer’s fatigue [19]. The fatigue function,
non-increasing in the number of influencer’s selections,
does not explicitly model an influencer’s potential w.r.t.
the diffused content. We thus propose a Good-Turing
estimator adjusted by a function of the diffused content.

For each basic node j, its activation probability
pk,j(t) is a function of (a) the linear combination of the
node’s feature vector θk,j and the round’s context, and
(b) the number of influencer’s selections nk(s). The as-
sumption we make is that the underlying distribution
of each node’s cumulative count of activations Cj(t)

is Poisson with intensities λj

∑t
s=1

∑
k∈Is

α(⟨θk,j , Ys⟩,
nk(s)). Our approach is then to assume that the
underlying distribution for the entire remaining po-
tential of an influencer is Poisson with intensities
α(⟨θk, Yt⟩, nk(t))λk, k ∈ {1, . . . ,K}, where the indi-
vidual user response probabilities are small: λk ≥∑Ak

j=1 λj ≪ Ak. Recall the true feature vector θk is
initially unknown , so its estimation becomes a sub-
problem of our problem. The classical solution is to use
the regularized least-squares estimator:

(4.5) θ̂k(t) = argmin
θ∈Rd

t−1∑
s=1

(r
′

k(s)− ⟨θ, Yt⟩)2 + γ∥θ∥22),

where r
′

k(s) is the round’s reward (adapted for the sub-
problem) and γ is the penalty factor that ensures the
solution’s uniqueness; more details are given in Sec. 4.2.

After t rounds, we observe the cumulative Pois-
son counts Cj(t) of activations of each basic node j ∈
{1, . . . , Ak} by the corresponding influencer. The cu-
mulative counts are distributed with rate

(4.6) λj

t∑
s=1

∑
k∈Is

α(⟨θk,j , Ys⟩, nk(s)),

and in estimation with rate



(4.7) λj

t∑
s=1

∑
k∈Is

α(⟨θk, Ys⟩, nk(s)).

Thus, the remaining potential can be expressed as the
conditional expectation of cumulative counts of new
basic nodes that would be influenced in round t:

(4.8) Rk(t) =

Ak∑
j=1

λjα(⟨θk, Yt⟩, nk(t))I{Cj(t− 1) = 0}

The expectation of k’s remaining potential in round t is

(4.9) E[Rk(t)] = α(⟨θk, Yt⟩, nk(t))·
Ak∑
j=1

λje
−λj

∑t−1
s=1

∑
k
′∈Is

α(⟨θ
k
′ ,Ys⟩,nk

′ (s))

GLM-GT-UCB estimates k’s remaining potential by:

(4.10) Gk(t) = α(⟨θ̂k(t), Yt⟩, nk(t))
1

nk(t)

Ak∑
j=1

t−1∑
s=1

·

I{Xs,j,k = 1, {Xs,j,k′ = 0}k′∈Is\{k}, {Xl,j,k′ = 0}l ̸=s,k′∈Il
}

α(⟨θ̂k(s), Ys⟩, nk(s))

where nk(t) is the number of selections of influencer k
up to round t, Xs,j,k is a binary random variable equal
to 1 when j is activated in round s by influencer k,
l ∈ {1, 2, . . . , t − 1}, k′ ∈ Il ⊆ [K]. We discuss next
the external factor estimated through regular linear
regression, used to regulate the proportion of hapaxes
in the cascades generated by influencer k.

4.2 The External Factor α. The external factor,
as stated before, is a sub-problem of Problem 1. The
remaining potential of an influencer is modelled by the
combination of the external factor and the average count
of hapaxes from the Good-Turing estimator. Under the
assumption of a Poisson distribution for the rewards,
and their property of diminishing returns, the external
factor can be chosen as an adaptation of the inverse link
function (mean function) for the Poisson distribution:

(4.11) α(⟨θk, Yt⟩, nk(t)) = ef(nk(t))(⟨θk,Yt⟩)

The f(nk(t)) function is assumed to be non-increasing,
models the influencer’s fatigue, and depends on the in-
fluencer’s selections. By combining the two estimators,
the predicted values for this sub-problem are:

(4.12) r′k(t) =

ln

(
rtnk(t)∑Ak

j=1

∑t−1
s=1

hapaxs,j,k

α(⟨θ̂k(s),Ys⟩,nk(s))

)
f(nk(t))

,where

(4.13) hapaxs,j,k =

I{Xs,j,k = 1, {Xs,j,k′ = 0}k′∈Is\k, {Xl,j,k′ = 0}l ̸=s,k′∈Il
}

The argument of the external factor function is a
random variable r′k(t) = ⟨θk, Yt⟩ + ηt. The noise ηt is
assumed conditionally 1-subgaussian. The regularized
least-squares estimator for the feature vector is:

(4.14) θ̂k(t) = V −1
k (t)

t−1∑
s=1

Ysr
′

k(s)I{k ∈ Is},

where Vk(t) = γI +
∑t−1

s=1 YsY
T
s I{k ∈ Is}; γ ≥ 0 is

the penalty factor that ensures an unique solution. The
design matrix Vk(t) is computed from the contexts of
the rounds in which the corresponding influencer was
played, adjusted by its number of the selections.

4.3 Upper-Confidence Bound. UCB algorithms
provide a disciplined balance between the exploitation
of the options that are known as best up to the deci-
sion round, and the exploration of the ones for which the
learning agent has not acquired enough information yet.
The GLM-GT-UCB algorithm follows the main lines of an
UCB-based algorithm, and its flow is presented in Al-
gorithm 1. It starts with an initialization phase, where
each influencer is played once in a random context. The
observed rewards are used to initialize the influencer’s
statistics, necessary for further decisions. For the Good-
Turing estimator, we maintain the number of selections
nk(t) and the history of the discounted rewards for com-
puting this estimator, as well as the sample-mean acti-
vations for computing the UCB index. For the linear
regression of the external factor, we maintain a history
of the rewards and the design matrix for each influencer:

(4.15) Vk(t) = γId +

t−1∑
s=1

YsY
T
s I{k ∈ Is}

(4.16) sk(t) =

t−1∑
s=1

Ysr
′
k(s)I{k ∈ Is}.

To better use the available contextual information, we
add the contextual UCB to the estimated external factor

(4.17)α(⟨θ̂k, Yt⟩, nk(t))=e
f(nk(t))

(
⟨θ̂k,Yt⟩+γ

√
Y T
t V −1

k (t)Yt

)

In each subsequent round, the agent gets the con-
text from the environment. It estimates for each influ-
encer its feature vector, by the regularized least-square
estimator in the stochastic linear bandit θ̂k(t), which is
then used to compute the estimator of the remaining
potential. The UCB bk(t) is obtained by adding the
confidence factor βk(t). The agent plays the influencers
with the highest UCBs, observes and divides the reward
equally among them, and updates their statistics.

The UCB index computed on the adapted Good-
Turing estimator captures both the confidence in the



unmodified Good-Turing estimator, and the one in the
estimator of the influencer’s true unknown vector θk:

(4.18) bk(t) = Gk(t) + βk(t)+

λ̂k(t)

(
1− e

−2+Ck(t)

nk(t)
1

nk(t)

t−1∑
s=1

e
−2−Ck(s)

nk(s)

)
, where

(4.19)

βk(t) =

√√√√2λ̂k(t)e
3+2Ck(t)

nk(t)
∑t−1

s=1 e
2−2Ck(s)

nk(s)

n2
k(t)

ln
1

δ
+√√√√ e2/nk(t)λ̂k(t) ln(1/δ)∑t−1

s=1

∑
k′∈Is

e−1/n
k
′ (s)

+
e

1+Ck(t)

nk(t)
∑t−1

s=1 e
1+Ck(s)

nk(s)

3nk(t)
ln

1

δ
,

Ck(t) = γ∥Yt∥V −1
k (t) is the contextual UCB for the

external factor and λ̂k(t) =
1

nk(t)

∑t−1
s=1

|Fs|
L I{k ∈ Is} is

the sample-mean number of influencer k’s activations.

4.4 Theoretical Analysis The UCB index is chosen
as the maximum difference that can occur between
the GT estimator and the true remaining potential
with some chosen confidence. Theorem 4.1 provides
the confidence interval for the estimated remaining
potential. Its proof has three steps: the concentration
of the true remaining potential, the concentration of the
Good-Turing estimator, the bias of the estimator.

Theorem 4.1. With probability at least 1 − δ, having
the expected activations λk =

∑Ak

j=1 pk,j(t), and βk(t)
set as in Equation 4.19 , we have

(4.23) − βk(t) + Ω

(
Tλk(T )

nk(T )
e

Ck(T )

nk(T )

)
≤

Rk(t)−Gk(t) ≤ βk(t) +O
(
T
λk(T )

nk(T )
e

Ck(T )

nk(T )

)
Proof. See the extended version [17].

5 Log-normal Distribution

We now consider the second alternative, that the under-
lying distribution is a log-normal one. Now, the influ-
ence maximization problem can be solved by an adapted
LinUCB [10]. LinUCB computes the expected reward
of each arm by finding a linear combination of the pre-
vious rewards of the arm. It estimates the unknown pa-
rameter θt of the current round as a linear combination
of the previously seen feature vectors and rewards, and

1r′k(1) =
1

f(1)
ln

 rt∑Ak
j=1

∑t−1
s=1

hapaxs,j,k

α(⟨θ̂k(s),Ys⟩,1)

 .

Algorithm 1 GLM-GT-UCB

1: Input: influencers K, rounds budget T, external factor
function α, regularization factor γ, fatigue function f ,
number of selections L

2: Initialization: play each influencer k ∈ [K] once in
given random contexts Yt, observe the reward rt, t ∈ [K],
and update the statistics nk(1) = 1, λ̂k(1) = |Fk| for the
Good-Turing estimator, and Vk(1) = γI+YtY

T
t , sk(1) =

Ytr
′
k(1)

1 for the external factor.
3: for t = K + 1, . . . , T do
4: Get the context Yt

5: for k ∈ [K] do
6: Estimate the unknown vector:

(4.20) θ̂k(t) = V −1
k (t)sk(t)

7: Compute UCB for remaining potential estimator

(4.21) bk(t) = Gk(t) + βk(t),

(4.22) Gk(t) = α(⟨θ̂k(t), Yt⟩, nk(t))·

1

nk(t)

Ak∑
j=1

t−1∑
s=1

hapaxs,j,k

α(⟨θ̂k(s), Ys⟩, nk(s))

and βk(t) is given by the confidence interval.

8: end for
9: Choose set It of L influencers with largest UCB

10: Play the chosen influencers, observe spread, divide it
equally among influencers, update their statistics:

11: for k
′
∈ It do

12: Update rk′ (t) by Eq. (4.12).; nk
′ (t+1) = nk

′ (t)+
1;Vk

′ (t+1) = Vk
′ (t)+YtY

T
t ; sk′ (t+1) = sk′ (t)+Ytr

′
k
′ (t)

13: end for
14: end for

it estimates the expected reward on the current round
by linearly combining it with the current feature vec-
tor. The adaptation of LinUCB to our problem consists
in maintaining a design matrix per influencer, which
is updated by the context of the round in which the
influencer has been played. This change implies that a
separate parameter is estimated for each influencer, and
its linear combination with the current round’s context
will estimate the reward at logarithmic scale. Note that
the linear combination estimates the scale of the reward
since we assume that the rewards are log-normally dis-
tributed. The main flow is presented in Algorithm 2.
It is similar to the one of LinUCB [10], in that at each
step it chooses the best reward in terms of the linear
combination of the context and the learned profile plus
a confidence bound. In general linear models – of which
LogNorm-LinUCB is part of – this bound is based on a
design matrix Vk and the given context Yt.



Algorithm 2 LogNorm-LinUCB

1: Input: influencers K, selections L, γ ∈ R+, d ∈ N
2: Vk(1) = Id, ∀k ∈ [K] and sk(1) = 0d, ∀k ∈ [K]
3: for t=1,. . . ,T do
4: Get context Yt

5: for k ∈ [K] do
6: θ̂k(t) = V −1

k (t)sk(t)

7: bk(t) = ⟨θ̂k(t), Yt⟩+ γ
√

Y T
t V −1

k (t)Yt

8: end for
9: Choose set It of L influencers with largest UCB bk(t)

10: Observe spread, compute reward r by discounting
previously activated basic nodes and dividing by L.

11: for k
′
∈ [It] do

12: Vk
′
(t)(t+ 1) = Vk

′
(t)(t) + YtY

T
t

13: sk′
(t)(t+ 1) = sk′

(t)(t) + ln(r)Yt

14: end for
15: end for

5.1 Regret analysis. The regret analysis is per-
formed at logarithmic scale; this restriction stems from
having the logarithm of the new activations being nor-
mally distributed. In [10], theoretical guarantees for
LinUCB were challenging, due to the lack of indepen-
dence of the random variables for the rounds’ rewards.
The solution was to use a supporting algorithm, SupLin-
UCB, estimating the unknown parameter only from the
feature vectors and rewards from the rounds in which
the agent performs random exploration. Each round is
split into levels, and each level maintains an index set
used for learning, comprising the indices of the rounds
with independent rewards. When exploring, the round
is added to the index set of the corresponding level.

We designed similarly IM-SupLinUCB and its sub-
routine IM-BaseLinUCB, preserving the steps of Su-
pLinUCB [10] and SupLinRel [3]. Each influencer’s
UCB is computed for the scale of the reward – new
activations. We skip the analysis of IM-BaseLinUCB
and IM-SupLinUCB’s, as it is similar to [10, 3]. Regret
for stochastic linear bandits is generally defined as:

(5.24) R̂t =

t∑
s=1

max
k∈[K]

⟨θk, Yt⟩ −
t∑

s=1

rs

(5.25) Rt = E[R̂t] = E

[
t∑

s=1

max
k∈[K]

⟨θk, Yt⟩ −
t∑

s=1

rs

]
We have the following Õ(

√
T ) regret bound for the

supporting algorithm on logarithms of rewards:

Theorem 5.1. If IM-SupLinUCB uses parameter γ =√
1
2 ln(

2TK
δ ), with probability 1 − δ the regret of

LogNorm-LinUCB at logarithmic scale is

(5.26)R̂t ≤ 2
√
T+44K (1 + ln (2TK ln(T )/δ) /2)

3
2

√
Td

Proof. Proof similar to that of [3, Theorem 6.].

6 Experiments

We tested GLM-GT-UCB and LogNorm-LinUCB on syn-
thetically generated data, on data we collected from
Twitter, and on a publicly available dataset from Sina
Weibo [31]. All the results are averaged over 100 runs.

Synthetic data experiments. The synthetic data is
generated starting from the premise that each basic
node’s activation probability is known. Therefore, all
the edges and nodes are assumed to be known as well.
The synthetic graph is randomly generated following the
Barabási-Albert preferential attachment model [5]. The
model’s parameters are chosen as follows: 30,000 nodes
and, at each step, one new edge to be attached from
new nodes to existing ones. Then, the 10 nodes having
the maximum degrees are chosen to be the influencers.

Activation probabilities are computed as a sigmoid
function of the inner product of the context and the ba-
sic node’s feature vector plus some random small noise.
This is preferable in order to project the results intro
probability thresholds, i.e., the value over which the
node is considered activated - 0.999 in our experiments.
The inner product captures the linear relationship be-
tween context and hidden profile. For each node, its
feature vector is randomly generated from a normal dis-
tribution. Then, the context of a campaign’s round is
generated from another normal distribution. A given
round is chosen to be viral with a 50% probability, i.e.,
the distribution from which the context is drawn is cho-
sen such that its inner product with most of the basic
user feature vectors results in higher values for the acti-
vation function. For these rounds, only L+1 influencers
are chosen to use the viral context. The diffusion model
is assumed to be IC [18], a campaign consist of 500
rounds, and results are averaged over 100 runs. γ is

set to
√
1/2 ln (

√
2TK/δ) everywhere.

Baselines methods. We compare against Random,
UCB1 [4], LinUCB [10], and FAT-GT-UCB [19]. The
random policy chooses a random influencer in each
round. UCB1 is a well-known algorithm in the bandit
literature, one which does not model contexts. The
FAT-GT-UCB algorithm models the influencer’s fatigue
in a context-free setting. The results (Fig. 1, top
row) show that GLM-GT-UCB and LogNorm-LinUCB are
both capable of learning the remaining potential of
influencers from their performance in different contexts.
Making decisions based on the available information
about the round’s context has a clear added value,
compared to only considering the time-based fatigue of
approaches such as FAT-GT-UCB.

Twitter dataset. We extracted from Twitter logs
a collection of retweets. These can be viewed as be-
longing to basic nodes, representing successful activa-



Figure 1:Cumulative rewards – L=2, L=5 – normal plot (odd rows) & plot zoomed to last 50 rounds (even rows).

tions of the original tweets from influencers. To test the
capability of the algorithms to choose the right influ-
encers for a given context, we extracted from tweet the
round’s context. As in [26], a tweet is encoded into a
multi-dimensional vector. The encoding represents the
distribution of the tweets’ words over a predefined num-
ber of centroids (24 in our experiments). The centroids
are obtained via clustering (K-means) on the public vo-
cabulary glove-twitter-200 2 from the word embedding
open-source library Gensim3. Each word is assigned to
its closest centroid, thus obtaining the distribution. The
largest cluster is split into 5 smaller clusters.

In Twitter and Weibo, we improve the learning rate
of GLM-GT-UCB by adding 10/L activations only when
learning the external factor via linear regression. The
plotted results are with the true values of activations.

The campaigns are created by randomly choosing
the context for each round to be one of the available
centroid distributions in the dataset. We chose the set
of influencers to be the users with the highest degrees.
In each round, each algorithm chooses which influencers
it wants to play. Due to the sparsity in the data, we
implemented the bandit to sample with replacement
from the set of all tweets with the round’s context
matching their centroid distribution and the algorithm’s

2https://nlp.stanford.edu/projects/glove/
3https://github.com/RaRe-Technologies/gensim-data

chosen influencer as the original user id. If there is no
log for this tuple, we consider that no basic node has
been activated. The reward is computed by discounting
previously activated basic nodes.

The results are in Fig. 1 (middle row), for either the
entire campaign of 500 rounds or zoomed on rounds 450
to 500; the shaded areas represent the uncertainty.

Weibo dataset. Using a public dataset from the
popular Chinese microblogging platform, we designed
the experiment as in the Twitter scenario. The topic
distributions created by [31] are used as contexts. There
are 100 topics, and for each post the distribution of
topics is computed by using Latent Dirichlet Allocation
[15]. Once again, in Fig. 1 (bottom row) we can
see that our methods manage to perform better by
using the round’s context information when selecting
influencers. The relative performance can depend on
time: GLM-GT-UCB seems to initially learn faster.

From both experiments on real-world datasets,
we can conclude that our approaches – especially
LogNorm-LinUCB – are capable of learning viral cas-
cades in different datasets and cascade settings, which
increases their potential in spread maximization (vis-
ible in the “steps” of the plots); this is not the case
with other approaches, which seem to work best when
the cascades have fewer outliers in terms of size; hence,
they do not learn quickly enough to adapt.

https://nlp.stanford.edu/projects/glove/
https://github.com/RaRe-Technologies/gensim-data


7 Conclusion

We presented in this paper the problem of designing
advertising campaigns from the point of view of contex-
tual influence maximization, when the exact diffusion
model is not fully exploitable. By adapting approaches
from the contextual bandit literature, we designed al-
gorithms GLM-GT-UCB and LogNorm-LinUCB, using dif-
ferent assumptions on the underlying distributions of
the number of influenced nodes: Poisson and log-normal
respectively. We showed both theoretically and experi-
mentally that our approaches have the potential to learn
the influencers’ potential, leading to improved IM cam-
paigns compared to other state-of-the-art methods.
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