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Abstract

Various exact laws governing compressible magnetohydrodynamic (MHD) and compressible Hall-MHD
(CHMHD) turbulence have been derived in recent years. Other than their fundamental theoretical interest, these
laws are generally used to estimate the energy dissipation rate from spacecraft observations in order to address
diverse problems related, e.g., to heating of the solar wind and magnetospheric plasmas. Here we use various 10243

direct numerical simulation data of free-decay isothermal CHMHD turbulence obtained with the GHOST code
(Geophysical High-Order Suite for Turbulence) to analyze two of the recently derived exact laws. The simulations
reflect different intensities of the initial Mach number and the background magnetic field. The analysis
demonstrates the equivalence of the two laws in the inertial range and relates the strength of the Hall effect to the
amplitude of the cascade rate at sub-ion scales. When taken in their general form (i.e., not limited to the inertial
range), some subtleties regarding the validity of the stationarity assumption or the absence of the forcing in the
simulations are discussed. We show that the free-decay nature of the turbulence induces a shift from a large-scale
forcing toward the presence of a scale-dependent reservoir of energy fueling the cascade or dissipation. The
reduced form of the exact laws (valid in the inertial range) ultimately holds even if the stationarity assumption is
not fully verified.

Unified Astronomy Thesaurus concepts: Space plasmas (1544); Magnetohydrodynamics (1964);
Magnetohydrodynamical simulations (1966)

1. Introduction

Understanding the dynamics of turbulent magnetized flows has
been a long-standing problem in physics, and especially in
astrophysics, where turbulence is thought to play a leading role in
various physical processes. Examples are the interstellar medium,
the solar wind (SW), or planetary magnetospheres, in which
turbulence controls structures formation, energy whereabouts, and
particle heating or acceleration (Matthaeus et al. 1999; Kritsuk
et al. 2007; Arzoumanian et al. 2011; Bruno & Carbone 2013;
Sahraoui et al. 2020). Due to the chaotic nature of turbulence,
such media are often studied thanks to the use of specific tools,
which rely on statistical methods to uncover trends in the behavior
of turbulent flows. A prime example of such tools are exact laws:
these equations, which can be obtained through the sole
hypothesis of statistical homogeneity (and further refined by
introducing time stationarity and infinite Reynolds number),
express the rate of energy flowing toward the small/dissipative
scales of a system as a function of two-point structure functions,
without requiring the use of closure models. Initiated by the work
of Kolmogorov and his four-fifths law for hydrodynamic
turbulence (Kolmogorov 1941), the quest for exact laws has
grown wider ever since with more and more elaborate models
being derived. The first steps into studying plasma turbulence
were taken by Politano & Pouquet (1998), who derived a law for
incompressible magnetohydrodynamic (MHD) turbulence. This

result paved the way for more precise studies of space plasmas
(Sorriso-Valvo et al. 2007; MacBride et al. 2008; Marino et al.
2008; Stawarz et al. 2009; Osman et al. 2011; Galtier 2012). More
general exact laws have been derived subsequently, by consider-
ing the influence of Hall physics in incompressible models
(Galtier 2008; Banerjee & Galtier 2017; Hellinger et al. 2018;
Ferrand et al. 2019), or the compression of the flow (Carbone
et al. 2009; Galtier & Banerjee 2011; Banerjee & Galtier
2013, 2014; Andrés & Sahraoui 2017; Banerjee & Kritsuk 2017;
Andrés et al. 2018; Banerjee & Kritsuk 2018; Lindborg 2019;
Simon & Sahraoui 2021; Ferrand et al. 2021a).
Thanks to those laws, several studies of astrophysical media

have been made possible, through either direct numerical
simulations (DNSs; Mininni & Pouquet 2009; Kritsuk et al.
2013; Verdini et al. 2015; Ferrand et al. 2020) or in situ data
analysis (Marino et al. 2011; Coburn et al. 2015; Banerjee et al.
2016; Hadid et al. 2017, 2018; Andrés et al. 2019; Sorriso-Valvo
et al. 2019; Andrés et al. 2020; Bandyopadhyay et al. 2020).
These allowed testing the efficiency of the exact laws in practical
situations in a variety of different systems. Studies specifically
designed to test the validity of these exact laws were also
conducted, allowing for a more in-depth understanding of how the
constituents of these equations relate to each other (Carbone et al.
2009; Andrés et al. 2018; Hellinger et al. 2018). This kind of work
is especially important as the models are further refined and exact
laws grow even more complex, such as those derived for
compressible Hall-MHD (CHMHD), a model taking into account
the small-scale correction to the plasma dynamics due to the Hall
effect. For this last plasma model, where two different exact laws
have been derived, such a study has yet to be made. It is thus the
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aim of this paper to fill this gap by proposing, through the use of
an ensemble of high-resolution DNSs for decaying CHMHD
turbulence, a term-by-term analysis of exact laws derived by
Andrés et al. (2018) and Ferrand et al. (2021a). The objective is
not only to better understand the exact laws but also to test their
more general expressions (valid beyond the inertial range and
without time stationarity), which require the bare minimum of
hypotheses, and unveil the relations between the energy cascade,
the dissipation, and the dynamical variables that form these
equations.

The structure of this paper is as follows: First, we present the
two models from Andrés et al. (2018) and Ferrand et al. (2021a),
which will be referred to as A18 and F21, respectively, and
provide compact and general expressions requiring only the
assumption of statistical homogeneity to be obtained. We then
describe the simulations and the numerical schemes used to
compute all the terms forming both exact laws, and then we
present and discuss the results obtained. Finally, we give a
conclusion on our work and on the behavior of the exact laws.

2. Theoretical Models

Prior to presenting the theory of the two exact laws, we
introduce some notations and relations tied to the framework of
both calculations. We introduce the spatial increment ℓ,
connecting two points r and r′ in the physical space as
¢ = +r r ℓ, and define for any given field ξ : ξ≡ ξ(r) and
x x¢ º ¢r( ). We also define the notations dx x x= ¢ - ,
dx x x= ¢ +1

2
¯ ( ), and the differential operator in the direction
ℓ as ∇ℓ. This operator obeys the following relation on
ensemble averages 〈 〉 :   á ¢ ñ = -á ñ = áñℓ· · · .

2.1. F21 Model

The isothermal CHMHD exact law derived by Ferrand et al.
(2021a) is obtained by considering the following three-
dimensional compressible HMHD equations:

r r¶ + =v 0, 1t · ( ) ( )

r  ¶ + = - + ´ + +nv v v J B d fP , 2t( · ) ( )

l ¶ = ´ ´ - ´ ´ + hB v B J B d , 3t c( ) ( ) ( )

 =B 0, 4· ( )

where ρ is the mass density, v the velocity, P the pressure, B
the magnetic field, J= (∇×B)/μ0 the current density, and
Jc= J/ρ the normalized current. The Hall effect is introduced
in the model through the presence of the term λ∇× (Jc× B) in
the induction equation: λ=mi/qe, with mi the ion mass and qe
the magnitude of the electron charge, is the marker of the Hall
effect and is connected to the ion inertial length di through the
relation l m r=di 0 , with μ0 the vacuum permeability. The
dissipation terms are

n
n

q= D +nd v
3

, 5( )

h= Dhd B, 6( )

with θ=∇ · v the dilatation, ν the dynamic viscosity, and η the
magnetic diffusivity. The term f represents a large-scale
forcing. The isothermal closure writes r=P cs

2 , with cs the
constant speed of sound. These equations are used to derive a
dynamical equation for the modified second-order structure

function

dr d
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In the simulation code the internal energy follows the

polytropic definition r r= -
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1 0
1s
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(( ) )
( ) , with a poly-

tropic index γ= 1.01 close enough to unity so that the
isothermal approximation remains valid. Note that under this
approximation entropy is assumed to be constant, and thus the
internal energy variation results only from the work of the
pressure force (Simon & Sahraoui 2021).
Injecting Equations (1)–(4) in the time derivative of

Equation (7) leads, after a hefty amount of calculations, to
the following equation:
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with the total energy Etot= ρu2/2+B2/(2μ0)+ ρe. Equation (8),
already reported in Ferrand et al. (2021a), is the most general
equation obtainable in this model under the sole assumption of
statistical homogeneity. With additional assumptions of time
stationarity, forcing limited to the largest scales, and infinite
(magnetic and kinetic) Reynolds numbers, one can then retrieve
the exact law:

e dr d d
m

d d

m
d d d

rq r q d

dr d d
l
m

d d d d d

l d d


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- = +

-
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Equation (9) (or similar ones obtained for other models) is
generally the one that is used in numerical simulations and
spacecraft data to infer the cascade rate (left-hand side) from
measurable quantities (right-hand side; Banerjee & Galtier 2016;
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Hadid et al. 2017, 2018; Andrés et al. 2018, 2019). However, to
be obtained, nontrivial approximations had to be made, about time
stationarity and on the forcing and dissipative terms (Ferrand et al.
2021a). While these approximation are hard (if not impossible) to
test on spacecraft data, they can a priori be verified in DNSs,
which is one of the goals of the present study. The specific point
about time stationarity and the absence of driving is of particular
relevance in free-decay simulations such as the ones we are using
in this study. Therefore, we will consider in the following the
more general Equation (8), written in a more compact form:

e + ¶ á ñ - ¶ á ñ

+ + + + =   

E S2

0, 10

t tF21
tot

F21 F21
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F21 F21
loc ( )
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Note that in Equation (10) εF21 is introduced by using relation (9)
to identify, in Equation (8), the expression of εF21. It does not
result from using the same assumptions that led to relation (9), and
thus Equation (10) remains very general. The superscript “loc” is
used for the forcing and dissipation terms that result from the
product of vectors taken locally (i.e., at the same position r or ¢r ),
assuming that r r~ ¢ for the velocity field terms. This contrasts
with the terms F21 and F21 that involve (distant) two-point
correlations. Assuming that r r~ ¢ in weakly compressible
simulations such as those of this study, the terms F21 and
F21 are likely to be scale independent. However, as we will show
below, they still have a significant impact on the energy balance.
The same remark can be made about the term ¶ á ñEt

tot in
Equation (10), which is clearly a local term (unlike ¶ á ñSt since S
is a second-order structure function).

2.2. A18 Model

The other exact law derived by Andrés et al. (2018) relies on
the same three-dimensional isothermal HMHD equations, yet
using the Alfvén speed m rºv BA 0 instead of the magnetic
field:

r r¶ = - v , 15t · ( ) ( )

  



¶ =- + - +

- + +
r

n

v v v v v

v v d f
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, 16
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1
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· · ( )

· ( · ) ( )
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d
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, 17

t c c

c
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( ) · · ( )

( · · ) ( )

r r = -v v2 , 18A A· ( · ) ( )

r r = -J J , 19c c· ( · ) ( )

where rºP v 2M A
2 is the magnetic pressure and ρ is a time-space

variable. The system is once again closed with an isothermal
closure. These equations are used to compute the time derivative
of the two-point correlator rº ¢ + ¢ + ¢r v v v vR eE 2 A A( · · ) ,
which ultimately leads to the exact law:
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with the cross helicity H≡ ρ(v · vA), its two-point correlator
rº ¢ + ¢v v v vR 2H A A( · · ) , the correlator for magnetic energy
rº ¢v vR 2B A A· , and b º- v c2 s

1
A
2 2. Primed variables are

obtained by inverting the positions of the primes in the definitions.
Just like Equation (9), this law is obtained under the assumptions
of statistical homogeneity, forcing limited to large scales, time
stationarity, and infinite Reynolds number. Again, the assumptions
on the forcing, dissipation, and time stationarity can be dropped by
using the general expression obtained directly from the dynamical
equation of á + ¢ñR RE E :

e + ¶ á + ¢ ñ + + = R R2 0. 21t E EA18 A18 A18 ( )

Here, again, the same caution as above applies regarding
the introduction of εA18, whose expression is given by
Equation (20). The dissipative and forcing terms A18 and
A18 are not explicitly given in Andrés et al. (2018) but are
easy to calculate. For the dissipation term, the component
stemming from the velocity field and Navier–Stokes equation is
the same as in Equation (11), and the one originating from the
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magnetic field and induction equation stems from

r r¶ + ¢ ¢v v
1
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22t A A( ) · ( )

and reads
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The forcing term is identical to the one of law F21 and reads

r
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3. Numerical Methods

3.1. Simulation Data

The equations of CHMHD (1)–(4) are solved numerically
using the pseudo-spectral code GHOST (Geophysical High-
Order Suite for Turbulence; Gómez et al. 2005; Mininni et al.
2011), along with a module for solving compressible HMHD
flows with the eventual presence of a background magnetic
field. Three simulations were run in a cubic periodic box of
spatial resolution of N= 1024 grid points and size L0= 2π in
all three directions, and all simulations use dimensionless
viscosity and magnetic diffusivity of ν= η= 3× 10−4. Due to
the normalization of the variables, the corresponding Reynolds
numbers are simply the inverse of the viscosity and the
diffusivity: Re= Rm; 3× 103. The ion inertial length di is set
to di= 0.02L0 for the three runs. These simulations do not
feature any forcing: instead, the kinetic and magnetic fields are
set to an initial state built from a superposition of harmonic
modes with random phases whose energy in Fourier space is
put in a sphere between wavevectors kdown and kup, following
the idea of Pouquet & Patterson (1978). Then, the flow is left to
evolve and decay. Varying the intensity of background
magnetic field B0 and the initial Mach number MS allows us
to evaluate the influence of these parameters on the dynamics

of the system. All aforementioned parameters are reported in
Table 1.
As the simulations are free-decay, instead of looking for a

stationary regime, we wait for the simulations to reach a maximum
of dissipation, indicating that turbulence has had enough time to
fully develop, and lead our study on times selected around this
moment. Around these times, the sum of the kinetic and magnetic
energies of the system, Ek+Em= ρu2/2+B2/(2μ0), is expected to
be decreasing steadily. Figures 1 and 2 show this dissipation and
energy for Runs I and II (Run III exhibits an almost identical
behavior to Run II). The steady decline of the energy is indeed
observed for Run II, yet Run I shows oscillations on top of the
general behavior. These oscillations, as shown in Figure 1, match
fluctuations of the internal energy and are thus thought to be a
consequence of exchanges between the kinetic plus magnetic energy
and internal energy, as was already reported in Yang et al. (2021)

Table 1
List of Runs and Their Relevant Parameters

Run Resolution B0 MS di/L0 ν = η kdown kup

I 10243 2 0.25 0.02 3.0 × 10−4 1 3
II 10243 0 0.25 0.02 3.0 × 10−4 1 3
III 10243 0 0.5 0.02 3.0 × 10−4 1 3

Figure 1. Top: incompressible dissipation as a function of time for Run I. The
vertical dotted lines represent the 11 times selected to compute the exact laws.
Bottom: fluctuations of kinetic, magnetic, and internal energies (resp. Ek, Em,
and Eint) as a function of time for Run I. The total energy (green curve) shows a
continuous exchange between kinetic plus magnetic and internal energies. The
narrow orange line is a linear fit of the times studied in this paper, and its slope
represents the rate of energy loss at these times.
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and initiated by the presence of waves. Using a linear fit, one
can estimate the energy dissipation rate at the selected times: for
Run I it is estimated at ∼−0.047, and for Runs II and III
at∼−0.087. If the energy cascade rate is indeed representative
of the energy transferred to and dissipated at small scales, its
amplitude should match these estimates for the various
simulations. We will return to this point in the next section.

3.2. Methods of Calculation

To compute all terms from Equations (10) and (21) with
large-enough statistics, we use two different numerical schemes
depending on whether there is a background magnetic field in
the simulation or not. Both originate from the discrete
decomposition of space proposed by Taylor et al. (2003):
increment vectors ℓ are selected along 73 directions defined by
base vectors connecting two points of the grid. Increments are
taken as multiples of these base vectors so that both r and

¢ = +r r ℓ lie on known grid points, allowing for a well
mapping of space without having to interpolate the 3D data,
which would be a very time-consuming process. Such a
decomposition has already been successfully used to compute
the two-point correlation functions in simulation data of
compressible MHD turbulence (Andrés et al. 2018).
All source terms (i.e., terms that do not appear as

divergences along the increment vector) can be computed
directly as long as the increment vector is known. We only
need to proceed to the ensemble average, which in our case is
taken on the full simulation domain:

åx
x

á ñ =
r

N
, 26

r
3

( ) ( )

where N= 1024 is the number of grid points.
For flux terms (i.e., terms that appear as divergences along

the increment vector, of the form ∇ℓ · F) we make the
assumption that our system is isotropic. In this situation we
naturally use spherical coordinates, in which ℓ is defined as
ℓ= (ℓ, f, θ) and the derivative operator ∇ℓ reduces to
 á ñ = ¶ á ñF ℓ F ℓℓ ℓ ℓ ℓ

1 2
2· [ ( )]. Thus, for a given increment vector

ℓ we only have to compute the projection of the vectorial flux F
on the direction of ℓ, which is written as

f q f q
f q q

á ñ = á
+ + ñ
F ℓ F

F F

, , cos sin

sin sin cos . 27
ℓ x

y z

( ) ( ) ( )
( ) ( ) ( ) ( )

These projections are then averaged at fixed ℓ:

å
f q

á ñ =
á ñ

f q
F ℓ

F ℓ

n

, ,
, 28ℓ

ℓ

, dir
( ) ( ) ( )

where ndir= 73 refers to the number of different directions
taken for ℓ.
Note that the isotropy assumption stands for Runs II and III,

in which B0= 0. A similar method based on the assumption of
a symmetry of revolution along the axis of B0 was also used to
study Run I. While this method is a priori more suited for the
study of simulations with B0≠ 0, the isotropic decomposition
of the data ultimately provided better results even on Run I and
is thus the only one used in this paper. A more detailed
discussion on this point is given in the Appendix.

3.3. Applied Calculation

Using the method described above, we compute the various
terms of Equations (10) and (21). Note, however, that since the
present simulations are free-decay, the forcing terms appearing
in those equations are identically zero. Therefore, the latter
reduce to

e + ¶ á ñ - ¶ á ñ + + = E S2 0 29t tF21
tot

F21 F21
loc ( )

for the F21 model and to

e + ¶ á + ¢ ñ + =R R2 0. 30t E EA18 A18 ( )

for the A18 model.
To lead the calculations, we retained a number of snapshots

for each Run: 11 snapshots evenly spaced in time for Run I
(which present fluctuations on the incompressible energy
and thus require a time average) between 8 and 9 turnover
times, and five evenly spaced snapshots for Runs II and III
between 5.3 and 5.5 turnover times and 5.6 and 5.8 turnover
times, respectively. All time derivatives are obtained by using a

Figure 2. Top: incompressible dissipation as a function of time for Run II. The
vertical dotted lines represent the five times selected to compute the exact laws.
Bottom: fluctuations of kinetic plus magnetic energy as a function of time for
Run II. The narrow orange line is a linear fit of the times studied in this paper,
and its slope represents the rate of energy loss at these times.
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five-point finite-difference method:

¢ »
- - - + + - +

f t
f t h f t h f t h f t h

h

2 8 8 2

12
,

31

( ) ( ) ( ) ( ) ( )

( )

where h represents the time step between two selected
snapshots. For Run I, time derivatives (e.g., ¶ á ñSt ) are
calculated on all possible subsets of five consecutive snapshots
among the initial 11, for a total of seven calculations (one using
times 8–8.4, one using times 8.1–8.5, etc.), and then the
resulting derivatives are averaged over time. For all other terms
(e.g., εF21) we compute the time average over all 11 snapshots.
For Runs II and III, the derivatives are calculated on the five
snapshots retained using the same derivation method, and all
other terms are calculated only on the central snapshot, at times
5.4 and 5.7, respectively. Averaging these terms over the five
snapshots was found to bring no change to the results (not
shown).

4. Calculation of the Energy Cascade Rate in the Inertial
Range

We first study the energy cascade rates obtained for laws F21
and A18 classically obtained under the full assumptions of

space homogeneity, time stationarity, and infinite Reynolds
number, i.e., Equations (9) and (20), respectively. For both
laws, energy cascade rates are broken down into a Hall
component εHall and an MHD component εMHD, which are
made, respectively, of the terms in the factor of λ and of all the
remaining terms from Equations (9) and (20). A comparison of
the cascade rates provided by the two exact laws is shown in
Figure 3 for Runs I and II. One can observe that the two models
yield closely similar components (MHD and Hall) of the
cascade rate nearly at all scales. This validates numerically the
equivalence of the two exact laws in the inertial range as
anticipated in Ferrand et al. (2021a). Note that in both Run I
and Run II the value of the cascade rate in the inertial range,
centered around ℓ/di; 2, roughly matches the energy dissipa-
tion rate estimated through the linear fit on the energy
(respectively ∼−0.047 and ∼−0.087; see Figures 1 and 2),
suggesting that the energy cascade approximated in the inertial
range is representative of the dissipation in the system. The
difference in the cascade rate values between the two runs is
due to differences in the initial/driving amplitude of fluctua-
tions, which is the lowest for Run I with B0= 2.
Another question that can be addressed regarding the

cascade rate in the inertial range is its sensitivity (or not) to
the turbulent sonic Mach number. To do so, we compare in
Figure 4 the results of Runs II and III that correspond to the
initial Mach numbers MS= 0.25 and MS= 0.5, respectively.
We observe that, overall, the cascade rates are very close to
each other at all scales and appear to be similar among all three
runs, indicating that the increase in the Mach number from
MS= 0.25 to MS= 0.5 does not bring significant changes to the
total dynamics of the system. This result is in agreement with
the findings in Andrés et al. (2018) for compressible MHD
turbulence, who already reported that, for Mach numbers up to
MS= 0.5, purely compressible components of the exact law
remain negligible in comparison to the flux terms, which only
slightly deviate from their incompressible counterparts. Note
that such conclusions only hold a priori for subsonic regimes:
supersonic turbulent flows can develop a dominant compres-
sible (source-like) component of the energy cascade over the
traditional flux-driven one (Ferrand et al. 2020).
At this point, an important remark can be made: all the energy

cascade rates reported in Figures 3 and 4 have a relatively low
amplitude Hall component, which never becomes dominant with

Figure 3. Comparison between the different components of the cascade rate
given by the two models of Ferrand et al. (2021a; Equation (9)) and Andrés
et al. (2018; Equation (20)) for Run I (top) and Run II (bottom). Solid lines
represent positive values, whereas dashed lines represent negative ones.

Figure 4. Comparison between the cascade rate given by model F21
(Equation (9)) for two different Mach numbers: MS = 0.25 (Run II) and
MS = 0.5 (Run III).
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regard to the MHD component, in contrast with results reported
previously from 3D CGL simulations (Ferrand et al. 2021b; i.e.,
simulations using a closure with an anisotropic pressure tensor
introduced by Chew, Goldenberg, and Low (Chew et al. 1956),
hence the acronym). An explanation can be given: the Hall effect
remains too weak in our simulations such that the dissipation
inhibits the energy cascade before its Hall component becomes
dominant.

To test this hypothesis, we ran an additional simulation (Run
I-512) that is akin to Run I but with a lower resolution N= 512,
a slightly higher dissipation ν= η= 8.0× 10−4, and an ion
inertial length di= 0.05/L0. L0 and MS are kept unchanged.
Reducing the resolution while increasing the value of di
(despite the slight increase of the dissipation) allows for
increasing the size of the sub-ion range, which should in turn
increase the importance of the Hall effect at the smallest scales
available. A first measure of this can be obtained by looking at
the power spectrum of the electric field, defined by the reduced
Ohm’s law as (omitting the resistive term)

= - ´ + ´E v B J B
nq

1
, 32

e

( )

where n is the particle density. Figure 5 shows the ratio of the
power spectrum density (PSD) of the Hall to the ideal
components of the electric field for Run I and the lower-
resolution Run I-512. As expected, we observe both an increase
in the amplitude of the Hall electric field and its extension to
smaller scales for Run I-512 in comparison with Run I.

Then, we look at how the increased Hall effect witnessed in
Run I-512 is reflected on the other spectra and the energy
cascade rate. Figure 6 represents the kinetic and magnetic
power spectra of the simulations for both Run I and Run I-512.
The slope of the magnetic spectrum provides a means to
pinpoint the MHD inertial range (slope of −5/3) and the Hall
range (slope of −7/3). It appears that, in both runs, the MHD
range corresponds to a wide range of scales above the ion scale,
as indicated by the relatively steady −5/3 scaling. Typically,
for Run I, the −5/3 scaling roughly spans kdi ä [0.1, 0.7],
which corresponds to ℓ/di ä [1.4, 10] and is in line with the
results reported in Figure 3 for the energy cascade rate. For the
Hall range, however, it appears that the spectra quickly drop

below the ion scale, straying away from the −7/3 scaling. The
drop is less noticeable in Run I-512, which features a stronger
Hall effect, and still no clear −7/3 scaling can be witnessed at
sub-ion scales. However, a clearer knee with a change in slope
can be observed in the spectral scaling of this run at
wavenumbers slightly smaller than the inverse of the ion scale.
These observations suggest that, as expected, the Hall regime
enters in competition with the increasing dissipation at small
scales. Similarly, when looking at the energy cascade rates that
are reported in Figure 7, we observe little enhancement in the
amplitude of the Hall component of Run I-512, but it still does
not dominate the cascade at sub-ion scales despite the Hall
effect being stronger.
These results call for a further increase in the potency of the

Hall effect and/or the introduction of hyperviscosity and
hyperdiffusivity in the GHOST code, which would push the
dissipation to the smallest possible scales (under the assump-
tion that the mechanisms responsible for energy dissipation in a
plasma act at scales much smaller than the ion inertial length,
or are more localized in spectral space than the usual viscosity
and ohmic dissipation). The latter solution was indeed used in
the CHMHD-CGL simulations, where the Hall cascade was
found to dominate below the ion inertial length (Ferrand et al.
2021b). The former, however, was not reasonably feasible in
this study owing to computational constraints. Indeed, for the

Figure 5. Ratio of the power spectrum density of the Hall to the ideal (v × B)
components of the electric field for Run I and the lower-resolution Run I-512.
Note that the window has been set to only show the scales spanned by the
spectrum of Run I-512; the one for Run I extends further toward smaller values
of k.

Figure 6. Kinetic and magnetic power spectra (in red and green, respectively)
for Run I (top) and Run I-512 (bottom). Reference power laws of slopes −5/3
and −7/3 are represented by a black dashed line and a gray dashed–dotted line,
respectively.
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simulation code to run properly, and as a result of the explicit
time resolution of the dispersion of whistlers in Hall-MHD, one
needs to set an adequate value for the time step of the
calculations. This time step has, among other constraints
resulting from the Courant−Friedrichs−Lewy condition, an
upper bound that roughly behaves as∼(dx)2/(diB), where dx is
the grid resolution. Thus, increasing di too much while keeping
the grid separation small drastically tightens the constraint on
the time step, up to a point where the computational cost
becomes prohibitive. Ultimately, at this point, hyperdissipation
appears as the best available solution.

5. Exact Laws beyond the Inertial Range and Time
Stationarity

As we already stated, switching from a forced turbulence model
to a free-decay model invalidates the stationarity hypothesis used
to derive the final expression of the compressible exact laws,
namely, Equations (9)–(20). Thus, we make use in this section of
Equations (29) and (30) describing the general exact laws F21
and A18, free from these hypotheses and of the presence of an
external forcing. All the terms in those equations are computed for
the three Runs and are displayed in Figures 8 and 9, along with
their sums that, according to the aforementioned equations, should
amount to zero.

5.1. Full Equation for Law A18

Equation (30) gives a very similar behavior for all three runs.
The sum of all terms, which is supposed to be zero, lies around
1–1.5 orders of magnitude below all other terms, which is
reasonable given the statistical and discrete nature of the
numerical calculations led here. Theoretical limit cases can be
easily evaluated here: at large and intermediate scales the
dissipation term should be negligible, as it represents a mean of
uncorrelated terms, resulting in the equation

e + ¶ á + ¢ ñ =R R2 0. 33t E EA18 ( )

This relation is overall well verified by Runs II and III at large
scales as reflected by the matching between the red and yellow
curves in Figure 8. However, this does not seem to be the case
in Run I, and the black curve rises at large scales as a result.
The reason for this odd behavior is not fully understood yet. At
small scales the dissipation is expected to kick in and take
energy away from the cascade εA18. In addition, at small scales

we have  ¢x x , and therefore ¶ á + ¢ñ  ¶ á ñR R E2t E E t
tot ,

resulting in the equation

e + ¶ á ñ + =E2 2 0. 34tA18
tot

A18 ( )

This equation is also verified in all three runs, since the black
curve in Figure 8 that represents a measure of any departure
from the perfect fulfillment of the equation is at least 1 order of
magnitude lower than the other components of the equation.
The physical interpretation of Equation (30) is rather simple

and can be summed up as follows: in free-decay simulations
the term ¶ á + ¢ñR Rt E E in the A18 model plays the role of a
“forcing,” i.e., -¶ á + ¢ñ º R Rt E E F21, that inputs energy into

Figure 7. Comparison between the cascade rates given by model F21
(Equation (9)) for Run I and Run I-512.

Figure 8. Calculation of Equation (30) (black line) and its components for all
three runs. Solid lines represent positive values, whereas dashed lines represent
negative ones.
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the system at each time step. This reservoir of energy is then
split into a cascade component with a rate εA18 and a
dissipation one with a rate A18. At large scale, since

 0A18 , all the energy is almost entirely injected in the
cascade toward smaller scales. The sum of all terms, which
should be equal to zero, can be seen as an estimation of the
error induced in the calculations of time derivatives by the
fluctuations of energy.

5.2. Full Equation for Law F21

Figure 9 shows that, again, the results of Equation (29) do
not change much between the three runs. The local terms (i.e.,

independent of the increment ℓ) F21
loc and ¶ á ñEt tot are almost

equal, which can be intuited by the fact that e~ -F21
loc

F21 in
the limit of r r~ ¢. Note that in this case the model still
perfectly holds for Run I, whereas with Equation (30) the term
¶ á + ¢ñR Rt E E showed an irregular increase at large scale. This
may suggest that the model depicted by Equation (29) is more
robust than the previous one.
Interpreting the balance between the terms of the

nonstationary F21 law is subtler than for A18 because of the
presence of the local terms ¶ á ñEt

tot and F21
loc . Here it is the

scale-dependent term -¶ á ñSt that acts as a “forcing” to input
energy into the system, but this energy is diminished by the
local (i.e., increment ℓ= 0) energy variation term ¶ á ñEt

tot and
the local dissipation F21

loc . Then, the resulting energy balance is
split, similarly to the A18 model, between the cascading part to
small scales and the dissipation (both being scale-dependent
quantities):

e + -¶ á ñ + ¶ á ñ + + = S E2 0. 35t tF21
tot

F21
loc

F21[ ] ( )

6. Conclusion

Similarly to the case of IHMHD, several exact laws exist for
estimating the turbulence energy cascade rate in CHMHD. In
this paper, making use of high-resolution free-decay simula-
tions of CHMHD turbulence, we showed that the two exact
laws available for this model provide the same value of ε, as
was already proven for IHMHD laws (Ferrand et al. 2019). In
the absence of a direct mathematical proof of the equivalence
between the two compressible laws, this paper brings evidence
that they indeed describe the same turbulent cascade. The
influence of the Hall effect on the energy cascade was also
investigated. It appears that the development of a Hall-driven
energy cascade in numerical simulations may be much more
hindered by the action of dissipation at near-ion scales than by
the size of the sub-ionic range. This underlines the potential
importance of using a certain amount of hyperviscosity when
doing simulations of CHMHD as a model of the large and
intermediate scales in a plasma.
The question as to how the exact laws behave in absence of

an external forcing led us to investigate a more general form of
compressible exact laws, dropping the usual assumption of
time stationarity and considering otherwise neglected time
derivatives. This study shows that a shift in the interpretation of
both laws occurs: instead of the continuous (in time) large-scale
forcing, the laws point toward the existence of a scale-
dependent reservoir of energy, mainly described by the time
derivative terms, from which either the turbulent cascade or the
dissipation (depending on the considered scale) draws. This
reservoir overall coincides with the energy dissipation rate,
which suggests that the considered cascading energy is
ultimately bound to be fully dissipated.
These results confirm the nontrivial assertion that the final,

well-known form of exact laws, obtained with the assumption
of stationarity, remain valid within the inertial range even for
decaying turbulent flows in which the aforementioned
assumption is not verified, as is the case in some turbulent
space plasmas such as the SW taken far away from the Sun.

This work was granted access to the HPC resources of
CINES under allocation 2021 A0090407714 made by GENCI.
N.A. acknowledges financial support from CNRS/CONICET
Laboratoire International Associé (LIA) MAGNETO. N.A.

Figure 9. Calculation of Equation (29) (black line) and its components for all
three runs. Solid lines represent positive values, whereas dashed lines represent
negative ones.

9

The Astrophysical Journal, 927:205 (11pp), 2022 March 10 Ferrand et al.



acknowledges financial support from the following grants:
PICT 2018 1095 and UBACyT 20020190200035BA.

Appendix
Axisymmetric Law Calculation

Throughout this paper, all terms of the generalized exact
laws are computed using the isotropic decomposition described
in Section 3.2. However, for simulations with B0≠ 0 the
isotropy assumption should not a priori be used. Instead, we
thus propose an axisymmetric scheme that may prove to be
more suited for the analysis of such simulation data.

We assume a symmetry of revolution around B0, which
is here aligned with the z-axis. In this case we adopt
cylindrical coordinates: the increment vector is defined as
ℓ= (ℓ⊥, f, ℓz) and the derivative operator becomes
 á ñ = ¶ á ñ + ¶ á ñ^ ^ ^

^
^ ^F ℓ F ℓ ℓ F ℓ ℓ, ,ℓ ℓ ℓ ℓ z ℓ ℓ z

1
z z· [ ( )] ( ). However,

the discrete decomposition adopted in this paper makes it
impossible to effectively compute ¶ á ñ ^F ℓ ℓ,ℓ ℓ zz z ( ) at arbitrary
values of (ℓ⊥, ℓz) without resorting to multidimensional
interpolation on irregular grids, bringing lots of additional
calculations and more imprecision to the result. Conse-
quently, we only consider the perpendicular component of
the flux that is averaged over the parallel increments ℓz, and
thus the derivative operator:  á ñ = ¶ á ñ^ ^

^
^ ^F ℓ F ℓℓ ℓ ℓ ℓ

1· [ ( )]. To
do so, we first compute the projection of F on the direction
of ℓ⊥,

f f fá ñ = á + ñ^^F ℓ ℓ F F, , cos sin , A1ℓ z x y( ) ( ) ( ) ( )

and then take the average over all directions (i.e., over ℓz and
f),

å
f

á ñ =
á ñ

f
^

^
^

^F ℓ
F ℓ ℓ, ,

57
. A2ℓ

ℓ

ℓ z

, z

( ) ( ) ( )

Here we only use 57 directions, corresponding to all directions
of the isotropic decomposition forming an angle of 45° or more
with the parallel direction. This is done to obtain results
pertaining to all values of ℓ⊥ while avoiding redundant
calculations due to the periodicity of the data cubes.

This method presents two inconveniences: first, the statistics
are weaker than the isotropic decomposition, as we probe a
smaller number of directions for the increment vector. This
may lead to less precise calculations. Second, disregarding
parallel fluxes may lead to missing a small portion of the
cascade. Due to these limitations, the isotropic decomposition
may sometimes yield slightly better results even in the presence
of a background magnetic field. A good way to test the
efficiency of this method is to compute the energy cascade rate
of both exact laws A18 and F21 and see whether they match as
one would expect. This test was used on Run I, and the results
are reported in Figure 10. We immediately observe that the two
laws, and especially the Hall components, do not match as well
as they are with the isotropic decomposition or for Run II (see
Figure 3), which may be a consequence of the aforementioned
limitations. For this reason, we finally chose to keep using the
isotropic decomposition to study Run I in this paper.

Still, note that Run I remains a weakly anisotropic
simulation, with a background magnetic field of only 2. Thus,
the conclusion drawn in this appendix may not be true for
simulations featuring a stronger background field, i.e., stronger

anisotropies. Ultimately, checking which method is the most
suited one to lead the study should be done on a case-by-case
basis.
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