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Abstract—Computational models of language are having an 

increasing impact in understanding the neural bases of language 

processing in humans.  A recent model of cortical dynamics 

based on reservoir computing was able to account for temporal 

aspects of human narrative processing as revealed by fMRI.  In 

this context the current research introduces a form of structured 

reservoir computing, where network dynamics are further 

constrained by the connectivity architecture in order to begin to 

explain large scale hierarchical network properties of human 

cortical activity during narrative comprehension.  Cortical 

processing takes place at different time scales depending on the 

position in a “hierarchy” from posterior sensory input areas to 

higher level associative frontal cortical areas.  This phenomena 

is likely related to the cortical connectivity architecture.  Recent 

studies have identified heterogeneity in this posterior-anterior 

hierarchy, with certain frontal associative areas displaying a 

faster narrative integration response than much more posterior 

areas.  We hypothesize that these discontinuities can be due to 

white matter connectivity that would create shortcuts from fast 

sensory areas to distant frontal areas.  To test this hypothesis, 

we analysed the white matter connectivity of these areas and 

discovered clear connectivity patterns in accord with our 

hypotheses.  Based on these observations we performed 

simulations using reservoir networks with connectivity patterns 

structured with an exponential distance rule, yielding the 

sensory-associative hierarchy.  We then introduce connectivity 

short-cuts corresponding to those observed in human anatomy, 

resulting in frontal areas with unusually fast narrative 

processing.  Using structured reservoir computing we confirmed 

the hypothesis that topographic position in a cortical hierarchy 

can be dominated by long distance connections that can bring 

frontal areas closer to the sensory periphery. 

Keywords—reservoir computing, narrative, fMRI, cortex, 

network topology, DTI, white matter 

 

I. INTRODUCTION  

We are witnessing an interesting conjuncture in 
developments in neural network models of language in 
machine learning, the computational neuroscience of 
language, and structured reservoir computing.  Neural 
representations in certain classes of language models are 
measurably similar to neural representations in the human 
brain [1]. In this context, the temporal dynamics of reservoirs 
have been demonstrated to display human-like coding 
properties for narrative event structure [2].  Finally, structured 
reservoir computing is beginning to investigate how 

constraining reservoir topology based on human connectivity 
can produce interesting computational properties [3].  

The current research addresses a dimension of language 
processing that has gained increasing visibility – the temporal 
processing of language in a cortical hierarchy  [4-8]. 
Intuitively, sensory-driven cortical responses should be rapid 
and reflect the temporal structure of the input, while cortical 
activity underlying higher level cognitive functions that may 
involve reasoning and memory will have longer time-scales of 
processing [9].  Computational models of cortical processing 
that emphasize local connectivity naturally demonstrate such 
hierarchies, with fast processing in nodes that receive input 
from the periphery, and a progressive slowing in areas farther 
from the periphery, as activity propagates along the hierarchy 
[10].   

However, while the majority of cortical connections are 
local [11], the primate (and particularly the human) brain is 
riddled with white matter bundles that create direct connection 
short-cuts between topographically distant cortical areas [12].  
Here we address the effects of such topological constraints on 
narrative processing in the context of a new variant of 
reservoir computing as illustrated in Fig. 1. 

 

 

Fig. 1. Structured Reservoir Computing.  A. Standard reservoir topology, 

where inputs (dotted lines) are uniformly distributed into the network, and 

there is no restriction on the length input connections into the reservoir nor 

of recurrent connections (small solid lines) within the reservoir. B. 

Structured reservoir, where input connection are restricted to a small set of 

reservoir neurons, and recurrent connections are restricted by distance (i.e 

they are local).  This creates a flow of information from input driven neurons 

to more distant peripheral “associative” neurons across local connections. C.  

Structured reservoir with direct connection short-cuts between 

topographically distant cortical areas, corresponding to white matter bundles. 

The current research examines the relation between the 
different structures of  network connectivity, as illustrated in 
Figure 1, and the resulting temporal selectivity of different 
cortical areas.  Based on an analysis of human 
neurophysiology of narrative processing, different temporal 
processing for different cortical areas, and the underlying 
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white matter anatomical connectivity, we develop a form of 
structured reservoir computing that provides a coherent 
explanation for these data. 

A. Temporal hierarchy in cortical processing 

A temporal processing hierarchy has been observed in the 
human processing of narrative [4, 5].  Chien and Honey [8] 
demonstrated how the time scale of narrative integration 
increases along such a hierarchy from primary auditory cortex 
to the highly integrative temporal parietal junction (TPJ).  
They developed a task and analysis that we refer to as the 
Narrative Alignment Task.  While recording fMRI they 
exposed separate subject groups to an intact narrative and a 
scrambled narrative. From time to time the two groups thus 
heard the same narrative segment.  The authors compared 
brain activity across the two groups as they made the transition 
from listening to different narrative segments to listening to 
the same narrative segment.  They aligned their analysis on 
this transition from different to same, and characterized the 
time constant for the alignment or correlation of the brain 
activity across the two groups as they began to hear the same 
narrative.  Interestingly, they observed a hierarchy of 
alignment time constants, with fast time constants in areas 
near the sensory periphery (primary auditory cortex), medium 
time constants in intermediate areas, and slower time 
constants in high level integration areas (TPJ). This is 
consistent with related studies that identify temporal 
processing hierarchies for narrative processing. 

One hypothesis to explain such a hierarchy of processing 
is that areas that are close to the sensory periphery will quickly 
be influenced directly by inputs, and thus in the Narrative 
Alignment Task will become aligned rapidly.  In contrast, 
cortical areas that are far from the sensory periphery will take 
more time to respond to inputs which must traverse multiple 
cortico-cortical connections before arriving. 

B. Modeling the temporal hierarchy 

Chaudri [10] examined a family of recurrent network 
models in order to characterize the relation between network 
architecture and temporal processing.  He investigated this by 
using an exponential distance rule (EDR) to constrain 
connectivity, where the probability of a node being connected 
to its neighbor falls off exponentially, as schematized in Fig. 
1B.  This favors local connectivity.  Information thus 
propagates through local connections from the input driven 
periphery to more distal nodes, with a progressive increase in 
the time constant for response along the resulting hierarchy.  
Interestingly, Chaudri further examined the effects of the 
introduction of long distance connections, as schematized in 
Fig. 1C, and demonstrated that connections from fast nodes 
near the base of the hierarchy to slower nodes near the top of 
the hierarchy can render the latter faster, thus producing a 
discontinuity in the hierarchy. 

Such long distance connections can thus produce 
discontinuities in the hierarchy, such that an area that is more 
frontal may have response properties that are faster than an 
area that is more posterior.  Indeed Chaudri and colleagues 
indicate that this appears to be the case in models constrained 
by the neuroanatomical connectivity of the non-human 
primate [13].  An open question concerns how these 
connectivity effects can influence the time-course of narrative 
processing. 

C. Modeling narrative context construction 

A recently developed model of human narrative 
processing based on reservoir computing was used to simulate 
aspects of this narrative processing [2], modeling the 
Narrative Alignment Task of [8].  The model simulated 
narrative processing by using 100 dimensional word 
embeddings from Wikipedia2Vec [14] as inputs to a 1000 unit 
reservoir model of cortex.  The activation of the reservoir, 
driven by narrative input in the form of word embeddings, thus 
served as a proxy for human brain activity during narrative 
listening.  The model was demonstrated to display human-like 
representations of narrative event structure  [2].  The model 
was also shown to display human-like neural representations 
in the Narrative Alignment Task. 

Paired models were presented with narrative input (682 
words) with intact (ABCD) and scrambled (ACBD) structure, 
respectively.  The transitions CD and BD in inputs to the two 
models constitute the construction or integration context in the 
Narrative Alignment Task of [8].  That is, two models are 
initially exposed to different inputs (C) and (B), then to the 
same input (D).  At the transition when both begin receiving 
the same input, one can measure the time constant for them to 
converge to the same activity.  Thus, measuring the time 
constant for the two networks to converge to the same activity 
pattern when they both begin to receive common input (D) 
after having different inputs (C and B respectively) allows the 
authors to measure the alignment/convergence time.  In this 
way the reservoir was demonstrated to simulate the Narrative 
Alignment Task. 

Sorting the network units by these alignment times 
revealed a smooth distribution of alignment times from 4 to 
50 time-steps, analogous to the distribution of alignment times 
observed in different cortical areas in humans in [8].  
Interestingly, a linear integrator model of cortical function did 
not yield this distribution of alignment time constants – all 
units have the same time constants, so the distribution of time 
constants is a property of the flow of information in the 
recurrent connectivity within the reservoir. 

Here we will use this narrative context construction time 
constant for examining the temporal processing of narrative 
structure, comparing across human subjects from [8], and in 
structured reservoir simulations, based on [2]. 

D. Model performance in narrative comprehension 

In the current research, we will analyze the temporal 
processing properties of the structured reservoir that is 
exposed to narrative.  We thus focus on the activity of the 
reservoir neurons themselves, rather than on trained readouts.  
However, it is important to note that we have previously 
characterized the ability of trained reservoirs to perform 
integrative comprehension of narrative that includes making 
inferences about human event structure [15].    

In [15] the readout was trained to produce an integrated 
representation of the input narrative as a vector average of the 
accumulated word embeddings constituting the narrative.  
These narrative embeddings were then compared to 
embeddings for words that were, or were not, related by 
inference to the narrative, following human comprehension 
experiments [16].  The model reproduced human performance 
by generating narrative mbeddings that were closer to the 
embeddings for words that were related to the narrative by 
inference.   In addition, these trained narrative representations 
evolve in real-time during the word-by-word presentation of 



the narrative, again simulating human behavior in real-time 
integration of discourse [17].  Given this confirmation that the 
reservoir model can generate human-like performance in 
narrative/discourse comprehension, we now investigate the 
underlying representations within the reservoir.  In particular 
we investigate how structural constraints on the reservoir 
topology can produce human-like temporal brain dynamics.  

E. Current research hypotheses and objectives 

While the notion of a temporal processing hierarchy for 
narrative holds at a global level, details in certain studies 
indicate that along the posterior to anterior gradient there are 
inconsistencies, where more anterior areas have faster 
processing times than would be expected by their topographic 
position (e.g. [8]).  We hypothesize that these discontinuities 
in the temporal hierarchy can be explained by long distance 
connections via white matter pathways between faster 
posterior areas and otherwise slower frontal areas that thus 
become faster. We test this hypothesis in a twofold approach:  

First, we identify a set of cortical areas from [8] that reveal 
a discontinuity in the temporal processing hierarchy vs 
topographic hierarchy.  We then analyze white matter 
tractography of these cortical areas, and demonstrate that 
indeed, the temporal processing discontinuity is correlated 
with the pattern of long distance white matter connections for 
these areas.   

In order to demonstrate a causal role for long distance 
connections in modification of the temporal processing 
hierarchy, we perform structured reservoir computing 
simulations where the connectivity structure is organized 
according to an exponential distance rule, as schematized in 
Fig. 1B.  We submit these networks to the Narrative 
Alignment Task of [8].  This reveals a clear gradient of 
temporal processing time constants within the reservoir, along 
the sensory-associative axis.  We then introduce long distance 
connections corresponding to white matter bundles in the 
human cortex, as schematized in Fig. 1C, and demonstrate that 
these connections can produce discontinuities in the temporal 
processing hierarchy. 

II. NEURAL DYNAMICS AND NETWORK ANATOMY 

In [8] the narrative context construction times obtained in 
the Narrative Alignment Task were determined for ~70 
distinct cortical areas.  The authors generally observed a 
hierarchical gradient, as sensory cortices aligned most 
quickly, followed by mid-level regions, while some higher-
order cortical regions took more than 10 seconds to align.  

A. Discontinutities in the temporal processing heirarchy 

Interestingly, there are discontinuities in the temporal 
processing hierarchy.  Figure 2 illustrates three frontal cortical 
areas whose alignment times are in opposition to their position 
along the posterior-anterior topography, in data from [8].  That 
is, the most anterior of the three medial frontal areas indicated 
in the red box in Figure 2 is the fastest – in contradiction to the 
expected observation that the more frontal area is farther from 
the periphery, should be more integrative and thus have a 
longer time constant. 

 

 

Fig. 2. Alignment times in contrast to topography.  Within the red boxed 

frontal zone, regions PFCd_1 (brown), PFCmp_1(orange) and FrMed_2 

(yellow), lie along a topographic gradient from anterior to posterior.  Their 

alignment times are in opposition to this topographic gradient, with the more 

anterior regions displaying faster alignment times.  Modified from [8]. 

 

B. Discontinuities in connectivity due to white matter 

bundles 

In order to determine whether the temporal processing 
discontinuities observed by [8] for these three regions could 
be related to differences in white matter  connectivity, we used 
diffusion tensor imaging [18] to characterize white matter 
pathways issued from these regions of interest (ROIs).   
Diffusion tensor data obtained from 19 subjects in [19] were 
analysed in order to characterize the white matter pathways 
issued from the three ROIs using DSI Studio (https://dsi-
studio.labsolver.org). 

 

Fig. 3. White matter connectivity for PFCd_1 (Red), PFCmp_1 (Green) and 

FrMed_2 (Blue).  Right is anterior.  Red-boxed zone same as in Fig. 2.  Note 

that Red and Green pathways extend in a signifant manner into posterior 

regions, while the blue pathways have less extension into posterior regions. 

Figure 3 illustrates white matter pathways that project 
from these three regions of interest (ROIs).  These were 
generated using ROIs specified in [8], based on the atlas in 
[20].  The observation of a distinction between the long 
anterior-posterior projections for areas PFCd and PFCmp that 
is not seen in FrMed was confirmed by a statistical analysis of 
the mean lengths of the tracts issued from these three areas.  
Analysis of variance by repeated measure ANOVA revealed 
a significant effect for Region (F(2,36) = 42, p < 0.0001).  
Post-hoc (Scheffe) tests revealed that the mean lengths for 
FrMed  were significantly shorter (55mm) than for PFCd and 
PFCmp (70, 75mm respectively), while there was no 
difference between the lengths for PFCd and PFCmp.  

 

https://dsi-studio.labsolver.org/
https://dsi-studio.labsolver.org/


Thus, the fastest area has significantly longer white matter 
pathways than the slowest area.  Examining these pathways in 
Figure 2, we can observe that the pathways from PFCd and 
PFCmp project into posterior cortex, while those from FrMed  
(blue fibers) do not take this path into more posterior cortical 
areas.  

III. STRUCTURED RESERVOIR MODELING 

These results argue in favor of the hypothesis that 
differences in white matter connectivity can influence the 
temporal processing characteristics of cortex.  To test this in 
an empirical model of cortical dynamics we developed a 
structurally modified version of the narrative integration 
reservoir using the open access reservoir model from [2]. 

A. Narrative Integration Reservoir 

The classic reservoir architecture is illustrated in Fig. 1A.  
Our model is based on a classic echo state network with leaky 
integrator tanh units.  A set of recurrently connected nodes – 
the reservoir – is stimulated by inputs.  This produces a 
dynamic reverberation of activation throughout the reservoir 
as information propagates through the recurrent connections. 

The basic discrete-time, tanh-unit echo state network with 

N reservoir units and K inputs is characterized by the state 
update equation : 

x(t+1) = (1−α)x(t)+α·f(Wx(t) + Winu(t) )   (1) 

where x(n) is the N-dimensional reservoir state, f is the tanh 
function, W is the N×N reservoir weight matrix, Win is the 
N×K input weight matrix, u(n) is the K dimensional input 
signal, α is the leaking rate.  The matrix elements of W and 
Win are drawn from a random distribution. 

The reservoir was instantiated using easyesn, a python 
library for recurrent neural networks using echo state 
networks (https://pypi.org/project/easyesn/) [21].   We used a 
reservoir of 1000 neurons, with input and output dimensions 
of 100.  The W and W_in matrices are initialized with uniform 
distribution of values from -0.5 to 0.5, with 20% non-zero 
connections.  The leak rate was 0.2.  The reservoir is relatively 
robust to changes in these values, as long as the reservoir 
dynamics are neither diverging nor collapsing. 

.    

 

 

Fig. 4. Narrative Integration Reservoir.  Successive words in the input 

narrative are used to retreive the corresponding word embeddings from 

Wikipedia2vec, a word2vec model trained on the 2018 Wikipedia corpus.  

Successive word vectores are input to the 1000 unit reservoir model which 

performs a temporal-spatial transformation of temporal seqeunce of word 

inputs into a trajectory of spatial activation vectors. 

 

To simulate narrative processing, words were presented in 
their sequential narrative order to the reservoir.  Stop words 
(e.g. the, a, it) were removed, as they provide no semantic 
information [22].  Similar results were obtained in the 
presence of stop words.  Words were coded as 100 
dimensional vectors from the Wikipedia2vec language model. 

This language model is developed based on using the 
word2vec language model that is trained on the entire 
Wikipedia 2018 corpus 

The reservoir model illustrated in Fig. 4 receives as input 
the 100 dimensional word embedding from Wikipedia2Vec 
for the next word in the 682 word input narrative, based on the 
story “It’s Not the Fall that Gets You” by Andy Christie 
(https://themoth.org/stories/its-not-the-fall-that-gets-you).  
Using two identical copies of this model we can simulate the 
Narrative Alignment Task.  One model gets the intact input 
narrative with segments ABCD.  The second gets the 
scrambled narrative with segments ACBD. As illustrated in 
Fig 5, when the inputs are different, the activation differences 
are clearly visible.  When the inputs become the same, then 
the activations progressively align and the difference goes to 
zero.  The time constant of this alignment is the behavior of 
interest. Thus, it is important to note that we are analyzing the 
intrinsic dynamics of the reservoir itself, and not the behavior 
of a trained readout layer. 

Figure 5 illustrates the difference between reservoir 
activity in two identical copies of the same reservoir that are 
exposed to the intact ABCD narrative vs. the shifted ACBD 
narrative. When the activations in the two reservoirs are 
identical, the difference is null.  In the beginning the intact and 
shifted narratives are the same, which yields a zero difference.  
Then they become different and we observe the large activity 
in the difference signal.  Finally, the two narratives again 
become the same.  There, we see a gradual reduction in the 
difference as the two narratives converge to the same activity, 
based on the same input.  The time constant of this 
convergence is the measure we use to characterize temporal 
processing of narrative based on the same measure in human 
subjects in [8].  

 

 

Fig. 5. Simulation of Narrative Alignment Task.  Difference in reservoir 

neural activity for two reservoirs exposed to intact and scrambled narratives 

respectively.  At the transition from Different to Same, we measure the time 

constant for the two reservoirs to become aligned for each of 1000 neurons. 

B. Topography of Temporal Processing 

In the classic reservoir, the connections in the recurrent 
network – the reservoir – are randomly initialized with a 
Gaussian distribution between -0.5 and 0.5 with 20% non-zero 
connections.  Thus, there is no structured topography within 
the reservoir.  This is schematically illustrated in Figure 1A.  
In particular, there is no influence of topographical distance 
between neurons influencing the probability of connections.  

https://pypi.org/project/easyesn/
https://themoth.org/stories/its-not-the-fall-that-gets-you


Such a reservoir configuration, and its behavior in the 
Narrative Alignment Task is illustrated in Figure 6. 

 

 

Fig. 6. Classic reservoir architecture and “flat” temporal processing 

hierarchy in the Narrative Alignment Task.  A. Input matrix: 100 input 

elements project into 1000 reservoir units.  B.  Recurrent connectivity matrix 

of the reservoir.  Gaussian distribution, no structural topography.  C. 

Narritive Alignment time constants for neuron subsets 300-399, 400-499, … 

900-999.  Note uniformity of time constants across these “cortical areas”. 

Figure 6 illustrates a standard, random reservoir, where 

the input matrix projects the inputs over the whole reservoir, 

and where there is no length restriction on connections 

between reservoir units, corresponding to Fig. A.  There, in 

Panel C we see that across the different subsets of neurons 

there is a uniformity of time constants across the different 

subsets of cortical neurons.  In the primate brain, this is not 

the case.  The probability of two neurons being connected fall 

off exponentially with the distance between them [23].  This 

is illustrated schematically in Figure 1B.  In structured 

reservoir computing (S-RC) we can introduce structure 

constraints such as the exponential distance rule, and 

restriction of input to “sensory” areas, corresponding to the 

schematic in Figure 1B.  

To implement this, we start with a standard reservoir 

connection matrix W, and then restricted it according to a 

exponential distance rule as described in the pseudo-code in 

Fig. 7.   There, for neurons 1..1000, no connection can be 

longer than 600, and those connections are scaled by an 

exponential factor of the length.  In addition the connections 

are scaled by a proximal to distal factor, that increases with 

the distance of the source (From) neuron from the input. 
In Fig. 8 we see the resulting restricted input matrix, and 

the structured connectivity matrix for the reservoir with an 
exponential distance rule applied.  Values closest to the 
diagonal represent connections strengths between closely 
neighboring neurons.  Values that are farther from the 
diagonal are for neurons that are farther apart.  We thus see a 
density along the diagonal that falls off exponentially. 

 

Fig. 7. Pseudocode for creating the structured weight matrix for the 

recurrent reservoir connections. 

As illustrated in Fig. 8, the EDR connectivity imposes a 
topographical structure on processing.  While inputs directly 
influence “lower” areas (neurons 1-300), higher areas receive 
input-related activity only as it is propagated along local 
connections.  The highest neurons will receive input-related 
activity only after it has traversed multiple intermediate local 
connections to finally arrive at the highest neurons.  Panel C 
illustrates the functional consequences of this.  Neurons are 
grouped into virtual areas of 100 neurons, and the mean 
Narrative Alignment Task time constants are displayed.  We 
observe a progressive increase in the alignment time constants 
along the cortical hierarchy. 

 

Fig. 8. Canonical topography of temporal processing.  A. In the network of 

1000 neurons, inputs are provided to the the first 300 neurons. B.  The 

connectivity matrix indicates that neurons are connected to their local 

neighbors according to the EDR. C.  Alignment time constant based on the 

Narrative Alignment Task in [8]. 

C. Impact of Long Distance Dense Connections 

This corresponds to a brain model that strictly follows 
local connectivity imposed by an exponential distance rule.  
However, recalling Figure 2 we know that thick bundles of 
axons provide dense connections between distant cortical 
areas.  This corresponds to white matter – myelinated neural 
axons – the wire of the brain – which makes up almost half of 
the volume of the human brain [12].  Thus in addition to local 
connectivity there is ample possibility for long distance 
“hotlines” between cortical areas.  In order to simulate the 
effects of such a long distance connection we introduced a 
connection bundle from fast input driven neurons to slower 
neurons far away in the hierarchy.  This is illustrated in Fig. 8 
panel B showing the W connectivity matrix, as the small 
square of values at From 100-200 to To 800-900.  That is, this 
simulated white matter pathway connects neurons 100-200 
which receive direct sensory input, to neurons 800-900 which 
are far from the sensory periphery.  These units  normally have 
a relatively high time constant in the absence of the long 
distance connection as illustrated in Fig. 8C. 

 

Fig. 9. Modification of the temporal heirarchy by introduction of long 

distance hot-line connections.  A.  Input matrix.  Unchanged from Fig. 7.  B.  

Connectivity matrix W.  In addition to the local EDR defined connections 

(seen along the diagonal) we introduce an additional white matter pathway 

as a direct connection from neurons 100-200 to neurons 800-900.  C.  

Modified hierachy.  Comparing to Fig 7 C, we see that that later area 6 now 

has a significanly reduced alignment time in the narrative alignment task. . 

gradient= 0.00075;gain = 1.75;breadth=600;expon=3 
for i in 1 to 1000: 
  for j in 1 to 1000: 
     if abs(i-j) <= breadth: 

esn.W[i,j] =  
(breadth-abs(i-j)/breadth)**expon* 
esn.W[i,j]* (1 + i * gradient)*gain 

else: esn.W[I,j]=0 



As illustrated in Figure 9, the introduction of this 
connection produces a significant speedup in the time constant 
for the Narrative Alignment Task for the cortical area that 
receives input from the area lower in the hierarchy.  This 
demonstrates that introduction of long distance connections 
can significantly modify the time constant for a given cortical 
area in the Narrative Alignment Task. 

Code and data for running these simulations is available in 
the repository:  

github.com/pfdominey/StructuredReservoirComputing 

 

 

IV. INTERPRETATION AND DISCUSSION 

 

The current research has scientific impact along two 
related dimensions.  The first is the further development of a 
new field of investigation of structured reservoir computing 
where the structure of the input and recurrent connections are 
systematically modified based on anatomical constraints in 
order to produce new computational properties [3].  The 
second is within the context of computational neuroscience of 
language and narrative processing [2], and particularly the 
temporal component of this processing.  Interestingly, these 
two dimensions intersect, as the analysis of computational 
properties of human-like connectivity in structured reservoirs 
will shed new light on the computational neuroscience of 
human narrative processing.  

A. Structured reservoir computing 

Recent research in structured reservoir computing 
addressed how constraining the reservoir with small world 
connectivity enhances certain computational properties  [3].  
There, long distance connections allowed a propagation from 
restricted input-receiving units to distant output units.  In their 
analysis, while the authors addressed the effects of the small 
world reservoir on several important aspects of reservoir 
computing, including the propagation effects of long distance 
shortcuts, effects on temporal processing and information 
flow were not directly addressed.   

A clear physical phenomena is that network topology 
influences temporal processing [10].  When information flows 
from input driven areas to more distant areas, as schematized 
in Fig 1B, that flow takes time.  We can refer to this flow of 
information across successive connections as the network 
distance. This network distance is roughly correlated with 
topographic or physical distance along a flattened cortical 
sheet.  Such a network would give the flowing temporal 
processing properties as illustrated in Fig 8.  However, the 
human brain is riddled with white matter (almost half the brain 
volume) [12].  White matter is constituted of axonal bundles 
which form cables that traverse the network and completely 
dissociate network distance from topographic distance.  This 
is schematically illustrated in Fig. 1C.  Such shortcuts should 
influence the temporal processing properties of their target 
cortical areas. In the current research this new perspective on 
reservoir computing is highly relevant, not only as a new 
avenue of reservoir computation, but also in providing a 
method to understand complex aspects of the human 
neuroscience of narrative processing. 

Indeed we were motivated by a clear case in human 
neurophysiology where network distance and topographical 
distance do not correspond, based on data in [8]. That is, a 
more frontal area had a much faster time constant for narrative 
processing than more posterior neighboring areas.   We 
hypothesized that this discontinuity could be due to different 
connectivity profiles for these areas.  We performed DTI 
analysis to determine that indeed, the most frontal area which 
most deviated from the temporal processing according to 
topographical distance had a connectivity pattern that 
significantly varied from its neighbor that had a better 
correspondence between topographic and network distance 
(i.e. it is far from the sensory periphery, and relatively slow).  
In particular the faster area had more extensive connections 
into posterior cortical areas that are closer to the sensory 
periphery.   

To further test the hypothesis that such long distance 
connections can produce speedup in temporal processing, we 
performed neural network simulations using a novel form of 
reservoir computing that we refer to as Structured Reservoir 
Computing.   

In structured reservoir computing, we introduce structure 
in the matrices that describe connections from the input to the 
reservoir, and the recurrent connections, following related 
research that has investigated the effects of small-world 
connectivity on reservoir processing [3].  In particular, we 
create a more physiologically realistic reservoir topology, 
basing connectivity on an exponential distance rule, while 
retaining the reservoir principle of non-modifiable recurrent 
connections that are used to generate high-dimensional spatio-
temporal projections of the inputs.  By employing a 
connectivity structure where connection strength is based on 
an exponential function of the connection distance, we can 
produce structured reservoirs that display a more 
physiologically realistic spatial distribution of processing time 
constants such as observed in humans.  Likewise, by 
introducing additional structure in the form of long distance 
white matter pathways that in a sense violate the exponential 
distance rules, we can achieve increasing realistic modeling of 
temporal processing as observed in [8]. 

An interesting and prevalent phenomena in the human 
processing of narrative is that across different brain areas, 
there are differences in the temporal granularity of narrative 
integration and event processing [4-8].  It will be of great 
interest to use structured reservoir computing to model this 
diversity of cortical processing, including the processing of 
meaning at different structural levels (e.g. word, sentence, 
paragraph, narrative pattern, etc.).  An initial step in this 
direction was taken in  [2].  There we demonstrated that within 
a classic reservoir, there was a broad distribution of narrative 
processing time constants as revealed in the Narrative 
Alignment Task.  When the reservoir neurons were sorted by 
their alignment time constants, the distribution of alignment 
time constants was strikingly similar to that observed across  
wide distribution of cortical areas in humans [8]. In the current 
research we demonstrate how such a distribution of alignment 
time constants can be ecologically produced  by imposing the 
exponential distance rule structure on the reservoir 
connectivity topology.   

B. Temporal hierarchy in narrative processing  

While cortical neurons have similar intrinsic time 
constants, due to their similar geometry and membrane 
properties, there is a vast diversity of time constants of neural 

https://github.com/pfdominey/StructuredReservoirComputing


processing across the cortical sheet [13].  This is particularly 
present in narrative processing [4-8].  A major open question 
in modern neuroscience concerns both the origin of this 
diversity, and its functional consequences.  One hypothesis 
would hold that specific cognitive processes, such as 
integration of narrative structure over an extended portion of 
narrative input, requires a long time constant of processing, 
and so these high level functions will impose this temporal 
structure on their associated brain areas or networks that are 
involved in such processing.  In this hypothesis, the question 
remains as to what is the origin of the function that imposes 
these temporal constraints. An alternative hypothesis holds 
that the gross temporal processing constraints are imposed by 
architecture itself.  As we observe, areas far from the sensory 
periphery naturally have slower time constants.  In this 
hypothesis, these areas will naturally be adapted to processes 
that involve long time scale integration.  Thus, long time scale 
structure of narrative will naturally self-allocate to these 
regions.   

This modeling work examines the emergence of a 
temporal processing hierarchy based on network topology.  It 
provides evidence that the distribution of narrative 
construction time constants observed in [8] might be 
accounted for by cortical network structure, rather than by an 
adaptation of different cortical areas to different processing 
requirements.  In other words, the different narrative 
integration processes (that operate  e.g. at the word, sentence, 
paragraph, chapter levels) naturally migrate to the brain 
regions that have the corresponding connectivity structure that 
yields the appropriate processing time constant.  This is in 
opposition to the notion that different brain areas adapt their 
processing time constants for different tasks.   This is a rather 
binary analysis.  It is possible that the truth is a compromise, 
whereby processing time constants can be constrained both by 
network connectivity properties, and by on-line modulatory 
processes.  This provides a rich framework for future research 
on the interaction between network structure, processing time 
constant dynamics modulated by input driven and intrinsic 
processes in biological and artificial networks [24].   

On a final note, this research illustrates the tight potential 
link between the topological connectivity structure of the 
brain, and the hierarchical structure of narrative.  This 
provides a novel and potentially fruitful approach for 
investigating the co-evolution of human narrative, including 
its spatio-temporal complexity and hierarchical event 
structure, and the corresponding neural architecture that 
provides the substrate for creating and comprehending this 
narrative structure.  In the context of reservoir computing this 
is quite exiting.  We already have the example of how 
reservoir computing has helped to characterize and understand 
the neuroscientific importance of mixed selectivity for higher 
cognitive function [25, 26].  This new research in structured 
reservoir computing and narrative opens a new avenue of 
research that one can hope will be equally productive. 
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