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INTRODUCTION

The purpose of these lectures is to consider in details some integrable systems of quantum mechanics. By such systems we mean the quantum systems with finite number of degrees of freedom, possessing sufficiently many commuting integrals of motion, what gives the possibility in some cases to obtain the explicit expression for the spectrum and the wave functions of the Schrödinger equation, or to reduce this problem to the solution of a number of one-dimensional Schrödinger equations.

Before investigation of quantum systems it is often useful to consider also the corresponding classical systems. Until recently only a small number of integrable systems (as classical and quantum ones) with two and more degrees of freedom were known. In the last fifteen years, however, remarkable progress has been made in this direction due to invention by Gardner, Greene, Kruskal and Miura [GGKM 1967] of a new approach to the integration of nonlinear evolution equations, known as the inverse scattering method or the isospectral deformation method.

Applied to problems of classical mechanics this method revealed the complete integrability of numerous classical systems. It should be pointed out that all systems of this kind discovered so far are related to Lie algebras, although often this relation is not so simple as the one expressed by the well-known theorem of E. Nother. We refer the reader, who is interesting in such systems to the recent book [Pe 1990].

As for the corresponding quantum systems they also possesses sufficiently many integrals of motions, so that in some cases it is possible to integrate them explicitly. We refer the reader who is interested in such systems to the review paper [OP 1983] and to the book [FT 1987].

In the present paper we restrict ourselves to considering just some quantum integrable systems, but we consider them in some details.

Chapter 1 Preliminaries

This is introductory chapter which reviews the basic facts of quantum integrable systems and illustrates them using simple examples. From the formal point of view the quantum system is characterized by the self-adjoint (or hermitian) operator H, acting in some Hilbert space H. We are interested in quantum systems, which possess sufficiently many integrals of motion-the operators, commuting with Hamiltonian H, so that the spectrum and wave functions can be found more or less explicitly.

It should be noted first of all that formally such integrals of motion always exist. Consider for example the simple case when the spectrum of the Hamiltonian H is discrete

H| n⟩ = E n | n⟩.
(1.1)

It is evident that any operator

P n = ⟨n | n⟩ (1.2)
commutes with the Hamiltonian and, hence, such an operator is an integral of motion. However, usually we are interested in Hamiltonians of a special type, say

H = 1 2 p 2 + U (q), p 2 = n ∑ 1 p 2 j ,
(1.3) 1 where p = (p 1 , . . . , p n ), q = (q 1 , . . . , q n ).

Then it is easy to see that the integrals of motion P n = ⟨n | n⟩ cannot be polynomial in the momenta and, hence, they are not interesting for us. The interesting and nontrivial problem is to describe systems of type (1,3), admitting polynomial integrals of motion.

Note also that if I 1 and I 2 are two integrals of motion, then the operator I 3 = [I 1 , I 2 ] is also an integral of motion. This simple remark is useful because it sometimes makes it possible to obtain new integrals of motion from old ones. In many cases the set of integrals of motion forms a Lie algebra, in other words the commutator of any two integrals of motion is a linear combination of such integrals of motion [I j , I k ] = c jkl I l .

(1.4)

Two well-known examples of such a kind are the case of the harmonic oscillator

H = 1 2 (p 2 + ω 2 q 2 ) = ω ( n ∑ 1 a + j a j + 1 2
) , a j = 1 √ 2ω (p j -iωq j ), a + j = 1 √ 2ω (p j + iωq j ), (1.5) and the Coulomb case

H = 1 2 p 2 + α r , r = |q|. (1.6)
It is easy to check that in the first case the quantities

I jk = a + j a k (1.7)
are the integrals of motion and that they form a Lie algebra isomorphic to the su(n) Lie algebra. The existence of such a symmetry algebra makes it possible to construct all wave functions with a fixed energy from a given one by applying the generators of this algebra.

There are also cases when we have a set of operators which form a Lie algebra , such that one of the generators coincides with the Hamiltonian, but some of these operators do not commute with the Hamiltonian. In this case we use the name "dynamical symmetry group". This gives the possibility of describing sometimes the whole spectrum and all wave functions as one unitary irreducible representation of this Lie algebra.

As a simple example let us take the set of all operators which are quadratic in the annihilation and creation operators:

a + i a j , a + i a + j , a i a j (1.8)
It is easy to check that these operators form a Lie algebra, namely the Lie algebra of the real symplectic group. In this case the whole Hilbert space of the oscillatory problem may be decomposed onto two subspaces H = H (+) ⊕ H (-) , (1.9) in which two unitary irreducible representations of real symplectic Lie algebra are acting. Another interesting case is when the system under consideration has no symmetry group, but this system is the projection of a system with a larger number of degrees of freedom, which possesses sufficiently many integrals of motion, so that this larger system is integrable.

Let us consider some examples of the motion of one particle in the potential fields of special type.

The case of potential g 2 q -2

In this case

H = 1 2 p 2 + g 2 q -2 = - 1 2 d 2 dq 2 + g 2 q -2 (1.10)
where it is convenient to write g 2 as

g 2 = 1 2 µ (µ -1). (1.11)
We are interested in the solutions

Hψ k = E k ψ k , ψ k (0) = 0, E k = 1 2 k 2 .
(1.12)

The following results can be easily demonstrated:

(1) For g 2 > -1 8 , the operator H is selfadjoint. (2) The spectrum is continuous and covers the semi-axis

0 ≤ E k < ∞.
(1.13)

(3) The wave function of the zero-energy state is of the form

ψ 0 (q) = q µ . (1.14) (4) After substituting ψ k = ψ 0 ϕ k , the operator H transformed into the operator -B/2, where B = d 2 dq 2 + 2µ 1 q d dq (1.15)
and we shall normalize the function ϕ k (q) by the condition ϕ k (0) = 1. Equation (1.13) then takes the form

Bϕ k (q) = -k 2 ϕ k (q). (1.15 ′ )
For µ = 1 2 (n -1), the operator B is the radial part of the Laplace operator in spherical coordinates in the n-dimensional Euclidean space R n .

(5) The free motion of particle in n-dimensional space is described by plane waves ϕ k,ν (r) = exp (ikνr), (ν 2 = 1).

(1.16)

After averaging this expression over all directions ν we get the integral representation for the function ϕ k (q)

ϕ k (q) = ∫ S n-1 exp (ikνr) dµ(ν), q = |r|.
(1.17) (6) Let us give the explicit expression for the function ϕ k (q):

ϕ k (q) = 2 µ-1/2 Γ(µ + 1/2) (kq) -(µ-1/2) J µ-1/2 (kq) (1.18)
where J µ (x) is the standard Bessel function.

As a consequence we obtain the expression of ϕ k (q) as a series

ϕ k (q) = ∞ ∑ m=0 (-1) m Γ(µ + 1 2 ) m! Γ(µ + 1 2 + m) ( kq 2 ) 2m (1.19)
and its asymptotic behavior reads

ϕ k (q) ∼ 2 µ π -1 2 Γ( 1 2 + µ)(kq) -µ cos (kq - µπ 2 ), |q| → ∞.
(1.20)

From (1.11) it follows that the S-matrix has the form

S(k) = exp (-iµπ). (1.21) 1.2 The case of potential g 2 sinh -2 q H = 1 2 p 2 + g 2 sinh -2 q, g 2 = 1 2 µ(µ -1) (1.22)
and we are interested in the solutions to equation (1.12). In this case results analogous to the results of section 0.1 are valid. The statements (1) and ( 2) are not changed.

(1) The function ψ 0 (q) = (sinh q) µ , (1.23)

is the solution to the equation (1.12) corresponding to E 0 = -µ 2 /2. This function, however, is increasing at q → ∞ and, hence, E 0 = -µ 2 /2 does not belong to the spectrum of the operator H.

(2) After substituting ψ k = ψ 0 ϕ k the operator H is transformed into the operator -1 2 (B + µ 2 ), where

B = d 2 dq 2 + 2µ coth q d dq .
(1.24)

Equation (1.15') now takes the form

Bϕ k (q) = -(µ 2 + k 2 ) ϕ k (q), ϕ k (0) = 1. (1.25)
For µ = (n -1)/2 the operator B is the radial part of the Laplace-Beltrami operator on the n-dimensional hyperboloid

H n = {x ∈ R n+1 |x = (cosh q, sinh q • n), n 2 = 1}.
(3) The free motion of a particle on the hyperboloid H n is described by the functions

ϕ k,ν (q, n) = (cosh q -sinh qνn) -µ+ik (1.26)
which are the analogs of plane waves in Euclidean space.

After averaging we obtain the integral representation for the function ϕ k (q) = ∫ (cosh q -sinh qνn) -µ+ik dµ(ν).

(1.27)

(4) The explicit expression for the function ϕ k (q) has the form

ϕ k (q) = F ( (µ + ik) 2 , (µ -ik) 2 , µ + 1 2 ; -sinh 2 q ) , (1.28)
where F (a, b, c; x) is the hypergeometric functions.

(5) The asymptotic behavior of the function ϕ k (q) as q → ∞ has the form

ϕ k (q) ∼ (c(k) exp (ikq) + c(-k) exp (-ikq)) exp (-µq).
(1.29) (6) Using the formula (1.28) we obtain an explicit expression for the function c(k), namely:

c(k) = Γ(ik) Γ(2µ) Γ(µ + ik) Γ(µ) (1.30)
and for the S-matrix,

S(k) = Γ(ik) Γ(µ -ik) Γ(-ik) Γ(µ + ik) .
(1.31)

1.3 The case of potential g 2 sin -2 q

In this case

H = 1 2 p 2 + g 2 sin -2 q, g 2 = 1 2 µ(µ -1), (1.32)
and the following results are valid:

(1) For g 2 > -1 8 , the operator H is selfadjoint. (2) The spectrum of H is discrete:

E l = (l + µ) 2 2 .
(1.33)

(3) The wave function of the ground state has the form ψ 0 (q) = sin µ q.

(1.34) (4) After substituting ψ l = ψ 0 ϕ l , the operator H is transformed into operator -1 2 (B -µ 2 ), where

B = d 2 dq 2 + 2µ cot q d dq .
(1.35)

The equation (1.12) now takes the form

B ϕ l (q) = -l(l + 2µ) ϕ l (q).
(1.36)

For µ = (n -1)/2 the operator B is the radial part of the Laplace-Beltrami operator on the n-dimensional sphere

S n = {x ∈ R n+1 |x = (cos q, sin q • n), n 2 = 1}.
(1.37)

The function ϕ l (q) is called the zonal spherical function.

(5) The free motion of a particle on the sphere S n is described by the functions (1.38) which are the analogs of plane waves in Euclidean space. The integral representation for the function ϕ l (q) has the form

ϕ l, ν (q, n) = ( cos q -i sin q(νn)) l , ν 2 = 1,
ϕ l (q) = ∫ S n
( cos q -i sin q(νn)) l dµ(ν).

(1.39) (6) The function ϕ l (q) can be expressed through the Gegenbauer polynomials C µ l :

ϕ l (q) = N l C µ l (cos q), N l = Γ(1 + l) Γ(2µ) Γ(l + 2µ) (1.40)
which in turn are connected with the hypergeometric function ϕ l (q) = F ( -l, l + µ, µ + 1 2 ; sin 2 q).

(1.41)

1.4 The case of potential g 2 ℘(q)

Let us rewrite the equation (1.12) in form

- d 2 dq 2 ψ(q) + l(l + 1) ℘(q) ψ(q) = λψ(q), (1.42) where l = µ -1, λ = 2E. (1.43)
This equation appears when one separates variables in the Laplace equation in the elliptic system of coordinates. The Weierstrass function ℘(q) 1 All information used hereafter can be found in [BE 1955]. is doubly-periodic in the complex plane q and, hence, depends on two parameters (half periods) ω and ω ′ . Let us note that the systems considered in sections 0.2 and 0.3 are special cases of this system. They may be obtained as limiting cases when one or both of the periods of the function ℘(q) go to infinity.

In the case of integer l, equation (1.42) was studied originally by Lamé, and then in more detail by Hermite. We shall consider in detail only the case l = 1.

It is known that for any λ there are two solutions to this equation, depending on two parameters k and b, .44) where σ(q) is the Weierstrass sigma-function and the quantities b and k can be found from the equations

ψ 1 = exp (kq) σ(q -b) σ(q) , ψ 2 = exp(-kq) σ(q + b) σ(q) , ( 1 
℘(b) = -λ, k = ζ(b). (1.45)
Here ζ is equal to σ ′ /σ. These solutions are linearly independent, if b is not a halfperiod (b ̸ = ω, ω ′ ).

However, the solutions are singular at q = 0 and q = 2ω(2ω is real period of the function ℘(q) which can be taken equal to π). But the sum of these solutions,

ψ(q) = ψ 1 (q) + ψ 2 (q) = exp(kq) σ(q -b)/σ(q) + exp(-kq) σ(q + b)/σ(q) (1.46)
is the solution to (1.42) which is regular at q = 0. The requirement that this solution be regular also at q = π yields the equation

exp(kπ) σ(π -b) + exp(-kπ) σ(π + b) = 0 or σ(π -b)/σ(π + b) = -exp(-2kπ).
(1.47)

Now the two relations

σ(π + b) = -exp (2η (b + π/2)) σ(b), σ(π -b) = -exp (2η(-b + π/2)) σ(-b) (1.48)
follow from the formula σ(q + 2ω) = exp (2η (q + ω)) σ(q), η = ζ(ω), (1.49) and the equation (1.47) takes the form

ζ(π/2) b m = ζ(b m )π 2 + iπm 2 , (1.50) λ m = -℘(b m ). (1.51)
This is the equation which determines the spectrum. It is sufficient to consider only the values m ≥ 1. The quantity b m is imaginary (b m = iβ m ) and we can write instead of (1.49)

2 π ζ( π 2 ) β m = -iζ(iβ m ) + m. (1.52)
Note that as a limiting case we can obtain one of the previous systems.

If, for example, ω = π/2 and ω ′ goes to i∞, we have .53) and from equations (1.49), (1.50) there follows

ζ(q) = 1 3 q + cot q, ζ( π 2 ) = π 6 , ℘(q) = - 1 3 + 1 sin 2 q , ( 1 
E m = λ m 2 = - 1 3 + m 2 2 .
(1.54)

As for the case of equation (1.42) for arbitrary integer l, it may be solved in analogous manner. Namely, for any λ there are two singular solutions and using them one can construct regular solutions and obtain a transcendental equation for the eigenvalues.

The case of potential

g 2 q -2 + 1 2 ω 2 q 2
The Schrödinger equation in this case has the form

{ - d 2 dq 2 + µ(µ -1) q -2 + ω 2 q 2 } ψ l (q) = 2E l ψ l (q), ψ l (0) = 0. (1.55)
The spectrum of this equation is discrete. The normalized ground-state wave function has the form ψ 0 (q) = N 0 q µ exp ( -1 2 ωq 2 ).

(1.56)

The energy is given by the expression

E 0 = ω(µ + 1 2 ) (1.57) while N 2 0 = 2ω µ+ 1 2 [Γ(µ + 1 2 )] -1 .
(1.58)

Substituting ψ l = ψ 0 ϕ l into (1.54) we get for ϕ l the equation

- { d 2 dq 2 + 2( µ q -ωq) d dq } ϕ l (q) = 2(E l -E 0 ) ϕ l (q), (1.59)
For the half-integer values µ = (n -1)/2 this equation coincides with the radial part of the equation for an oscillator in n-dimensional space.

The explicit solutions to (1.58) can be expressed in terms of Laguerre polynomials

ϕ l (q) = N l L µ-1 2 l (ωq 2 ) (1.60)
where

N l N 0 = √ l! ω µ+ 1 2 Γ(l + µ + 1 2 ) , E l = (2l + µ + 1 2 )ω.
(1.61)

1.6 The case of potential g 2 exp(-q)

Note, first of all, that after shifting the variable q → q + q 0 the equation takes the form

{ - d 2 dq 2 + exp(-q) } ψ λ (q) = 2E ψ λ (q). (1.62)
It is worthwhile noticing that this equation may be obtained form the Schrödinger equation for a free particle on the upper sheet of a two-sheet hyperboloid

H 2 = {x|x 2 = x 2 0 -x 2 1 -x 2 2 = 1, x 0 > 0}.
Namely, from the relations

x 0 = cosh q 2 + 1 2 z 2 exp( q 2 ), x 1 = sinh q 2 - 1 2 z 2 exp( q 2
), (1.63)

x 2 = z exp ( q 2 ),
there follows that the pair (q, z) defines a global coordinate system on H 2 . These are the so-called horospherical coordinates. The parabolas (q = const, -∞ < z < +∞) are horocycles in Lobachevsky geometry, for which H 2 is one of the possible realizations. The reduction of the Laplace operator in R 3 to H 2 has the form

B = ∂ 2 ∂q 2 - 1 2 ∂ ∂q + 1 4 exp(-q) ∂ 2 ∂z 2 .
(1.64)

If the functional space F on H 2 has the form

F = { f (q, z) | f (q, z) = exp (iz/2 + q/4) ψ(q) } , (1.65)
then the eigenfunctions of the operator B in this space are the wavefunctions ψ λ (q). From (1.61) there follows that the spectrum of the problem is the semi-axis 0 < E < ∞, and thus one can parameterize it as follows: E = λ 2 /2. The wave functions ψ λ (q) of eq.( 1.61) must have the following asymptotic behavior:

ψ λ (q) ∼ c(λ) exp(iλq) + c(-λ) exp(-iλq), q → ∞, ψ λ (q) → 0, q → -∞.
(1.66)

Thus the wave function ψ λ (q) can be cast in the form, see [BLOPR 1982],

ψ λ (q) = c(λ) exp(iλq) f λ (q) + c(-λ) exp(-iλq) f -λ (q), f λ (q) → 1, q → ∞.
(1.67)

The equation determining the function f λ (q) may be evaluated after inserting (1.66) in (1.61)

{ d 2 dq 2 + 2i λd dq } f λ (q) = exp(-q) f λ (q).
(1.68)

Eq. (1.67) suggests the Ansatz

f λ (q) = ∞ ∑ n=0 a n (λ) exp(-nq), (1.69)
where the coefficients a n (λ) must satisfy the following recurrence relation:

a n = 1 n(n -2iλ) a n-1 .
Thus setting a 0 (λ) ≡ 1, one gets

a n (λ) = Γ(1 -2iλ) Γ(n + 1) Γ(n + 1 -2iλ)
.

(1.70)

Eqs. (1.68) and (1.69) lead to the following result:

f λ (q) = ∞ ∑ n=0 Γ(1 -2iλ) Γ(n + 1) Γ(n + 1 -2iλ) exp(-nq). (1.71)
It is easy to recognize that formula (1.70) is just the power expansion of a modified Bessel function

f λ (q) = Γ(1 -2iλ) I -2iλ exp(-q/2).
Taking into account (1.66) one has

ψ λ (q) = d(λ) K -2iλ exp(-q/2). (1.72)
Looking at the asymptotic behavior of the K-function for q → ∞ one can immediately obtain the two-body S matrix,

S(λ) = Γ(1 + 2iλ) Γ(1 -2iλ) . (1.73)
It is worth noticing that for the wave function ψ λ (q) one can write the integral representation

ψ l (q) = c(λ) exp (iλq) ∫ ∞ 0 t -(1-2iλ) exp [ -(t + exp(q/t))] dt. (1.74)
The wave function takes an especially simple form in the momentum representation. Evaluating the Fourier transform of ψ λ (q) given by (1.71) one gets

ψ λ (p) = c(λ) Γ( -i(p -λ)) Γ( -i(p + λ)).
(1.75)

The function ψ λ (p) is the solution of the equation

(λ 2 -p 2 ) ψ λ (p) = ψ λ (p + i) (1.76) vanishing at p → ±∞.
1.7 The case of potential v(q) = g 2 cosh q

We have the Schrödinger equation

{ - d 2 dq 2 + 2g 2 cosh q} ψ n = 2E n ψ n (1.77)
with boundary conditions

ψ n (x) → 0, x → ±∞.
The solution to this equation is expressed in terms of Mathieu functions and is not given here.

We present here only the expression for the spectrum of this problem in the quasi-classical approximation. According to the Bohr-Sommerfeld quantization rules, we have

4 √ 2g ∫ an 0 √ cosh a n -cosh x dx = 2π (n + 1 2 ) , g 2 cosh a n = E n .
(1.78)

Evaluating this integral one obtains a transcendental equation for the spectrum cosh (

a n 2 ) ( K( tanh a n 2 ) -cosh a n • E( tanh a n 2 ) ) = π 8g ( n + 1 2 ) , (1.79)
and its solutions are

E n ∼ { g 2 + g(n + 1 2 ) for small n, αn 2
for large n.

(1.80)

Chapter 2

MOTION IN MULTIDIMENSIONAL SECTORS

Let us first recall that the free motion in n-dimensional Euclidean space E is described by the equation

-∆ ψ(x) = k 2 ψ(x), x = (x 1 , . . . , x n ) (2.1)
and that the elementary solutions of this equation are plane waves

ψ k (x) = exp (ikx), k = kn, n 2 = 1. (2.2)
Hence the general solution of this equation has the form

ψ(x) = ∫ dµ(n) ψ kn (x)), n ∈ S 2 = {n|n 2 = 1}.
(2.3) Formula (2.3) also describes the general solution of the equation (2.1) in multidimensional sectors, i.e. in domains in Euclidean space E , constrained by a finite number of hyperplanes and contained the origin. The measure dµ(n), however, should be chosen in such a manner that the function ψ(x) should satisfy boundary conditions on the boundary of the domain.

In the general case the solution contains an infinite number of exponents. The integrable cases here are the cases which admit a solution 15 with a finite number of exponents and such cases are possible only for domains of very special forms. 1. Let us begin the consideration from the free motion in the halfspace E + = {x|x 1 > 0} constrained by the hyperplane H 1 = {x|x 1 + 0} and let us denote as n the unit vector orthogonal to H 1 and as S n the operator of reflections in the hyperplane

H 1 S n x = x ′ , x ′ = (-x 1 , x 2 , ..., x n ).
(2.4)

The wave function ψ(x) should satisfy the boundary condition ψ(x)| H 1 = 0 and it is evident that

ψ(x) = ψ k (x) -ψ S k (x).
Note that in the case under consideration the motion is related to the two-dimensional motion in the plane determined by two vectors k and n. Hence, in this case it is sufficient to consider the motion in the two-dimensional plane

E = {x|x = (x 1 , x 2 )}.
The wave function here is the superposition of two exponents only, which are determined by the classical picture of reflections in the hyperplane H.

2.

Consider now the case of motion in the domain constrained by two hyperplanes H n 1 and H n 2 with angle between them equal to π/2 .

In this case, as it is seen from classical picture, the wave function ψ(x) is the superposition of four exponents

ψ(x) = exp (i(k 1 x 1 + k 2 x 2 )) -exp (i(-k 1 x 1 + k 2 x 2 )) -exp (i(k 1 x 1 -k 2 x 2 )) + exp (i(-k 1 x 1 -k 2 x 2 ) = -4 sin(k 1 x 1 ) sin(k 2 x 2 ). (2.5)
In other words

ψ(x) = 4 ∑ j=1 (S j ) ψ S jk (x) (2.6)
where S j =±1 and the operators S j are the elements of the finite group generated by reflections in the hyperplanes H n 1 and H n 2 . 3. Let us consider the free motion in the sector with the angle α.

Note that the product of the two reflections S 1 and S 2 in the hyperplanes H 1 and H 2 is the rotation around the origin on the angle 2α. From this it follows that the reflections S 1 and S 2 generate a finite group only for the case when 2α = 2πn, i.e. for the angle α = π n . It is clear now that in order that the wave function have the form of a finite number of exponents, it is necessary that reflections in hyperplanes constraining the considered domain form a finite group.

This gives us constraints on the angles between any two hyperplanes, constraining the multidimensional domain under consideration. Namely, such angles α jk should be equal to π n jk where n jk is integer.

Chapter 3

SYSTEMS WITH v(q) = δ(q), BETHE ANSATZ 1
The one-dimensional problem of N particles, interacting pairwaise by means of δ-function potential was the first many-body problem solved exactly (see papers [BFP 1964], [McG 1964], [BZ-J 1966], [Ya 1967], [Ya 1968], [YY 1969]). This problem can be solved using the so-called Bethe Ansatz [Be 1931], which turns out to play an important role in the so-called quantum inverse scattering method (the details may be found in the reviews [Fa 1981], [START_REF] Tha | [END_REF]], and in the book [FT 1987]).

The Hamiltonian of the problem has the form

H = 1 2 N ∑ j=1 p 2 j + g ∑ j<k δ(q j -q k ), (3.1) p j = -∂/∂q j , j, k = 1, . . . , N,
where the coupling constant g is negative for the case of attractive interaction and positive for the repulsive case.

In the repulsive case the energy spectrum is continuous (E > 0) and the eigenfunctions describe scattering processes.

In the attractive case there exists one (and only one) bound state ([BFP 1964], [McG 1964]).

Hψ 0 = E 0 ψ 0 , E 0 < 0, (3.2) E 0 = -g 2 N (N 2 -1)/12, (3.3) ψ 0 = C 0 exp ( - 1 2 |g| ∑ j<k |q j -q k | ) . (3.4)
Note that the ground-state is factorized.

The normalization constant C 0 has been calculated in the paper [START_REF] Cd | [END_REF], where the following normalization was used

∫ dq 1 . . . dq N δ(N -1 ∑ q j ) |ψ 0 | 2 = N (3.5)
with this normalization we have

|C 0 | = N ! [(N -1)! (|g| N -1 )] 1/2 . (3.6)
Besides the normalization constant, in [START_REF] Cd | [END_REF]] also the density function has been calculated,

ρ 0 (q) = ∫ ∞ -∞ dx 1 . . . dx N δ (N -1 ∑ x j ) δ(q -x 1 ) |ψ 0 | 2 . (3.7)
The answer is [START_REF] Cd | [END_REF]]

ρ 0 (q) = |g| N -1 ∑ n=1 (-1) n+1 n(N !) 2 exp { -|g|nN |q|} (N + n -1)! (N -n -1)! . (3.8)
Here q is the distance from the center of mass of the system. The density at the center is given by the simpler formula [START_REF] Cd | [END_REF]]

ρ 0 (0) = 1 2 gN 2 (N -1) (2N -3) . (3.9)
Note that, as N → ∞ , the system collapses to a volume of order (gN ) -1 and the binding energy per particle is proportional to (gN ) 2 . Hence the system does not have the normal thermo-dynamical behavior.

Note also that the same result can be obtained by means of the method of the self-consistent field with the Ansatz

ψ = N 1/2 , N ∏ j=1 φ(q j ).
(3.10)

The function φ(x) satisfies then the nonlinear Schrödinger equation

-[(N -1)/N ] φ"(x) -2(N -1) |g| |φ(x)| 2 φ(x) = εφ(x) (3.11)
and there obtains from this equation the normalized solution

φ(x) = ( |g|N 4 )1 2 / cosh ( |g| 2 N x
) , (3.12)

i.e. the soliton solution of nonlinear Schrödinger equation. The comparison between the exact and quasiclassical results was carried out in [START_REF] Cd | [END_REF]] and [FKM 1976].

Let us now consider the repulsive case and let all particles be identical and be bosons, so that the wave function is completely symmetric in all the variables q 1 , . . . , q N . As for the structure of this function, we may suppose that in the domain q 1 < q 2 . . . < q n this function is the linear combination of N ! terms, each of which is a simple exponential in the variables q j . Namely we write

ψ k (q) = ∑ p a p exp [i(k p 1 q 1 + k p 2 q 2 + . . . + k p N q N )],
(3.13)

q 1 < q 2 < . . . < q N , (3.14)
where p 1 , p 2 , . . . , p N is a permutation of the numbers 1, 2, . . . , N . The constants a p are to be determined from the boundary conditions on the boundary of the domain (3.14). The conjecture, that the wave function have the form defined by (3.13), is called the Bethe Ansatz.

In order to understand the spectral properties of the system under consideration, it is convenient to put the N particles on a circle of length L, which gives the possibility to avoid the question of asymptotic boundary conditions. This problem has been solved in the paper [LL 1965].

The boundary conditions at the hyperplane q i = q j take the following form

a p ′ a p = -exp [iα(k i -k j )], (3.15)
where p and p ′ are arbitrary permutations of the indices, identical except for the exchange of k i with k j . Note that all k j must be different.

The function α(k) has the form

α(k) = -2 tan -1 (k/g), |α(k)| < π. (3.16)
Because there are (N -1)(N !) equations (3.15) for N ! coefficients, there arises the question of their consistency. As shown by C.N. Yang [Ya 1967], [Ya 1968], the equations (3.15) are indeed consistent; moreover, they can be recast into the so-called Yang-Baxter form (see also [Ba 1972], which turns out to play an important role in recent investigations of quantum integrable models [Fa 1981], [START_REF] Tha | [END_REF]], [FT 1987].

The solution to the equations (3.15) is unique up to a normalizing factor and reads

a p = ∏ i<j ( 1 + ig k i -k j )
.

(3.17)

The energy of the system is

E k = 1 2 N ∑ j=1 k 2 j .
(3.18)

The quantities k j can be found from the periodicity condition of the wave function ψ(q 1 , q 2 , . . . , q N -1 , L) = ψ(0, q 1 , q 2 , . . . , q N -1 ).

(3.19)

It follows that for all p a pQ exp(ik

p 1 L) = a p (3.20)
where Q is the cyclic permutation (1, 2, . . . , N ) → (2, 3, . . . , 1). Taking the logarithm of both parts of this equation and using (3.15) one obtains

k i L = 2πn i + ′ ∑ j α(k i -k j ) (3.21)
where the n i are integers and

tan α(k i -k j ) 2 = g (k i -k j ) . (3.22)
As shown in [Ya 1967], [YY 1969], the solution to these equations is unique for each set of numbers {n j }.

It is interesting to investigate this system of equations in the limit of infinite volume at fixed density. In the repulsive case such limit exists and one obtains a continuous distribution with the number of k's in the interval dk given by Lρ(k)dk. For the density of states ρ(k) one obtains the integral equation

ρ(k) - 1 π ∫ k -k gρ(k ′ ) dk ′ (k -k ′ ) 2 + g 2 = 1 2π . (3.23)
The density of particles is given by the expression

ρ 0 = N L = ∫ k -k ρ(k) dk (3.24)
and the energy per unit length is

E L = ∫ k -k ρk 2 dk. (3.25)
It is remarkable that, as noticed in the paper [Ga 1971], the equation (3.23) coincides with the so-called Love equation for the old problem of the circular disk condenser [Sn 1966]. The details can be found in [Ga 1971].

In conclusion let us note that similar results can be obtained for more general systems related to arbitrary root system. These systems are characterized by the Hamiltonian

H = 1 2 ∑ j p 2 j + g ∑ α∈R δ(q α ), q α = (α, q) (3.26)
where R is an affine root system (see Appendix A). The details can be found in [GS 1979], [Su 1980].

Chapter 4

THE HYDROGEN ATOM

In this section the hidden symmetry of the hydrogen atom is considered.

It is shown that the symmetry groups are SO(4), SO(3, 1) and E(3) for the cases E < 0, E > 0 and E = 0, respectively. The standard treatment of the subject consists of solving the Schrödinger equation explicitly in terms of hypergeometric functions.

In the classical case three integrals of motion are known, forming a three-dimensional vector, the so-called Laplace-Runge-Lenz vector ([La 1799], [Ru 1919], [Le 1924]).

The corresponding integrals of motion exist also in the quantum case.

Using these integrals of motion W.Pauli [Pa 1926] found the spectrum of the hydrogen atom.

Later V. Fock [Fo 1935] has shown that the hydrogen atom, in addition to the explicit symmetry relative to the rotation group SO(3), also possesses a hidden symmetry, relative to the larger group SO(4) (for E < 0). He explained the degeneracy of the levels in terms of this symmetry group.

Then V.Bargmann [Ba 1936] related these two approaches to each other, and to the separation of variables in parabolic coordinates.

In 1964 J.Schwinger [Schw 1964], using this symmetry, constructed the Green function of this problem.

The symmetry group of the hydrogen atom for the cases E > 0 and E = 0 was considered in the articles [PP 1966], [PP 1968], and[BI 1966a], [BI 1966b].
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The symmetry algebra

Let us recall that the hydrogen atom is described by the Hamiltonian1 

H = p 2 2 - α r , r = |x|. (4.1.1)
It is known that in the classical problem in addition to the standard integrals of motion

L ij = x i p j -x j p i (4.1.2)
there is the vector A which gives additional integrals of motion

A i = L ij p j - αx i r . (4.1.3)
In the quantum case it is easy to check that the vector Â

( Â) i = A i = 1 2 (L ij p j + p j L ij ) -α x i r (4.1.4)
is also an integral of motion

[A i , H] = 0. (4.1.5)
Calculating the commutation relations for operators L i = ε ijk L jk and A j we obtain

[L i , L j ] = iε ijk L k ; [L i , A j ] = iε ijk A k , (4.1.6) [A i , A j ] = -2iHε ijk L k (4.1.7)
and LA = AL = 0, (4.1.8)

A 2 -α 2 = 2HL 2 + 1. (4.1.9)
Note first of all that as seen from (4.1.6) the operators H, L i and A j do not form a closed Lie algebra because the last relation in (4.1.6) is quadratic in these operators.

However, we can restrict ourselves to the consideration of the subspace corresponding to the fixed eigenvalue E(E < 0) of the Hamiltonian. In this case it is useful to introduce the operators

M i = (-2E) -1/2 A i , (4.1.10) and J (1) i = 1 2 (L i + M i ), J (2) j = - 1 2 (L j -M j ). (4.1.11)
Then the operators J

(1) i and J

(2) i are commuting operators and also

[J (1) i , J (1) i ] = ε ijk J (1) k , [J (2) 
i , J

(2)

j ] = ε ijk J (2)
k .

(4.1.12)

From this it follows that eigenvalues of the operators (J (1) ) 2 and (J (2) ) 2 are j 1 (j 1 + 1) and j 2 (j 2 + 1). Also from (4.1.7) it follows that J (1) 2 = J (2) 2 and hence j 1 = j 2 . Furthermore it follows that

2E • (M 2 + L 2 + 1) = -α 2 , (4.1.13) M 2 + L 2 + 1 = 4[(M + L)/2] 2 + 1 = [4j(j + 1) + 1] = (2j + 1) 2 . (4.1.14)
Hence we obtain

E = - α 2 2(2j + 1) 2 . (4.1.15)
It is possible to show that the number (2j + 1) coincides with the principal quantum number n of the hydrogen atom, and hence we obtain the well known expression for the energy levels of the hydrogen atom.

For the degree of degeneracy we obtain

(2j 1 + 1)(2j 2 + 1) = (2j + 1) 2 = n 2 . (4.1.16)
The symmetry algebra SO(4) thus explains naturally the energy levels and also their degeneracy.

The symmetry group

From the preceding section it is natural to suppose that the symmetry group is the SO(4) group. This fact was shown in 1935 by V. Fock [Fo 1935], and in this section we will follow this work.

Let us consider the Schrödinger equation for the hydrogen atom in the momentum space

( p 2 2 -E ) ψ(p) - α 2π 2 ∫ ψ(p ′ )dp ′ |p -p ′ | 2 = 0. (4.2.1)
After the introduction of the quantity

p 2 0 = -2E (4.2.2) we obtain (p 2 + p 2 0 )ψ(p) = α π 2 ∫ ψ(p ′ )dp ′ |p -p ′ | 2 . (4.2.3)
Following to V. Fock [Fo 1935], let us consider the momentum space as the stereographic projection of the three-dimensional sphere

S 3 = {(ξ, ξ 0 )|ξ 2 + ξ 2 0 } = 1, (4.2.4)
where

ξ = 2p 0 p p 2 + p 2 0 , ξ 0 = p 2 0 -p 2 p 2 0 + p 2 .
(4.2.5)

After introducing of the new wave function

ψ(ξ) = (p 2 + p 2 0 ) 2 ψ(p) (4.2.6)
and using the relations

(ξ -ξ ′ ) 2 = 4p 2 0 |p -p ′ | 2 (p 2 + p 2 0 )(p ′ 2 + p 2 0 ) , dp = p 2 + p 2 0 2p 0 d 3 ξ ξ 0 (4.2.7)
we obtain 

ψ(ξ) + η 2π 2 ∫ d 3 ξ ′ ξ ′ 0 • ψ(ξ ′ ) (ξ -ξ ′ ) 2 = 0, η = α p 0 . ( 4 
Y nlm (α, θ, φ) = Π nl (α) Y lm (θ, φ),
(4.2.9)

n = l + 1, l + 2, . . . ; -l ≤ m ≤ l. (4.2.10) Π nl (α) = [ π/2n 2 (n 2 -1) . . . (n 2 -l 2 ) ] -1 2 (sin α) l ( d d(cos α)
) l+1 cos nα.

(4.2.11) Here we use the standard definition of the angles α, θ, φ on S 3 ξ 0 = cos α, ξ 1 = sin α • sin θ • cos φ, (4.2.12)

ξ 2 = sin α • sin θ • sin φ, ξ 3 = sin α • cos θ. (4.2.13)
The functions Y nlm (ξ) satisfy the normalization condition

∫ d 3 ξ ξ 0 Y * n ′ l ′ m ′ (ξ) Y nlm (ξ) = δ nn ′ δ ll ′ δ mm ′ . (4.2.14)
Let us give also the formula for the functions Π nl (α) in terms of hypergeometric functions

Π nl (α) = N nl (sin α) l × F ( n + l + 1, -(n -l -1); l + 3 2 ; (sin α 2 ) 2
) , (4.2.15)

N nl = [ n 2 (n 2 -1) . . . (n 2 -l 2 ) ] 1/2 2 l+1/2 Γ(l + 3 2 ).
(4.2.16)

The hydrogen atom and Lorentz group

In this section we consider the case of positive energies (E > 0). In this case it is convenient to transform the operators A j into operators

N j = (2E) -1/2 A j . 2
The commutation relations (4.1.6) now take the form

[L i , L j ] = iε ijk L k , [L i , N j ] = iε ijk N k , [N i , N j ] = iε ijk L k , (4.3.1)
i.e. these relations coincide with commutation relations between the generators of homogeneous Lorentz group. 3The vector A is specific for the Coulomb field and, hence, the Lorentz group describes the hidden symmetry of the Kepler problem. We may express now the Hamiltonian in terms of the generators L j and

N k H = - α 2 2 (F + 1), (4.3.2)
where

F = L 2 -N 2 (4.3.3)
is the invariant operator on the Lorentz group.

Let us recall now that the homogeneous Lorentz group has among others irreducible representations of the following two types:

(1) the finite-dimensional representations D(j 1 , j 2 ), which are nonunitary, except for the scalar one D(0, 0),4 

(2) the infinite-dimensional unitary representations, discovered by I.M. Gel'fand and M.A. Naimark [GN 1946]. These representations may be divided into two classes: the representations of the principal and supplementary series (see [GN 1946]) which we will denote as D(m, ρ). We refer for details of the representation theory of the Lorentz group to the book [Na 1958]. Here we discuss only those properties of unitary infinite-dimensional representations of the principal series which will be needed below.

The numbers m and ρ characterize the irreducible representation unambiguously. Here m is an integer and ρ is an arbitrary real number. The representations D(m, ρ) and D(-m, -ρ) are equivalent, and hence it is sufficient to consider the case ρ ≥ 0 (for both signs of m). The invariant operators F and G on the Lorentz group (scalar and pseudoscalar) for the representation D(m, ρ) take the following values:

F = 1 2 M µν M µν = -[1 + 1 4 (ρ 2 -m 2 )], (4.3.4) Ĝ = i 8 ϵ µνσλ M µν M σλ = mρ 4 . (4.3.5)
It is possible to obtain the standard finite-dimensional representations from the representations D(m, ρ) by analytical continuation. To do this one should take into account the following relations

m = 2(j 1 -j 2 ), ρ = -2i(j 1 + j 2 + 1) (4.3.6)
and hence for finite-dimensional representations we have ρ = -in ′ (n ′ = 1, 2, 3, . . .).

It can be shown that only to the points on the semiaxis 0 ≤ ρ < ∞ and also to the integer points on the imaginary axis ρ = -in ′ correspond the faithful representations of the Lorentz group.

From (4.1.4) and (4.1.7) we obtain the values of the invariants F and Ĝ in the case of the hydrogen atom

F = -(1 + E c 2E ), G = -(2H) -1/2 (LA) = 0. (4.3.7)
Comparing (4.3.4) and (4.3.6) we have m = 0,

ρ =    ( 2Ec E ) 1/2 = 2pc p for the continuous spectrum (E > 0) -2in
for discrete spectrum (n is the principal quantum number) (4.3.8)

Here p c = | Z 1 Z 2 me 2 | is the characteristic momentum for Coulomb field. The system of wave functions for the continuous spectrum with the fixed values of energy E form the irreducible representation D(0, ρ) of the Lorentz group. This representation is an infinite-dimensional and unitary one. From a physical point of view, the infinite dimension of the representation corresponds to the fact that the orbital momentum values l in the continuous spectrum are unbounded. The unitarity of the representation correspond to the fact that the generators L i and N j for E > 0 are the Hermitian. The states of the discrete spectrum corresponding to the level with the principal quantum number n form the finite-dimensional representation D(j 1 , j 2 ) with j 1 = j 2 = n-1 2 . This representation is not unitary, since the generators N i at E < 0 are antihermitian ones. Its dimension is equal to (2j 1 +1)(2j 2 +1) = n 2 . As n varies from 1 to ∞, the quantity j takes all integer and half-integer values: j = 0, 1/2, 1, 3/2, . . . . Thus all representations of the Lorentz group with m = 0 may be realized on wave functions of hydrogen atom. The condition m = 0 is a natural one because the non zero values of the quantum number m appear only when the particle has nonzero spin.

The wave functions of the continuous spectrum

For the continuous spectrum (E > 0), the Schrödinger equation for the hydrogen atom has the form

( p 2 2m -E ) ψ(p) + Z 1 Z 2 e 2 2π 2 ∫ ψ(p ′ )dp ′ |p -p ′ | 2 = 0. (4.4.1)
In this case, it is convenient to consider the momentum space as the stereographic projection of the two-sheeted hyperboloid ([Fo 1935]). Let us introduce the coordinates (p 0 = √ 2mE)

ξ i = 2p 0 p i p 2 -p 2 0 , ξ 0 = p 2 + p 2 0 p 2 -p 2 0 , (4.4.2)
which satisfy the condition

ξ 2 0 -ξ 2 = 1. (4.4.3)
Introducing a new function

ψ(ξ) = C • (p 2 -p 2 0 ) 2 ψ(p) (4.4.4)
and taking into account the relations

(ξ -ξ ′ ) 2 = - 4p 2 0 • |p -p ′ | 2 (p 2 -p 2 0 )(p ′ 2 -p 2 0 ) ; dp = p 2 -p 2 0 2p 0 • dξ |ξ 0 | (4.4.5)
we reduce equation (4.4.1) to the form

ψ(ξ) - η 2π 2 ∫ dξ ′ ξ ′ 0 • ψ(ξ ′ ) (ξ -ξ ′ ) 2 = 0, η = e 2 m p 0 . (4.4.6)
Let us emphasize that the integration in (4.4.6) should be done on both sheets of the hyperboloid ξ 2 0 -ξ 2 = 1. The solutions of equation (4.4.6) are the generalized four-dimensional spherical functions

Y ρlm (α, θ, φ) = Π ρl (α) Y lm (θ, φ), (4.4.7) Π ρl (α) = [ π( ρ 2 ) 2 ( ρ 2 4 +1 2 ) . . . ( ρ 2 4 +l 2 ) ] -1/2 ×(sinh α) l ( d d cosh α ) l+1 cos ρα 2 .
(4.4.8) The normalization condition has the form

∫ ∞ 0 sinh 2 α dα ∫ π 0 sin θ dθ ∫ 2π 0 dφ Y * ρlm (α, θ, φ) Y ρ ′ l ′ m ′ (α, θ, φ) = (4.4.9) δ(ρ -ρ ′ ) δ ll ′ δ mm ′ .
(4.4.10)

The functions Y ρlm (α, θ, φ) are complete on each of two-sheets of the hyperboloid and as was shown in [DT 1960] form the canonical basis of the infinite-dimensional representation D(0, ρ) of the Lorentz group.

The Lorentz transformations leave invariant the hyperboloid ξ 2 0ξ 2 = 1 and the integral equation (4.4.6). Therefore, the functions ψ(ξ) transform on some representation of the Lorentz group. It follows from Section 3 that this representation coincides with the representation D(0, ρ). From this, it follows that (4.4.11) Here, the angle α changes from 0 to +∞, and on the upper sheet p = p 0 coth α 2 , ξ 0 = cosh α, while on the lower sheet p = p 0 tanh α 2 , ξ 0 = -cosh α. The expressions for Y ρlm (ξ) through the angles α, θ, φ have the same form (4.4.7) for both sheets. The constants C 1 and C 2 in (4.4.9) don't depend on l and m. To find these constants,let us substitute (4.4.9) into integral equation (4.4.6) and taking into account the formulae at Appendix A [PP 1966], we obtain

ψ Elm (ξ) = (p 2 -p 2 0 ) 2 ψ Elm (p) = { C 1 Y ρlm (ξ), for p > p 0 , C 2 Y ρlm (ξ), for p < p 0 ,
C 1 = (1 + exp(2πη)) -1/2 , C 2 = -(1 + exp(-2πη)) -1/2 . (4.4.12)
The wave function

ψ ρlm (ξ) for such values C 1 and C 2 is normalized in ρ-representation ∫ d 3 ξ ξ 0 Ψ ρlm (ξ) Ψ * ρ ′ l ′ m ′ (ξ) = δ(ρ -ρ ′ ) δ ll ′ δ mm ′ . (4.4.13)
Let us note that the wave functions of the hydrogen atom in prepresentation for E > 0 have the following symmetry.

Let us take two vectors p 1 and p 2 which are related to each other by means of inversion relative to the sphere |p| = p 0 in momentum space. Then from (4.4.9) and (4.4.10) it follows that

ψ(p 1 ) ψ(p 2 ) = -exp(-πη) • p 2 0 -p 2 2 p 2 0 -p 2 1 ; p 1 > p 2 , p 1 p 2 = p 2 0 . (4.4.14)
Therefore, in order to know the wave function ψ(p) at all values p, it is sufficient to know this function only in one of the domains |p| > p 0 or |p| < p 0 .

Let us note the very special behavior of the Coulomb functions near the "mass shell" p 2 = p 2 0 . Denote ψ Elm (p) = R El (p) • Y lm (p/p). Then from (4.4.9), we obtain

R El (p) = const 1 p 2 -p 2 0 exp ( ∓ πη 2 ) sin { η log p -p 0 2p 0 + σ l -σ 0 } (4.4.15)
where the upper (lower) sign corresponds to p > p 0 (p < p 0 ) and σ l is the Coulomb scattering phase σ l = arg Γ(l + 1 + iη). Hence, for the wave function ψ Elm (p), the point p = p 0 is the branch point.

The case E = 0

For the Coulomb attraction case, there are states with E = 0. From (4.1.6) it follows that [A i , A j ] = 0 and hence the operators L i , A j gen-erate the Lie algebra of the Galilei group. 5Changing the variables in the Schrödinger equation (4.2.1)

ξ = 2p c p p 2 , |p -p ′ | 2 = p 2 c |ξ -ξ ′ | 2 (ξξ ′ ) 2 (4.5.1)
and introducing the new function ψ(ξ)

ψ(ξ) = const ( p 2p c ) 4 ψ(p) (4.5.2)
we obtain

ψ(ξ) - 1 2π 2 ∫ ψ(ξ ′ )dξ ′ |ξ -ξ ′ | 2 = 0. (4.5.3)
This equation is translationally invariant in three-dimensional ξspace which is related to the symmetry of the Coulomb functions with zero energy. The solutions of this equation have the form ψ(ξ) = exp(iaξ), |a| = 1. The states with definite values of angular momentum may be obtained by means of the well known expansion of plane wave

Y 0lm (ξ) = const j l (ξ)Y lm (ξ/ξ) (4.5.4)
and hence

ψ 0lm (p) = const ( 2p c p ) 4 j l ( 2p c p ) Y lm (p/p). (4.5.5)
Using the Fourier transform we obtain the wave function in xrepresentation

ψ 0lm (r) = const ( 8r r 0 ) -1/2 J 2l+1 ( √ 8r r 0 ) Y lm (r/r), r 0 = 2 m|α| .
(4.5.6) which is well known [LL 1965].

Note that the equation for the Coulomb repelling potential differs from (4.5.3) only by the sign before the integral. It is not difficult to show that this equation has no bounded solutions except those vanishing identically. Correspondingly, the wave function with E = 0 for the repelling potential is equal to zero identically.

The Coulomb Green function

The Green function for the Coulomb potential has been considered in the x-representation in papers [WW 1961], [Ho 1964]. In 1964 Schwinger [Schw 1964] indicated that the simplest form of the Green function for E < 0 is in the p-representation, which is related to SO(4) symmetry of the hydrogen atom, discovered by Fock [Fo 1935]. This representation is important because it is in this form that the Green function appears in Feynman diagrams for nuclear reactions. In the paper [PP 1966] a new form of expansion for the Coulomb Green function on the orthogonal system of functions was obtained, which replaced the Schwinger expansion for the case E > 0. From the mathematical point of view these formulae give the expansion of the Coulomb Green function on irreducible representations of the homogeneous Lorentz group.

The Coulomb Green Function for E < 0

The Coulomb Green Function G(p, p ′ ; E) satisfies the integral equation

( p 2 2m -E ) G(p, p ′ ) + Z 1 Z 2 e 2 2π 2 ∫ G(p ′′ , p ′ ) |p -p ′′ | 2 dp ′′ = -δ(p -p ′ ). (4.6.1)
In order to transform this equation to the SO(4)-invariant form it is necessary to transform the Green Function, [Schw 1964]

G(ξ, ξ ′ ) = - 1 16mp 3 0 (p 2 ± p 2 0 ) 2 G(p, p ′ ; E) • (p ′ 2 ± p 2 0 ) 2 , (4.6.2)
where p 0 = √ 2m|E|. Here and also in eq. (4.6.3), the upper (lower) signs are related to the cases E < 0(E > 0); the case E = 0 is the exceptional one and it will be considered in Sect. 3.6.4. The function G(ξ, ξ ′ ) is defined on the three-dimensional sphere or hyperboloid and satisfies the following equation

G(ξ, ξ ′ ) ± η 2π 2 ∫ d 3 ξ ′′ ξ ′′ 0 • 1 (ξ -ξ ′′ ) 2 • G(ξ ′′ , ξ ′ ) = δ(ξ -ξ ′ ).
(4.6.3)

In the paper [Schw 1964] the expansion of the function G(ξ, ξ ′ ) on irreducible representations of the SO(4) group was obtained

G(ξ, ξ ′ ) = ∞ ∑ n=1 n-1 ∑ l=0 l ∑ m=-l Y nlm (ξ) • Y * nlm (ξ ′ ) 1 + η n .
(4.6.4)

This expansion is valid for E < 0 and the functions Y nlm (ξ) are defined in (4.2.8). For other values of E the function G(ξ, ξ ′ ) may be obtained by means of analytical continuation.

Let us express the function G(ξ, ξ ′ ) through the know analytical functions following the paper [PP 1966].

The sum

∑ n-1 l=0 ∑ l m=-l Y nlm (ξ) Y nlm (ξ ′
) is invariant relative to the action of the SO(4)-group and hence it may be calculated in any coordinate system. It is convenient to direct the fourth axis along the vector ξ and to use (4.2.8). We obtain

n-1 ∑ l=0 l ∑ m=-l Y nlm (ξ) • Y * nlm (ξ ′ ) = n 2π 2 • sin nχ sin χ , ( 4.6.5) 
where |ξ -

ξ ′ | = 2 sin χ 2 . Therefore, G(ξ, ξ ′ ) = 1 2π 2 sin χ ∞ ∑ n=1 η 1 + η n sin nχ = δ(ξ -ξ ′ ) - η 2π 2 (ξ -ξ ′ ) 2 + η 2 4π 2 i sin χ [ Φ(e iχ , η) -Φ(e -iχ , η) ] . (4.6.6)
Here, we denote through Φ(z, η) the following function

Φ(z, η) = ∞ ∑ n=1 z η n + η , |z| < 1. (4.6.7)
This function admits an analytical continuation on the whole complex z-plane excepting the cut 1 ≤ z < +∞.

The analytical continuation to the domain E > 0

For the positive energy case we have the cut 0 < E < ∞ with two different Green functions G ± (ξ, ξ ′ ) on the upper and lower sides of it. For the x-space, these functions correspond to outgoing (ingoing) waves. Therefore, it is necessary to introduce the rule for avoiding singular points. Also, one should take into account that instead of the three-dimensional sphere in ξ-space we have the two-sheeted hyperboloid.

Let us introduce two sign functions σ and σ ′ , defined as follows σ = { +1 on the upper side of cut (E = E 0 + iδ); -1 on the lower side of cut (E = E 0 -iδ).

(4.6.8)

σ ′ = { +1, if ξ 0 > 0, ξ ′ 0 > 0; -1, if ξ 0 < 0, ξ ′ 0 < 0.
(4.6.9)

From the explicit expression for η(E), it follows that for transition to

G (σ) (ξ, ξ ′ ) it is necessary to change variables η → iση, η 2 → -η 2 + iσδ (δ → +0).
(4.6.10)

For E < 0, the angle χ between unit vectors ξ and ξ ′ is defined by the condition (ξ • ξ ′ ) = cos χ and changes from 0 to π. For the case E > 0, the variable χ becomes complex and χ → ±iχ corresponds to the case when ξ and ξ ′ are on the same sheet of the hyperboloid, while χ → π ± iχ corresponds to the case when ξ and ξ ′ are on different sheets of the hyperboloid. Changing the variables p 2 0 → p 2 0 +iσδ, δ → +0 in (4.5.1) we obtain (4.6.11) because the imaginary addition to (ξ -ξ ′′ ) 2 in (4.6.3) is essential only for the case when ξ and ξ ′′ are on the same sheet of the hyperboloid. Further, from the relation (ξ -ξ ′′ ) 2 = 2(1 -cos χ) it follows that for 0 < Reχ < π the sign of the quantity Im(ξ -ξ ′′ ) 2 coincides with the sign of Imχ. From this, we obtain the rule of analytical continuation of the angle χ to the domain

Im (ξ -ξ ′′ ) 2 = -σ (p 2 + p ′′ 2 -2p 2 0 ) δ = -σσ ′ δ
E > 0 χ → { -iσσ ′ χ at ξ 0 • ξ ′′ 0 > 0; π ± iχ at ξ 0 • ξ ′′ 0 < 0.
(4.6.12)

The hyperbolic angle χ on the right hand side of (4.6.9) changes from 0 to ∞. Note that choice of the sign is unimportant in the second case.

For the quantity (ξ -ξ ′′ ) 2 , we obtain

(ξ -ξ ′′ ) 2 = { -(2 sinh χ 2 ) 2 at ξ 0 • ξ ′′ 0 > 0; +(2 cosh χ 2 ) 2 at ξ 0 • ξ ′′ 0 < 0.
(4.6.13)

For the explicit analytical continuation of the function G(ξ -ξ ′ ) , it is convenient to use the integral representation for the difference between the Φ-functions in (4.6.6). The final result is (4.6.14) where the sign (±) coincides with the sign of the quantity E and the function F (ξ, ξ ′ ) has the following integral representation

G(ξ, ξ ′ ) = δ(ξ -ξ ′ ) ∓ η 2π 2 (ξ -ξ ′ ) 2 + η 2 2π 2 F (ξ, ξ ′ ),
F (ξ, ξ ′ ) =                1 sin χ ∫ ∞ 0 sinh(π-χ)k sinh πk • dk k 2 -η 2 , E < 0 (cos χ = ξξ ′ ); -1 sinh χ ∫ ∞ 0 σσ ′ k+η coth πk k 2 -η 2 +iσδ sin kχ dk, E > 0, ξ 0 ξ ′ 0 > 0, (cosh χ = ξξ ′ ); 1 sinh χ ∫ ∞ 0 sin kχ sinh πk (k 2 -η 2 +iσδ) dk, E > 0, ξ 0 ξ ′ 0 < 0, (cosh χ = ξξ ′ ).
(4.6.15)

From (4.6.12), it is not difficult to obtain the asymptotic behavior of the function G(ξ, ξ ′ ) near the "mass shell", because it corresponds to χ → ∞.

The expansion of the Green function in the irreducible representations of the Lorentz group

The above obtained formulae (4.6.11) and (4.6.12) define the Green function for arbitrary values of E. However, in many cases it is more convenient to have the expansion of G(ξ, ξ ′ ) in an orthonormalized basis. For the case E < 0, such an expansion is given by the formula (4.6.4). For E > 0, the dynamical symmetry group of the hydrogen atom changes to the Lorentz group and the expansion (4.6.4) changes to the expansion of the function G(ξ, ξ ′ ) into irreducible representations of the Lorentz group. As is seen from section 3.2, such an expansion contains only the representations D(0, ρ) of the principal series of infinite-dimensional unitary representations of the Lorentz group. Hence, such an expansion has the form

G(ξ, ξ ′ ) = ∫ ∞ 0 dρ g ij (ρ) ∑ Y ρlm (ξ) Y * ρlm (ξ ′ ).
(4.6.16)

Here, the indices i and j indicate the position of points ξ, ξ ′ on the sheets of the hyperboloid: i = 1(2), if ξ is on the upper (lower) sheet; analogously, the index j is related to the position ξ ′ . Note that from the symmetry of the Green function G(ξ, ξ ′ ) = G(ξ ′ , ξ), it follows that g 12 (ρ) = g 21 (ρ). In order to determine the functions g ij (ρ), let us substitute (4.6.13) into the integral equation

G (±) (ξ, ξ ′ ) - η 2π 2 ∫ dξ ′′ ξ ′′ 0 g ij (ρ) • G (±) (ξ ′′ , ξ ′ ) (ξ -ξ ′′ ) 2 -iσσ ′ δ = δ(ξ -ξ ′ ). (4.6.17)
We omit the calculations which are similar to the ones of Section 3.6.2, and give the final answer

g (±) 11 (ρ) = ( 1 - η ρ coth πρ ) p 2 p 2 -η 2 ± iδ , g (±) 12 (ρ) = g ± 21 (ρ) η ρ sinh πρ • p 2 p 2 -η 2 ± iδ , δ → +0; (4.6.18) g (±) 22 (ρ) = - ( 1 + η ρ coth πρ ) p 2 p 2 -η 2 ± iδ .
Here p = ρ 2 . Using the identity

p 2 p 2 -η 2 ± iδ = 1 + η 2 p 2 -η 2 ± iδ , (4.6.19)
we now separate from G(ξ, ξ ′ ) most singular terms and we obtain the formula, analogous to (4.6.11):

G (±) (ξ, ξ ′ ) = δ(ξ -ξ ′ ) + η 2π 2 (ξ -ξ ′ ) 2 + F (±) ij (ξ, ξ ′ ).
(4.6.20)

Note that for the functions G 12 (ξ, ξ ′ ) = G 21 (ξ, ξ ′ ) the δ-function in (4.6.16) is equal to zero identically. The formulae (4.6.13) and (4. 6.15) give the expansion of the Green-function G(ξ, ξ ′ ) into irreducible representations of the Lorentz group.

Let us show that this Green function coincides with the expression (4.6.12) obtained by means of analytical continuation. Indeed, the sum on l, m in (4.6.13) is the invariant of the representation D(0, ρ). Calculating this function by the same method as (4.6.4) we obtain

∞ ∑ l=0 l ∑ m=-l Y ρlm (ξ) Y * ρlm (ξ ′ ) = ρ 8π 2 • sin ρχ 2 sinh χ . (4.6.21)
Here the angle χ is defined in (4.6.12). Now we obtain the following integral representation for functions (4.6.22) where

F (±) ij (ξ, ξ ′ ) F (±) ij (ξ, ξ ′ ) = η 2 2π 2 sinh χ ∫ ∞ 0 f ij (k) k 2 -η 2 + iδ sin kχ dk,
f 11 (k) = k -η coth πk, f 12 (k) = f 21 (k) = η sinh πk , (4.6.23) f 22 (k) = -(k + η coth πk). (4.6.24)
The identity of these formulae follows from (4.6.12). One should note that (4.6.13) can not be obtained from (4.6.4) by means of analytical continuation in the energy E. The comparison between (4.6.15) and (4.6.4) shows that the expansion coefficients of the function G(ξ, ξ ′ ) in the Lorentz group representation D(0, ρ) (at E > 0) do not coincide with the analytical continuation of the expansion coefficients of the function G(ξ, ξ ′ ) in the representations D(j, j) of the group SO(4) (at E < 0). This is related to the fact that the wave functions of the continuous spectrum don't coincide with analytical continuation of wave functions Y nlm (ξ) for the discrete spectrum. The reason for this is the different topology of the surface ξ µ ξ µ = 1 at E < 0 and E > 0.

The exceptional case E = 0

The attractive case with E = 0 is exceptional because the Lorentz group is contracted to the nonrelativistic Galilei group. As a result, we have the expansion of the Coulomb Green function for E = 0 into representations of the Galilei group. The integral equation for the Green function has the form

G 0 (ξ, ξ ′ ) ± 1 2π 2 ∫ dξ ′′ G 0 (ξ ′′ , ξ ′ ) |ξ -ξ ′′ | 2 = δ(ξ -ξ ′ ), (4.6.1)
where

G 0 (ξ, ξ ′ ) = - (pp ′ ) 4 16mp 3 c G(p, p ′ ; 0). (4.6.2)
The signs (±) correspond to repelling (attractive) case, the variable ξ are related to the momentum by (4.6.2). The solution of equation (4.6.19) has the form

G 0 (ξ, ξ ′ ) = 1 (2π) 3 ( 1 ± 1 k ) -1 exp ( ik(ξ -ξ ′ ) ) dk. (4.6.3)
The plane waves exp(ikξ) realize the irreducible representation of the Galilei group. Separating in (4.6.21) the most singular terms, we have

G 0 (ξ, ξ ′ ) = δ(ξ, ξ ′ ) ∓ 1 2π 2 (ξ -ξ ′ ) 2 + F 0 (ξ, ξ ′ ) (4.6.4)
where

F 0 (ξ, ξ ′ ) = 1 (2π) 3 ∫ exp (ik(ξ -ξ ′ )) k(k ± 1) dk.
(4.6.5)

Note that the function F 0 (ξ, ξ ′ ) has a singularity only for the attractive case. The function F 0 (ξ, ξ ′ ) may be expressed through the integral sines and cosines.

The generalization to the n-dimensional case

The Schrödinger equation for the Coulomb field in n-dimensional space has the form6 

( p 2 2m -E + Z 1 Z 2 e 2 r ) ψ = 0, in x -representation ( p 2 2m -E) ψ(p) + Z 1 Z 2 e 2 2π n+1 2 ∫ ψ(p ′ ) dp ′ |p -p ′ | n-1 = 0, in p -representation (4.7.1)
It is convenient to change the wave functions for E < 0

ψ(ξ) = const (p 2 + p 2 0 ) (n+1)/2 ψ(p). (4.7.2)
Taking into account the identities

d n p = [ p 2 + p 2 0 2p 0 ] n • d n ξ ξ 0 ; 1 |p -p ′ | n-1 = [ 4p 2 0 (p 2 + p 2 0 )(p ′ 2 + p 2 0 ) ]n-1 2 • 1 (ξ -ξ ′ ) n-1
we obtain the integral equation

ψ(ξ) + η Γ( n-1 2 ) 2π n+1 2 ∫ d n ξ ′ ξ ′ 0 • ψ(ξ ′ ) [(ξ -ξ ′ ) 2 ] n-1 2 = 0. (4.7.3)
Here as before, p 0 = √ 2m|E|, η = Z 1 Z 2 e 2 m p 0 . The solutions of this equation are spherical functions of (n + 1)dimensional space Y N ν (ξ). The functions f N ν (ξ) = |ξ| N Y N ν (ξ) are homogeneous polynomials of degree N depending on variables ξ 1 , ξ 2 , . . . , ξ n+1 and satisfying the (n + 1)-dimensional Laplace equation: ∆f N ν = 0. The number N is analogous to the principal quantum number n for the 3-dimensional case, in particular, all states with the same value N have the same energy

E N = - E c 2 (N + n-1 2 ) 2 . (4.7.4) It is not difficult to calculate the degeneracy of the level E N d N = (N + n -3)! (2N + n -2) (n -2)! N ! . (4.7.5) l).
In the case of an arbitrary atom (except the hydrogen atom) the potential V (r) at r ≤ r 0 (r 0 is radius of atom) differs from the pure Coulomb potential. Hence, the high symmetry is destroyed for small values of the principal quantum number n. However, at n ≫ 1 the electron moves in approximately the Coulomb field and the symmetry group SO(4) provides a rough description of the highly excited levels of any atom.

We give below the conditions under which the group SO( 4) is the group of approximate dynamical symmetry of levels with n ≫ 1.

The motion of an electron in an arbitrary atom may be described by a selfconsistent potential V (r) which coincides with the Coulomb potential at large distance from the nucleus. At small distances from the nucleus, the potential V (r) is unknown exactly and changes from one atom to another. Hence, the natural method of solution is the matching method.

Let us introduce the quantity r 0 , which is of the order of the nuclear size and suppose that at r > r 0 the potential V (r) has pure Coulomb form7 

V (r) = -κ c r , r > r 0 . (4.8.1)

The potential V (r) at r < r 0 may have arbitrary form.

It is only interesting for us to investigate the highly excited states (n ≫ 1). The wave functions of these states are concentrated in the domain r ≫ r 0 . We can consider therefore that kr 0 ≪ 1.

For r > r 0 , the solution regular at infinity has the form [LL 1965] R κl (r) = exp (-κr) (2κr) λ-1 G(-λ + l + 1, -λ -l; -2κr), (4.8.2)

G(α, β; x) = 1 + αβ 1! x -1 + α (α + 1) β(β + 1) 2!
x -2 + . . . From (4.8.2) at κr ≪ 1 we obtain χ nl (r) ≈ A nl (2κr) l+1 [1 -B nl (2κr) -(2l+1) ], (4.8.6)

A nl = (-1) n-l-1 • (n + l)! (2l + 1)! , B nl = (2l + 1)! (2l)! (n -l -1)! (n + l)! ∆n.

(4.8.7) In (4.8.6) we take κ = κc n . The matching condition at the point r = r 0 gives the level shift taking into account (4.8.4), (4.8.6), (4.8.7)

∆E nl = 1 n 3 (1 - 1 2 n 2 ) (1 - 2 2 n 2 ) . . . (1 - l 2 n 2 ) (2κ c r 0 ) 2l+1 (2l + 1)! (2l)! • h l -(l + 1) h l + 1 .
(4.8.8) (The expression (4.8.8) coincides at l = 0 with formula obtained in [Ze 1959]).

At any value of h l excepting a small domain near -l , the quantity |1 -(2l + 1)/(h l + l)| (4.8.9) is of the order unity.

The condition h l = -l corresponds to the appearance of a new bound state in the internal potential (r ≤ r 0 ). 8 If we exclude this possibility, we see that the level shift decreases rapidly with increasing l, and the maximal value ∆E nl is reached at 8 Indeed, in the external domain r > r 0 where the potential is equal to zero, the wave functions has the form χ l (r) = C(κr) 1/2 K l+1/2 (κr) (4.8.10) (here κ 2 2 is bound energy). At κ → 0 the function χ l (r) ∼ (κr) -l and according to (4.8.5) h l = -l.

i.e. ∆ l depends explicitly on n. This contradiction is an apparent one only, because usually we consider the case n ≫ l and the dependence on n in (4.8.12) may be neglected.

On the other hand, from exact experimental data the empirical formula ∆l = α+β n 2 is established, which is in evident accord with (4.8.12). An interesting comparison is with the potential (4.8.15) for which the Schrödinger equation may be solved exactly and the energy levels have the form

U (r) = - 1 r + α 2r 2 ,
E nl = - 1 2(n + ∆ l ) 2 , ∆ l = α (l + 1 2 ) + [(l + 1 2 ) 2 + 1 2 ] 1 2
. (4.8.16) In this case the formula (4.8.12) for ∆ l is not valid, because the potential (4.8.13) possesses too strong a singularity (∼ r -2 ) at the origin. The factor (1 -1 2 n 2 ) 

The relation between the Coulomb scattering phase and the Clebsch-Gordan coefficients

Let us recall that the symmetry group of the Coulomb potential V (r) = -α 2 is generated by integrals of the motion, such as the angular momentum L and the Laplace-Runge-Lenz vector A (see Section 2).

Introducing the new operators J 1,2 = 1 2 (L ± M), M = (-2H) -1/2 A, (4.9.1)

where δ l is Coulomb scattering phase δ l = arg Γ(l + 1 -i/k) = arg Γ(l -2j). (4.9.26)

More precisely, we have the representation of the group SU (2) corresponding to the Clebsch-Gordan coefficient under consideration.

It is known that the standard (finite-dimensional) representations are characterized by one number, namely, by the weight j (j = 0, 1 2 , 1, . . .). The generalization of representations to complex values j is related to Regge trajectories and was considered in [BL 1963], [BL 1967], [DP 1964], [To 1965[START_REF] Runge | Vektoranalysis[END_REF].

Such generalized representation of the group SU (2) is defined by a pair of numbers (j, µ). These numbers determine the spectrum of operators J 2 and J z J 2 ψ jm = j(j + 1) ψ jm , J z ψ jm = (µ + s) ψ jm , (4.9.27)

where s = 0, ±1, ±2, . . . For the standard representation we have µ = j -[j]. Hence, µ is not independent of j (here [x] is integer part of number x ). As is seen from (4.9.15), the representations related to the hydrogen functions, are not ones of the general type. For these representations we have the vector ψ jm with m = -j or m = +j , which is the distinguished one. In the first case, it is useful to take m = -j + n, ψ jm = f jn . We have J + f jn = [(n + 1) (2j -n)] 1/2 f j,n+1 , (4.9.28)

J -f jn = [n(2j + 1 -n)] 1/2 f j,n-1 , J 0 f jn = (n -j) f jn , (4.9.29)

i.e. the set of vectors f jn with n = 0, 1, 2, . . . form an invariant subspace. This representation is infinite dimensional but it has the "lowest" vector f j0 for which J -f j0 = 0.

Let us denote this representation as D (+) j . Analogously, in the second case the vectors ψ jm with m = j -n (n = 0, 1, 2, . . .) form an invariant subspace with the "highest" weight vector (n = 0). We denote this representation as D (-) j . 10 Thus, on the wave functions of the 10 As is seen from (4.9.21), the representations D (+) j and D (-) j are, strictly speaking, irreducible representations of the Lie algebra. The problem of continuing these representations into representations of the rotation group is nontrivial and requires a separate investigation.

  λ = κc κ differs only slightly from an integer: λ = n + ∆n and ∆E = n -3 ∆n (n ≫ 1). (4.8.4) Let us denote by h l the logarithmic derivative of the internal solution at r = r 0 h l = d log χ nl d log r | r→r 0 -0 , χ nl (r) = rR nl (r) (4.8.5) (at κ 2 2 ≪ mean value |V (r)| in the internal domain the quantity h l does not depend on κ).

  , (4.8.12) is related to the quantity |ψ nlm (0)| 2 , where ψ nlm is an exact solution in Coulomb field. This fact can be easily seen, if the potential U (r) is closed to Coulomb potential.

	• (1 -	2 2 n 2 ) . . . (1 -	l 2 n 2 )	(4.8.17)
	in (4.8.5)			
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In this section we follow the paper[OP 1983] 

Here and further we will put m = 1 and α = e

.

For E = 0 such a transformation is impossible, this exceptional case is considered in Sec

. 3.5.

This fact has, probably, been mentioned first by O.Klein (see footnote in Paper[Hu 1937].)

The representation D(j 1 , j 2 ) is related to transformations of the spinor with 2j 1 dotted components and 2j 4 nondotteed ones.

Note that Galilei group is isomorphic to the motion group of the threedimensional space.

The energy levels and the wave functions for the bound states of n-dimensional Kepler problem were found in[Al 1958] 

Here we use the atomic system = m = e = 1. The energy of level in this system has the form E nl = -1 2 κ 2 .

The expansion (4.9.6) was obtained first in[Pa 1960], however the phase factors in (4.9.7) are not considered. Expressions equivalent to expansion (4.9.6) for wave functions in p-representation may be found in[St 1956] (see also[BI 1966a],[BI 1966b]). This formula is convenient for the parametrization of the relativistic scattering amplitude for particles with spin.

The spherical functions Y N ν (ξ) appear in the decomposition in the so called Poisson kernel.

Here we denote through ν the set of several indices which are necessary for complete definition of the spherical function. For example, in the case of hydrogen atom N = n -1 (n is the principal quantum number), ν is used to denote the pair of indices (l, m).

Let us consider now the function

It is easy to check that

2 D(ξ, ξ ′ ; ρ)).

(4.7.8)

Using (4.7.6) we obtain

(4.7.9)

Substituting into (4.7.9) ρ = 1 we obtain the expansion of the kernel of the integral equation (4.7.3) in the spherical functions. Using the same method as that of [Schw 1964] we obtain the final expansion of the Green function

(4.7.10)

Note that for n = 3 this formula transforms into formula (4.6.4). The generalization of (4.6.5) for the (n + 1)-dimensional case has the form (4.7.11) where C

n-1 2 N (z) is the Gegenbauer polynomial and cos χ = (ξ, ξ ′ ). Using the formulae (4.7.9)-(4.7.11) we may express G(ξ, ξ ′ ) as (4.7.12) where

(4.7.13)

The formula (4.7.13) is the generalization of Schwinger's result [Schw 1964] for the n-dimensional case, as we can see from (4.7.13) the case n = 3 is specially simple. Let us emphasize that the formulae for G(ξ, ξ ′ ) are valid for the simplest case of E > 0; the corresponding expressions for E > 0 may be obtained by means of analytical continuations, but this operation is non-trivial.

Hidden symmetry of highly excited atomic levels

The symmetry groups SO(4) or SO(3, 1) considered in the previous sections are exact symmetry groups only for ideal case of pure Coulomb field. Any deviation of V (r) from the Coulomb field destroys the higher symmetry (the energy of levels now depends on the quantum number l = l 0 ∼ √ κ l r 0 . (Note that the quantity κ c r 0 for the atom is different from κr 0 and has order one). From (4.8.8) we can see that

. the level shift is small. However, this is insufficient for preservation of the higher symmetry. It is necessary that "the shells" corresponding to the different n do not overlap, i.e. the stronger condition

should be satisfied. Using (4.8.8), we obtain that (4.8.9) is equivalent to the inequality (4.8.12) i.e. the radius r 0 of the domain in which the potential V (r) differs from the pure Coulomb potential, should be much smaller than the radius of first Bohr orbit. This conditions is easily satisfied for the hydrogen atom (also for ions He + , Li ++ and so on) when the quantity r 0 has the order of the nuclear size. For other atoms including hydrogenlike one (the atoms with one valent electron), κ 0 r 0 ∼ 1. Therefore, the levels E nl even for n ≫ 1, when the electron moves far from the nuclear, i.e. approximately in the Coulomb field don't form sets related to the irreducible representations of the group SO(4).

In a medium with a large value of the dielectric susceptibility ε (for example, in an impure semiconductor, see [Ze 1959]) the radius of the Bohr orbit is increased ε-times and the condition (4.8.10) is satisfied i.e. the approximate symmetry group SO(4) may be applied to classify the highly excited electronic levels.

Let us note that usually highly excited levels are described by the formula

where ∆ l is a constant independent of the principal quantum number n. Comparing (4.8.11) with (4.8.8) we obtain for ∆ l , the following expression

we obtain

.9.2)

), (4.9.3)

where H = 1 2 p 2 -r -1 (in atomic units). Consider the representation with the diagonal operators J 1 z and J 2 z . It is related to separation of the wave functions in parabolic coordinates [Ba 1936], [BI 1966a], [BI 1966b].

Indeed,

.9.4)

(4.9.5)

Here n 1 and n 2 are parabolic quantum numbers (see [LL 1965]). Note that our definition of the vector A differs by a sign from the definition in this book. The functions ψ n 1 n 2 m do not have a definite angular momentum. It is seen from (4.9.1) that the expansion of the parabolic basis in the familiar angular momentum basis is |nlm >=

∑

C jµ 1 jµ 2 |n 1 n 2 m >, (4.9.6)

where j = 1 2 (n-1), µ 1 , µ 2 are defined in (4.9.5) and C jµ 1 jµ 2 are Clebsch-Gordan coefficients. It is necessary to take into account that the functions |n 1 n 2 m > form a canonical basis (i.e. the action of operators J 1 , J 2 on these functions is standard). For this, it is necessary to introduce phase factors. As an example, for x-representations we have 9

where the functions ψ n 1 n 2 m (ξ, η, φ) and R nl (r) are defined in the book [LL 1965].

Till now, we have considered the states of the discrete spectrum (E < 0). In the case of positive energy (E > 0), we have the cut 0 < E < ∞. On the upper side of this cut, we have the formula

This choice of the sign corresponds to outgoing wave in x-space. Introducing the Hermitian operator N, we have

.9.9)

where

(4.9.11)

Setting n = 0 in (4.9.6) and taking into account (4.9.7), we obtain

C l0 j,-µ 1 ,j,µ 1 ψ nl0 (r), (4.9.12)

where µ 1 = (n 1 -n 2 )/2 (4.9.13)

Below we give the analogy of this expansion for the case of the continuous spectrum. This gives us an expression for the Clebsch-Gordan coefficients for generalized representations of the group SU (2) corresponding to complex values (4.9.10) of the angular momentum.

Consider the functions ψ

where ξ = r + z, η = r -z, (4.9.15)

In (4.9.12) the momentum k of incoming particles is directed along the z-axis. It follows that m = 0, n i = -1 2 +nβ i (i = 1, 2; β i are separation constants). The constant β 1 appears in the equation for f 1 (ξ)

(4.9.17)

An analogous equation holds for f 2 (η). From (4.9.14) it follows that (4.9.18)

Taking into account (4.9.15) we obtain the form of expansion (4.9.11) ψ0n 2 0 (ξ, η) = ∑ l C l0 j,j,j,-j ψnl0 (r), (4.9.20)

where ψn 1 n 2 0 and ψnl are the analytical continuation of the corresponding functions of the discrete spectrum to the upper side of the cut 0 < E < ∞.

Using the explicit expressions for the functions ψ n 1 n 2 m (ξ, η, φ) and ψ nlm (r) we find ψ0n 2 0 = A ψ (+) k , ψnl0 = B ψ kl0 , (4.9.21)

On the other hand, we have

(4.9.24)

Comparing (4.9.16) and (4.9.18) we obtain is realized. The quantity j belongs to straight line Re (j) = -1 2 (see (4.9.10)).

The change of parabolic coordinates to spherical ones corresponds to the decomposition of this representation into irreducible ones. It is necessary to emphasize that this decomposition contains only standard values of the angular momentum (l = 0, 1, 2, . . .).

The Clebsch-Gordan coefficient C l0 j,j,j,-j for the standard values j has the form C l0 j,j,j,-j = { (2l + 1) (2j)! (2j + 1 + l)! (2j -l) }1

2 . (4.9.30)

Replacing in (4.9.22) the factorials by Γ-functions and substituting formally the value j from (4.9.10), we obtain (4.9.19). Hence, in this particular case the value of Clebsch-Gordan coefficient for complex j coincides with its analytical continuation from integer and half-integer values of angular momentum.

This example shows that the problem of addition of complex angular momenta, in fact, contained in standard quantum mechanics (at least for some values j).

Some mathematical problems related to this subject may be considered in the example of the hydrogen atom.