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QUANTUM COHOMOLOGY OF GRASSMANNIAN AND UNITARY DYSON

BROWNIAN MOTION

JÉRÉMIE GUILHOT, CÉDRIC LECOUVEY, AND PIERRE TARRAGO

Abstract. We study a class of commuting Markov kernels whose simplest element describes the
movement of k particles on a discrete circle of size n conditioned to not intersect each other.
Such Markov kernels are related to the quantum cohomology ring of Grassmannian, which is an
algebraic object counting analytic maps from P1(C) to the Grassmannian space of k-dimensional
vector subspaces of Cn with prescribed constraints at some points of P1(C). We obtain a Berry-
Esseen theorem and a local limit theorem for an arbitrary product of approximately n2 Markov
kernels belonging to the above class, when k is fixed. As a byproduct of those results, we derive
asymptotic formulas for the quantum cohomology ring of the Grassmannian in terms of the heat
kernel on SU(k).

To Philippe Biane, for his 60th birthday.

1. Introduction

The present paper gives a probabilistic study of an integrable class of rooted graphs which
describe movements of particles on a discrete circle conditioned to not intersect. The simplest
example of this class is the graph Bk,n encoding the transition of k particles moving clockwise with
small steps on a discrete circle of n sites without intersecting each other. This graph is rooted at
a particular configuration where the k particles are stacked next to each other after some chosen
origin. We present such a graph for k = 2 particles on a discrete circle of size n = 4 in the figure
below (where the dashed line gives the origin of the circle).

As we will see below, the adjacency matrix of the graph Bk,n generates an algebra which can
be seen as a finite version of the algebra of symmetric functions in k variables, and this algebra
has a distinguished basis for which multiplication structure coefficients are nonnegative. Graphs
whose adjacency matrices generate algebras having such properties have been studied in [28] under
the name of positively multiplicative graphs. In the case of Bk,n, the corresponding algebra is the
small quantum cohomology of Grassmannian, see [5, 6]. This algebra describes the geometry of the
variety of rational maps from P1(C) to the variety of Grassmannian Gk,n, the latter describing the
space of k-dimensional vector subspaces of Cn.

The nonnegative coefficients that appear in the multiplication of the distinguished basis are
generalizations of the Littlewood-Richardson coefficients called quantum Littlewood-Richardson
coefficient [6]. Exactly as the latter are central combinatorial objects in the representation theory
of the general linear group U(k) and the geometry of the Grassmannian variety Gk,n, the former
plays a prominent role in the combinatorics of the representation of the loop group on U(k) and
the variety of rational maps from P1(C) to Gk,n. In the simplest nontrivial situation n = 2, k = 1,
the quantum Littlewood-Richardson coefficients boils down to the fact that specifying the values
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Figure 1. Graph B2,4 encoding the movement of 2 nonintersecting particles on a
discrete circle of size 4. The dashed line marks the origin of the circle.

of a degree d rational function from P1(C) to P1(C) at 2d+1 generic points uniquely determines
this function (see Example A.3).

The adjacency matrix of the graph Bk,n can be turned into a Markov kernel by conjugation by an
appropriate diagonal matrix. Such a transformation, using the Perron-Frobenius eigenvector and
eigenvalue of the adjacency matrix, is just a generalization of the Doob h-transform for conditioned
random walks [20]. Then, from a probabilistic perspective, the notion of positively multiplicative
graph translates into the existence of a large family of commuting Markov kernels which are obtained
in this way from the algebra generated by the adjacency matrix of the graph. This family is the
largest possible in the following sense: for any probability distribution on the set of vertices, there
exists a Markov kernel of the aforementioned family mapping the Dirac mass on the root to this
probability distribution. The basic example of positively multiplicative graphs is provided by the
directed cycle graph of size n rooted at one of its vertices. The underlying algebra of Markov
kernels commuting with the adjacency matrix S of this graph is the set of circulant matrices with
nonnegative entries. It has a basis {Sk, 0 ≤ k ≤ n−1} with the multiplication rule SkSl = S(k+l)[n],
where (k+ l)[n] means the value of k+ l modulo n. In this particular simple case, the h-transform
of the original adjacency matrix is trivial since it is already a Markov kernel.

The case of the directed cycle graph of size n actually corresponds to the simplest case B1,n

of our graphs. In a probabilistic context, it is known that products of linear combinations of
{Sk, 0 ≤ k ≤ n−1} generate all spatially homogeneous random walks on a discrete circle. Moreover,
we can diagonalize the action of any of these operators on the so-called Fourier basis, and the
change of basis from the canonical basis to the Fourier basis is then called the discrete Fourier
transform. As n goes to infinity and after normalization, the discrete circle becomes a continuous
circle of radius 2π and the discrete Fourier transform becomes the continuous Fourier transform
for periodic functions on R with period 2π. The interplay between discrete and continuous Fourier
transforms allows to prove several precise probabilistic results such as the wrapped central limit
theorem and their refined versions, local limit theorem and Berry-Esseen theorem, [9]. To put
those three results in a nutshell, the wrapped central limit theorem states that a random walk on
a discrete circle of size n can be embedded in a continuous circle such that after a number m of
steps with order n2, the distribution is close to a wrapped normal distribution on the circle. Then,
the Berry-Esseen theorem gives quantitative convergence towards the limit distribution while the
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local limit theorem gives asymptotic formula for the probability to be at some position at time m
in terms of the density of the wrapped normal distribution.

The goal of the present paper is then to get similar probabilistic results when there are k ≥ 2
particles on the discrete unit circle, with the additional requirement that particles do not intersect.
An important property of the adjacency matrix of Bk,n is to be explicitly diagonalizable. The
eigenbasis is given in terms of specializations of Schur functions at k-tuples of distinct n-roots of
unity and can thus be seen as a symmetrized version of the Fourier basis on (Z/nZ)k. We can then
define a discrete Fourier transform on Bk,n, which turns out to be a discrete version of the Fourier
transform on the conjugation invariant measures on U(k), the unitary group of dimension k. Using
these Fourier transforms yields a Berry-Esseen theorem and a discrete local limit theorem, similar
to the ones existing for k = 1, for the complete family of Markov kernels generated by the positively
multiplicative graph Bk,n. Instead of a convergence towards a wrapped Gaussian distribution, we
get a convergence towards the eigenvalue process of a Brownian motion on U(k), which is called a
unitary Dyson Brownian motion. As a corollary of our local limit theorem, we get some asymptotic
formulas for the multiplication in the quantum cohomology ring of Grassmannian at fixed k and
growing n. From the geometric interpretation of the quantum cohomology, an informal description
of this asymptotic formula says the following (the reader should refer to Corollary 2.5 for an exact
result):

The number of rational functions from P1(C) to Gk,n with prescribed constraints of small codi-
mension at around n2 generic points of P1(C) is either zero, infinite or approximately described by
the density of a unitary Dyson Brownian motion at a time depending on the number of constraints
and their homology.

The paper is organized as follows: Section 2 formally introduces the graph Bk,n, the relation
with the unitary group and the main results of the paper. Section 3 defines the general notion of
integrable positively multiplicative graph and the corresponding convolution of probability measures
which are well suited for the study of Bk,n, and the related Fourier transform. Section 4 applies
these notions to our graph Bk,n and relates the discrete Fourier transform we get to the continuous
Fourier transform on the unitary group U(k). The technical core of the this paper is done in
Section 5, which gives an asymptotic formula for the Fourier transform of the convolution of a large
sequence of probability measures on Bk,n. We kept trace of the dependence in k of the formulas
we obtained for later purposes. Finally, Section 6 and Section 7 respectively give proofs of the
Berry-Esseen theorem and the local limit theorem with its geometric interpretation. We added in
Appendix A a short introduction to the quantum cohomology of Grassmannian for probabilists.

2. Presentation of the model and main results

2.1. k-configuration on a circle and continuous counterpart. For k, n ∈ N∗ with k ≤ n, let
Bk,n denote the set of positions of k nonintersecting and indistinguishable particles on a discrete
circle of size n. Formally, Bk,n is the set of increasing sequences of J0, n − 1K of length k : such a
sequence gives the position of the k particles in the clockwise direction starting from the origin 0 of
the discrete circle, see Figure 1 and the corresponding k-subsets on Figure 2 in the case k = 2, n = 4.

The size ⟨I⟩ of an element I = {I1 > . . . > Ik} ∈ Bk,n is the sum of its parts (remark that the size
is always positive when I ∈ Bk,n). The discrete set Bk,n is given a graph structure by saying there
is an oriented edge from I to J when ⟨J⟩ = ⟨I⟩+ 1 mod n and #{1 ≤ l, l′ ≤ k, Jl′ = Il} = k − 1.
We then write I ↗ J when there is such an oriented edge from I to J . The edges of Bk,n

encode the clockwise movement of the k particles around the circle conditioned to never intersect.
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A distinguished vertex of Bk,n is given by the sequence I0 = {0, . . . , k − 1}, which represents k
particles stacked after the origin on the discrete circle. See Figure 2 for the graph structure of B2,4.

Figure 2. Graph B2,4 from a combinatorial perspective.

For fixed k ≥ 1, the family of graphs {Bk,n, n ≥ 1} has a continuous counterpart embodied by the
set Tk of positions of k indistinguishable particles on a continuous circle of radius 1. Identifying the
positions of the particles by their distance from a distinguished point of the circle in the clockwise
direction, we formally identify Tk with the subset of vectors u⃗ = (u1, . . . , uk) ∈ [0, 2π[k such that

2π > u1 ≥ u2 ≥ · · · ≥ uk ≥ 0.

Remark that we authorize particles to be at the same position in the continuous case, since this
situation may theoretically appear as a limit case of discrete configurations as n goes to infinity
(although it will almost surely not be the case).

For x ∈ R, denote by x the unique element of [0, 2π[ such that x−x ∈ 2πZ. Then, reflecting the
circular nature of the model, there is a shift action of R on Tk given by

Rt(u⃗) = Sort(u1 − 2tπ, . . . , uk − 2tπ),

where Sort(u⃗) is the sequence obtained from u⃗ ∈ [0, 2π[k by sorting it in decreasing order. For each
n ≥ 1, the graph Bk,n can actually be embedded in Tk through the map

(1) ξn :


Bk,n → Tk

I 7→R k−1
2n

(
2π

n
I

)
.

Note that there is a shift of π(k−1)
n which seems at first sight arbitrary : its role is mainly to simplify

later expressions.

2.2. A complete family of commuting Markov kernel associated to Bk,n. In order to
state our main results, let us briefly explain how to associate to Bk,n a family of Markov chains.
By analogy with the space L2(Tk) of square integrable functions on Tk, denote by L2(Bk,n) the
Hermitian space of functions on Bk,n with the distinguished orthonormal basis B0 = {eI , I ∈ Bk,n}
given by eI(J) = δI,J . The edge structure of Bk,n can then be encoded in an operator A :
L2(Bk,n) → L2(Bk,n) given by

A(eI) =
∑
I↗J

eJ .
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Since Bk,n is strongly connected, the adjacency matrix A is irreducible and thus there exists

unique (up to a scaling) Perron-Frobenius left and right eigenvectors hl and hr of A corresponding
to the same Perron-Frobenius eigenvalue λ. The coordinates hr(I), hl(I), I ∈ Bk,n are positive and

λ > 0 so that the transformed matrix Ah given by

Ah(eJ) =
1

λ

∑
I∈Bk,n

hr(J)

hr(I)
AIJeI

is a stochastic matrix with respect to the basis B0. The corresponding Markov chain started at any
vertex converges then in probability to the invariant measure µh such that µh({I}) = hl(I)hr(I)
for I ∈ Bk,n, where hl and hr are normalized so that hl(I0) = 1 and ⟨hl, hr⟩ = 1. We call Ah the
h-transform of A, by analogy with the specific situation where A comes from the Markov kernel of
a random walk on Zk conditioned to stay in a finite connected domain D ⊂ Zk (see [20]).

As we will see later, in the case of Bk,n we have the explicit expression

hl(I) =
|V (ξn(I))|
V (I0)

, µh(I) =
|V (ξn(I))|2

nk
,

where V (u⃗) denoting the Vandermonde determinant of (exp(iuj))1≤j≤k for u⃗ = (u1, . . . , uk) ∈ Rk,
so that

(2) V (ξn(I)) =
∏
j<j′

(
e2iπIj′/n − e2iπIj/n

)
= (2i)k(k−1)/2e(k−1)iπ

⟨I⟩
n

∏
j<j′

sin

(
(Ij′ − Ij)π

n

)
.

As this can be readily seen from the graph structure of Bk,n,

Ah(eI0) =
1

λ

|V (I0)|
|V (I1)|

eI1

where I1 = {k, k − 2, k − 3, . . . , 0} and λ is the Perron-Frobenius eigenvalue of A, which can be

proven to be equal to
∑k

a=1 e
2iπ(k+1−a)

n .
Anticipating with the continuous case, let us denote by M≥0(Bk,n) the set of positive measures

on Bk,n, which can be viewed as vectors of L2(Bk,n) with nonnegative entries, and M1(Bk,n) ⊂
M≥0(Bk,n) the subset of vectors of M≥0(Bk,n) integrating to 1 with respect to µh, namely

M1(Bk,n) =

µ ∈ L2(Bk,n)

∣∣∣∣∣∣
∑

I∈Bk,n

µ(I)µh(I) = 1, µ(I) ≥ 0, I ∈ Bk,n

 .

Elements of M1(Bk,n) are called h-probability measures in the sequel.
Our first results give a product structure on L2(Bk,n) which restricts to a convolution product

on the set M1(Bk,n) of h-probability measures.

Proposition 2.1. There exists a unique product ∗ : L2(Bk,n)× L2(Bk,n) → L2(Bk,n) such that

(1) (L2(Bk,n),+, ∗) is a commutative algebra,
(2) M1(Bk,n) ∗M1(Bk,n) ⊂ M1(Bk,n),

(3) 1
λA

h(y) =
eI1

µh(I1)
∗ y for all y ∈ L2(Bk,n),

(4)
(

eI
µh(I)

)
∗
(

eI0
µh(I0)

)
= eI

µh(I)
for all I ∈ Bk,n.

The existence of this convolution product on L2(Bk,n) reflects the fact that Bk,n is a positively
multiplicative graph, as introduced in [28]. Such graphs have several properties which we recall in
Appendix 3.
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Remark 2.2. The existence of this convolution product extending the action of A and under which
M1(Bk,n) is stable reflects the fact that Bk,n encodes the Pieri rules in the small quantum coho-
mology of Grassmannian (see Appendix A for an introduction to this notion), which is an algebra
having nonnegative structure coefficients in a particular basis. As we will see in Section 4, the ring
(L2(Bk,n),+, ∗) is actually isomorphic to the ring of symmetric functions specialized at k-tuples of

distinct roots of (−1)k+1.
The convolution algebra M1(Bk,n) is also deeply related to the fusion algebra for semi-simple Lie

algebra of type Ak, see [18]. The latter is actually a quotient of the former.

2.3. Relation between Bk,n and the unitary group. Recall that we embedded Bk,n into Tk

through the map ξn. This map can be transformed into a map, still denoted by ξn, from M≥0(Bk,n)
to Mf (Tk), the space of finite Radon measures on Tk with the formula

ξn(µ) =

(
2π

n

)k ∑
I∈Bk,n

µ(I)δξn(I).

As explained in the previous section, for µ ∈ M1(Bk,n) we have
∑

I∈Bk,n
µh(I)µ(I) = 1 with

µh(I) = |V (ξn(I)|2
nk , so that

(3)

∫
Tk

|V (u⃗)|2

(2π)k
d [ξn(µ)] (u⃗) = 1.

The latter equality is reminiscent of the spectral projection of conjugation invariant probability
measures on the unitary group U(k). Indeed, according to the Weyl integration formula [1, Section
4], the projection p : U(k) → Tk mapping U to the arguments of its eigenvalues sorted in decreasing
order (and taken in [0, 2π)) transforms the Haar measure µH on U(k) into the measure

dp⋆µH(u⃗) =
|V (u⃗)|2

(2π)k
du⃗

on Tk, where p⋆ denotes the push-forward of µH through p 1. For u⃗ ∈ Tk,
|V (u⃗)|2
(2π)k

is exactly the area

of the adjoint orbit O(u⃗) of unitary matrices having eigenvalues
(
eiu1 , . . . , eiuk

)
, see [1, Section 4.1,

Eq. (4.1.17)]. Hence, for any conjugation invariant probability measure µ̃ on U(k) with density f

with respect to µH (which means that f = f̃ ◦ p for some measurable function f̃ : Tk → R), we
have

dp⋆µ̃(u⃗) =
|V (u⃗)|2

(2π)k
f̃(u⃗)du⃗,

on Tk. In particular, f̃(u⃗)du⃗ satisfies (3). Let us denote by M1(Tk) the closure in the weak topology

of the set of positive measurable functions f̃ on Tk such that (3) is satisfied with d [ξn(µ)] (u⃗) replaced
by f(u⃗)du⃗. Note that the set of extreme points of the convex set M1(Tk) include the weighted Dirac

masses (2π)k

|V (u⃗)|2 δu⃗ for elements u⃗ of Tk with |V (u⃗)| > 0. As a consequence, ξn [M1(Bk,n)] ⊂ M1(Tk).

For any element µ of M1(Tk), there exists a unique conjugation invariant probability measure
p⋆µ on U(k) (meaning that p⋆µ(UEU∗) = p⋆µ(E) for all U ∈ U(k) and E measurable set of U(k))
such that

p⋆ [p
⋆µ] = µ,

so that p⋆ yields an embedding of M1(Tk) into the set of conjugation invariant probability measures
on U(k), see [1, Chapter 4]. Dirac masses on M1(Tk) correspond through p⋆ to Dirac masses on

1We recall that p⋆µ(A) = µ(p−1(A)) for A measurable set of Tk.
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orbits O(u⃗) = {U ∈ U(k), p(U) = u⃗) for u⃗ ∈ Tk. In particular, the set M1(Bk,n), which had
been seen previously as a discrete subset of M1(Tk), can now be considered through p⋆ as a set of
conjugation invariant probability measures on U(k).

The relation between Bk,n and U(k) is actually much stronger. There exists a natural convolution
product ∗ on the set of probability measures on U(k) which is characterized for µ, ν probability
measures on U(k) by the formula∫

U(k)
f(U)d [µ ∗ ν] (U) =

∫
U(k)×U(k)

f(UV )dµ(U)⊗ dµ(V )

for any continuous map f : U(k) → R. Conjugating by p⋆ turns this product into a convolution
product, also denoted by ∗, on the set M1(Tk).

The set (M1(Bk,n), ∗) can be seen as a n-step discrete version of the space (M1(Tk), ∗)), although
the former is not a sub-group of the latter. However, it has been proven in [18, Proposition 7.1]
that the convolution algebra (M1(Bk,n), ∗) converges towards (M1(Tk, ∗)) as n goes to infinity in

some sense. Indeed, for λ, µ ∈ Tk which are decreasing, set λ(n) =
{⌊

nλi
2π

⌋}
1≤i≤k

for n ≥ 1 and

similarly for µ(n), so that ξn(λ
(n)) (resp. ξn(µ

(n))) converges to λ (resp. µ) as n → ∞. Then,

λ(n), µ(n) ∈ Bk,n for n large enough and, as n → ∞,

lim
n→∞

ξn

(
eλ(n)

µh(λ(n))
∗Bk,n

eµ(n)

µh(µ(n))

)
= δ(λ) ∗Tk

δ(µ) = p⋆(δO(λ) ∗U(k) δO(µ)),

where we wrote ∗F to specify that the convolution occurs in the group M1(F ).

2.4. Main probabilistic theorems. Using the convolution product introduced in Proposition
2.1, we can consider the convolution µ = µ1 ∗ µ2 ∗ . . . µm of an arbitrary number of h-probability
measures and its image by the map ξn. As already shown in [18, 48] in the independent and
identically distributed case, we expect that there exists γ > 0 depending on some second moments
of (µi)1≤i≤m such that µ is close to the eigenvalue distribution of a unitary Brownian motion at
time γ m

n2 as n goes to infinity and under the appropriate scaling. Note that we need some care to
properly define the unitary Brownian motion, since there is a two-parameters family of bi-invariant
Brownian motions on U(k) because of the semi-simple decomposition U(k) ≃ SU(k)× U(1).

2.4.1. Unitary Dyson Brownian motion. Recall that the n2-dimensional Lie algebra gU(k) of U(k),
which is the tangent space of the manifold U(k) at the identity, admits the decomposition

gU(k) = gSU(k) ⊕ gU(1),

where gSU(k) is the Lie algebra of SU(k) and gU(1) = iR is the Lie algebra of U(1). Each previous
simple Lie algebra respectively admits a natural scalar product called the (negative) Killing form
(see Section 4.4 for an explicit expression). From these scalar products, one can define BSU(k) (resp.
BU(1)) as the unique Brownian motion on gSU(k) (resp. gU(1)) whose covariance at time t = 1 is the
identity in an orthonormal basis of SU(k) (resp. U(1)) with respect to its aforementioned scalar
product.

For any α, γ ≥ 0 (with (α, γ) ̸= 0), there exists then a unique bi-invariant Markov process
(Bα,γ(t))t≥0 on U(k) starting at Id which is obtained from the Brownian motion γBSU(k)⊕αBU(1)

on gU(k) by the so-called wrapping procedure (see [39, Section 1.4], a more analytic approach is
given in Section 4.4). By taking the eigenvalues of Bα,γ(t), one gets a stochastic process Bα,γ(t) =
p (Bα,γ(t)) on Tk for t > 0. This stochastic process is actually a continuous Markov process, whose
generator is explicitly given in (22). In the particular case α = γ = 1, the process B1,1 is just the
stochastic process obtained by conditioning k Brownian motions on R/(2πZ) to never intersect by
a Doob h-transform (with the harmonic function being u⃗ 7→ |V (u⃗)|), see [17, 30]. This process is
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also called the unitary Dyson Brownian motion. The kernel K
(1,1)
t (u⃗, u⃗′) of the Markov process

B1,1(t) has a simple determinantal formula (see [41, Proposition 1.1]) given by

K
(1,1)
t (u⃗, u⃗′) =

|V (u⃗′)|
|V (u⃗)|

det(Pt(ui, u
′
j))1≤i,j≤k,

where Pt(u, v) =
√

k
2πt

∑
ℓ∈Z(−1)ℓ(k+1)e−

k(v−u+ℓ2π)2

2t . There is a natural repulsive behavior of the

Brownian motions conditioned to not intersect, seen for example in the determinantal formula
displayed above in the case (γ, α) = (1, 1). Hence, as long as γ > 0, Bα,γ(t) stays almost surely in
T ◦
k for t > 0, where T ◦

k = {u⃗ ∈ Tk, u1 > u2 > · · · > uk}.
When α = 0, the process B0,γ stays on the subdomain {u⃗ ∈ Tk,

∑k
i=1 ui = 0 [2π]}, which can be

identified with an alcove of type Ak−1. The distribution of this stochastic process can be translated
on Tk by any scalar c ∈ R through the action c 7→ Rc, yielding a Markov process on all of Tk which
we also call B0,γ : it just corresponds to the projection p ◦B0,γ when B0,γ is started at some scalar
multiple of the identity. Then, the Markov kernel P γ(x, ·) of the extended process does admit a

density with respect to the Lebesgue measure on the subset {y⃗ ∈ Tk,
∑k

i=1 yi =
∑k

i=1 xi [2π]}. We

denote by K
SU(k)
t (x, y) this density.

2.4.2. Moments of a h-probability measure. Let us introduce here several quantities which will be
helpful in stating our main results. In the classical Berry-Esseen theorem, convergence towards the
Gaussian distribution of a normalized sum of independent random variables is quantified through
the ratio of the average third moment over the average second moments of the random variables.
We thus need to introduce similar quantities in our setting which is a bit different from the one on
the real line.

First, since the limiting distribution will be the marginal of the aforementioned radial unitary
Brownian motion, which depends on two parameters, it is natural to expect two kinds of second
and third moments. The second particularity of this model is the cyclic nature of the position. On
R, the barycenter of k particles is straightforwardly given by the mean of their distance to zero.
On a circle however, there are several possible barycenters depending on the choice of the origin of
the circle. We chose one which is well suited for the enumerative application of the present paper
and other choices can be easily adapted for other applications with a more probabilistic flavor.

Given a h-probability measure µ ∈ M1(Bk,n), we denote by Iµ a random element of Bk,n whose

distribution is P(Iµ = I) = µ(I)µh(I), and by Eµ the expectation with respect to µ, namely for
f : Bk,n → R,

Eµ(f(Iµ)) =
∑

I∈Bk,n

µh(I)µ(I)f(I).

For I ∈ Bk,n, define

Ĩ = I − ⟨I⟩
k

1k.

Remark that Ĩ belongs to the (k − 1)-dimensional subspace
{
u⃗ ∈ Rk,

∑k
i=1 ui = 0

}
. For example,

for I = I0 we have Ĩ0 =
(
k−1
2 , k−3

2 , . . . ,−k−1
2

)
. Then, for µ ∈ M1(Bk,n) and p ≥ 1, we write

⟨µ⟩ = Eµ(⟨Iµ⟩), V arp(µ) = Eµ [(⟨Iµ⟩ − ⟨µ⟩)p] , ∥µ̃∥p = E
[∥∥∥Ĩµ∥∥∥p] .
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Given a sequence m = (µi)1≤i≤m of h-probability measures on Bk,n and X one of the previously
defined parameters on h-probability measures, we write

X(m) =

(
1

m

m∑
i=1

X(µi)

)
−X(I0).

Hence, for example, ⟨m⟩ = 1
m

∑m
i=1⟨µi⟩ − ⟨I0⟩. Finally, we set

(4) ∗m = µ1 ∗ µ2 ∗ · · · ∗ µm.

2.4.3. Berry-Esseen theorem. We can now state our first main result, which is a precise estimate of
the convergence of a large convolution of h-probability measures (µi)1≤i≤m towards the marginal of
Bα,γ at time t for some parameters α, γ, t depending on the sequence. This Berry-Esseen like result
is given in terms of the 1-Wasserstein distance, which is both tractable and natural to compare
discrete measures to continuous ones. Recall that the 1-Wasserstein distance WE

1 on the set of
probability measures on a metric space (E, d) is defined as

WE
1 (µ, ν) = sup

{∣∣∣∣∫
E
fdµ−

∫
E
fdν

∣∣∣∣ , f : E → R 1-Lipschitz

}
.

In our case, we consider Tk viewed as a symmetrized torus with the natural induced metric, namely
with the distance

dTk
(z, z′) = inf

σ∈Sk

d(Z/2πZ)k(z, σ · z′), z, z′ ∈ Tk,

where d(Z/2πZ)k is the usual metric on the torus (Z/2πZ)k, Sk denotes the symmetric group of size

k and (σ.z′)i = z′σ(i) for 1 ≤ i ≤ k. Remark also that the action of R on Tk extends to an action of

R on M1(Tk) given by

Rt[µ](A) = µ(Rt(A))

for t ∈ R, µ ∈ M1(Tk) and A measurable set of Tk, with Rt(A) = {Rt(x), x ∈ A}.
The quantitative convergence theorem can then be written in the following simple form (the

reader should refer to Theorem 6.1 for a more precise and more general result), where we recall
that ξn is the embedding of Bk,n in Tk defined in Section 2.1 and we identify a random variable
with its distribution.

Theorem 2.3 (Berry-Esseen Theorem, simplified version). Suppose that m = (µr)1≤r≤m is a

sequence of h-probability measures on Bk,n and set M = ∥m̃∥3
k3∥m̃∥3/22

. Then, with t0 =
(2π)2m

n2 ,

W Tk
1

(
Rm⟨m⟩

kn

[ξn (∗m)] , Bα,γ (t0)
)
≤ C

M log(n)

n
,

where

α =
V ar2(m)

2k2
, γ =

k∥m̃∥2
2(k2 − 1)

and C depends on k, t0 and α, γ, see (60).

Remark that C depends decreasingly on t0 and thus this theorem is useful only when m is of
order n2 or larger.

By taking appropriate Lipschitz functions, one can deduce from the previous results convergence
estimates for probability of open sets of Tk: namely for O an open set of Tk∣∣∣P (I∗m ∈ O)− P

(
Bα,γ

(m
n2

)
∈ O

)∣∣∣ ≤ CO

√
log n

n
,
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with CO depending on O. The theorem of the next section, which provides a quantitative local
limit theorem, would improve this speed to O

(
1
n

)
in the special case where α = 0.

In comparison, the usual central limit theorem would only state that for each O open set of
Tk, we have

∣∣P (I∗(mn) ∈ O
)
− P (Bα,γ (t) ∈ O)

∣∣ = o(1) as n goes to infinity for some sequence of

constant tuples of length tn2 of h-probability measures mn = (µn, . . . , µn) (where µn is a fixed
h-probability measure in Bk,n for each n ≥ 0) with ∥m̃n∥2, V ar2(mn) converging to some constant
and ∥m̃n∥3, V ar3(mn) uniformly bounded. The fact that we only require a bound on moments of
order 3 to get a central limit theorem is not at all obvious for constrained random walks. In general,
the minimal order of moment which is required to be finite to get a central limit theorem should
depend on the geometry of the domain, and may be much higher than 3, see [19]. The fact that our
central limit theorem holds for such minimal moment assumptions (which could actually be lower
to require only bound on moments of order 2 + ϵ for some ϵ > 0) is due to the high symmetry of
the considered transition kernels.

2.4.4. Local limit theorem. The second main result is a local limit theorem for the decomposition
of the h-probability measure ∗m defined in (4) on the basis B0 = {eI}I∈Bk,n

. As usual for local
limit theorems with discrete distributions, there may be some issues regarding the lattice generated
by the distribution of each µi. If the situation may be handled easily when all distribution are the
same (meaning that µi = µ for all 1 ≤ i ≤ k), the problem is trickier when the random variables are
not identically distributed, see [44]. To simplify, we will assume that V ar2(µi) = 0 for all 1 ≤ i ≤ k.
Beware that it does not implies that µi is a Dirac mass, but rather that ⟨Iµi⟩ is constant.
Theorem 2.4 (Local limit Theorem). Suppose that m = (µr)1≤r≤m is a sequence of h-probability
measure on Bk,n such that V ar2(m) = 0. Then, for I, I ′ ∈ Bk,n,

1

n
((∗m) ∗ δI) [I ′] = δ⟨I′⟩=⟨I⟩+m⟨m⟩

k
[n]
K

SU(k)
γt0

(
ξn(I

′), R−m⟨m⟩
kn

[ξn (I)]
)
+O

(
1

n

)
,

where γ = k∥m∥2
k2−1

, t0 = (2π)2m
n2 and KSU(k) is the Markov kernel defined in Section 2.4.1, and O(·)

depends on k, t0 and ∥m∥i, i = 2, 3.

In the case of a sequence of h-probability measures with V ar2(m) = 0, the latter results implies
the Berry-Essen type result of the previous theorem. However, in the general case the contribution
of the fluctuation of each ⟨Iµi⟩ prevents from easily giving a local limit theorem, as periodicity
pattern may appear. Since this is mainly a one-dimensional issue, one may expect that a more
general local limit theorem should hold and a Berry-Esseen theorem without the log n factor in the
error term.

2.5. A geometric corollary on quantum cohomology of Grassmannian. The graph Bk,n

and its convolution algebra is related to various other fields, out of which we singled out two main
ones : the Wess-Zumino-Witten models of type Ak−1 at level n, which is a particular model of
conformal field theory, and the quantum cohomology of Grassmannian Gk,n, which counts rational
curves with target space the space of k-dimensional vector subspaces of Cn. Those two concepts
are actually related [24, 25, 35]. Let us first briefly sketch the second one (see Appendix A for a
more detailed introduction).

Denote by Gk,n the space of k-dimensional vector subspaces of Cn. This space is a compact
manifold of dimension k(n − k) and even a projective variety, and thus we can study it from a
cohomological perspective (which roughly amounts to counts the number of ℓ-dimensional holes in
Gk,n, 0 ≤ ℓ ≤ k(n − k)). For any flag W = 0 ⊂ W1 ⊂ · · · ⊂ Wn = Cn there exists a natural

decomposition of Gk,n into cells ΩW
I , I ∈ Bk,n, where

ΩW
I = {V ∈ Gk,n, dim(V ∩Wn−Ii) ≥ i, 1 ≤ i ≤ k} ,
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and ΩW
I is a closed manifold of Gk,n of dimension ⟨I⟩ − ⟨I0⟩ called Schubert variety. An important

property of the family {ΩW
I , I ∈ Bk,n} is that a generic submanifold M of Gk,n is completely

characterized up to homotopy by

{#(M ∩ ΩW
I ),dimΩW

I + dimM = dimGk,n},

see [23]. We are interested in the set of maps from P1(C) to Gk,n whose values at generic points
are restricted to lie on some submanifolds of Gk,n. Let Hol(Gk,n) be the set of rational maps from
P1(C) to Gk,n. We define the degree deg f of f ∈ Hol(Gk,n) as

deg f = #{z ∈ P1(C), f(z) ∩H ̸= ∅, H ∈ Gn−k−1,n generic}.

We should understand deg f as the number of singular points of f (as the number of poles of
a rational function, which actually correspond to the special case k = 1, n = 2, see Appendix
A). For d ≥ 0, let us write Hold(Gk,n) as the space of elements of Hol(Gk,n) of degree d. Up
to some compactification, we can again give to Hold(Gk,n) the structure of a projective variety
of dimension k(n − k) + dn. The enumerative problem related to the quantum cohomology is to
counts element of Hold(Gk,n) having prescribed singular points. Namely, fix a0, . . . , am+1 generic
points of P1(C) and M0, . . . ,Mm+1 m + 1 generic sub-manifolds of Cn of respective dimension
1 ≤ d0, . . . , dm+1 ≤ k(n− k). Set

Md,a0,...,am+1

M0,...,Mm+1
:= {f ∈ Hold(Gk,n), f(ai) ∈ Mi, 0 ≤ i ≤ m+ 1}.

In general, Md,a0,...,am+1

M0,...,Mm+1
is non empty only if

∑m+1
i=0 di ≤ dimHold(Gk,n) = k(n−k)+dn and then

the resulting manifold Md,a0,...,am+1

M0,...,Mm+1
has dimension k(n−k)+dn−

∑m+1
i=0 di. In the particular case

where k(n−k)+dn =
∑m+1

i=0 di, Md,a0,...,am+1

M0,...,Mm+1
is generically a discrete manifold, which can be shown

to be finite (see Section A). We address in this section the problem of counting #Md,a0,...,am+1

M0,...,Mm+1
in

the case k(n− k)+ dn =
∑m+1

i=0 di when there is a large number of constraints Mi. To this end, for
M a submanifold of dimension d of Gk,n, let us decompose the homology class [M ] ∈ Hd(Gk,n) of

M on the basis
{[
ΩW
I

]
, I ∈ Bk,n

}
as

[M ] =
∑

I∈Bk,n,⟨I⟩=d+⟨I0⟩

cMI
[
ΩW
I

]
.

We then define the quantum dimension of M as

(5) qDim(M) =
∑

I∈Bk,n,⟨I⟩=d+⟨I0⟩

cMI SI(ξn(I0)),

where SI(u⃗) is the evaluation at (eiu1 , . . . , eiuk) of the Schur function associated to the partition
λI = (I1 − (k − 1), . . . , Ik) (see Appendix A for more details on Schur functions), and write pMI =
cMI SI(ξn(I0))

qDimM for I ∈ Bk,n, so that
∑

I∈Bk,n
pMI = 1 by (5). Then, introduce for a = 2, 3 the statistic

∥M∥a =
1

qDim(M)

∑
I∈Bk,n,⟨I⟩=d+⟨I0⟩

pMI

k∑
j=1

(Ij − (d+ ⟨I0⟩)/k)a.

In the following statement, we write Ic for the dual configuration Ic = (n − 1 − Ik+1−j)1≤j≤k of
I ∈ Bk,n.
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Corollary 2.5. Let M0,M1, . . . ,Mm+1 be generic sub-manifolds of Gk,n having respective dimen-

sion d0, . . . , dm+1 and d ≥ 0 such that
∑m+1

i=0 di = k(n− k) + dn. Then, for generic a0, . . . , am+1 ∈
P1(C) and setting xnI = R

−
∑m

i=1
di

kn

[ξn(I)] and ynI′ = ξn((I
′)c)

#Md,a0,...,am+1

M0,...,Mm+1
=

V (ξn(I0))
2
∏m+1

i=0 qDim(Mi)

nk−1

 ∑
I,I′∈Bk,n

pM0
I p

Mm+1

I′ K
SU(k)
γt0

(xnI , y
n
I′) +O

(
1

n

) ,

where γ =
k[( 1

m

∑m
i=1 ∥Mi∥2)−⟨I0⟩2]

k2−1
, t0 = (2π)2m

n2 and O(·) depends on k, m
n2 and

(
1
m

∑m
i=1 ∥Mi∥a

)
,

a = 2, 3.

Similarly to the previous local limit theorem, the latter result is non trivial only when m is of

order n2 or larger. In the particular case where M0 = ΩW0
I and Mm+1 = Ω

Wm+1

I′ for some generic

flags W0,Wm+1, the latter corollary yields for d such that
∑m+1

i=0 di − dn− k(n− k) = 0

#Md,a0,...,am+1

M1,...,Mm
=

|V (ξn(I))V (ξn(I
′))|
∏m+1

i=0 qDim(Mi)

nk−1

(
K

SU(k),γ
m
n2

(xI , yI′) +O

(
1

n

))
.

2.6. Related results and perspectives. Let us give several comments on our results and their
relation to previous works on the subject :

• An analogous problem has already been considered on the real line instead of the circle,
see [8, 16]. In this case, one still has a positively multiplicative graph whose corresponding
algebra is the fusion ring for the representation theory of U(k). The continuous limit of this
discrete model corresponds to convolution of co-adjoint orbits of U(k) instead of adjoint
orbits [26, 11], and there is a central limit theorem towards a Dyson Brownian motion on
the real line. Up to our knowledge, no quantitative central limit theorem has been obtained
in this framework; it is however expected that the method used in the present paper could
be adapted to the real line.

• There exists a natural quotient of Bk,n which describes the movement of a particle on a
discrete lattice of type Ak conditioned to stay in a macroscopic alcove of size n. The graph
is still positively multiplicative and the corresponding algebra is the fusion algebra of type
Ak at level n. Such processes have been intensively studied in the wider setting of affine
semi-simple Lie algebras by Defosseux [18]. In particular, our result in the particular case
µr = µ for 1 ≤ r ≤ m and n,m going to infinity is similar to [18, Theorem 8.1]. The latter
theorem also mention a Donsker’s type theorem for the sequence (ξn(µ1 ∗ · · · ∗ µi))1≤i≤m.
Such results could also be obtained for general sequences m from our results by imposing
that (∥µi∥2)1≤i≤m is constant and (∥µi∥3)1≤i≤m is bounded as m,n goes to infinity. We
mention also that asymptotic results in the simplest case of a random walk in an alcove
have been obtained before by Grabiner [27].

• Considering nonintersecting particles on the discrete circle conditioned to not intersect is
not new. A first work in this direction has been done by Fulmek [22] in the case where
only one particle at a time jumps to a free next location : this correspond to considering
the adjacency matrix of Bk,n only, and not the other commutating adjacency matrices
AI for I ̸= (k, k − 2, . . . , 0). The author then proved exact formulas for the transition
probabilities. This work has been later generalized by Krattenthaler to other small steps
cases and similar graphs (corresponding to other affine Lie algebras) [37]. In this paper,
the author also obtained in the small step case local limit theorems similar to the ones of
the present paper.
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Beware that the stochastic processes studied above and in the present paper is different
from the the periodic TASEP with k particles on a circle of size n: indeed, the TASEP is a
continuous time Markov process whose transition matrix is given by the adjacency matrix
of Bk,n, whereas our model is a discrete time Markov process whose Markov kernel is a
Doob h-transform of this adjacency matrix. The two Markov processes have very different
behaviors. For example, the stationary distribution of TASEP is the uniform distribution

on Bk,n whereas the stationary distribution of our model is given by µh(I) = |V (ξn(I))|2
nk .

• The cylindric hexagonal dimer model is a particular instance of the present framework by

considering the transition matrix A =
∑n−k

i=1 AI(i) with I(i) = (k−1+i, k−2, . . . , 0) (this is a
consequence of the quantum Pieri rules for QH(Gk,n) from [5, p.5] and the bijection between
hexagonal dimer models and nonintersecting paths, see [32, Figure 1]). This relation has
already been deeply studied when considering the configuration on the real line [16], and it
is expected that such correspondence also holds on the circle. See also [12] for results on
the winding number for the cylindric hexagonal dimer model when k, n are large.

• The relation between nonintersecting particles on the circle and the unitary group has
already been considered from a probabilistic perspective in the continuous case by Metcalfe,
O’Connell and Warren [43]. They build Markov processes on Tk by using the convolution of
a family of commuting Markov kernels which are continuous version of our Markov kernel
Ah

I . They also relate this construction to the convolution of orbits on Uk. Our work can be
seen as a discrete version of theirs.

• Regarding the geometric application of our results, we mention that there have already been
some combinatorial results on counting rational functions with prescribed critical points
(see [47]). From a quantum cohomological perspective, the relation between the quantum
cohomology of Grassmannian and the orbits of the unitary group goes back to [3]. It would
be very interesting to pursue this relation from a probabilistic point of view. Note also that
the quantum cohomology of Grassmannian also appear in the study of the so-called rigid
system, see [4].

Our work is a first step towards two main interesting and challenging directions :

• The first natural question is the behavior of the system when k grows with n. The prob-
ability distribution at time t

k of a Dyson unitary Brownian motion with parameter (1, 1)

converges in some sense toward the marginal µ⊠t of the free unitary Brownian, see [7] for a
formal definition of the latter and a proof. It can be easily deduced from our work that un-
der good normalization hypotheses, ξn(m) is close to µ⊠t for some t > 0 when k = O(log n).
However, it is expected that such approximation holds for k = O(n). It would be very in-
teresting to study this problem and related questions (see also [41] for the distribution of
the winding number in the continuous case when k goes to infinity).

• The graph Bk,n is a particular instance of a Kirillov-Reshetikhin crystal, and there is a full
family of similar graphs which extend the present framework to other Kirillov-Reshetikhin
crystals, see [29]. They corresponds each time to movements of colored particles on a circle
or a segment conditioned to not intersect, sometimes with some additional symmetries. We
expect that our results could be extended to this larger setting in some cases : the main
difficulty is to get a explicit diagonalization of the adjacency matrix A, which is not obvious
in the more general setting (see [36] for an approach to this problem). Another interesting
direction would be to consider graphs related to the equivariant quantum cohomology of
Grassmannian instead of the usual one, see [14] : the corresponding graph describes parti-
cles moving on a discrete circle and conditioned to not intersects, but with jumping rates
depending on the location. Once again, the main challenge is to explicitly diagonalize the
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adjacency matrix; we expect that such a task would be manageable when all jumping rates
but one are equal.

3. Positively multiplicative graphs, random walks and Fourier transform

In this section, we introduce the notion of integrable positively multiplicative graph which is the
central property of the family of graph {Bk,n; 1 ≤ k ≤ n}. We also introduce a general Fourier
transform formalism to study a class of Markov chain naturally constructed from those graphs.
Although some results of the present section are needed in the sequel of the paper, its content is
quite general to enlighten a universal behavior.

Let us recall the definition of a positively multiplicative graph from [28]. In this paper, a
(directed) graph is the data of a finite set V and a adjacency matrix A on the vector space L2(V ) =⊕

v∈V ev, by which we mean an operator A ∈ B(L2(V )) such that Aev =
∑

v′∈V Av′vev′ with

avv′ ≥ 0 for all v, v′ ∈ V . We add a Hilbert space structure on L2(V ) with the scalar product
⟨ev, ev′⟩ = δvv′ . The Hilbert space L2(V ) can be seen as the algebra of L2-functions on V with
respect to the counting measure, and for x ∈ L2(V ), we write x(v) for the coordinate of x along ev.

Definition 3.1 (See [28]). A finite graph Γ = (V,A) is said positively multiplicative (abbreviated
PM) at v0 ∈ V if there is a commutative algebra A such that C[A] ⊂ A ⊂ End(L2(V )) and such
that A admits a basis B = {sv, v ∈ V } with svev0 = ev,

Asv =
∑
v′∈V

Av′vsv′ , svsv′ ∈
∑
v′′∈V

R+sv′′ .

A PM graph is said integrable if A is diagonalizable on L2(V ).

The algebra A is called the enveloping algebra of Γ in the sequel. Remark that in general A is
bigger that C[A], since A may for example have eigenvalues with multiplicities larger than 1. For
a PM-graph there is a isomorphism

(6) S :

{
L2(V ) → A

ev 7→ sv

(which reflects the fact that dimC[A] = |V |. It can then be deduced that sv0 = IdL2(V ) (see [28,
Theorem 3.12]).

3.1. Family of random walks and h-transform. Given a PM-graph with distinguished vertex
v0, one can construct a family of commuting Markov kernel as follows. For sake of simplicity we
assume here that A is irreducible, although the same reasoning apply beyond irreducibility. Let hr

(resp. hl) be the right (resp. left) Perron-Frobenius vector of A, normalized so that hl(v0) = 1 and
⟨hl, hr⟩L2(V ) = 1. By irreducibility of A, hl(v) > 0 and hr(v) > 0 for all v ∈ V .

Lemma 3.2. For all v ∈ V , hl and hr are respectively left and right eigenvectors of sv with
eigenvalue hl(v).

Proof. The fact that hl and hr are eigenvectors of sv is deduced from the fact that both vectors are
eigenvectors of A and sv commutes with A. Hence, they are the left and right Perron-Frobenius
eigenvectors of sv, and thus correspond to the same eigenvalue we denote temporarily by λ. On
the one hand, we have by definition of sv

⟨hl, svev0⟩ = ⟨hl, ev⟩ = hl(v),

and on the other hand,

⟨hl, svev0⟩ = ⟨s∗vhl, ev0⟩ = λ⟨hl, ev0⟩ = λ.
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We conclude that
λ = hlv.

□

It will be convenient to introduce the Hadamard product on vectors x, y ∈ L2(V ) 7→ x·y ∈ L2(V )
defined by

(x · y)(v) = x(v)y(v).

If x has nonzero entries, we write 1
x for the vector having entry 1

x(v) at v.

Definition 3.3. The h-space L2
h(V ) is the vector space L2(V ) endowed with the Hilbert product

⟨x, y⟩h = ⟨hl · x, hr · y⟩ =
∑
v∈V

µh(v)x(v)y(v),

with µh = hl · hr called the invariant probability measure of A.
The h-transform of an operator B ∈ End(L2(V )) is the operator Bh given by

Bh(x) =
1

hr
·B(hr · x).

The space L2
h(V ) can be also seen as the Hilbert space of L2-functions on V with respect to the

probability measure µh.
Since hr has positive entries, the map B 7→ Bh is well-defined. Its is actually an algebra

isomorphism of End(L2(V )) which amounts to a conjugation by a diagonal matrix; we denote
by Ah the algebra {Bh, B ∈ A}, which is isomorphic to A. It is readily seen that

(Bh)∗(x) = hr ·B∗
(

1

hr
· x
)
,

while taking the adjoint (·)h,∗ of B with respect to ⟨·, ·⟩h yields

Bh,∗(x) =
1

µh
·B∗

(
µh · x

)
.

For v ∈ V , let us write

P v =
shv

hl(v)
∈ Ah.

Proposition 3.4. The set {P v, v ∈ V } is a family of commuting Markov kernel on L2(V ) with
common invariant measure µh.

Proof. Let v ∈ V and denote by 1 ∈ V the vector with 1(v) = 1 for all v ∈ V . Remark first that
by Lemma 3.2,

P v(1V ) =
1

hl(v)

1

hr
· sv(hr) =

1

hr
· hr = 1.

Then, writing svsv′ =
∑

v′′∈V cv
′′

vv′sv′′ with cv
′′

vv′ ≥ 0 for all v, v′, v′′ ∈ V , we have

P v(ev′) = hr(v′)
1

hr
· sv(sv′ev0) =

∑
v′′∈V

hr(v′)cv
′′

vv′

(
1

hr
· sv′′(ev0)

)
=
∑
v′′∈V

hr(v′)

hr(v′′)
cv

′′
vv′ev′′ .

Since
hr
v′

hr
v′′
cv

′′
vv′ ≥ 0 for all v, v′, v′′ ∈ V , P v is an adjacency matrix and thus a Markov kernel on

L2
h(V ). Since by Lemma 3.2

(shv)
∗[µh] = hr · s∗v

(
1

hr
· µh

)
= hr · s∗v(hl) = hl(v)hr · hl = hl(v)µh,
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the vector µh is the left Perron-Frobenius eigenvector of P v with eigenvalue 1. Hence, µh is the
invariant measure of P v. □

Remark that we can similarly view the set {P v, v ∈ V } as a family of commuting Markov kernels
on L2

h(V ) with common invariant measure having density 1 with respect to µh. We have indeed
similarly

(P v)h,∗[1] =
1

µh
hr · s∗v

hl(v)

(
1

hr
· µh · 1

)
=

1

hl
· s∗v
hl(v)

(hl) =
1

hl
· hl = 1.

3.2. Convolution product on L2
h(V ). Similarly to (6) there is an isomorphism from L2

h(V ) to

Ah given by

(7) Mh :

{
L2(V ) → Ah

ev 7→ µh(v)P v
.

We can then transpose the multiplicative structure on Ah to a multiplication on L2
h(V ). This

motivates the following definition.

Definition 3.5. The convolution of x, y ∈ L2
h(V ) is the vector x ∗ y defined by

x ∗ y =
∑
v∈V

µh(v)x(v)P v(y) =
∑
v∈V

hr(v)x(v)shv(y).

A vector u ∈ L2
h(V ) with nonnegative real entries is called a h-probability measure if

⟨1, u⟩h = 1.

We denote by M1(V ) the set of h-probability measures. We have then the following results
analogous to the usual convolution on classical groups.

Proposition 3.6. The convolution product turns L2
h(V ) into an algebra isomorphic to A through

the map Mh. Moreover, the set M1(V ) is stable by convolution.

Proof. To prove the first statement, it is enough to prove that Mh intertwines ∗ and the operator
product on Ah. By linearity, it is enough to prove it on ev

hr(v) ,
ev′

hr(v′) for v, v′ ∈ V . Let v, v′ ∈ V .

Then, using that µh = hl · hr and P v = shv
hl(v)

,

ev
hr(v)

∗ ev′

hr(v′)
=
∑
v′′∈V

(
hr · ev

hr(v)

)
(v′′)shv′′

(
ev′

hr(v′)

)
= shv

(
ev′

hr(v′)

)
=

1

hr
· sv(ev′).

Since ev′ = sv′ev0 , writing svsv′ =
∑

v′′∈V cv
′′

vv′sv′′ we get

sv(ev) =
∑
v′′∈V

cv
′′

vv′ev′′ .

Hence,
ev

hr(v)
∗ ev′

hr(v′)
=
∑
v′′∈V

cv
′′

vv′
ev′′

hr(v′′)
.

Since we have Mh
(

ev
hr(v)

)
= shv , we deduce that

Mh

(
ev

hr(v)
∗ ev′

hr(v′)

)
= Mh

(
ev

hr(v)

)
Mh

(
ev′

hr(v′)

)
.

Hence, (L2
h(V ),+, ∗) is an algebra which is isomorphic to Ah (and thus to A).
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Suppose that x, y ∈ M1(V ). Then,

⟨1, x ∗ y⟩h =
∑
v∈V

µh(v)x(v)⟨1, P v(y)⟩h

=
∑
v∈V

µh(v)x(v)

〈
hl, hr · 1

hr
· sv(h

r · y)
hl(v)

〉
=
∑
v∈V

hr(v)x(v)
〈
hl, sv(h

r · y)
〉
.

By Lemma 3.2, hl is an eigenvector of s∗v with eigenvalue hl(v) for all v ∈ V , thus, using the fact
that x, y ∈ M1(V ),

⟨1, x ∗ y⟩h =
∑
v∈V

hr(v)x(v)
〈
s∗vh

l, hr · y
〉

=
∑
v∈V

µh(v)x(v)
〈
hl, hr · y

〉
=
∑
v∈V

µh(v)x(v) ⟨1, y⟩h = ⟨1, x⟩h = 1.

□

3.3. Integrable PM-graph, Fourier transform and Verlinde formula. In this section, we
assume that A is diagonalizable. As a direct consequence of commutativity, all sv, v ∈ V are
diagonalizable. We denote by {u(i), i = 0, . . . , |V | − 1} a basis of right eigenvectors and {w(i), i =

0, . . . , |V | − 1} the dual basis of left eigenvectors normalized so that w(i)(v0) = 1 (as we will see in

the next lemma, any eigenvector has a nonzero coordinate along ev0). We suppose that u(0) = hr

(and thus w(0) = hl). Finally, we denote by θv(i) the eigenvalue of sv on u(i), so that θv(i) is the

eigenvalue of sv on w(i)). As in Lemma 3.2, the coordinates of w(i) along B0 are actually given by
the eigenvalues of the family sv.

Lemma 3.7. For all i ∈ {0, . . . , |V | − 1},

w(i)(v) = θv(i).

Proof. Let y be a left eigenvector with eigenvalue θv(i). Then, since sv(ev0) = ev,

⟨y, ev⟩ = ⟨s∗vy, ev0⟩ = θv(i)⟨y, ev0⟩.

In particular, ⟨y, ev0⟩ ≠ 0 for otherwise we would have y = 0. Specifying to y = w(i) yields then

w(i)(v) = θv(i).

□

Remark that shv is also diagonalizable on L2
h(V ) with same eigenvalues θv(i), θv(i) and left and

right eigenvectors

ũ(i) =
1

hr
· u(i), w̃(i) =

1

hl
· w(i).

(beware that left eigenvectors are taken with respect to the adjoint (·)h,∗)).

Definition 3.8. The Fourier transform ΦV on L2
h(V ) is the morphism from L2

h(V ) to C|V | defined
by

ΦV [x](i) =
〈
w̃(i), x

〉
h
.

With this definition, a vector u ∈ L2
h(V ) is a h-probability measure if and only if ΦV [u](0) = 1.
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Proposition 3.9. For any x, y ∈ L2
h(V ),

ΦV [x ∗ y](i) = ΦV [x](i)ΦV [y](i).

Moreover, ΦV is an isomorphism with inverse

Φ−1
V (ei) = ũ(i),

where {ei}1≤i≤|V | is the canonical basis of C|V |.

Proof. Let x, y ∈ L2
h(V ) and 0 ≤ i ≤ |V | − 1. Then, using the definition of the convolution product

and the fact that w̃(i) is an eigenvector of (shv)
h,∗ with eigenvalue θiv,

ΦV [x ∗ y](i) =⟨w̃(i), x ∗ y⟩h

=
∑
v∈V

(hr · x)(v)
〈
w̃(i), shv(y)

〉
h

=
∑
v∈V

(hr · x)(v)
〈
(shv)

h,∗(w̃(i)), y
〉
h

=
∑
v∈V

(hr · x)(v)θv(i)ΦV [y](i).

Then, by Lemma 3.7,

ΦV [x ∗ y](i) = ΦV [y](i)
∑
v∈V

(hr · x)(v)w(i)(v) =ΦV [y](i)
∑
v∈V

(hr · x)(v)(hl · w̃(i))(v)

=ΦV [y](i)
〈
w̃(i), x

〉
h
= ΦV [y](i)ΦV [x](i),

which proves the first assertion. Then, for 0 ≤ i, j ≤ |V | − 1,

ΦV

[
ũ(i)
]
(j) =

〈
w̃(j), ũ(i)

〉
h
= δij ,

so ΦV is an isomorphism with inverse

Φ−1
V (ei) = ũ(i).

□

The latter proposition amounts to say that ΦV diagonalizes the convolution product on L2
h(V ).

We can deduce from the above construction a general formula to compute arbitrary convolutions
in L2

h(V ).

Proposition 3.10 (Verlinde formula). Let n ≥ 2. Then, for v ∈ V and x1, . . . , xn ∈ H

[x1 ∗ · · · ∗ xn] (v) =
|V |−1∑
i=0

n∏
j=1

ΦV [xj ](i)ũ
i(v),

and for v1, . . . , vn ∈ V ,

sv1 . . . svn =
∑
v∈V

cvv1,...,vnsv

with

(8) cvv1,...,vn =

|V |−1∑
i=0

n∏
j=1

θvj (i)u
(i)(v).
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Proof. Since (w̃(i))0≤i≤|V |−1 is the dual basis of (ũ(i))0≤i≤|V |−1 with respect to ⟨·, ·⟩h, we have

x1 ∗ · · · ∗ xn =

|V |−1∑
i=1

⟨w̃(i), x1 ∗ · · · ∗ xn⟩hũ(i) =
∑

i=1|V |−1

ΦV [x1 ∗ · · · ∗ xn](i)ũ(i).

By Proposition 3.9, we then have

x1 ∗ · · · ∗ xn =

|V |−1∑
i=1

n∏
j=1

ΦV [xj ](i)ũ
(i),

and the first statement is deduced. For the second statement, remark that we also have

shv1 . . . s
h
vn =

∑
v∈V

cvv1,...,vns
h
v

with the same coefficients (see Definition 3.3 and the remark afterwards). By Proposition 3.6 and
the first statement,

shv1 . . . s
h
vn =Mh

(
1

hr(v1)
ev1 ∗ · · · ∗

1

hr(vn)
evn

)

=
1∏n

j=1 h
r(vj)

|V |−1∑
i=1

n∏
j=1

ΦV [evj ](i)M
h(ũi).

On the one hand, for 1 ≤ j ≤ n, we have

ΦV [evj ](i) = ⟨w̃(i), evj ⟩h = µh(vj)w̃(i)(vj) = hr(vj)w(i)(vj) = hr(vj)θvj (i)

by Lemma 3.7. On the other hand,

Mh(ũ(i)) =
∑
v∈V

hr(v)ũ(i)(v)shv =
∑
v∈V

u(i)(v)shv .

Hence,

shv1 . . . s
h
vn =

∑
v∈V

|V |−1∑
i=1

n∏
j=1

θvj (i)u
(i)(v)

 shv ,

and we thus get

cvv1,...,vn =

|V |−1∑
i=0

 n∏
j=1

θvj (i)

u(i)(v).

□

Remark 3.11. The formula (8) is called the Verlinde formula, since it is exactly the same formula
that appears in the special case where the graph comes from the fusion ring in conformal field theory,
see [2]. Let {vj}0≤j≤|V |−1 an enumeration of the vertices of V , with v0 the root of the PM graph as

before, and write S = (θvi(j))0≤i,j≤|V |−1. Then, Lemma 3.7 and the definition of the dual basis u(i)(
S−1

)
ij
= u(i)(vj).

Hence, (8) specializes in the more common formula svisvj =
∑|V |−1

k=0 Nk
ijsvk with

Nk
ij =

|V |−1∑
l=0

SilSjl

(
S−1

)
lk
.
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(Note that a term 1
S0l

appearing the literature disappears in our case due to our normalization of

the vectors w(i), 0 ≤ i ≤ |V | − 1). In the special case of the quantum cohomology of Grassmannian
which is the subject of the present paper, this formula is known as Vafa and Intriligator’s formula,
see [5].

When A is normal with respect to ⟨·, ·⟩, then A is diagonalizable in an orthogonal basis and,
with our convention, we can choose

(9) u(i) =
1

∥w(i)∥2
w(i)

for 0 ≤ i ≤ |V | − 1. In particular, hr = 1
∥hl∥2h

l and thus

µh =
1

∥hl∥2
hl · hl.

In this case, {ũi, 1 ≤ i ≤ |V |} is an orthogonal basis of L2
h(V ) with ∥ũi∥2h = ∥hl∥2

∥w(i)∥2 and then ΦV is

an isometry from L2
h(V ) to C|V | endowed with the Hilbert space structure ⟨ei, ej⟩ = δij

∥hl∥2
∥w(i)∥2 .

4. Noncolliding particles on a circle and eigenvalues of unitary matrices

Recall from Section 2 the definition of Bk,n. Due to the relation between Bk,n and the quantum
cohomology of Grassmannian whose ring structure is described by Schur functions, it is sometimes
better to see Bk,n as a graph of partitions (see Appendix A for some reminders on partitions). We
denote by Rk the set of generalized partitions of length k ≥ 1, which are nondecreasing sequences
of integers of length k and Rk,n the set of partitions of length k such that the first part is smaller
that n− k. There is a bijection ϕ from Rk,n to Bk,n defined by the shift

ϕ(λ) = λ+ I0,

where we recall that I0 = (k − 1, . . . , 0). By the latter bijection, ϕ(∅) = I0 and we then have
ϕ−1(I) = I − I0. Since we will make an extensive use of the maps ϕ and ϕ−1, we will simply write
Iλ = ϕ(λ) and λI = ϕ−1(I) when there is no ambiguity. Remark that the map ϕ is independent of
n and extends to a map from Rk to Bk, where Bk denotes the set of increasing sequence of integers
of length k. The graph structure of Bk,n yields a graph structure on Rk,n given by the following
rule, which is a specialization of the so-called quantum Pieri rule, see [5].

Lemma 4.1. There is an oriented edge between I and J if and only if either λI ↗ λJ in the

usual sense of partition or if (λI)1 = n− k, (λI)k > 0 and λJ = λ̃I , where for λ ∈ Rk,n such that
λ1 = n− k and λk > 0, we write

λ̃ = (λ2 − 1, . . . , λk − 1, 0).

The proof of the latter lemma is a simple transposition to partitions of the edge rule for Bk,n,
which we do not detail here. Finally, recall from Section 2.1 that we also embed Bk,n into Tk with
the map

ξn :


Bk,n → Tk

I 7→R k−1
2n

(
2π

n
I

)
,

and we have set Tk,n = ξn(Bk,n). To summarize, we have then three sets of cardinal
(
n
k

)
related

together as in the following picture.
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Tk,n ⊂ Tk Bk,n ⊂ Bk

Rk,n ⊂ Rk

ξn

ϕ

4.1. The graph Bk,n as an integrable PM-graph. Recall from Section 2 that L2(Bk,n) =⊕
I∈Bk,n

CeI denotes the Hilbert space of functions on Bk,n with the scalar product ⟨eI , eJ⟩ = δI,J ,

where B0 = (eI)I∈Bk,n
is the canonical basis on L2(Bk,n). Then, the graph structure on Bk,n is

encoded in the adjacency matrix A ∈ B(L2(Bk,n)) given by

AeI =
∑
I↗J

eJ .

In the sequel, we will use a specialization of the quantum cohomology of Grassmannian QH(Gk,n)
to prove that Bk,n is an integrable PM-graph as defined in Definition 3.1. The reader should refer
to Appendix A for any background on QH(Gk,n). We mainly need the fact that QH(Gk,n) =

Sym[x1, . . . , xk] ⊗ C[q]/⟨xn1 = · · · = xnk = (−1)k+1q, xi ̸= xj , i ̸= j⟩ and we will consider the
specialization

QH1(Gk,n) := QH(Gk,n)/⟨q = 1⟩ = Sym[x1, . . . , xk]/⟨xn1 = · · · = xnk = (−1)k+1, xi ̸= xj , i ̸= j⟩.
The algebra QH1(Gk,n) is spanned by {sλ, λ ∈ Rk,n}. Then, Bk,n is a PM-graph in the sense of
Definition 3.1 with an enveloping algebra A ≃ QH1(Gk,n), as the next proposition shows.

Proposition 4.2. There is a commutative algebra A ⊂ B(L2(Bk,n)) containing C[A] which is
isomorphic to QH1(Gk,n) through an isomorphism T : QH1(Gk,n) → A such that T (sλ)eI0 = eIλ
and T (s(1)) = A.

As a consequence Bk,n is a PM-graph rooted at I0.

Proof. Remark first that since dimL2(Bk,n) = |Bk,n| =
(
n
k

)
, for any commutative subalgebra A of

B(L2(Bk,n)) we have dimA ≤
(
n
k

)
. Recall that we defined

QH1(Gk,n) = Sym[x1, . . . , xk]/⟨xn1 = · · · = xnk = (−1)k+1, xi ̸= xj , i ̸= j⟩.

Since there are n distinct roots to the equation xn = (−1)k+1, there are
(
n
k

)
distinct k-tuples of

distinct roots of xn = (−1)k+1 up to permutation. Therefore, QH1(Gk,n) is isomorphic to the
space of functions on

(
n
k

)
elements and thus dimQH1(Gk,n) =

(
n
k

)
. Since QH1(Gk,n) is spanned

by {sλ}λ∈Rk,n
, by a dimension argument the latter set is actually a basis of QH1(Gk,n). Let

ℓ : QH1(Gk,n) → L2(Bk,n) be the isomorphism sending sλ to eIλ , and define T : QH1(Gk,n) →
B(L2(Bk,n)) by

T (x)eI = ℓ(xℓ−1(eI)), x ∈ QH1(Gk,n), I ∈ Bk,n.

Then, T is an injective morphism of algebra, since it can be written as the composition of the mul-
tiplication map m : QH1(Gk,n) → B(QH1(Gk,n)) with the conjugation map Cℓ : B(QH1(Gk,n)) →
B(L2(Bk,n)) given by M 7→ ℓ ◦M ◦ ℓ−1, both maps being injective morphisms of algebras. Since
QH1(Gk,n) is commutative, T (QH1(Gk,n)) is a commutative subalgebra of B(L2(Bk,n)).

Since ℓ−1(eI) = sλI
, we have

T (s(1))eI = ℓ(s(1)sλI
).
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The multiplication by s(1) in QH(Gk,n) is given by the quantum Pieri rule [6, Eq. (22)], which
gives for λ ∈ Rk,n after specializing q = 1

s(1)sλ =
∑
λ↗µ

sµ + δλ1=n−k,λk>0qsλ̃ =
∑
λ↗µ

sµ + δλ1=n−k,λk>0sλ̃,

where λ̃ = (λ2 − 1, . . . , λk − 1, 0). Hence, by Lemma 4.1, s(1)sλ =
∑

Iλ↗I sλI
, which yields for

I ∈ Bk,n

T (s(1))eI = ℓ(s(1)sλI
) =

∑
I↗J

ℓ(sλJ
) =

∑
I↗J

eJ ,

and finally T (s(1)) = A, so that C[A] ⊂ T (QH1(Gk,n)).
For all I ∈ Bk,n,

T (sλI
)eI0 = ℓ(sλI

s∅) = ℓ(sλI
) = eI ,

which implies that the map T (QH1(Gk,n)) → L2(Bk,n) given by x 7→ x(eI0) is injective. Then,
since

[AT (sλI
)] eI0 = AeI =

∑
I↗J

eJ =

∑
I↗J

T (sλJ
)

 eI0 ,

we deduce that

AT (sλI
) =

∑
I↗J

T (sλJ
) =

∑
J∈Bk,n

AJIT (sλJ
).

Finally, by (62), for all λ, µ ∈ Rk,n we have

T (sλ)T (sµ) = T (sλsµ) =
∑

d≥0,ν∈Rk,n

⟨λ, µ, νc⟩dT (sν)

with each term ⟨λ, µ, νc⟩d ≥ 0.
By the previous results, Bk,n is a PM-graph whose enveloping algebra is A = T (QH1(Gk,n)) and

the corresponding basis is {T (sλI
), I ∈ Bk,n}. □

As a consequence of the latter result and the presentation of QH1(Gk,n), we will prove that Bk,n

is an integrable PM-graph. Let us simply write AI = T (sλI
). In the case of Bk,n, there is a natural

indexation of left and right common eigenvectors of {AI}I∈Bk,n
by the set Bk,n itself. We do not

known if such natural indexation holds for any integrable PM-graph. As we will see in the next
proposition, we are in the particular case where the adjacency matrix A is normal, so that left and
right eigenvectors u(I) and w(I), I ∈ Bk,n of all operators AI coincide up to a constant, see (9). For
I ∈ Bk,n, set

(10) w(I) =
∑

J∈Bk,n

SJ(ξn(I))eJ ,

where SJ(u⃗) = sλJ

(
eiu1 , . . . , eiuk

)
for u⃗ ∈ Rk, and let V (u1, . . . , uk) =

∏
j<j′

(
eiuj′ − eiuj

)
be the

Vandermonde determinant of
(
eiuj

)
1≤j≤k

.

Lemma 4.3. The set {w(I)}I∈Bk,n
is an orthogonal basis of L2(Bk,n), and for all J ∈ Bk,n,

AJ(w
(I)) = SJ(ξn(I))w

(I) and A∗
J(w

(I)) = SJ(ξn(I))w
(I).



QUANTUM COHOMOLOGY OF GRASSMANNIAN AND UNITARY DYSON BROWNIAN MOTION 23

Proof. The orthogonality relation is given by the following Cauchy type formula from [46, Propo-
sition 4.3] : for I, I ′ ∈ Bk,n,

(11)
∑

J∈Bk,n

SJ(ξn(I))SJ(ξn(I ′)) = δI,I′
nk

|V (ξn(J))|2
,

which directly yields

⟨w(I), w(I′)⟩ =δI,I′
nk

|V (ξn(J))|2
(12)

for I, I ′ ∈ Bk,n.
To prove the eigenvector property, it is easier to work on QH1(Bk,n). Indeed, by Proposition

4.2, it suffices to prove that sλJ
· ℓ−1(w(I)) = SJ(ξn(I))ℓ

−1(w(I)), where · denotes the product in
QH1(Gk,n). From the proof of Proposition 4.2, QH1(Bk,n) is the space of functions on Zk,n =

{exp(iu⃗), u⃗ ∈ Tk,n}, where exp(iu⃗) =
(
eiu1 , . . . , eiuk

)
for u⃗ ∈ Rk. Hence, we need to show that

the values of sλJ
· ℓ−1(w(I)) and SJ(ξn(I))ℓ

−1(w(I)) agree on Zk,n. First, we have by the usual
evaluation of multiplication of functions[

sλJ
· ℓ−1

(
w(I)

)]
(exp(iξn(I))) =sλJ

(exp(iξn(I)))
[
ℓ−1

(
w(I)

)]
(exp(iξn(I)))

=
[
SJ(ξn(I))ℓ

−1(w(I))
]
(exp(iξn(I))).

Then, for I ′ ̸= I,[
sλJ

· ℓ−1(w(I))
]
(exp(iξn(I

′)))−
[
SJ(ξn(I))ℓ

−1(w(I))
]
(exp(iξn(I

′)))

=
(
SJ(ξn(I

′))− SJ(ξn(I))
) ∑

J ′∈Bk,n

SJ ′(ξn(I))sλJ′

 (exp(iξn(I
′)))

=
(
SJ(ξn(I

′))− SJ(ξn(I))
) ∑
J ′∈Bk,n

SJ ′(ξn(I))SJ ′(ξn(I
′)) = 0

by (12). Hence, we deduce that sλJ
· ℓ−1(w(I)) = SJ(ξn(I))ℓ

−1(w(I)), and the result is deduced by
applying ℓ. Since AJ is diagonalized on an orthogonal basis, it is actually normal and we thus have

A∗
J

(
w(I)

)
= SJ(ξn(I))w

(I).

□

Note that as a corollary of (12), we have

∥w(I)∥2 =
nk/2

|V (ξn(I))|
.

Hence, following the notations of Section 3, we set

(13) u(I) =
|V (ξn(I))|2

nk
w(I),

so that ⟨w(I), u(J)⟩ = δIJ .
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4.2. h-transform, convolution and Fourier transform on Bk,n. As a consequence of the fact
that Bk,n is an integrable PM-graph and the expression of its eigenbasis, we can deduce several
results from Section 3. In order to do so, we will need several times the following inversion formula
for evaluating SI(ξn(J)) in terms of SJ(ξn(I)).

Lemma 4.4. For I, J ∈ Bk,n,

SJ(ξn(I)) =
SJ(ξn(I0))

SI(ξn(I0))
SI(ξn(J)).

Moreover,

V (ξn(I)) = exp

(
(k − 1)iπ

n
(⟨I⟩ − ⟨I0⟩)

)
V (ξn(I0))SI(ξn(I0)),

where ⟨I⟩ =
∑k

i=1 Ii.

Proof. By definition of Schur functions as ratios of generalized Vandermonde determinants, for
I ∈ Bk and u⃗ ∈ Rk we have

SI(u⃗) =
aI(u⃗)

aI0(u⃗)
,

where aJ(u⃗) = det
(
eiulJm

)
1≤l,m≤k

for J ∈ Bk. For I, J ∈ Bk,n,

aJ(ξn(I)) =det

(
exp

(
2iπ

n
(Il − (k − 1)/2)Jm

))
1≤l,m,≤k

=exp

(
(k − 1)iπ

n

(
k∑

l=1

Il −
k∑

m=1

Jm

))
det

(
exp

(
2iπ

n
Il(Jm − (k − 1)/2)

))
1≤l,m,≤k

=exp

(
(k − 1)iπ

n
(⟨I⟩ − ⟨J⟩)

)
det

(
exp

(
2iπ

n
Il(Jm − (k − 1)/2)

))
1≤l,m,≤k

=exp

(
(k − 1)iπ

n
(⟨I⟩ − ⟨J⟩)

)
aI(ξn(J)).(14)

Applying the latter formula to the ratio SJ (ξn(I))
SJ (ξn(I0))

yields

SJ(ξn(I))

SJ(ξn(I0))
=
aJ(ξn(I))

aI0(ξn(I))

aI0(ξn(I0))

aJ(ξn(I0))

=
aI(ξn(J))

aI(ξn(I0))

aI0(ξn(I0))

aI0(ξn(J))
exp

(
(k − 1)iπ

n
(⟨I⟩ − ⟨J⟩+ ⟨I0⟩ − ⟨I⟩+ ⟨J⟩ − ⟨I0⟩)

)
=
SI(ξn(J))

SI(ξn(I0))
,

which proves the first statement. Then, using (14) with J = I0 yields

V (ξn(I)) = aI0(ξn(I)) = exp

(
(k − 1)iπ

n
(⟨I⟩ − ⟨I0⟩

)
aI(ξn(I0))),

and, since SI(ξn(I0)) =
aI(ξn(I0))
V (ξn(I0))

,

V (ξn(I)) = exp

(
(k − 1)iπ

n
(⟨I⟩ − ⟨I0⟩)

)
V (ξn(I0))SI(ξn(I0)).

□

Specializing (10) and (13) to I = I0 yields the following Lemma.
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Lemma 4.5. The common left and right Perron-Frobenius eigenvectors hl, hr of all AI , I ∈ Bk,n

with the normalization hl(I0) = 1,
〈
hl, hr

〉
= 1 are

hl(I) = SI(ξn(I0)), hr(I) =
|V (ξn(I0))|

nk
· |V (ξn(I))|,

and the invariant probability measure of Bk,n is

µh(I) =
1

nk
|V (ξn(I))|2 .

Proof. Remark that with the notation of the statement, we have w(I0) = hl. By (10), (13) and

Lemma 4.3, w(I0) and u(I0) are both left and right eigenvectors of AI for I ∈ Bk,n with eigenvalue

SI(ξn(I0)). To conclude, we need to prove that w(I0)(I) > 0 for all I ∈ Bk,n and hr = w(I0) and

u(I0) = hr. Both assumptions are deduced if we prove that |V (ξn(I0))|SI(ξn(I0)) = |V (ξn(I))|,
since then hl(I) = |V (ξn(I))|

|V (ξn(I0))| > 0 and u(I0)(I) = |V (ξn(I0))|2
nk SI(ξn(I0)) =

|V (ξn(I0))|
nk |V (ξn(I))|.

By Lemma 4.4

V (ξn(I0))SI(ξn(I0)) = exp

(
−(k − 1)iπ

n
(⟨I⟩ − ⟨I0⟩)

)
V (ξn(I)).

Then, using that ⟨I0⟩ = k(k−1)
2

exp

(
−(k − 1)iπ

n
(⟨I⟩ − ⟨I0⟩)

)
V (ξn(I))

= exp

−(k − 1)iπ

n

k∑
j=1

(Ij − (k − 1)/2)

 ∏
1≤l<m≤k

(
e2iπ(Im−(k−1)/2)/n − e2iπ(Il−(k−1)/2)/n

)
=

∏
1≤l<m≤k

e−
(Im+Il−(k−1))iπ

n

(
e2iπ(Im−(k−1)/2)/n − e2iπ(Il−(k−1)/2)/n

)
=(2i)k(k−1)/2

∏
l<m

sin(π(Im − Il)/n).

Since I is an increasing sequence,
∏

l<m sin(π(Im − Il)/n) > 0. In particular, for I = I0 we get

V (ξn(I0)) = ik(k−1)/2|V (ξn(I0))|. We deduce that

(15) |V (ξn(I0))|SI(ξn(I0)) = |V (ξn(I))|,
and the lemma is deduced. □

As a consequence of the latter lemma, the Perron-Frobenius eigenvalue of AI , I ∈ Bk,n is
SI(ξn(I0)). In particular, Lemma 4.3 yields that for all I, J ∈ Bk,n

(16) |SI(ξn(J))| ≤ SI(ξn(I0)).

Following notations of Section 4, set P I =
Ah

I
SI(ξn(I0))

. Translating Definition 3.5 to Bk,n yields the

following convolution product on L2
h(Bk,n).

Definition 4.6. The convolution product on Bk,n is the map ∗ : L2(Bk,n)⊗ L2(Bk,n) → L2(Bk,n)
defined by

x ∗ y =
∑

I∈Bk,n

µh(I)x(I)P I(y) =
∑

I∈Bk,n

|V (ξn(I))|2

nk
x(I)P I(y),

where P I(y) = 1
hr · AI

SI(ξn(I0))
(hr · y) and · denotes the pointwise multiplication.
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A h-probability measure µ on Bk,n is a vector µ ∈ L2(Bk,n) such that∑
I∈Bk,n

|V (ξn(I))|2

nk
µ(I) = 1.

Recall that we denote then by M1(Bk,n) the set of h-probability measures on Bk,n. We also
denote by δI the unique h-probability measure supported at I, namely

(17) δI =
nk

|V (ξn(I)|2
eI .

The results of Section 3 yield then directly the proof of Proposition 2.1.

Proof of Proposition 2.1. By Proposition 3.6, (L2(Bk,n),+, ∗) is a commutative algebra such that
M1(Bk,n) ∗M1(Bk,n) ⊂ M1(Bk,n), which proves (1) and (2).

Then, applying Definition 4.6 to x =
eI1

µh(I1)
and y ∈ L2(Bk,n) and using that µh(I) = |V (I)|2

nk for

I ∈ Bk,n, we get

eI1
µh(I1)

∗ y = PI1(y) =
Ah

λ
,

where the last equality is due to Proposition 4.2 which implies that AI1 = T (s(1)) = A. Doing the

same with x = eI
µh(I)

and y =
eI0

µh(I0)
yields

eI
µh(I)

∗ eI0
µh(I0)

=
1

µh(I0)
P I(eI0) =

hr(I0)

hr(I)hl(I0)hr(I0)hl(I)
eI =

eI
µh(I)

,

where we used that AI(eI0) = eI and hl(I0) = 1. Thus, (3) and (4) are proven. □

Likewise, since Bk,n is an integrable PM-graph, we can define a Fourier transform as in Section
3.3.

Definition 4.7. The discrete Fourier transform on Bk,n is the map Φn : L2(Bk,n) → L2(Bk,n)
defined for x ∈ L2(Bk,n) by

Φn[x](I) = ⟨w̃(I), x⟩h =
∑

J∈Bk,n

|V (ξn(J))| · |V (ξn(I0))|
nk

SJ(ξn(I))x(J).

Then, Proposition 3.9 directly yields for x1, . . . , xm ∈ L2(Bk,n)

(18) Φn[x1 ∗ . . . ∗ xm] = Φn[x1] · . . .Φn[xm].

Let us more specifically study the Fourier transform of a h-probability measure. First, for I, J ∈
Bk,n, we have by Definition 4.7, (17) and (15),

Φn[δI ](J) =
|V (ξn(I))| · |V (ξn(I0))|

nk
SI(ξn(J)) ·

nk

|V (ξn(I)|2
=

SI(ξn(J))

SI(ξn(I0))
.

Then, by Definition 4.6 and (17), a h-probability measure µ ∈ L2
h(Bk,n) can be written µ =∑

I∈Bk,n
aIδI with aI ≥ 0 for I ∈ Bk,n and

∑
I∈Bk,n

aI = 1. Hence, we have

(19) Φn[µ](J) =
∑

I∈Bk,n

aI
SI(ξn(J))

SI(ξn(I0))
.
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Example 4.8. For k = 1, B1 = Z, and we can identify B1,n with Z/nZ, and SJ(u) = eiJu for
u ∈ R, J ∈ Z. In particular, I0 = 0 and SI0(u) = 1 for u ∈ R. For I ∈ [0, n[∩Z, |V (ξn(I))| = 1,
and thus

w(I) =
∑

J∈Bk,n

exp(−2iπIJ/n)eJ , u(I) =
1

n

∑
J∈Bk,n

exp(−2iπIJ/n)eJ

so that we recover the usual discrete Fourier vectors. For x ∈ L2(Bk,n), we then have

Φn[x](I) =
1

n

∑
J∈Z/nZ

exp(2iπIJ/n)x(J),

which is the usual (inverse) discrete Fourier transform. Finally, the map PI is the circulant operator
sending eJ to eJ+I , so that for x, y ∈ L2(B1,n), the convolution product is

x ∗ y(J) = 1

n

∑
I∈Z/nZ

x(I)y(J − I),

which is the classical convolution product on Z/nZ. Then, (18) recovers the fact that

Φn(x ∗ y) = Φn(x)Φn(y).

4.3. Fourier transform on Tk. Let us turn to Tk, the continuous limit object of the sequence
{Bk,n, n ≥ k}. Recall that the set of continuous k-configurations on a circle Tk is the subset of Rk

consisting of vectors u = (u1, . . . , uk) such that

0 ≤ uk ≤ uk−1 ≤ · · · ≤ u1 < 2π.

Before describing the relation with Bk,n, let us describe the Fourier transform on Tk coming from
representations theory of U(k), the Lie group of unitary matrices of rank k. Sending U ∈ U(k) to
the sequence of arguments of its eigenvalues taken in [0, 2π[) and sorted in decreasing order yields
a map p : U(k) 7→ Tk. Characters of U(k) are conjugation invariant functions {χI , I ∈ Bk} with
the formula

(20) χI(U) = SI(p(U)) =
aI(u1, . . . , uk)

aI0(u1, . . . , uk)
,

where {u1, . . . , uk} are arguments of eigenvalues of U ∈ U(k) and we recall that aI(u1, . . . , uk) =
det(eiulIm)1≤l,m≤k for u ∈ Rk and I ∈ Bk.

By Weyl integration formula, the image of the Haar measure µH on U(k) through p yields a
probability measure on Tk which is continuous with respect to the Lebesgue measure and has
density

dp⋆µH(u1, . . . , un) =
1

(2π)k

∏
l<m

∣∣eiul − eium
∣∣2 = 1

(2π)k
|V (u⃗)|2.

Reciprocally, any probability measure on Tk yields a unique probability measure p⋆µ on U(k) which
is invariant by conjugation. Denote by L2

inv(U(k)) the vector space of square integrable functions

on U(k) which are invariant by conjugation. Each element f of L2
inv(U(k)) yields a function f̃ on

L2(Tk, dp⋆µH) by restricting its values to diagonal matrices, and the map f 7→ f̃ is an isomorphism
by Weyl integration formula. By Plancherel theorem, the map

Φ :


L2
inv(U(k), dµH) ≃ L2(Tk, dp⋆(µH)) → ℓ2(Bk)

f 7→
(∫

Tk

SJ(u)f̃(u)dp⋆µH(u)

)
J∈Bk
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is an L2-isometry. For c = (c(J)) ∈ ℓ2(Bk), the inverse of Φ at c is given by

Φ−1[c](u⃗) =
∑
J∈Bk

dJc(J)SJ(u⃗)

for u⃗ ∈ Tk, where the sum almost-surely converges and dJ = SJ(0, . . . , 0) is the dimension of the
irreducible representation of U(k) having character χJ = SJ ◦ p.

The map Φ extends by continuity (in the weak-topology) to a unique map, also denoted Φ and
called the Fourier transform on Tk, from the set Mf (Tk) of finite measures on Tk to the topological
space of maps from Bk to C with the pointwise convergence. We then have for m ∈ Mf (Tk) and
J ∈ Bk

(21) Φ[m](J) =
1

(2π)k

∫
Tk

SJ(u⃗)|V (u⃗)|2dm(u⃗).

As for finite measures on R or R/(2πZ), the Fourier transform characterizes finite measure and
vague convergence on Tk. Denote by M1(Tk) the subset of Mf (Tk) consisting in measures m on
Tk such that Φ[m](I0) = 1.

If ν1, ν2 ∈ Mf (U(k)), the set of finite measures on U(k), the convolution of ν1 with ν2 is the
unique finite measure ν1 ∗ ν2 such that

∫
U(k) fdν1 ∗ ν2 =

∫
U(k)×U(k) f(g1g2)dν1(g1)dν2(g2) for all

f ∈ C0(U(k)). If µ1, µ2 ∈ Mf (Tk), we define

ν1 ∗ ν2 = p⋆(p
⋆(µ1) ∗ p⋆(µ2)).

Then, the convolution product ∗ is commutative on Mf (Tk), and

Φ[µ1 ∗ µ2] = Φ[µ1] · Φ[µ2],

where the product on the right-hand side is the pointwise product on M(Bk).
Recall that Bk,n embeds in Tk through the map ξn defined in Section 2.1. By linearity, this map

is extended to a map (also denoted by ξn) from L2(Bk,n) to Mf (Tk) with the formula

ξn

 ∑
I∈Bk,n

µ(I)eI

 =

(
2π

n

)k ∑
I∈Bk,n

µ(I)δξn(I), µ ∈ L2(Bk,n).

A crucial fact for the sequel is that ξn intertwines the Fourier transforms Φn and Φ.

Proposition 4.9. For all µ ∈ L2(Bk,n) and J ∈ Bk such that J1 < Jk+n. Then, with J (n) ∈ Bk,n

such that {J (n)
i [n]}1≤i≤k = {Ji[n]}1≤i≤k,

Φ[ξn(µ)](J) = SJ(ξn(I0))Φn[µ](J
(n)).

Proof. By linearity, we only have to prove the relation on µ = δI for I ∈ Bk,n, where δI is defined
in (17). First, (19) and Lemma 4.4 yield

Φn[δI ](J
(n)) =

SI(ξn(J
(n)))

SI(ξn(I0))
=

SJ(n)(ξn(I))

SJ(n)(ξn(I0))
.

On the other hand, since ξn(δI) =
(
2π
n

)k nk

|V (ξn(I))|2 δξn(I) =
(2π)k

|V (ξn(I))|2 δξn(I),

Φ[ξn(δI)](J) =
1

(2π)k

∫
Tk

SJ(u⃗)|V (u⃗)|2 (2π)
kdδξn(I)

|V (ξn(I))|2
(u⃗)

=SJ(ξn(I)) = SJ(n)(ξn(I)),
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The last equality is a consequence to the fact that J (n) has the form (Jr + (ℓ+ 1)n, . . . , Jk + (ℓ+
1)n, J1+ ℓn, . . . , Jr−1+ ℓn) for some 1 ≤ r ≤ k and ℓ ∈ Z and because of the determinantal formula
of SJ and SJ ′ . The result is then deduced. □

4.4. Invariant Brownian motion on Uk and unitary Dyson Brownian motion. Let us
conclude this section by recalling rigorously the definition of the generalized Dyson Brownian
motion on Uk and its eigenvalue process on Tk, see [39] for a detailed background on this stochastic
process and [21] for most of the content of this section. The Lie group U(k) is a Riemannian
sub-manifold of Mk(C) of real dimension n2, and the tangent space of U(k) at Id is given by the
Lie algebra

uk = {M ∈ Mk(C), M∗ +M = 0}.
Remark that uk is not semi-simple, since uk = suk ⊕ iRId, where suk = {M ∈ uk, T r(M) = 0} is
simple. There is, up to a scalar, a unique invariant scalar product on suk given by ⟨·, ·⟩ : (X,Y ) 7→
kTr(Y ∗X). There is trivially a unique invariant metric on iRId given by (X,Y ) 7→ Tr(X)Tr(Y ∗).
Hence, we can deduce that for all α, β > 0, there is a invariant scalar product ⟨·, ·⟩α,γ on uk given
by

⟨X,Y ⟩α,γ = γ−1kTr(Y ∗X) + (α−1 − γ−1)Tr(Y ∗)Tr(X),

and that any invariant scalar product is of this type.
For 1 ≤ r, s ≤ n, write Ers for the matrix with only one nonzero entry on the r-th line and

s-th column. Set Xrs = 1√
2k
(Ers − Esr), Xsr = i√

2k
(Ers + Esr) for 1 ≤ r < s ≤ k, Xrr =

i√
2r(r−1)k

∑
1≤s<r(Ess − Err) for 2 ≤ r ≤ k and X11 = 1

k

∑k
r=1Err. Then, {Xrs}1≤r,s≤k is an

orthonormal basis of uk with respect to the scalar product ⟨·, ·⟩1,1. For Y ∈ uk we denote by
LY : C1(Uk) 7→ C0(Uk) the differential operator induced by the unique left-invariant vector field
equal to Y at Id, namely for f ∈ C1(Uk) and U ∈ Uk,

LY [f ](U) = lim
t→0

f(U exp(tY ))− f(U)

t
.

We can then define the Brownian motion with parameters (α, γ) on U(k) as follows.

Definition 4.10. Let α, γ ≥ 0. There exists a unique Markov process Bα,γ(t))t≥0 with almost sure
continuous trajectories on U(k) such that

∂

∂t
E(f(UBα,γ(t)))|t=0 =

γ
∑

1≤i,j≤n

L2
Xij

+ (α− γ)L2
X11

 f(U),

for all f ∈ C1(Un) and U ∈ Un. Moreover, such a Markov process is invariant by left and right
translation by elements of U(k), and any Markov process on U(k) with the same invariance property
and with almost sure continuous trajectories is equal to Bα,γ for some α, γ ≥ 0.

For α, γ > 0, the stochastic process Bα,γ is the Brownian motion with respect to the left invariant
metric whose value at Id is ⟨·, ·⟩α,γ . From the expression of the generator given in Definition 4.10,
it can be seen that B0,γ(t)B0,γ(t)−1 ∈ SU(k) (resp. Bα,0(t)Bα,0(t)−1 ∈ T · Id) a.s for all t ≥ 0.

For u⃗ ∈ Tk with uk < · · · < u1, let Bα,γ
u⃗ be the eigenvalues process of Uu⃗B

α,γ where Uu⃗ is
sample uniformly on the adjoint orbit {U ∈ U(k), p(U) = u⃗}. Then, Bα,γ

u⃗ is a Markov process on
Tk starting at u⃗ and whose generator is given by

(22) Lα,γ =
γ

k

 k∑
i=1

∂2

∂u2i
+
∑
i<j

cot
uj − ui

2

(
∂

∂uj
− ∂

∂ui

)+
α− γ

k2
∂2

∂2(
∑

ui)
,
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the proof of this fact is given in [21, Proposition 12.5.1] for the case α = γ = k and can be
generalized for arbitrary α, γ ≥ 0. If ui = ui+1 for some 1 ≤ i ≤ k, one can still give a meaning
to the corresponding heat equation in a weak sense, and in any case the corresponding kernel is
C∞ for all t > 0. We call then the resulting stochastic process (Bα,γ

u⃗ (t))t≥0 the generalized unitary
Dyson Brownian motion with parameter (α, γ) starting at u⃗ (note that the subscript u⃗ will be
dropped when u⃗ = (0, . . . , 0)).

When α, γ > 0 and for any initial value u⃗ ∈ Tk, the probability measure µt given by the unitary

Dyson Brownian motion with parameter (α, γ) starting at u⃗ has a density K
U(k),α,γ
t (u⃗, v⃗)|V (v⃗)|2,

where K
U(k),α,γ
t (u⃗, v⃗) satisfies the parabolic differential equation

∂tK
U(k),α,γ
t (u⃗, ·) = Lα,γK

U(k),α,γ
t (u⃗, ·),

K
U(k),α,γ
0 (u⃗, ·) = 1

|V (u⃗)|2
δu⃗,

where the second equality is understood in the weak sense. For general initial distribution µ0 ∈
M1(Tk), the time-evolving distribution (µt)t≥0 can also be characterized by its Fourier transform
: for any J ∈ Bk,

(23) Φ[µt](J) = exp(−κα,γ(J)t)Φ[µ](J),

where

κα,γ(J) =
γ

k

[
∥J̃∥2 − ∥Ĩ0∥2

]
+

α

k2
(⟨J⟩ − ⟨I0⟩)2,

with ⟨J⟩ =
∑k

i=1 Ji and ∥J̃∥2 =
∑k

i=1(Ji − ⟨J⟩/k)2 for J ∈ Bk. By (23) and the inverse Fourier
transform on the unitary group, for α, γ > 0 and t > 0 we have

(24) K
U(k),α,γ
t (u⃗, v⃗) =

∑
J∈Bk

exp(−κα,γ(J)t)SJ(u⃗)SJ(v⃗).

In the case where α = 0, the stochastic process remains on the affine subspace {v⃗ ∈ Tk,
∑k

i=1 vi =∑k
i=1 ui} and thus has no density on Tk even for t > 0. Set A = {u⃗ ∈ Tk,

∑k
i=0 ui = 0}, which

corresponds to the set {p(U), U ∈ SU(k)}. Then, B0,1 has a density K
SU(k),γ
t (u⃗, v⃗) on A given by

(25) K
SU(k),γ
t (u⃗, v⃗) =

∑
J∈Bk
Jk=0

exp(−κ0,γ(J)t)SJ(u⃗)SJ(v⃗).

By extension, when
∑k

i=1 ui =
∑k

i=1 vi, we also set K
SU(k),γ
t (u⃗, v⃗) = K

SU(k),γ
t (ℓ · u⃗, ℓ · v⃗) with

ℓ =
∑k

i=1 ui.
By the diagonalization of Lα,γ on the orthonormal basis {SJ , J ∈ Bk} of the Hilbert space

L2(Tk, dp⋆(µH)), the kernel of any operator Lα,γ with γ, α > 0 consists of the vector space C1Tk
,

so that the unique invariant measure of the corresponding Brownian motion is

|V (u1, . . . , uk)|2 =
∏
i<j

|e2iπuj − e2iπui |2,

which is the density of the measure p⋆(µH) with respect to the Lebesgue measure on Tk. Hence,
for α, γ > 0, the generalized Dyson unitary Brownian motion has a unique invariant probability
distribution on Tk which is precisely p⋆(µH). When α = 0 (resp. γ = 0), the space of invariant
measure is larger than p⋆(µH).
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5. The Fourier transform of a large sequence of convolution

The goal of this section is to estimate the discrete Fourier transform of the convolution of a
sequence (µi)1≤i≤m of h-probability measures in Bk,n when m is large compared to n. Mimicking

previous definition for elements of Bk,n, for x ∈ Rk we set ⟨x⟩ =
∑k

j=1 xj and then define

x̃ = x− ⟨x⟩
k

1k =

(
x1 −

⟨x⟩
k

, . . . , xk −
⟨x⟩
k

)
.

We then introduce for x ∈ Rk the shifted norm

K(x) = ∥x∥2 − ∥Ĩ0∥2,

where ∥ · ∥ denotes the usual Euclidean norm on Rk. We will regularly use for x ∈ Rk the identity

(26) K (x̃) = K(x)− ⟨x⟩2

k
,

whose proof is left to the reader. Remark that we have in particular K(Ĩ0) = 0 and that I ∈ Bk,n

satisfies K(Ĩ) = 0 if and only if I = I0 + ℓ1k for some 0 ≤ ℓ ≤ n − k. Finally, we introduce for
I ∈ Bk,n the shifted configuration

Î = I − Ik1k = (I1 − Ik, . . . , Ik−1 − Ik, 0),

so that Î ∈ Bk,n. We introduced in Section 2 for µ ∈ M1(Bk,n), the random variable Iµ ∈ Bk,n

whose distribution is

P(Iµ = I) = µ(I)µh(I) =
|V (ξn(I))|2

nk
µ(I).

We then set
(27)

∥µ∥r = E
[
∥Ĩµ∥r

]
, ⟨µ⟩ = E [⟨Iµ⟩] , ⟨µ̂− I0⟩r = E

[
⟨Îµ − I0⟩r

]
and V arr(µ) = E

[∣∣∣⟨Iµ⟩ − ⟨µ⟩
∣∣∣r]

for r ≥ 2. We simply write V ar(µ) for V ar2(µ) in the sequel, and we finally set

K(µ) := ∥µ∥2 − ∥Ĩ0∥2 = E
[
K(Ĩµ)

]
.

The first main estimate of the Fourier transform is the following lemma, which shows pointwise
asymptotics of the Fourier transform as n goes to infinity. For sake of completeness, we give
asymptotic results which hold uniformly in k. In the following statement, recall that for I ∈ Bk

with I1 < Ik+n, we set λI = I−I0 and I(n) is the unique element of Bk,n such that {I(n)i [n]}1≤i≤k =
{Ii[n]}1≤i≤k.

Lemma 5.1. Let n, k ≥ 2. For any h-probability measure µ ∈ Bk,n and I ∈ Bk with n ≥ ∥I∥∞,

e−2iπ
(⟨µ⟩−⟨I0⟩)·⟨λI ⟩

kn Φn[µ](I
(n)) = 1− (2π)2

2n2

[
K(µ)K(Ĩ)

k2 − 1
+

V ar(µ)⟨λI⟩2)
k2

]

+
1

n3
O

(
V ar3(µ) · |⟨λI⟩|3

k3
+ ⟨µ̂− I0⟩3 · ∥Ĩ∥3∞

)
,

and ∣∣∣Φn[µ](I
(n))
∣∣∣ ≤ 1− (2π)2

2n2

K(µ)K(Ĩ)

k2 − 1
+

1

n3
O
(
⟨µ̂− I0⟩3 · ∥Ĩ∥3∞

)
,

where O(·) only depends on numerical constants.
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The main ingredient in the proof of the latter lemma is an asymptotic formula for ratios of Schur
functions. Recall that Rk denotes the set of partitions with at most k parts and for u⃗ ∈ Rk we
abbreviate exp(iu⃗) for the vector (exp(iu1), . . . , exp(iuk)).

Lemma 5.2. Let k ≥ 2. For any λ ∈ Rk with λk = 0 and u⃗ ∈ Rk such that
∑k

i=1 ui = 0 and
⟨λ⟩max(∥u⃗∥∞, k/3) ≤ n,

sλ

(
exp

(
2πiu⃗/n

))
sλ

(
exp

(
2πiĨ0/n

)) = 1− (2π)2

2(k2 − 1)n2

[
K(Ĩλ)K(u⃗)

]
+O

((
⟨λ⟩ · (∥u⃗∥∞ + k)

n

)3
)
,

with O(·) only depending on numerical constant.

The proof of this lemma uses shifted Schur functions, as introduced in [45]. Shifted Schur
functions form a particular basis {s∗λ}λ∈R of the ring of polynomials functions in {xi}i≥1 which are
symmetric in the variables {xi−i}i≥1. Their main useful property for us is the following generalized
binomial formula for all k ≥ 1 and µ ∈ Rk, see [45, Sec. 5],

(28)
sµ(1 + x1, . . . , 1 + xk)

sµ(1, . . . , 1)
=
∑
ν⊂µ

1

(k ↿ ν)
s∗ν(µ1, . . . , µk)sν(x1, . . . , xk),

where sν , ν ∈ Rk are the usual Schur functions and (k ↿ ν) =
∏k

i=1
(νi+k−i)!
(k−i)! =

∏l(ν)
i=1

∏νi
j=1(k−i+j).

We will be mostly interested in the first shifted Schur functions, namely for |ν| ≤ 2. We then have

s∗(1)(x1, x2, . . .) =
∑
i≥1

xi, s
∗
(2)(x1, x2, . . .) =

∑
i≤j

xj(xi − 1), s∗(11)(x1, x2, . . .) =
∑
i<j

xj(xi + 1).

Proof of Lemma 5.2. We only prove this lemma for λ ∈ Rk such that ⟨λ⟩ ≥ 3, the case ⟨λ⟩ ≤ 2
being done by similarly. Let k ≥ 1 and λ ∈ Rk with ⟨λ⟩ ≥ 3. By (28), for (x1, . . . , xk) ∈ Ck we
have

sλ(1 + x1, . . . , 1 + xk)

sλ(1, . . . , 1)
=
∑
ν⊂λ

1

(k ↿ ν)
s∗ν(λ)sν(x⃗)

=1 +
1

(k ↿ (1))
s∗(1)(λ)s(1)(x⃗) +

1

(k ↿ (2))
s∗(2)(λ)s(2)(x⃗)

+
1

(k ↿ (11))
s∗(11)(λ)s(11)(x⃗) + Cλ(x⃗),(29)

with Cλ(x⃗) =
∑

ν⊂λ
⟨ν⟩≥3

1
(k↿ν)s

∗
ν(λ)sν(x⃗). Remark first that for x⃗ ∈ Ck, |sν(x⃗)| ≤ ∥x⃗∥⟨ν⟩∞ sν(1 . . . , 1), so

that, using that (k ↿ ν) = sν(1k)H(ν) with 1k the constant vector of length k equal to 1 and H(µ)
the Hook length of µ, see [45, Eq. 5.5],

|Cλ(x⃗)| ≤
∑
ν⊂λ
⟨ν⟩≥3

1

(k ↿ ν)
s∗ν(λ)sν(x⃗) ≤

∑
ν⊂λ
⟨ν⟩≥3

sν(1 . . . , 1)

(k ↿ ν)
s∗ν(λ)∥x⃗∥⟨ν⟩∞

≤
∑
ν⊂λ
⟨ν⟩≥3

s∗ν(λ)

H(ν)
∥x⃗∥⟨ν⟩∞ .

Using that (|λ|−⟨ν⟩)!
⟨λ⟩! s∗ν(λ) = dimV (λ\ν)

dimV (λ) , where V (λ) denotes the Specht irreducible representation

of the symmetric group S⟨λ⟩ associated to λ (see [45, Eq. 0.14]), and the classical Hook length



QUANTUM COHOMOLOGY OF GRASSMANNIAN AND UNITARY DYSON BROWNIAN MOTION 33

formula dimV (λ) = ⟨λ⟩!
H(λ) , we get

|Cλ(x⃗)| ≤
∑
ν⊂λ
⟨ν⟩≥3

H(ν)−1 ⟨λ⟩! dimV (λ \ ν)
(⟨λ⟩ − ⟨ν⟩)! dimV (λ)

∥x⃗∥⟨ν⟩∞

≤
∑
ν⊂λ
⟨ν⟩≥3

(
⟨λ⟩
⟨ν⟩

)
dimV (ν) dimV (λ \ ν)

dimV (λ)
∥x⃗∥⟨ν⟩∞

≤
⟨λ⟩∑
l=3

(
⟨λ⟩
l

)
∥x⃗∥l∞

∑
ν⊂λ
⟨ν⟩=l

dimV (ν) dimV (λ \ ν)
dimV (λ)

 .

Remark that dimV (λ) =
∑

ν⊂λ
⟨ν⟩=l

dimV (ν) dimV (λ \ ν) for all 1 ≤ l ≤ ⟨λ⟩ by restricting the

representation V (λ) of S⟨λ⟩ to Sl × S⟨λ⟩−l, so that
∑

ν⊂λ
⟨ν⟩=l

dimV (ν) dimV (λ\ν)
dimV (λ) = 1 and finally

|Cλ(x⃗)| ≤
⟨λ⟩∑
l=3

(
⟨λ⟩
l

)
∥x⃗∥l∞

≤∥x⃗∥3∞
⟨λ⟩!

3!(⟨λ⟩ − 3)!
(1 + ∥x⃗∥∞)⟨λ⟩−3 ≤ ⟨λ⟩3

6
∥x⃗∥3∞(1 + ∥x⃗∥∞)⟨λ⟩−3.

as long as ∥x∥∞ < 1, with C only depending on λ. Remark that for ∥x∥∞ ≤ 1/⟨λ⟩, the latter
bound simplifies as

(30) |Cλ(x⃗)| ≤ e · ⟨λ⟩
3

6
∥x⃗∥3∞.

Let us then focus on the first terms of the right-hand side of (29). First, we have 1
(k↿(1)) =

1
k and

s∗(1) = s1, so that

1

(k ↿ (1))
s∗(1)(λ)s(1)(x⃗) =

1

k
s(1)(λ)s(1)(x⃗).

Set xi = exp(iui/n) − 1, for 1 ≤ i ≤ k. We then have |xi| ≤ (1 ∧ |ui|/n) and there is a numerical

constant C ′ > 0 such that
∣∣∣xi − iui/n+

u2
i

2n2

∣∣∣ ≤ C′|ui|3
n3 . Using that

∑k
i=1 ui = 0, this yields∣∣∣∣∣s(1)(x⃗) + 1

2n2

k∑
i=1

u2i

∣∣∣∣∣ ≤ kC ′∥u⃗∥3∞
n3

.

Hence, introducing the second power sum p2(u⃗) =
∑k

i=1 u
2
i ,

(31)
1

(k ↿ (1))
s∗(1)(λ)s(1)(x⃗) =

−s(1)(λ)p2(u⃗)

2kn2
+K,

with |K| ≤ C⟨λ⟩∥u⃗∥
3
∞

n3 with C numeric.

Next, 1
(k↿(11)) =

1
k(k−1) and 1

(k↿(2)) =
1

k(k+1) . Introducing the shifted power sum p∗2 =
∑k

i=1(xi −
i)2 − (−i)2 =

∑k
i=1 xi(xi − 2i), we then have the shifted Newton identities

s∗2 =
1

2
(s21 + p∗2), s

∗
11 =

1

2
(s2(1) − p∗2)− s(1).
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Hence, using additionally the usual Newton identities yields

1

(k ↿ (2))
s∗(2)(λ)s(2)(x⃗) +

1

(k ↿ (11))
s∗(11)(λ)s(11)(x⃗)

=
1

4k(k + 1)

[
s2(1)(λ) + p∗2(λ)

]
·
[
s2(1)(x⃗) + p2(x⃗)

]
+

1

4k(k − 1)

[
s2(1)(λ)− p∗2(λ)− 2s(1)(λ))

]
·
[
s2(1)(x⃗)− p2(x⃗)

]
=

1

2k(k2 − 1)

[
s2(1)(λ)

(
ks2(1)(x⃗)− p2(x⃗)

)
+ p∗2(λ)

(
kp2(x⃗)− s2(1)(x⃗)

)
− (k + 1)s(1)(λ)

(
s2(1)(x⃗)− p2(x⃗)

) ]
.

There exists a numerical constant C > 0 such that

|xi − iui/n| ≤
C|ui|2

n2
.

Hence, since s(1)(u⃗) = 0, we have
∣∣s(1)(x⃗)∣∣ ≤ Ck∥u⃗∥2∞

n2 , which yields

∣∣s(1)(x⃗)2∣∣ ≤2Ck2
∥u⃗∥3∞
n3

for some numerical constant C > 0 when ∥u⃗∥∞ ≤ n. Likewise,
∣∣x2i + u2i /n

2
∣∣ ≤ 2C|ui|3

n3 for 1 ≤ i ≤ k,
so that ∣∣p2(x⃗) + p2(u⃗)/n

2)
∣∣ ≤ 2Ck∥u⃗∥3∞

n3
.

Therefore,

1

(k ↿ (2))
s∗(2)(λ)s(2)(x⃗)+

1

(k ↿ (11))
s∗(11)(λ)s(11)(x⃗)

=
1

2k(k2 − 1)n2

[
s2(1)(λ)p2(u⃗)− kp∗2(λ)p2(u⃗)− (k + 1)s(1)(λ)p2(u⃗)

]
+K ′,(32)

with

K ′ ≤ C
∥u⃗∥3∞

n3k(k2 − 1)

[
s2(1)(λ)(k

3 + k) + k2|p∗2(λ)|+ s(1)(λ)(k
3 + k2)

]
≤ C ′

∥u⃗∥3∞s2(1)(λ)

n3
,

for some numeric C,C ′ > 0, where we used on the last inequality that |p∗2(λ)|/k ≤ s(1)(λ)
2 for

λ ∈ Rk. Remark that

p∗2(λ) + (k + 1)s(1)(λ) =
k∑

i=1

λi(λi + k − 2i+ 1) =

k∑
i=1

(
λi +

k − 2i+ 1

2

)2

−
(
k − 2i+ 1

2

)2

= ∥λ+ Ĩ0∥2 − ∥Ĩ0∥2 = K(λ+ Ĩ0),
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where K is defined at the beginning of this section and we recall that Ĩ0 = I0 − ⟨I0⟩
k 1k =(

k+1−2i
2

)
1≤i≤k

. Hence, putting (30), (31) and (32) together yields then, for ∥u⃗∥∞/n ≤ 1
⟨λ⟩ ,

sλ(exp(iu1/n), . . . , exp(iuk/n))

sλ(1, . . . , 1)
= 1− 1

2k(k2 − 1)n2

[
− s2(1)(λ)p2(u⃗) + kp2(u⃗)K(λ+ Ĩ0)

]
+O

((
⟨λ⟩ · ∥u⃗∥∞

n

)3
)
,

= 1− 1

2(k2 − 1)n2

[
p2(u⃗)

(
K(λ+ Ĩ0)−

s2(1)(λ)

k

)]

+O

((
⟨λ⟩ · ∥u⃗∥∞

n

)3
)
,(33)

where the last term of the right-hand side of the first equality takes into account the correction

coming from (31). Since s(1)(λ) = ⟨λ⟩ = |Iλ| − ⟨I0⟩ and λ+ Ĩ0 = Iλ + ⟨I0⟩
k 1k, we have by (26)

K(λ+ Ĩ0)−
s2(1)(λ)

k
= K(λ̃+ I0) +

|λ+ Ĩ0|
k

− ⟨λ⟩2

k
= K(λ̃I).

Hence,

(34)
sλ(exp(iu1/n), . . . , exp(iuk/n))

sλ(1, . . . , 1)
= 1− K(Ĩλ)∥u⃗∥2

2(k2 − 1)n2
+O

((
⟨λ⟩ · ∥u⃗∥∞

n

)3
)
,

where we used that p2(u⃗) = ∥u⃗∥2. In the special case where u⃗ = 2πĨ0 = 2π((k − 1)/2, . . . ,−(k −
1)/2), which satisfies

∑k
i=1 ui = 0, we have ⟨I0⟩∞ ≤ 2πk, so that

(35)
sλ(exp(2iπĨ0/n))

sλ(1, . . . , 1)
= 1− (2π)2K(Ĩλ)∥Ĩ0∥2

2(k2 − 1)n2
+O

((
⟨λ⟩ · k

n

)3
)
.

Then, taking the ratio of (34) with (35) yields, as long as ⟨λ⟩max(∥u⃗∥∞, k/3) ≤ n (remark that the

constant 1/3 is arbitrary and chosen for later simplification), which implies K(Ĩλ)max(∥u⃗∥2∞, k2) ≤
kn2,

sλ(exp(2iπu⃗/n))

sλ(exp(2iπĨ0/n))
= 1− (2π)2

2(k2 − 1)n2

[
K(Ĩλ)K(u⃗)

]
+O

((
⟨λ⟩ · (∥u⃗∥∞ + k)

n

)3
)
.

□

Proof of Lemma 5.1. Let us fix I ∈ Bk and first assume that µ = δJ , n ≥ ⟨J⟩∞. Then, for such n,

by (19) and the fact that ξn(I) = ξn(I
(n)), we have

Φn[µ](I
(n)) =

SJ(ξn(I
(n)))

SJ(ξn(I0))
=

SJ(ξn(I))

SJ(ξn(I0))
.

By definition of the map ξn in (1) and the definition of SJ following (10),

SJ(ξn(I)) = sλJ

(
exp

(
2iπ

(
I − k − 1

2
1k

)))
= sλJ

(
exp

(
2iπ

(
I − ⟨I0⟩

k
1k

)))
,
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where we used that ⟨I0⟩ =
∑k

j=1(k − j) = k(k−1)
2 . Moreover, recall that Ĩ = I − ⟨I⟩/k1k and

Ĵ = J − Jk1k and remark that from the definition of SJ we have for u⃗ ∈ Rk such that u⃗ = 0,

SJ(u⃗) = SĴ+Jk1k
(u⃗) = eiJk

∑k
l=1 ulSĴ(u⃗) = SĴ(u⃗).

Hence, using that SJ(u⃗+ l1k) = exp(il⟨λJ⟩)SJ(u⃗) for l ∈ R, we get

SJ(ξn(I))

SJ(ξn(I0))
= exp(2iπ(⟨I⟩ − ⟨I0⟩) · ⟨λJ⟩/(kn))

SJ

(
ξn(I)− 2π

n
⟨I⟩−⟨I0⟩

k 1k

)
SJ

(
2iπĨ0/n

)
=exp(2iπ⟨λI⟩ · ⟨λJ⟩/(kn)) ·

SĴ(2πĨ/n)

SĴ(2πĨ0/n))
.(36)

where we also used the fact that
∑k

i=1 ξn(I)i =
2π(⟨I⟩−⟨I0⟩

n . Then, since Ĵk = 0, λĴ = Ĵ − I0 ∈ Rk

satisfies
(
λĴ

)
k
= 0. Moreover, remark that ∥Ĩ∥∞ ≥ (k − 1)/2, so that ⟨λĴ⟩max(∥Ĩ∥∞, k/3) ≤ n

when ⟨λĴ⟩ · ∥Ĩ∥∞ = ⟨Ĵ − I0⟩ · ∥Ĩ∥∞ ≤ n. In particular, as long as ⟨Ĵ − I0⟩ · ∥Ĩ∥∞ ≤ n, we have by
Lemma 5.2
(37)

SĴ(2πĨ/n)

SĴ(2πĨ0/n)
=

sλĴ

(
exp

(
2iπĨ/n

))
sλĴ

(
exp

(
2iπĨ0/n

)) = 1− (2π)2

2(k2 − 1)n2

[
K(Ĩ)K(J̃)

]
+O

(⟨Ĵ − I0⟩ · ∥Ĩ∥∞
n

)3
 .

where we used that ∥Ĩ∥∞ ≥ (k − 1)/2 to simplify the bound O(·) and that
˜̂
J = J̃ .

Consider now µ ∈ M1(Bk,n). Using the previous relation for J = Iµ on the event ⟨Îµ−I0⟩ < n
∥Ĩ∥∞

,

we get

E

[
SÎµ

(2πĨ/n)

SÎµ
(2πĨ0/n)

]
= 1− (2π)2

2(k2 − 1)n2
E
(
1⟨Îµ−I0⟩< n

∥Ĩ∥∞
K
(
Ĩµ

))
K
(
Ĩ
)
+

1

n3
O
(
⟨µ̂− I0⟩3∥Ĩ∥3∞

)
+ P

(
⟨Îµ − I0⟩ >

n

∥Ĩ∥∞

)
,

where we used that SJ (ξn(I))
SJ (ξn(I0))

≤ 1 for all J ∈ Bk,n by (16) to get a rough bound on the expectation

E
[

SÎµ
(2πĨ/n)

SÎµ
(2πĨ0/n)

1⟨Îµ−I0⟩> n
∥Ĩ∥∞

]
. By Markov inequality, P

(
⟨Îµ − I0⟩ > n

∥Ĩ∥∞

)
≤ ∥Ĩ∥3∞

n3 ⟨µ̂− I0⟩3, where

we recall from (27) that ⟨µ̂ − I0⟩3 = E
[
⟨Îµ − I0⟩3

]
. Similarly, using (26) to get K(Ĩ) ≤ ⟨Î − I0⟩2

for I ∈ Bk,n, we have

1

k2 − 1
E
(
1⟨Îµ−I0⟩≥ n

∥Ĩ∥∞
K
(
Ĩµ

))
≤ 1

k2 − 1
E
(
1⟨Îµ−I0⟩> n

∥Ĩ∥∞
⟨Îµ − I0⟩2

)
≤ 3∥Ĩ∥∞

k2n
⟨µ̂− I0⟩3,

so that, using also that K(Ĩ) ≤ k∥Ĩ∥2∞, we get

(38) E

[
SÎµ

(2πĨ/n)

SÎµ
(2πĨ0/n)

]
= 1− (2π)2

2(k2 − 1)n2

[
K(µ)K(Ĩ)

]
+

1

kn3
O
(
⟨µ̂− I0⟩3∥Ĩ∥3∞

)
,
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where we recall that K(µ) = Eµ(K(Ĩµ)). A similar reasoning also yields

(39) E

[∣∣∣∣∣ SÎµ
(2πĨ/n)

SÎµ
(2πĨ0/n)

∣∣∣∣∣
]
≤ 1− (2π)2

2(k2 − 1)n2

[
K(µ)K(Ĩ)

]
+

1

kn3
O
(
⟨µ̂− I0⟩3∥Ĩ∥3∞

)
.

For the first statement, remark that we have by (36) , for α0 ∈ R,

e−2iπ
α0⟨λI ⟩

kn E
[
SIµ(ξn(I))

SIµ(ξn(I0))

]
=E

[
e2iπ

⟨λI ⟩·(⟨λIµ ⟩−α0)

kn

SÎµ
(2πĨ/n)

SÎµ
(2πĨ0/n)

]

=E
[
e2iπ

⟨λI ⟩·(⟨λIµ ⟩−α0)

kn

]
+ E

[
SÎµ

(2πĨ/n)

SÎµ
(2πĨ0/n)

]
− 1

+ E

[(
e2iπ

⟨λI ⟩·(⟨λIµ ⟩−α0)

kn − 1

)( SÎµ
(2πĨ/n)

SÎµ
(2πĨ0/n)

− 1

)]
.(40)

Using the Taylor expansion of eit for t ∈ R yields
(41)

e2iπ
⟨λI ⟩·(⟨λJ ⟩−α0)

kn = 1+
2iπ⟨λI⟩ · (⟨λJ⟩ − α0)

kn
− (2π)2⟨λI⟩2 · (⟨λJ⟩ − α0)

2

2k2n2
+O

(
⟨λI⟩3 · (⟨λJ⟩ − α0)

3

k3n3

)
,

for I, J ∈ Bk,n, with O(·) independent of I, J and α0 because the term on the left-hand side is
bounded. Hence, averaging on Iµ yields

E
[
e2iπ

⟨λI ⟩·(⟨λIµ ⟩−α0)

kn

]
=1 +

2iπ⟨λI⟩ ·
(
E(⟨λIµ⟩)− α0

)
kn

−
(2π)2⟨λI⟩2 · E

[(
⟨λIµ⟩ − α0

)2]
2k2n2

+O

⟨λI⟩3 · E
[(
⟨λIµ⟩ − α0

)3]
k3n3

 ,(42)

and putting (38) and (42) together yields

E
[
e2iπ

⟨λI ⟩·(⟨λIµ ⟩−α0)

kn

]
+ E

[
SÎµ

(2πĨ/n)

SÎµ
(2πĨ0/n)

]
− 1

=1 +
2iπ⟨λI⟩ ·

(
E(⟨λIµ⟩)− α0

)
kn

− (2π)2

2(k2 − 1)n2
K(µ)K(Ĩ)−

(2π)2⟨λI⟩2 · E
[(
⟨λIµ⟩ − α0

)2]
2k2n2

(43)

+
1

n3
O

 |⟨λI⟩|3 · E
[(
⟨λIµ⟩ − α0

)3]
k3

+
1

k
⟨µ̂− I0⟩3 · ∥Ĩ∥3∞
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Finally, we have by (37), the fact that

(
e2iπ

⟨λI ⟩·(⟨λIµ ⟩−α0)

kn − 1

)
and

(
SÎµ

(2πĨ/n)

SÎµ
(2πĨ0/n)

− 1

)
are bounded

by 2 and the inequality |eit − 1| ≤ t for t ∈ R,∣∣∣∣∣E
[(

e2iπ
⟨λI ⟩·(⟨λIµ ⟩−α0)

kn − 1

)( SÎµ
(2πĨ/n)

SÎµ
(2πĨ0/n)

− 1

)]∣∣∣∣∣
=E

[∣∣∣∣e2iπ ⟨λI ⟩·(⟨λIµ ⟩−α0)

kn − 1

∣∣∣∣
∣∣∣∣∣ SÎµ

(2πĨ/n)

SÎµ
(2πĨ0/n)

− 1

∣∣∣∣∣1⟨Îµ−I0⟩≤n/∥I∥∞

]
+O

(
P(⟨Îµ − I0⟩ > n/∥I∥∞)

)
≤E

[
2π⟨λI⟩ ·

∣∣⟨λIµ⟩ − α0

∣∣
kn

· (2π)
2

2n2

K(Ĩ)K(Ĩµ)

k2 − 1
· 1⟨Îµ−I0⟩≤n/∥I∥∞

]
+

1

kn3
O
(
⟨µ̂− I0⟩3∥Ĩ∥3∞

)
+O

(
P(⟨Îµ − I0⟩ > n/∥I∥∞)

)
≤ 1

n3
O

E

⟨λI⟩ ·
∣∣∣⟨λIµ⟩ − α0

∣∣∣
k

· ⟨Îµ − I0⟩2 · ∥Ĩ∥2∞

+O
(
⟨µ̂− I0⟩3∥Ĩ∥3∞

) ,

where we used Markov inequality to bound P(⟨Îµ − I0⟩ > k1/3n/∥I∥∞) by 1
kn3 ⟨µ̂ − I0⟩3∥Ĩ∥3∞ and

used the inequality K(Ĩµ) ≤ ⟨Îµ − I0⟩2 and K(Ĩ) ≤ k∥Ĩ∥2∞ on the last inequality. By the Young

inequality ab ≤ a3

3 + 3b3/2

2 for a, b ≥ 0, we finally get

E

[(
e2iπ

⟨λI ⟩·(⟨λIµ ⟩−α0)

kn − 1

)( SÎµ
(2πĨ/n)

SÎµ
(2πĨ0/n)

− 1

)]

=
1

n3
O

 |⟨λI⟩|3 · E
[(
⟨λIµ⟩ − α0

)3]
k3

+ ⟨µ̂− I0⟩3∥Ĩ∥3∞

 .

Putting the latter estimates with (43) into (40) and setting α0 = E(⟨λIµ⟩) = ⟨µ⟩ − ⟨I0⟩ yields then

e−2iπ
(⟨µ⟩−⟨I0⟩)·⟨λI ⟩

kn Φn[µ](I
(n))

= 1 +
2iπ

kn
⟨λI⟩Eµ

[
⟨λIµ⟩ − (⟨µ⟩ − ⟨I0⟩)

]
− (2π)2

2n2

[
K(µ)K(Ĩ)

k2 − 1
+

⟨λI⟩2V ar(µ)

k2

]

+
1

n3
O

(
|⟨λI⟩|3 · V ar3(µ)

k3
+ ⟨µ̂− I0⟩3∥Ĩ∥3∞

)
= 1− (2π)2

2n2

[
K(µ)K(Ĩ)

k2 − 1
+

⟨λI⟩2V ar(µ))

k2

]
+

1

n3
O

(
|⟨λI⟩|3 · V ar3(µ)

k3
+ ⟨µ̂− I0⟩3∥Ĩ∥3∞

)
.

To get the second statement of the lemma, note that by (36),∣∣∣Φn[µ](I
(n))
∣∣∣ = ∣∣∣∣E [ SIµ(ξn(I))

SIµ(ξn(I0))

]∣∣∣∣ ≤ E
[∣∣∣∣ SIµ(ξn(I))

SIµ(ξn(I0))

∣∣∣∣] = E

∣∣∣∣∣∣
SÎµ

(
2πĨ/n

)
SÎµ

(
2πĨ0/n

)
∣∣∣∣∣∣
 .

Using (39) yields then the result. □

From Lemma 5.1, we can deduce asymptotics of the discrete Fourier transform of a convolution
of Markov kernels on Bk,n. For a sequence m = (µr)1≤r≤m of h-probability measures, recall the
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notations from Section 2.4

X(m) =

(
1

m

m∑
r=1

X(µr)

)
−X(I0),

for X(µ) = K(µ) or any quantity defined in (27). We also set

∗m = µ1 ∗ µ2 ∗ . . . µm.

Proposition 5.3. Let M > 0 and suppose that m = (µr)1≤r≤m is a sequence of h-probability

measures on Bk,n such that V ar3(m) ≤ MV ar(m)3/2 and ⟨m̂⟩3 ≤ MK(m)3/2. Then, for all
J ∈ Bk with J1 < Jk + n, we have∣∣∣Φn[∗m](J (n))

∣∣∣ ≤ A(J) exp

(
−m(2π)2

2n2

K(J̃)K(m)

k2 − 1
+

mM

n3
O

([
kK(J̃)K(m)

]3/2))
with A(J) ≤ 1 and

A(J) = exp

[
− m(2π)2

2n2

[
V ar(m)⟨λJ⟩2

k2

]
+

mM

n3
O

(
V ar(m)3/2 · |⟨λJ⟩|3

k3

)]
.

When ∥J̃∥∞ ≤ c n
m1/3M1/3K(m)1/2

and ⟨λJ⟩ ≤ c kn
m1/3M1/3V ar(m)1/2

for some numeric c > 0 small

enough,

e−2iπ
m⟨m⟩)·⟨λJ ⟩

kn Φn[∗m](J (n)) = exp

[
− m(2π)2

2n2

[
K(m)K(J̃)

k2 − 1
+

V ar(m)⟨λJ⟩2

k2

]

+
mM

n3
O

(
V ar(m)3/2 · |⟨λJ⟩|3

k3
+
[
k ·K(m) ·K(J̃)

]3/2)]
.

To prove this proposition, we will need the following estimate.

Lemma 5.4. For all I ∈ Bk with I ̸= I0,

∥Ĩ∥2∞ ≤ kK(Ĩ).

As a consequence, for µ ∈ M1(Bk,n),

⟨µ̂− I0⟩3 ≤ 2
√
2k3∥µ̃∥3.

Proof. First remark that either ∥Ĩ∥∞ = Ĩ1 or ∥Ĩ∥∞ = Ĩk. Up to replacing I by (−Ik, . . . ,−I1),which

does not change K(Ĩ), we can assume that ∥Ĩ∥∞ = Ĩ1. Then, recall that K(Ĩ) = ∥Ĩ∥2 − ∥I0∥2 and

write Ĩ = I0 + x for some nondecreasing sequence x ∈ Rk satisfying
∑k

i=1 xi = 0. Then, we have

k∑
i=2

((I0)i + xi)
2 =

k∑
i=2

(I0)
2
i + 2

k∑
i=2

(I0)ixi +
k∑

i=2

x2i .

Since I0 and x are nondecreasing sequences, by Chebyschev’s sum inequality,
∑k

i=2(I0)ixi ≥
1

k−1(
∑k

i=2(I0)i)(
∑k

i=2 xi), and by convexity,
∑k

i=2 x
2
i ≥ 1

k−1

(∑k
i=2 xi

)2
. Hence, replacing xi by

1
k−1

(∑k
i=2 xi

)
yields a vector Ĩ ′ = Ĩ0 + (x1,

1
k−1

∑k
i=2 xi, . . .) such that Ĩ ′1 = Ĩ1,

∑k
i=1 Ĩ

′
i = 0 and

K(Ĩ) ≥ K(Ĩ ′). We thus only need to show that K(Ĩ ′) ≥ ∥Ĩ ′1∥2 = Ĩ1.
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Now, the condition
∑k

i=1 xi = 0 yields that 1
k−1

∑k
i=2 xi = − x1

k−1 . Hence,

kK(Ĩ ′)− ∥Ĩ∥2∞ = (k − 1)
(
x1 + (Ĩ0)1

)2
+ k

k∑
i=2

(
(Ĩ0)i −

x1
k − 1

)2

− k∥Ĩ0∥2 := g(x1).

Since (I0)i =
k+1−2i

2 for 1 ≤ i ≤ k, we have g′(x1) = 2(k−1)
(
x1 +

k−1
2

)
+2k

∑k
i=2

(
x1
k−1 − k+1−2i

2

)
≥

0 for x1 ≥ 0. It is thus sufficient to check that g(x1) ≥ 0 for the smallest possible value of x1

satisfying x1 > 0 and x1 −
(
− x1

k−1

)
≥ 1 (since Ĩ and thus also Ĩ ′ satisfy the latter condition).

This value is x1 = k−1
k , which actually corresponds to I = (k, k − 2, . . . , 0). Using the formula

∥x+ Ĩ0∥2 − ∥Ĩ0∥2 =
∑k

i=1 xi(xi + k + 1− 2i), we then have

g

(
k − 1

k

)
=k

(
k − 1

k

(
k − 1

k
+ k − 1

)
−

k∑
i=2

1

k

(
−1

k
+ k + 1− 2i

))
−
(
k − 1

2
+

k − 1

k

)2

=

(
(k − 1)2(k + 1)

k
− (k − 1)

(
k − 1− 1

k

)
+ k(k − 1)

)
−
(
k + 1

2
− 1

k

)2

=k2 − 1−
(
k + 1

2

)2

≥ 0.

The second statement is a consequence of the first one. First, ∥Î∥∞ ≤ 2∥Ĩ∥∞ and ⟨Î−I0⟩ ≤ k∥Î∥∞
implies ⟨Î − I0⟩2 ≤ 2kK(Ĩ) when I ̸= I0. Since the inequality is also satisfied when I = I0,

⟨µ̂− I0⟩3 = E
[
⟨Iµ⟩3

]
≤ E

[
⟨Iµ⟩3

]
≤ 2

√
2k3E

[
K(Ĩµ)

3/2
]
≤ 2

√
2k3E

[
∥Ĩµ∥3

]
= ∥µ̃∥3.

□

Proof of Proposition 5.3. For J = I0 the result is clear, since Φn[∗m](I0) = 1 (because ∗m is again

a h-probability measure) and K(Ĩ0) = ⟨λI0⟩ = 0.
Let J ̸= I0 ∈ Bk with J1 < Jk+n and letm = (µr)1≤r≤m be a sequence of h-probability measures

satisfying the hypothesis of the proposition. First, Lemma 5.1 yields that for all 1 ≤ r ≤ n,

∣∣∣Φn[µr](J
(n))
∣∣∣ ≤ 1− (2π)2

2n2

[
K(µr)K(J̃)

k2 − 1

]
+

1

n3
O
(
⟨µ̂r − I0⟩3 · ∥J̃∥3∞

)
,

with O(·) only depending on numerical constants. Using (18) with the inequality 1 + u ≤ eu for
u ∈ R yields then∣∣∣Φn[∗m](J (n))

∣∣∣ = m∏
r=1

∣∣∣Φn[µr](J
(n))
∣∣∣

≤
m∏
r=1

[
1− (2π)2

2n2

[
K(µr)K(J̃)

k2 − 1

]
+

1

n3
O
(
⟨µ̂r − I0⟩3 · ∥J̃∥3∞

)]

≤ exp

(
−(2π)2

2n2

K(J̃)
∑m

r=1K(µr)

k2 − 1
+

1

n3
O

(
∥J̃∥3∞ ·

m∑
r=1

⟨µ̂r − I0⟩3

))
.
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Since ∥J̃∥2∞ ≤ kK(J̃) for J ̸= I0 by Lemma 5.4, we thus have, using the hypothesis of the proposi-
tion,

1

n3
O

(
∥J̃∥3∞ ·

m∑
r=1

⟨µ̂r − I0⟩3

)
=

m

n3
O
(
k3/2K(J̃)3/2 · ⟨m̂r⟩3

)
=

m

n3
O
(
k3/2K(J̃)3/2 ·K(m)3/2

)
,

and thus

(44)
∣∣∣Φn[∗m](J (n))

∣∣∣ ≤ exp

(
−(2π)2

2n2

K(J̃)
∑m

r=1K(µr)

k2 − 1
+

m

n3
O
(
k3/2K(J̃)3/2 ·K(m)3/2

))
Then, Lemma 5.1 yields for all 1 ≤ r ≤ n,

e−2iπ
(⟨µr⟩−⟨I0⟩)·⟨λJ ⟩

kn Φn[µr](J
(n)) = 1− (2π)2

2n2

[
K(µr)K(J̃)

k2 − 1
+

V ar(µr)⟨λJ⟩2

k2

]

+
1

n3
O

(
V ar3(µr) · |⟨λJ⟩|3

k3
+ ⟨µ̂r − I0⟩3 · ∥J̃∥3∞

)
,

with O(·) only depending on numerical constants. Using the inequality 1 + u ≤ eu for u ∈ R, (18)
and the hypothesis of the proposition yields then as before∣∣∣Φn[∗m](J (n))

∣∣∣ = m∏
r=1

∣∣∣Φn[µr](J
(n))
∣∣∣ ≤ exp

[
− m(2π)2

2n2

[
K(m)K(J̃)

k2 − 1
+

V ar(m)⟨λJ⟩2

k2

]

+
mM

n3
O

(
V ar3(m) · |⟨λJ⟩|3

k3
+
[
k ·K(m) ·K(J̃)

]3/2)]
.

The latter inequality together with (44) imply the first statement of the proposition.

Since K(µr) ≤ (⟨µ̂r⟩ − ⟨I0⟩)2 and K(J̃) ≤ k∥J̃∥2∞, K(µr)K(J̃)
k2−1

= O(∥J̃∥2∞⟨µ̂r − I0⟩2). More-

over, V ar2(µr) ≤ V ar3(µr)
2/3. Hence, assuming that ∥J̃∥∞ ≤ c n

sup1≤r≤m⟨µ̂r−I0⟩ and ⟨λJ⟩ ≤
c kn
sup1≤r≤m V ar3(µr)1/3

for c small enough, we have

(2π)2

2n2

[
K(µr)K(J̃)

k2 − 1
+

V ar(µr)⟨λJ⟩2

k2

]
+

1

n3
O

(
V ar3(µr) · |⟨λJ⟩|3

k3
+ ⟨µ̂r − I0⟩3 · ∥J̃∥3∞

)
≤ 1/2.

The hypotheses ⟨m̂⟩3 ≤ MK(m)3/2 implies that m1/3M1/2K(m)1/2 ≥ sup1≤r≤m⟨µ̂r− I0r⟩. Hence,

when ∥J̃∥∞ ≤ c n
m1/3M1/3K(m)1/2

and ⟨λJ⟩ ≤ c kn
m1/3M1/3V ar(m)1/2

we have in particular ∥J̃∥∞ ≤
c n
sup1≤r≤m⟨µ̂r−I0⟩ . Similarly, ⟨λJ⟩ ≤ c kn

m1/3M1/3V ar(m)1/2
implies that ⟨λJ⟩ ≤ c kn

sup1≤r≤m V ar3(µr)1/3
.

Hence, for such J , using the estimate 1 + u = exp(u+O(u3/2)) for |u| ≤ 1/2 yields then

e−2iπ
(⟨µr⟩−⟨I0⟩)·⟨λJ ⟩

kn Φn[µr](J
(n))

= exp

[
− (2π)2

2n2

[
K(µr)K(J̃)

k2 − 1
+

V ar(µr)⟨λJ⟩2

k2

]
+

1

n3
O

(
V ar3(µr) · |⟨λJ⟩|3

k3
+ ⟨µ̂r − I0⟩3 · ∥J̃∥3∞

)

+
1

n3
O

(
K(µr)

3/2K(J̃)3/2

k3
+

V ar(µr)
3/2|⟨λJ⟩|3

k3

)]
.
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Since V ar(µr)
3/2 ≤ V ar3(µr), K(µr)

3/2 ≤ ⟨µ̂r − I0⟩3 and K(J̃)
k ≤ ∥J̃∥2∞,

O

(
K(µr)

3/2K(J̃)3/2

k3
+

V ar(µr)
3/2|⟨λJ⟩|3

k3

)
= O

(
⟨µ̂r − I0⟩3∥J̃∥3∞ +

V ar3(µr)|⟨λJ⟩|3

k3

)
.

Hence, since K(J̃) ≤ k∥J̃∥2∞ by Lemma 5.4,

e−2iπ
(⟨µr⟩−⟨I0⟩)·⟨λJ ⟩

kn Φn[µr](J
(n))

= exp

[
− (2π)2

2n2

[
K(µr)K(J̃)

k2 − 1
+

V ar(µr)⟨λJ⟩2

k2

]

+
1

n3
O

(
k3/2⟨µ̂r − I0⟩3 ·K(J̃)3/2 +

V ar3(µr) · |⟨λJ⟩|3

k3

)]
.

Using (18) for 1 ≤ r ≤ m yields then

e−2iπ
m⟨m⟩)·⟨λJ ⟩

kn Φn[∗m](J (n)) =
m∏
r=1

e−2iπ
(⟨µr⟩−⟨I0⟩)·⟨λJ ⟩

kn Φn[µr](J)

= exp

[
− m(2π)2

2n2

[
K(m)K(J̃)

k2 − 1
+

V ar(m)⟨λJ⟩2

k2

]

+
m

n3
O

(
k3/2⟨m̂⟩3 ·K(J̃)3/2 +

V ar3(m) · |⟨λJ⟩|3

k3

)]
.

The hypothesis V ar3(m) ≤ MV ar(m)3/2 and ⟨m̂⟩3 ≤ MK(m)3/2 yields then the second statement
of the proposition. □

Remark that the first statement of Proposition 5.3 is only relevant when K(J̃) ≤ c n2k3

M2K(m)
for

some numeric c > 0. We conclude this section by a crude estimate of Φn[∗m] when K(J̃) ≥ cn2.

Lemma 5.5. For any 0 < c < 1/2, there exists 0 < t < 1 depending on c such that for I, J ∈ Bk,n

with sup((Ii − Ii+1) mod n) ≥ cn,

|SJ(ξn(I))|
SJ(ξn(I0))

≤
max

(
k−2
k , t

)
1 +O

(
k2⟨λĴ ⟩2

n2

) .
In particular, there exists η, δ > 0 only depending on k and c such that for any sequence m =

(µi)1≤i≤m of h-probability measure with ⟨m̂⟩3 ≤ MK(m)3/2 and I ∈ Bk such that sup((Îi − Îi+1)
mod n) ≥ cn,

Φn[∗m](I(n)) ≤ exp

(
−mδ +

mM

η3n3
K(m)3/2

)
.
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Proof. We prove the first part of the lemma in the case where n/2 ≥ λ1 − λ2 ≥ cn, the other cases

being deduced similarly. Set λ = λĴ and ζj = e2iπij/n for 1 ≤ j ≤ n. Then, by (36),

|SJ(ξn(I))| = |sλ(ζ1, ζ2, ζ3, . . .)|

≤
∑
µ⊂λ

l(µ)≤2

∣∣sµ(ζ1, ζ2)sλ/µ(ζ3, . . . , ζk)∣∣
≤ |sλ(ζ3, . . . , ζk)|+

∑
0≤b<a+1≤λ+1

b≤λ2

∣∣s(a,b)(ζ1, ζ2)sλ/(a,b)(ζ3, . . . , ζk)∣∣
+

∑
0<a≤λ2

∣∣s(a,a)(ζ1, ζ2)sλ/(a,a)(ζ3, . . . , ζk) + s(a,a−1)(ζ1, ζ2)sλ/(a,a−1)(ζ3, . . . , ζk)
∣∣

:=S1 + S2 + S3.

First, by the Weyl dimension formula sλ(1k) =
∏

1≤i<j≤k
(λi−λj+j−i)

j−i for λ ̸= ∅,

S1 ≤ sλ(1k−2) =δl(λ)≤k−2
1∏

1≤i≤k−2
λi+k−1−i
k−1−i

λi+k−i
k−i

· sλ(1k)

≤k − 2

k
sλ(1k).(45)

Then, if 0 ≤ b < a, then

|s(a,b)(ζ1, ζ2)| = |e2(ζ1, ζ2)|b|hb−a(ζ1, ζ2)| = |hb−a(ζ1, ζ2)|,

where el and hl are respectively the elementary and complete homogeneous symmetric polynomials.

For l > 0, hl(ζ1, ζ2) =
ζl+1
1 −ζl+1

2
ζ1−ζ2

and thus, using that i1 ≥ i2,

|hl(ζ1, ζ2)| =
| sin((l + 1)π(i1 − i2)/n)|

sin(π(i1 − i2)/n)
.

Remark that for π
2(l+1) ≤ x ≤ π/2, the inequality sin(u) > u− u3

6 for u ∈]0, π/2] yields

| sin((l + 1)x)|
sin(x)

≤ 1

sin(x)
≤ 1

sin
(

π
2(l+1)

) ≤ 2(l + 1)

π

(
1−

(
π

2(l+1)

)2
/6

) < u1(l + 1)

for u1 =
2

π
(
1−(π

4 )
2
/6

) < 1 independent of l. Hence, if l is such that 1
2(l+1) ≤

i1−i2
n ≤ 1− 1

2(l+1) ,

|hl((ζ1, ζ2)| ≤ t(l + 1) = ts(a,b)(1, 1).

Since c ≤ i1−i2
n ≤ 1 − c, there is as finite number only depending on c of l ∈ N satisfying

min
(
i1−i2
n , 1− i1−i2

n

)
≤ 1

2(l+1) . For each of them, the function x 7→ sin((l+1)x)
sinx is strictly decreasing

on [0, π/(2(l+1))] with maximum (l+1) at 0. Hence, there exists a constant u2 < 1 only depending
on c such that for any l such that min

(
i1−i2
n , 1− i1−i2

n

)
≤ 1

2(l+1) ,

| sin((l + 1)π(i1 − ik)/n)|
sin(π(i1 − i2)/n)

≤ u2(l + 1).

We have thus found a constant u = (u1 ∨ u2) < 1 only depending on c such that for all l ≥ 1,

(46) |hl((ζ1, ζ2)| ≤ u(l + 1).
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In particular, for 0 ≤ b < a,

|s(a,b)(ζ1, ζ2)| = |hb−a(ζ1, ζ2)| ≤ u(b− a+ 1) = us(a,b)(1, 1),

and summing on all contributions yields

(47) S2 ≤
∑

0≤b<a+1≤λ+1
b≤λ2

s(a,b)(1, 1)sλ/(a,b)(1k−2).

Then, for a ≤ λ2, remark that sλ/(a,a)(1k−2) ≤ sλ/(a,a−1)(1k−2). Indeed, any semi-standard filling
of λ/(a, a) yields a semi-standard filling of λ/(a, a− 1) by putting 1 in the cell (2, a). Hence, using
that |s(a,a)(ζ1, ζ2)| = 1 and

|s(a,a−1)(ζ1, ζ2)| = |h1(ζ1, ζ2)| ≤ 2 cos(cπ) = cos(cπ)s(a,a−1)(1, 1),

we get∣∣s(a,a)(ζ1, ζ2)sλ/(a,a)(ζ3, . . . , ζk) + s(a,a−1)(ζ1, ζ2)sλ/(a,a−1)(ζ3, . . . , ζk)
∣∣

≤ s(a,a)(1, 1)sλ/(a,a)(1k−2) + cos(cπ)s(a,a−1)(1, 1)sλ/(a,a−1)(1k−2)

≤ 1 + cos(cπ)

2

(
s(a,a)(1, 1)sλ/(a,a)(1k−2) + s(a,a−1)(1, 1)sλ/(a,a−1)(1k−2)

)
.

Summing on all a ≤ λ2 yields then

(48) S3 ≤
1 + cos(cπ)

2

∑
a≤λ2

(
s(a,a)(1, 1)sλ/(a,a)(1k−2) + s(a,a−1)(1, 1)sλ/(a,a−1)(1k−2)

)
.

Putting (45),(47) and (48) together yields the existence of t < 1 depending only on c such that

S1 + S2 + S3 ≤ max

(
k − 2

k
, t

) ∑
µ⊂λ

l(µ)≤2

sµ(1, 1)sλ/µ(1k−2) ≤ max

(
k − 2

k
, t

)
sλ(1k).

On the other hand, by (35) we have

SJ(ξn(I0))

SJ(0, . . . , 0)
= 1 +O

(
k2⟨λ⟩2

n2

)
,

so that finally

|SJ(ξn(I))|
SJ(ξn(I0))

≤
max

(
k−2
k , t

)
1− c′

k2⟨λĴ ⟩2
n2

,

with t < 1 depending on c and c′ > 0 numeric.

For the second statement, recalling that Φn[µ](I
(n)) = E

[
SIµ (ξn(I

(n)))

SIµ (ξn(I
(n)))

]
= E

[
SIµ (ξn(I))

SIµ (ξn(I))

]
and that∣∣∣ SJ (ξn(I))

SJ (ξn(I0))

∣∣∣ ≤ 1 for all J ∈ Bk,n, for η > 0 to choose later we have∣∣∣Φn[µ](I
(n))
∣∣∣ ≤ P(⟨Îµ⟩ > ηn)) + E

[∣∣∣∣SIµ(ξn(I))

SIµ(ξn(I))

∣∣∣∣1⟨Îµ⟩≤ηn

)
,

so that by Markov inequality and the first part of the statement, there exists t > 0 only depending
on c such that ∣∣∣Φn[µ](I

(n))
∣∣∣ ≤ E

[
⟨Îµ⟩3

]
η3n3

+
max(k−2

k , t)

1− c′k2η2
≤ 1− δ +

E
[
⟨Îµ⟩3

]
η3n3

,

where we choose η (only depending on c and k) such that
max( k−2

k
,t)

1−c′k2η2 = 1− δ with δ > 0.
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Let m = (µr)1≤r≤m be a sequence of h-probability measures satisfying the hypotheses of the

lemma. Applying the bound 1− δ +
E[⟨Îµ⟩3]
η3n3 ≤ exp

(
−δ +

E[⟨Îµ⟩3]
η3n3

)
and taking the product on all

Φn[Iµr ](I
(n)) yield then with (18)

Φn[∗m](I(n)) ≤ exp

(
−mδ +

1

n3η3

m∑
r=1

E
[
⟨Îµr⟩3

])

≤ exp

(
−m

(
δ +

M

n3η3
K(m)3/2

))
.

□

6. Berry-Esseen theorem on Bk,n

We state and prove in this section the first main result of the manuscript, which consists in a
Berry-Esseen type theorem for the measure ξn(∗m). The complete result is a bit more general than
the simplified version given in Theorem 2.3, in order to give a more precise constant.

Recall that the shift action of R on Tk is given for u⃗ ∈ [0, 2π[k and t ∈ R by

Rt(u⃗) = Sort(u1 − t, . . . , uk − t),

where Sort(v⃗) is the sequence obtained from v⃗ ∈ [0, 2π[k by sorting it in increasing order, and
Rt(µ) for the image of the measure µ ∈ M1(Tk) by the map u⃗ 7→ Rt(u⃗). We then have, for J ∈ Bk,

Φ[Rt(µ)](J) =

∫
Tk

SJ(u⃗)|V (u⃗)|2dRtµ(u⃗) =

∫
Tk

SJ(u⃗+ t1k)|V (u⃗+ t1k)|2dµ(u⃗)

= exp(i⟨λJ⟩t)
∫
Tk

SJ(u⃗)|V (u⃗)|2dµ(u⃗)

= exp(i⟨λJ⟩t)Φ[µ](J).(49)

Comparing Proposition 5.3 with (23) suggests a convergence of the distribution of ξn(∗m), viewed
as a probability distribution on Tk, to the marginal distribution of a unitary Brownian motion Bα,γ

at time m/n2 with adequate parameters α, γ. We will quantify this convergence in terms of the
1-Wassertein metric on the space of probability measures on Tk. Due to the circular nature of Tk,
define the metric

dTk
(z, z′) =

√√√√ inf
σ∈Sk

k∑
i=1

dR(zi − z′σ(i), 2πZ)2

on Tk. This is indeed a metric, since dTk
(z, z′) = W2(δz, δz′), where the Wasserstein distance W2

is taken on the metric space R/Z with the natural distance and δz =
∑k

i=1 δzi . Remark that when

z, z′ ∈]0, 1/2[k, one has dTk
(z, z′) = ∥z − z′∥2.

We then define the 1-Wasserstein distance W Tk
1 on Tk with respect to the metric dTk

as

W Tk
1 (µ, ν) = sup

(∣∣∣∣∫
Tk

fdµ−
∫
Tk

fdν

∣∣∣∣ , f : (Tk, dTk
) → (R, dR) 1−Lipschitz

)
,

for µ, ν ∈ M1(Tk).

Theorem 6.1 (Berry-Esseen Theorem). Let M > 0 and suppose that m = (µr)1≤r≤m is a sequence

of h-probability measures on Bk,n such that V ar3(m) ≤ MV ar⟨m⟩3/2 and ⟨m̂⟩3 ≤ MK(m)3/2, and
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set t0 = (2π)2m
n2 . Then, there are numerical constants c1, c2 > 0 such that for all I ∈ Bk,n, setting

µ = Rm⟨m⟩
kn

(ξn [(∗m) ∗ δI ]) and ν = Bα,γ
ξn(I)

(t0) (viewed as a distribution on Tk),

W Tk
1 (µ, ν) ≤ M

n

(
c1(k

8γ + kα) log n+
c2k

9/2

√
t0

K
SU(k)
γt0/2

(ξn(I), ξn(I))
1/2

)
,

for some numerical constants c1, c2 > 0, with

α =
1

2
V ar(m), γ =

k

2(k2 − 1)
K(m).

Theorem 2.3 given in Section 2 is then a simplified version of the latter result, using Lemma 5.4
to bound ⟨m̂⟩3 by 2

√
2k3∥m̃∥3. The main ingredients in the proof of Theorem 6.1 is Proposition

5.3 together the adaption of an approach of [9] relating the Wassertein distance to the Fourier
transform.

6.1. Wasserstein distance on Tk. In [9], the authors related the Wassertein distance between two
probability measures on R/2πZ to a weighted norm of the difference of their Fourier transform. We
will use the same method on Tk, taking advantage of the Fourier transform which has been defined
in Section 4.3 (the reader should refer to this section for the notations used in this paragraph). For

J ∈ Bk, set κ(J) := ∥J − k−1
2 1k∥2 − ∥Ĩ0∥2. Then, according to (23), κ(J) = κk,k(J) for J ∈ Bk,n.

We first have the following result relating the Wassertein distance on U(k) in a similar way as in
[9].

Lemma 6.2. For µ, ν ∈ M1(U(k)) which are conjugation invariant and all t > 0,

W1,U(k)(µ, ν) ≤ 2
√
2tk +

√√√√√∑
J∈Bk
J ̸=I0

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2,

where the Wassertein distance is taken with respect to the metric on U(k) induced by ⟨·, ·⟩k,k on uk.

Proof. Note first that for any function f : U(k) → R central and 1-Lipschitz, ∇f is almost-
everywhere defined and essentially bounded by 1 so that

−
∫
U(k)

f∆(f)dµH =

∫
Uk

∥∇f∥2dµH ≤ 1.

Since f is central, we have the expansion f =
∑

λ∈Bk
Φ[f ](J)χJ where (χJ)J∈Bk

is an orthonormal

family of L2(U(k), µH) satisfying ∆χJ = −κ(J)χJ (see [21, Prop. 12.1.2]) and such that χJ = SJ◦p,
see Section 4.3. Hence,

∑
J∈Bk

κ(J)|Φ[f ](J)|2 = −
∫
U(k)

f∆(f)dµ ≤ 1.
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By Parseval equality and Cauchy-Schwartz inequality, we deduce that for any central probability
densities g1, g2 on U(k) such that g1, g2 ∈ L2(U(k), µH),∣∣∣∣∣

∫
U(k)

fg1dµH −
∫
U(k)

fg2dµH

∣∣∣∣∣ =
∣∣∣∣∣
∫
U(k)

f(g1 − g2)dµH

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
J∈Bk
J ̸=I0

Φ[f ](J)Φ[g1 − g2](J)

∣∣∣∣∣∣∣∣
≤
√√√√∑

J∈Bk
J ̸=I0

κ(J) |Φ[f ](J)|2 ·

√√√√√∑
J∈Bk
J ̸=I0

1

κ(J)
|Φ[g1](J)− Φ[g2](J)|2

≤

√√√√√∑
J∈Bk
J ̸=I0

1

κ(J)
|Φ[g1](J)− Φ[g2](J)|2,(50)

where we used on the second equality that Φ[g1 − g2](I0) = 0 because
∫
U(k) g1dµH =

∫
U(k) g2dµH .

For arbitrary conjugation invariant probability measures µ, ν on U(k) we use as in [9] the heat
kernel on U(k) for regularization purpose. Such heat kernel corresponds to the special case α =
γ = k of the family of heat kernels defined in Section 4.4. Denote by µt (resp. νt) solution at
time t ≥ 0 of the heat equation with initial measure µ (resp ν). On the one hand, by the diffusion
equation of the heat equation, see (23) with α = γ = k,

(51) Φ[µt](J) = e−κ(J)tΦ[µ](J).

On the other hand, denoting by Kt(x, y) the heat kernel on U(k) and d(x, y) the distance on U(k),∣∣∣∣∣
∫
U(k)

fdµt −
∫
U(k)

fdµ

∣∣∣∣∣ =
∣∣∣∣∣
∫
U(k)

(∫
U(k)

Kt(x, y)f(y)dµH(y)

)
dµ(x)−

∫
U(k)

fdµ

∣∣∣∣∣
≤
∫
Uk

(∫
U(k)

Kt(x, y) |f(y)− f(x)| dµH(y)

)
dµ(x)

≤
∫
Uk

(∫
U(k)

Kt(x, y)d(x, y)dµH(y)

)
dµ(x)

≤
∫
Uk

(∫
U(k)

Kt(e, y)d(e, y)dµH(y)

)
dµ(x)

≤
∫
U(k)

Kt(e, y)d(e, y)dµH ≤
√∫

U(k)
Kt(e, y)d(e, y)2dµH ,

where we used the fact that f is 1-Lipschitz on the second inequality and the bi-invariant property
of the heat-kernel on Uk on the third inequality. By [10, Lemma 6] (which is a consequence of
the Laplacian comparison theorem) applied to the Riemannian manifold U(k) of dimension k2 and
positive scalar curvature, ∫

U(k)
Kt(e, y)d(e, y)

2dµH ≤ 2k2t.
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Hence,

(52)

∣∣∣∣∣
∫
U(k)

fdµt −
∫
U(k)

fdµ

∣∣∣∣∣ ≤ k
√
2t.

Using (50), (51) and (52) yields then for t > 0∣∣∣∣∣
∫
U(k)

fdµ−
∫
U(k)

fdν

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
U(k)

fdµ−
∫
U(k)

fdµt

∣∣∣∣∣+
∣∣∣∣∣
∫
U(k)

fdµt −
∫
U(k)

fdνt

∣∣∣∣∣
+

∣∣∣∣∣
∫
U(k)

fdν −
∫
U(k)

fdνt

∣∣∣∣∣
≤2

√
2tk +

√√√√√∑
J∈Bk
J ̸=I0

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2.

Taking the supremum on all f : U(k) → R which are 1-Lipschitz yields then

W1,U(k)(µ, ν) ≤ 2
√
2tk +

√√√√√∑
J∈Bk
J ̸=I0

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2

for µ, ν central probability distribution on U(k). To conclude, for µ, ν ∈ M1(Tk) we have by Lemma
6.3 which is proven below

W1,Tk
(µ, ν) ≤ W1,U(k)(p

⋆(µ), p⋆(ν)) ≤ 2
√
2tk +

√√√√√∑
J∈Bk
J ̸=I0

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2.

□

The latter lemma involves measure on Uk, whereas we are rather interested in measures on Tk.
Recall from Section 4.3 that any probability measure µ on Tk yields a probability measure p⋆(µ) on
Uk by considering the unique conjugation invariant measure whose image by p is µ. Next lemma
shows that the map p⋆ is coercive from the metric space (Tk,W1,Tk

) to the metric space (Uk,W1,Uk
).

Lemma 6.3. For any µ, ν ∈ M1(Tk),

W1,U(k)(p
⋆(µ), p⋆(ν)) ≥ W1,Tk

(µ, ν).

Proof. For any function f : Tk → R, set f̂ = f ◦ p, where p : Uk → Tk is the projection on
the ordered set of eigenvalues. Let U,U ′ ∈ U(k). Remark first that ∥U − U ′∥HS ≤ dUk

(U,U ′),
where the former norm is the Hilbert-Schmidt norm on Mk(C), see [42, Lemma 1.3] (this can be
deduced from the fact that ∥ · ∥HS is the Euclidean distance on Mn(C) and U(k) is a Riemannian
submanifold of Mn(C)). Let (λi)1≤i≤k (resp. (µi)1≤i≤k) be the eigenvalues of U (resp U ′). Then,
by Hoffman-Wielandt inequality,

min
σ∈Sk

k∑
i=1

|λi − µσi |2 ≤ ∥U − U ′∥HS ,
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and, since we have d(u1 − u2, 2πZ) ≤ | exp(iu1)− exp(iu2)| for u1, u2 ∈ R,

dTk
(p(U), p(U ′)) ≤ min

σ∈Sk

k∑
i=1

|λi − µσi |2 ≤ ∥U − U ′∥HS ≤ dUk
(U,U ′).

Hence, if f is Lipschitz with Lipschitz constant equal to 1, we have

|f̂(U)− f̂(U ′)| = |f(p(U))− f(p(U ′)| ≤ dTk
(p(U), p(U ′)) ≤ dUk

(U,U ′),

and f̂ is again Lipschitz with Lipschitz constant equal to 1. Since∫
Uk

f ◦ pdp⋆(µ) =
∫
Tk

fdp⋆p
⋆(µ) =

∫
Tk

fdµ,

we deduce that

W1,U(k)(p
⋆(µ), p⋆(ν)) = sup

(∣∣∣∣∫
Uk

fdp⋆(µ)−
∫
Uk

fdp⋆(ν)

∣∣∣∣ , f : (Uk, dUk
) → (R, dR) 1−Lipschitz

)
,

≥ sup

(∣∣∣∣∫
Uk

f̂dp⋆(µ)−
∫
Uk

f̂dp⋆(ν)

∣∣∣∣ , f : (Tk, dTk
) → (R, dR) 1−Lipschitz

)
≥ sup

(∣∣∣∣∫
Tk

fdµ−
∫
Tk

fdν

∣∣∣∣ , f : (Tk, dTk
) → (R, dR) 1−Lipschitz

)
≥ W1,Tk

(µ, ν).

□

Combining the two previous lemmas yields then the following proposition.

Proposition 6.4. For µ, ν ∈ M1(Tk) which are conjugation invariant and all t > 0,

W1,U(k)(µ, ν) ≤ 2
√
2tk +

√√√√√∑
J∈Bk
J ̸=I0

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2.

6.2. Proof of Theorem 6.1. We will use several times the heat kernel on the Riemannian mani-
folds U(k) and SU(k). In particular, we will need the following bound which is a straightforward
deduction of the parabolic Harnack estimates of Li and Yau [40, Thm 2.3].

Lemma 6.5. Let Kt be the heat kernel either on SU(k) or U(k). Then, for all x ∈ SU(k) (resp.
U(k)) and 0 < t1 < t2

Kt(x, x) ≤
(
t2
t1

)(k2−ϵ)/2

exp

(
kπ2

4(t2 − t1)

)
,

where ϵ = 1 (resp. ϵ = 0).

Proof. Let G be a compact Lie group and Kt the heat kernel on G corresponding to a translation
invariant distance dG on G. Since G has positive curvature, taking the limit α → 1 in [40, Theorem
2.3] yields that for all y ∈ G,

Kt(x, x) ≤ Kt(x, y)

(
t2
t1

)dimG/2

exp

(
dG(x, y)

2

4(t2 − t2)

)
.

Hence, averaging y on all G and using that
∫
GKt(x, y)dg = 1, we deduce that

Kt(x, x) ≤
(
t2
t1

)dimG/2

exp

(
diam(G)2

4(t2 − t2)

)
.
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Since the diameter of U(k) and SU(k) with respect to dU(k) are smaller than
√
kπ and dimU(k) = k2

and dimSU(k) = k2 − 1, the result is deduced. □

Proof of Theorem 6.1. Set µ = Bα,γ
ξn(I)

(t0) and ν = Rm⟨m⟩
kn

(ξn [∗m ∗ δI ]), and recall that α =

1
2V ar(m) and γ = k

2(k2−1)
K(m). By Proposition 6.4, for any t > 0

W1,Tk
(µ, ν) ≤ 2

√
2tk +

√√√√√∑
J∈Bk
J ̸=I0

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2.(53)

By (23),

(54) Φ[µ](J) = exp
(
−t0

γ

k
K(J̃)− t0

α

k2
⟨λJ⟩2

)
SJ(ξn(I)),

and by Proposition 4.9, when ∥J̃∥∞ < n
2 we have Φ[ν](J) = SJ(ξn(I0))Φn[∗m ∗ δI ](J

(n)), where

J (n) is the unique element of Bk,n such that {J (n)
i [n]}1≤i≤k = {Ji[n]}1≤i≤k. By (18) and (19) with

Lemma 4.4, we then have

Φ[ν](J) =e−2iπ
m⟨m⟩·⟨λJ ⟩

kn SJ(ξn(I0))Φn[∗m ∗ δI ](J (n))

=e−2iπ
m⟨m⟩·⟨λJ ⟩

kn SJ(ξn(I0))Φn[∗m](J (n))
SJ(n)(ξn(I0))

SJ(n)(ξn(I0))

=e−2iπ
m⟨m⟩·⟨λJ ⟩

kn Φn[∗m](J (n))SJ(ξn(I)),(55)

where we used that SJ(n)(ξn(I)) = SJ(ξn(I)) on the last equality. Let us split the latter sum as
follows : introduce the thresholds θγ = c1

k3
√
γM

∧ 1
4 , θα = c2√

αM
for some numeric c1, c2 to choose

later and set νγ = 2c
km1/3M1/3√γ

and να = 2c k
m1/3M1/3

√
α
, where c is the numerical constant given in

Proposition 5.3. Then, define

RA =

J ∈ Bk \ {I0},

√
K(J̃)

νγ
∨ |⟨λJ⟩|

να
≤ n

 ,

RB =

J ∈ Bk \ {I0},

√
K(J̃)

νγ
∨ |⟨λJ⟩|

να
≥ n,

√
K(J̃)

θγ
∨ |⟨λJ⟩|

θα
≤ n

 ,

and

RC =

J ∈ Bk \ {I0},

√
K(J̃)

θγ
∨ |⟨λJ⟩|

θα
≥ n

 .

We then have∑
J∈Bk
J ̸=I0

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2 ≤

∑
i∈{A,B,C}

∑
J∈Ri

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2

= : SA + SB + SC .
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Bound of SC : Let us split SC as

SC =
∑
J∈RC√
K(J̃)>θγn

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2

+
∑
J∈RC√
K(J̃)≤θγn

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2

=S1
C + S2

C .

By definition of the Fourier transform on M1(Tk) from (19) and the bound SJ(u⃗) ≤ SJ(0, . . . , 0)
for u⃗ ∈ Tk, for any J ∈ Bk we have

|Φ[µ](J)− Φ[ν](J)|2 ≤ 2SJ(0, . . . , 0)
2.

Hence, by the fact that κ(J) = K(J̃) + |λJ |2/k for J ∈ Bk and (24), we get the first bound

S1
C ≤4

∑
J∈Bk\{I0}√
K(J̃)>θγn

exp(−2κ(J)t)

κ(J)
SJ(0, . . . , 0)

2

≤4 exp(−tθ2γn
2)

∑
J∈Bk\{I0}
K(J̃)>θγn

exp(−κ(J)t)SJ(0, . . . , 0)
2 ≤ 4 exp

(
−tθ2γn

2
)
K

U(k)
t (0, 0).

By Lemma 6.5 for t1 = t and t2 = t+ 1, when t ≤ 1 we have

K
U(k)
t (0, 0) ≤

(
t+ 1

t

)k2/2

exp

(
kπ2

4

)
≤
(
2

t

)k2/2

exp

(
π2

4k

)k2

,

so that

(56) S1
C ≤ 4 exp(−tθ2γn

2 − k2/2(log t− c))

for some numeric c ∈ R.
By Proposition 5.3, when K(J̃) ≤ θ2γn

2 with c1 small enough, we have

∣∣∣Φn[∗m](J (n))
∣∣∣ ≤ exp

(
−m(2π)2

2n2

K(J̃)K(m)

k2 − 1
+

mM

n3
O

([
kK(J̃)K(m)

]3/2))

≤ exp

(
−1

2
· m(2π)2

2n2

K(J̃)K(m)

k2 − 1

)
= exp

(
−1

2
· t0

γ

k
K(J̃)

)
.

Hence, by (54) and (55),

S2
C ≤ 4

∑
J∈Bk\{I0}√

K(J̃)≤θγn,|⟨λJ ⟩|>θαn

exp(−2κ(J)t)

κ(J)
exp

(
−1

2
· t0

γ

k
K(J̃)

)
SJ(0, . . . , 0)

2.
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Since, exp(−2κ(J)t) ≤ exp(−2t⟨J⟩2/k), decomposing J ∈ BK as J = Ĵ + ℓ1k with ℓ ∈ Z and
summing on ℓ ∈ Z such that |⟨λJ + kl⟩| > θαn yields

S2
C ≤4

∑
ℓ∈Z,J∈Bk\{I0},Jk=0√
K(J̃)≤θγn,|⟨λJ+kl⟩|>θαn

k exp(−2tθ2αn
2/k)

⟨J + ℓk⟩2
exp

(
−t0

γ

k
K(J̃)

)
SJ(0, . . . , 0)

2

≤c
k

nθα
exp(−2tθ2αn

2/k)
∑

J∈Bk\{I0},Jk=0

exp
(
−t0

γ

k
K(J̃)

)
SJ(0, . . . , 0)

2.

for some numeric c > 0. By (25), we have K
SU(k)
t0

(0, 0), so that when t ≤ t0,

(57) S2
C ≤ c

k exp(−2tθ2αn
2/k)

nθα
K

SU(k)
t (0, 0).

When θγ ≥ n−1, set

(58) t =
2 + k2(log n+ log θγ + c0)

θ2γn
2

+
k log n

θ2αn
2
,

with c0 a numeric. Then, combining (56) and (57) yields for c0 large enough

(59) SC ≤ c

n2
+

ck

θ3αn
3
.

Bound of SB: The pattern to bound SB is similar to the one concerning SC . Split SB as

SB =
∑
J∈RB√
K(J̃)>νγn

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2

+
∑
J∈RB√
K(J̃)≤νγ

exp(−2κ(J)t)

κ(J)
|Φ[µ](J)− Φ[ν](J)|2

=S1
B + S2

B.

The condition

√
K(J̃)
θγ

∨ |⟨λJ ⟩|
θα

≤ n for c small enough yields by Proposition 5.3

∣∣∣Φn[∗m](J (n))
∣∣∣ ≤ exp

(
− m(2π)2

2n2

(
K(J̃)K(m)

k2 − 1
+

V ar(m)⟨λJ⟩2

k2

)

+
mM

n3
O

([
kK(J̃)K(m)

]3/2
+

V ar(m)3/2 · |⟨λJ⟩|3

k3

))

≤ exp

(
−m(2π)2

4n2

(
K(J̃)K(m)

k2 − 1
+

V ar(m)⟨λJ⟩2

k2

))

≤ exp

(
− t0

2

(
γK(J̃)

k
+

α⟨λJ⟩2

k2

))
.
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Remark that νγ = 2c
km1/3M1/3√γ

= c′

kn2/3t
1/3
0 M1/3√γ

for some numeric c′. Hence,
√
K(J̃) ≥ νγn

implies that √
K(J̃) ≥ c′n1/3

kt
1/3
0 M1/3√γ

.

Similarly, |⟨λJ⟩| ≥ να implies that

|⟨λJ⟩|2 ≥
ckn1/3

(t0M)1/3
√
α
.

Decomposing J ∈ BK as J = Ĵ + ℓ1k with ℓ ∈ Z and summing on ℓ ∈ Z yields then

S1
B ≤4

∑
ℓ∈Z,J∈Bk\{I0},Jk=0√

K(J̃)≥νγn

1

κ(J)
exp

(
−t0

γK(J̃)

k

)
|SJ(ξn(I))|2

≤
∑

ℓ∈Z,J∈Bk\{I0},Jk=0√
K(J̃)≥νγn

exp

(
−c

cn2/3t
1/3
0

k3M2/3

)
n2/3

k2(t0M)2/3γ
+ |⟨J + ℓk⟩|2/k

exp

(
−t0/2

γK(J̃)

k

)
|SJ(ξn(I))|2

≤
k2(t0M)1/3

√
γ exp

(
−c

cn2/3t
1/3
0

k3M2/3

)
n1/3

K
SU(k)
t0/2

(ξn(I), ξn(I)).

for some numeric c > 0. Similarly,

S2
B ≤4

∑
ℓ∈Z,J∈Bk\{I0},Jk=0

|⟨J+ℓ1k⟩|≥ναn

1

κ(J)
exp

(
−t0

(
γK(J̃)

k
+

α⟨λJ⟩|2

k2

))
|SJ(ξn(I))|2

≤
∑

ℓ∈Z,J∈Bk\{I0},Jk=0
|⟨J+ℓ1k⟩|≥ναn

exp

(
−c

cn2/3t
1/3
0

M2/3

)
|⟨J + ℓk⟩|2/k

exp

(
−t0

γK(J̃)

k

)
|SJ(ξn(I))|2

≤
k2(t0M)1/3

√
α exp

(
−c

cn2/3t
1/3
0

M2/3

)
n1/3

K
SU(k)
t0

(ξn(I), ξn(I)).

Hence, we finally have

SB = S1
B + S2

B ≤
ck2(t0M)1/3(

√
γ +

√
α) exp

(
−c

cn2/3t
1/3
0

k3M2/3

)
n1/3

K
SU(k)
t0/2

(ξn(I), ξn(I))

for some numeric c > 0, where we used that the heat kernel K
SU(k)
t (0, 0) is decreasing in t.
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Bound of SA : By Lemma 5.4,
√

K(J̃) ≤ νγn implies that ∥J̃∥∞ ≤ cn
m1/3M1/3K(m)1/3

. Hence,

when

√
K(J̃)
νγ

∨ |⟨λJ ⟩|
να

≤ n, Proposition 5.3 yields that

e−2iπ
m⟨m⟩·⟨λJ ⟩

kn Φn[∗m](J (n)) = exp

[
− m(2π)2

2n2

[
K(m)K(J̃)

k2 − 1
+

V ar(m)⟨λJ⟩2

k2

]

+
mM

n3
O

(
V ar(m)3/2 · |⟨λJ⟩|3

k3
+
[
k ·K(m) ·K(J̃)

]3/2)]
.

By (54) and (55), we thus have

|Φ[µ](J)− Φ[ν](J)| =exp

(
−m(2π)2

2n2

[
K(m)K(J̃)

k2 − 1
+

V ar(m)⟨λJ⟩2

k2

])
|SJ(ξn(I))|

·

∣∣∣∣∣exp
(
mM

n3
O

(
V ar(m)3/2 · |⟨λJ⟩|3

k3
+
[
k ·K(m) ·K(J̃)

]3/2))
− 1

∣∣∣∣∣
≤ t0M

n
exp

(
−t0

(γ
k
K(J̃) +

α

k2
|⟨λJ⟩|2

))
|SJ(ξn(I))|

O

(
α3/2 · |⟨λJ⟩|3

k3
+
[
k2 · γ ·K(J̃)

]3/2)
,

where we used on the last inequality that mM
n3 O

(
V ar(m)3/2·|⟨λJ ⟩|3

k3
+
[
k ·K(m) ·K(J̃)

]3/2)
= O(1)

when

√
K(J̃)
νγ

∨ |⟨λJ ⟩|
να

≤ n and the bound |eu − 1| = O(u) when u = O(1). Hence,

SA ≤ t20M
2

n2

∑
J∈RA

e
−2t0

(
γ
k
K(J̃)+ α

k2
|⟨λJ ⟩|2

)
κ(J)

|SJ(ξn(I))|2 ·O
(
α3 · |⟨λJ⟩|6

k3
+
[
k2 · γ ·K(J̃)

]3)
.

Setting g(u) = u3e−u for u ≥ 0, we have

exp
(
−t0

(γ
k
K(J̃) +

α

k2
|⟨λJ⟩|2

))
O

(
α3 · |⟨λJ⟩|6

k3
+
[
k2 · γ ·K(J̃)

]3)
≤ ck9∥g∥∞

t30
,

so that

SA ≤ ck9M2

t0n2

∑
J∈RA

exp
(
−t0

γ
kK(J̃)

)
κ(J)

|SJ(ξn(I))|2 .

Decomposing J ∈ BK as J = Ĵ + ℓ1k and using that
∑

ℓ∈Z
1

κ(J+ℓ1k) =
∑

ℓ∈Z
1

∥J+ℓ1k−Ĩ0∥2−∥Ĩ0∥2
≤ c

for some numeric constant c independent of J ̸= I0, we get

SA ≤ ck9M2

t0n2

∑
J∈Bk,Jk=0

exp
(
−t0

γ

k
K(J̃)

)
|SJ(ξn(I))|2 ≤

ck9M2

t0n2
K

SU(k)
t0

(ξn(I), ξn(I)).
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Putting all previous bounds together yields with (53)

W Tk
1 (µ, ν) ≤ ck

√
t+

c

n
+

c
√
k

(θαn)3/2

+

ck2(t0M)1/3(
√
γ +

√
α) exp

(
−c

cn2/3t
1/3
0

k3M2/3

)
n1/3

+
ck9M2

t0n2


1/2

K
SU(k)
t0/2

(ξn(I), ξn(I))
1/2.(60)

Using the definition of θα and the choice of t from (58) yields for n large enough, after simplifying,

W Tk
1 (µ, ν) ≤ M

n

(
c1(k

8γ + kα) log n+
c2k

9/2

√
t0

K
SU(k)
t0/2

(ξn(I), ξn(I))
1/2

)
,

for some numerical constants c1, c2 > 0. □

7. Local limit theorem and its geometric consequences

In this section, we prove a local limit theorem for the h-probability measure (∗m) ∗ δI and
deduce Corollary 2.5, which gives asymptotics of coefficients structures in the ring QH(Gk,n). For
simplicity, we assume that V ar(m) = 0 to avoid any lattice issue.

Theorem 7.1. Let M > 0 and suppose that m = (µr)1≤r≤m is a sequence of h-probability measures
on Bk,n such that V ar2(m) = 0 and ⟨m̂⟩3 ≤ MK(m) and let I ∈ Bk,n. Then,

((∗m) ∗ δI) [I ′] = δ|I′|=⟨I⟩+m⟨m⟩)[n]n

[
K

SU(k)
t0γ

(ξn(I), ξn(I
′)) + o

(
1√
n

)]
,

where

t0 =
2πm

n2
, γ =

k

2(k2 − 1)
K(m),

and o(·) only depends on γ ,M , t0 and k.

Proof. Recall that Φn[δI ](J) =
SI(ξn(J))
SI(ξn(I0)

by (19). Then, by Proposition 3.10, Lemma 4.5 and Lemma

4.4, for I ′ ∈ Bk,n

((∗m) ∗ δI) [I ′] =
∑

J∈Bk,n

Φ[δI ](J)
m∏
j=1

Φ[µj ](J)ũ
J
I′

=
∑

J∈Bk,n

m∏
j=1

Φ[µj ](J)
SI(ξn(J))

SI(ξn(I0))

|V (ξn(J))|2 SI′(ξn(J))

|V (ξn(I0))|2 SI′(ξn(I0))

=
∑

J∈Bk,n

m∏
j=1

Φ[µj ](J)SJ(ξn(I))SJ(ξn(I ′)).

Set t0 =
(2π)2m

n2 and γ = kK(m)
2(k2−1)

. Then, applying Proposition 5.3 with V ar2(m) = 0 gives

((∗m) ∗ δI) [I ′] =
∑

J∈Bk,n

SJ(ξn(I ′))SJ(ξn(I))e
2im⟨m⟩⟨J⟩

kn B(J)

with

B(J) ≤ exp

(
−t0

γK(J̃)

k
+

t0M

n
O

([
kK(J̃)K(m)

]3/2))
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and, when ∥J̃∥∞ ≤ c n
m1/3M1/3K(m)1/2

:= θ1n
1/3 (with θ2 depending on t0, γ, k and M)

B(J) = exp

(
−t0

γK(J̃)

k
+

t0M

n
O

([
kK(J̃)K(m)

]3/2))
.

Noting that K(J̃) ≤ ∥J̃∥2∞ = ∥Ĵ∥2∞, there is θ2 > 0 depending on k, γ and M so that

−t0
γK(J̃)

k
+

t0M

n
O

([
kK(J̃)K(m)

]3/2)
≤ − t0

2

γK(J̃)

k
+

t0M

n
O

([
kK(J̃)K(m)

]3/2)
when sup(Ĵi − Ĵi+1[n]) ≤ θ2n. By Lemma 5.5, for sup(Ĵi − Ĵi+1[n]) ≥ θ2n, there exists δ, η > 0
depending on t0, k, γ and M such that

(61) B(J) ≤ exp
(
−n2

(
δ +

η

n3

))
.

Let us split ((∗m) ∗ δI) [I ′] as

((∗m) ∗ δI) [I ′] =
∑

J∈Bk,n

sup(Ĵi−Ĵi+1[n])>θ1n1/3

SJ(ξn(I))SJ(ξn(I ′))e
2iπ

m⟨m⟩·⟨λJ ⟩
kn B(J)

+
∑

J∈Bk,n

sup(Ĵi−Ĵi+1[n])<θ1n1/3

SJ(ξn(I))SJ(ξn(I ′))e
2iπ

m⟨m⟩·⟨λJ ⟩
kn B(J) := S1 + S2,

and, using (25), split K
SU(k)
γt0

(
ξn(I

′), R−m⟨m⟩
kn

(ξn (I))
)
as

K
SU(k)
γt0

(
ξn(I

′), R−m⟨m⟩
kn

(ξn (I))
)

=
∑
J∈Bk
Jk=0

exp(−κ0,γ(J)t0)SJ(ξn(I ′))SJ

(
R−m⟨m⟩

kn

(ξn (I))
)

=
∑
J∈Bk
Jk=0

sup(Ji−Ji+1[n])<θ1n1/3

e
2iπm⟨m⟩)⟨J⟩

kn
−κ0,γ(J)t0SJ(ξn(I ′))SJ(ξn(I))

+
∑
J∈Bk
Jk=0

sup(Ji−Ji+1[n])≥θ1n1/3

e−κ0,γ(J)t0SJ(ξn(I ′))SJ

(
R−m⟨m⟩

kn

(ξn (I))
)

:=S′
1 + S′

2.

Then, we have∣∣∣((∗m) ∗ δI) [I ′]− nδ⟨I′⟩=⟨I⟩+m⟨m⟩)⟩[n]K
SU(k),γ
t0,δI

(ξn(I
′))
∣∣∣ ≤ ∣∣S1 − δ⟨I′⟩=⟨I⟩+m⟨m⟩)[n]S

′
1

∣∣+ ∣∣S2|+ |S′
2

∣∣ .
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First, by Lemma 5.4, (61) and the rough bound SJ(ξn(J
′)) ≤ dJ ≤ nk(k−1)/2 for J, J ′ ∈ Bk,n,

|S2| ≤
∑

J∈Bk,n

θ1n1/3<sup(Ĵi−Ĵi+1[n])<θ2n

d2J exp

(
− t0γ

2k
K(J̃)

)

+
∑

J∈Bk,n

sup(Ĵi−Ĵi+1[n])≥θ2n

d2J exp
(
−n2

(
δ +

η

n3

))

≤#Bk,nn
k(k−1)

[
exp

(
− t0γθ

2
1

k2
n2/3

)
+ exp

(
−n2

(
δ +

η

n3

))]
≤nk2 exp

(
−Cn1/3

)
= o (1)

with o (1) only depending on γ, k, t0 and M . Likewise, by the absolute convergence of the Fourier
expansion of the heat kernel on SU(k) for t ≥ t0, see [21],∣∣S′

2

∣∣ = o(1).

Next, using that SJ(ξn(I)) = SĴ(ξn(I))e
2iπJk⟨I⟩

n and summing on Jk when sup(Ĵi − Ĵi+1[n]) <

θ1n
1/3 and for n large enough (so that Ĵ + l1k ̸= Ĵ + l′1k when 0 ≤ l ̸= l′ ≤ n− 1) yields

S1 =
∑

J∈Bk,n

Jk=0
sup(Ji−Ji+1[n])<θ1n1/3

B(J)SĴ(ξn(I))SĴ(ξn(I
′))

(
n−1∑
l=0

e
2iπ(m⟨m⟩)/k(⟨J⟩+kl)+(⟨I⟩−⟨I′⟩)l

n

)

=nδm⟨m⟩)+⟨I⟩=⟨I′⟩[n]
∑

J∈Bk,n

Jk=0
sup(Ji−Ji+1[n])<θ1n1/3

B(J)e
2iπm⟨m⟩)⟨J⟩

kn SJ(ξn(I))SJ(ξn(I ′)).

with

B(J) = exp

(
−t0

γK(J̃)

k
+

t0M

n
O

([
kK(J̃)K(m)

]3/2))
.

Hence, using that t0M
n O

([
kK(J̃)K(m)

]3/2)
= O(1) when sup(Ji − Ji+1[n]) < θ1n

1/3,∣∣S1 − δ⟨I′⟩=⟨I⟩+m⟨m⟩[n]S
′
1

∣∣
≤n

∑
J∈Bk,n

Jk=0
sup(Ji−Ji+1[n])<θ1n1/3

∣∣∣SJ

(
R−m⟨m⟩

kn

(ξn (I))
)
SJ(ξn(I ′))

∣∣∣ exp(−t0
γK(J̃)

2k

)

exp

(
−t0

γK(J̃)

k

)∣∣∣∣exp( t0M

n
O

([
k2γK(J̃)

]3/2))
− 1

∣∣∣∣
≤

∑
J∈Bk,n

Jk=−(k−1)/2

sup(Ji−Ji+1[n])<n1/6

d2J exp

(
−t0

γK(J̃)

2k

)
O(1) ≤ K

SU(k)
γt0/2

(0, 0)O(1) = O (1) ,
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with O(1) depending on M, t0, γ and k. Finally,

∣∣∣((∗m) ∗ δI) [I ′]− nδ⟨I′⟩=⟨I⟩+m⟨m⟩[n]K
SU(k)
γt0

(
ξn(I

′), R−m⟨m⟩
kn

(ξn (I))
)∣∣∣ = O(1),

with O(·) depending on k, γ,M and t0. □

We can now turn to the proof of Corollary 2.5.

Proof of Corollary 2.5. Recall that in the case where
∑m+1

i=0 di ≤ dimHold(Gk,n) = k(n− k) + dn
and for generic manifolds M0, . . . ,Mm+1, we have by (63)

#Md,a0,...,am+1

M0,...,Mm+1
=

〈(
m∏
i=0

[Mi]

)
[qd], [Mm+1]

〉
H∗(Gk,n)

,

where ⟨·, ·⟩ denotes the Poincaré duality in H∗(Gk,n) and for x ∈ QH(Gk,n) = C[q]⊗H∗(Gk,n), we

write x =
∑

d≥0 x[q
d] ⊗ qd. By the multiplication rule (62), for d′ ≥ 0 we have (

∏m
i=0[Mi]) [q

d′ ] ∈
Hd′n+k(n−k)−

∑m
i=0 di and thus, for d′ ̸= d′′, (

∏m
i=0[Mi]) [q

d′ ] and (
∏m

i=0[Mi]) [q
d′′ ] are in different

dimension components of H∗(Gk,n). Hence, we deduce that

#Md,a0,...,am+1

M0,...,Mm+1
=

∑
I∈Bk,n,⟨I⟩=dm+1

am+1
I

〈(
m∏
i=0

[Mi]

)
[qd], σλI

〉
H∗(Gk,n)

=
∑

I∈Bk,n,⟨I⟩=dm+1

am+1
I

〈(
m∏
i=0

[Mi]

)
, σλI

〉
H∗(Gk,n)

,

where x is the image of x in QH(Gk,n)/⟨q = 1⟩ and we recall that am+1
I are the coefficients

appearing in the decomposition [Mm+1] =
∑

I∈Bk,n,⟨I⟩=dm+1
am+1
I σλI

. Then, recalling that the

Poincaré duality satisfies ⟨σλ, σµ⟩H∗(Gk,n) = δλ,µc (see for example the introduction of [5]), we have

#Md,a0,...,am+1

M0,...,Mm+1
=

∑
I∈Bk,n,⟨I⟩=dm+1

am+1
I cI

c∏m
i=0[Mi]

,

where cI∏m
i=0[Mi]

, I ∈ Bk,n are the coefficients of
∏m

i=0[Mi] on the basis {σλI
, I ∈ Bk,n} and we recall

that Ic = (n − 1 − Ik−j+1)1≤j≤k. By Proposition 4.2, the linear map from QH(Gk,n)/⟨q = 1⟩ to
B(L2(Bk,n)) mapping σλ to T (sλ) is an algebra isomorphism from QH(Gk,n)/⟨q = 1⟩ to the algebra
A ⊂ B(L2(Bk,n)) for which Bk,n is positively multiplicative, and T (sλ) is the unique element of A
sending I0 to Iλ. Hence, by Proposition 3.6 and (7) we have

cI∏m
i=0[Mi]

= hrI

(
(Mh)−1([M0]) ∗ · · · ∗ (Mh)−1([Mm])

)
(I),
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where (Mh)−1([Mi]) =
∑

I∈Bk,n

1
hr
I
aiIeI and hrI = V (ξn(I0)2

nk SI(ξn(I0)) by Lemma 4.5. Now, since

hlI = SI(ξn(I0)) by the same lemma,

Φn

[
(Mh)−1([Mi])

]
(I0) =

〈
1, (Mh)−1([Mi])

〉
h
=

〈
1,

1

hr

 ∑
I∈Bk,n

aiIeI

〉
h

=

〈
hl,

 ∑
I∈Bk,n

aiIeI

〉

=
∑

I∈Bk,n

aiISI(ξn(I0)) = qDim(Mi),

and we deduce that 1
qDim(Mi)

(Mh)−1(Mi) is a h-probability measure on Bk,n. Then, recalling that

δI = 1
µh(I)

eI = 1
hl(I)hr(I)

eI , we have

(Mh)−1(M0) =
∑

I∈Bk,n,⟨I⟩=d0

aISI(ξn(I0))δI ,

so that finally

cI
′∏m
i=1[Mi]

=
V (ξn(I0))

2SI′(ξn(I0))
∏m

i=0 qDim(Mi)

nk

∑
I∈Bk,n,⟨I⟩=d0

aISI(ξn(I0)) (δI ∗ (∗m)) (I ′),

with m = (µi)1≤i≤m where µi = 1
qDim(Mi)

(Mh)−1(Mi). Hence, applying Theorem 2.4 with the

notations of Corollary 2.5, we deduce that

cI
′∏m
i=0[Mi]

=
V (ξn(I0))

2QI′(ξn(I0))
∏m

i=1 qDim(Mi)

nk−1∑
I∈Bk,n,⟨I⟩=d0

aIsI(ξn(I0))

(
K

SU(k)
(2π)2m

n2 γ

(
R−m⟨m⟩

kn

(ξn(I)) , ξn(I
′)
)
+O

(
1

n

))
,

with O(·) only depending on m
n2 , k and ∥m̃∥i, i = 2, 3. Then, writing piI = aISI(ξn(I0))

qDim(Mi)
for 0 ≤ i ≤

m+ 1, so that
∑

I∈Bk,n
piI = 1, we get

#Md,a0,...,am+1

M0,...,Mm+1
=

V (ξn(I0))
2
∏m+1

i=0 qDim(Mi)

nk−1

 ∑
I,I′∈Bk,n

pM0
I p

Mm+1

I′ K
SU(k)
γt0

(xnI , x
n
I′) +O

(
1

n

) ,

with xnI = R−m⟨m⟩
kn

(ξn(I)) and ynI′ = ξn((I
′)c). □

Appendix A. Small quantum cohomology of Grassmannian

We recall here some basic facts on the small quantum cohomology of Grassmannian.

A.1. Partitions and symmetric functions. Recall that a partition λ is a nonincreasing sequence
of integers (λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0). We denote then by l(λ) the length of the partition λ. The
integer λi is called the i-th part of λ, and the size ⟨λ⟩ of λ is the sum of its parts. A partition is
depicted by a Young diagram, consisting of the drawing of ⟨λ⟩ left-aligned boxes with λi boxes in
the i-th row.

We denote by R the set of all partitions, Rk the set of partitions of length k ≥ 1 and Rk,n the
set of partitions of length k such that the first part is smaller that n − k. Alternatively, Rk,n can
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be seen as the set of partition whose Young diagram can be included in a rectangle of k rows and
n− k columns. In the sequel, we will regularly identify λ with its Young diagram. If λ ∈ Rk,n, the
complementary of λ in Rk,n is the partition λc such that λi + λc

k−i+1 = n − k for all 1 ≤ i ≤ k.
This is the partition we get by rotating upside down the set of boxes of the rectangle k × (n − k)
not included in λ.

We say that λ ⊂ µ if the Young diagram of λ is included in the one of µ, which means that
λi ≤ µi for all 1 ≤ i ≤ k.

Let Sym[x1, . . . , xk] denote the ring of symmetric polynomials in k variables. This ring is freely
generated by the elementary symmetric functions ej(x1, . . . , xk) =

∑
1≤i1<...ik≤k xi1 . . . xik for 1 ≤

j ≤ k. It also has a distinguished basis {sλ}λ∈Rk
given by the Schur polynomials, whose value at

(x1, . . . , xk) is

sλ(x1, . . . , xk) =
det(x

λj+k−j
i )1≤i,j≤k

det(xk−j
i )1≤i,j≤k

.

The functions {sλ}λ∈Rk
are related to numerous fields of algebraic combinatorics, see [23]. In

particular, this basis is positively multiplicative, meaning that

sλ · sµ =
∑
ν∈Rk

cνλµsν

for some nonnegative coefficient cνλµ. The latter are actually nonnegative integers called Littlewood-
Richardson coefficients.

A.2. Grassmannian, Schubert variety and intersection. Let us review some aspects of the
cohomology of Grassmannian without going into details of homology theory, see [23] for more
details. Denote by Gk,n the variety of k-dimensional subspaces of Cn and W = {(0 ⊂ W1 ⊂ . . . ⊂
Wn = Cn)} the variety of flags on Cn. By a generic element of W, we mean any element of W
except for elements of a submanifold of strictly smaller dimension. For a particular flag W ∈ W
and a partition λ ⊂ R, we define the Schubert variety Ωλ as

ΩW
λ = {V ∈ Gk,n,dim(V ∩Wn−k+i−λi

) ≥ i, 1 ≤ i ≤ k}.

Then, ΩW
λ is a sub-variety of Gk,n of dimension k(n−k)−⟨λ⟩. Moreover, if λ ⊂ µ then ΩW

µ ⊂ ΩW
λ .

One can then prove that
◦
Ωλ

W := ΩW
λ \

⋃
µ⊂λ
µ̸=λ

ΩW
µ ≃ Ck(n−k)−⟨λ⟩. In particular,

◦
Gk,n =

◦
ΩW
∅ = ΩW

∅ \ ΩW
(1) ≃ Ck(n−k)

and Gk,n is a variety of dimension k(n− k).

IfW ′ is another generic flag inW, ΩW
λ intersects transversely ΩW ′

µ , which means that ΩW
λ ∩ΩW ′

µ is

a well-defined variety of dimension k(n−k)−(⟨λ⟩+⟨µ⟩). In particular, ΩW
λ ∩ΩW ′

λc is a 0-dimensional

variety which is actually reduced to a singleton. One can then decompose the intersection ΩW
λ ∩ΩW ′

µ

as a union of sub-varieties which are deformations of some ΩW
ν for ν ∈ Rk,n. A simple way to see

this decomposition is to use Poincaré duality which expresses the aforementioned fact that for
λ ∈ Rk,n, the intersection ΩW

λ ∩ΩW ′
λc is a singleton. Then, one says that a variety on type ν appears

cνλµ times in the decomposition of ΩW
λ ∩ ΩW ′

µ if for any generic W ′′ ∈ W, ΩW
λ ∩ ΩW ′

µ ∩ ΩW”
νc is a

discrete set of points and

#
(
ΩW
λ ∩ ΩW ′

µ ∩ ΩW”
νc

)
= cνλµ.
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Formally, this amount to say that the cup-product of the corresponding cohomology cycles σλ and
σµ, respectively dual to ΩW

λ and ΩW ′
µ , decomposes in the cohomology ring H∗(Gk,n) as

σλ · σµ =
∑

ν∈Rk,n

cνλ,µσν .

The coefficient cνλ,µ are the same Littlewood-Richardson coefficients which encode the multiplication
of Schur functions in the ring of symmetric function. This is no surprise for the following reason :
algebraically, H∗(Gk,n) ≃ Sym[x1, . . . , xk]/ < hi = 0, i > n − k >, the algebra-isomorphism being
given by the map σλ 7→ sλ (which is known as Giambelli’s formula).

Example A.1. In the simplest case k = 1, we have G(1, n + 1) = Pn(C), the projective space
of dimension n. Then, for W ∈ W and λ ∈ R1,n+1, ΩW

λ = {x ∈ Pn(C), x ⊂ Wn+1−λ1}. More
concretely, for each 1 ≤ i ≤ n+ 1, let ei ∈ Cn+1 be a vector in Wi \Wi−1. Then, (e1, . . . , en+1) is
a basis of Cn+1 and for 1 ≤ k ≤ n,

ΩW
(k) =

{
[x1, . . . , xn+1−k, 0, . . . , 0], (xi)1≤i≤n+1−k ∈ Cn+1−k \ {0}

}
,

where [x1, . . . , xn+1] denotes the line generated by (x1, . . . , xn+1). In particular, ΩW
(n) is the singleton

{[1, 0, . . . , 0]}. If W ′ is another flags, then ΩW
(k1)

∩ ΩW ′

(k2)
= {x ∈ Pn(C), x ⊂ Wn+1−k1 ∩W ′

n+1−k2
}.

Remark that for W ′ generic, dimWn+1−k1 ∩W ′
n+1−k2

= n+1− (k1 + k2). If W ′′ is a third generic

flag, dimWn+1−k1 ∩W ′
n+1−k2

∩W ′′
n+1−k3

= max(n+1− (k1+k2+k3), 0) : then, when k1+k2 ≤ n,
k3 = n− k1 − k2 we have

dimWn+1−k1 ∩W ′
n+1−k2 ∩W ′′

n+1−k3 = 1,

and for any other configuration of (k1, k2, k3) this dimension either vanishes or is larger than 1.

Hence, the intersection ΩW
(k1)

∩ ΩW ′

(k2)
∩ ΩW ′′

(k3)
is discrete and finite only when k1 + k2 ≤ n and

k3 = n− (k1 + k2). We deduce that

σ(k1) · σ(k2) = δk1+k2≤n σ(k1+k2).

This is precisely the multiplication in Sym[x1]/ < xi1 = 0, i ≥ n+ 1 > when sending σ(k) to xk1 for
1 ≤ k ≤ n.

A.3. Quantum cohomology ring of Grassmannian. The small quantum cohomology ring
of Gk,n is an enrichment of H∗(Gk,n) that counts more broadly maps from P1(C) to Gk,n with
prescribed values at specific points rather than intersection of subvarieties of Gk,n. Refer to [5, 6]
for a general introduction to the small quantum cohomology. Note that one can generally define
two quantum cohomologies for a given projective variety: the big quantum cohomology and the
small one. In this paper we will only be interested in the small quantum cohomology which is much
easier to handle, and we will simply drop the term small in the sequel (see [33] for an introduction
to the big quantum cohomology). Denote by Hol(Gk,n) the set of rational maps from P1(C) to
Gk,n. We define the degree of a map f ∈ Hol(Gk,n) as

deg f = #f−1
(
ΩW
(1)

)
,

and we can show this is independent of a generic choice of W . We denote by Hold(Gk,n) the
space of rational maps from P1(C) to Gk,n of degree d. The latter is a quasi-projective variety
(i.e, an open subset of a projective variety) of dimension k(n − k) + dn whose closure yields a
projective variety Hold(Gk,n). Note that other compactifications of Hold(Gk,n) can be achieved
with better smoothness, see [5]. The choice of compactification won’t play any role here, since we



62 J. GUILHOT, C. LECOUVEY, AND P. TARRAGO

will study intersection of subvarieties of Hold(Gk,n) which are generically located in Hold(Gk,n).

For a ∈ P1(C), λ ∈ Rk,n and W ∈ W, denote by V W
a,λ the subvariety

V W
a,λ =

{
f ∈ Hold(Gk,n), f(a) ∈ ΩW

λ

}
.

Then, V W
a,λ is a subvariety of Hold(Gk,n) of dimension nd+ k(n− k)− ⟨λ⟩.

Definition A.2 ([5]). The quantum cohomology ring QH(Gk,n) is the vector space C[q]⊗H∗(Gk,n)
with the multiplication

(62) (qkσλ) · (qk
′
σµ) = qk+k′

∑
d≥0,ν∈Rk,n

⟨λ, µ, νc⟩dqdσν ,

where ⟨λ, µ, νc⟩d = 0 if ⟨λ⟩+ ⟨µ⟩+ ⟨νc⟩ ≠ k(n− k) + nd, and otherwise

⟨λ, µ, ν⟩d = #
(
V W
0,λ ∩ V W ′

1,µ ∩ V W ′′
∞,ν

)
.

Remark that d = 0 corresponds to constant maps on Gk,n and we recover with ⟨λ, µ, νc⟩0 the
intersection numbers given in the previous paragraph. The fact that the multiplication is indeed
an associative product on C[q] ⊗ H∗(Gk,n) is a highly nontrivial property. This associativity is
however crucial for enumerative properties of the quantum cohomology ring. Indeed, for any
p ≥ 2, λ1, . . . , λp ∈ Rk,n, then we have in QH(Gk,n)

(63) σλ1 . . . σλp =
∑

d≥0, λc
p+1∈Rk,n

⟨λ1, . . . , λp+1⟩dqdσλc
p+1

,

where ⟨λ1, . . . , λp+1⟩d = 0 if
∑p+1

i=1 ⟨λi⟩ ≠ k(n− k) + dn and otherwise

⟨λ1, . . . , λp+1⟩d = #

(
p+1⋂
i=1

V Wi
ai,λi

)
,

where a1, . . . , ap+1 are p+ 1 generic points of P1(C) and W1, . . . ,Wp+1 are (p+ 1) generic flags in
W.

The algebraic structure of QH(Gk,n) has been investigated by several author [5, 6, 15]. This
algebraic study culminated with the combinatorial description of the coefficients ⟨λ, µ, νc⟩d in [15] in
terms of puzzles of the 2-steps flag manifold (see also [14] for a refined version). For our probabilistic
purpose, one of the most important descriptions of QH(Gk,n) is given by its algebraic presentation

QH(Gk,n) ≃ Sym[x1, . . . , xk]/⟨hi = 0, i = n− k + 1, . . . n− 1⟩
through the map σλ 7→ sλ, q 7→ (−1)k+1hn. This algebraic presentation can be further simplified,
see [46], as

Sym[x1, . . . , xk]/⟨hi = 0, i = n− k + 1, . . . n− 1, hn = (−1)k+1q⟩
=Sym[x1, . . . , xk]/⟨xn1 = . . . = xnk , xi ̸= xj , i ̸= j⟩,

and then q = (−1)k+1xni for all 1 ≤ i ≤ n.

Example A.3. Let us resume Example A.1 for k = 1, where G1,n+1 = Pn(C). Then, a rational
map h from P1(C) to Pn(C) is given by n + 1 homogeneous polynomials f1(x, y), . . . , fn+1(x, y)
of same degree which don’t have any common zero. Denote by d the degree of the polynomials
fj , 1 ≤ j ≤ n. Up to a generic choice of basis (e1, . . . , en+1) of Pn(C), one can assume that all fj
have nonzero coefficient for the monomial yd and that furthermore fn+1(0, 1) ̸= 0. Let W be the flag
given by the basis (e1, . . . , en+1), with Wi = V ect⟨e1, . . . , ei⟩. Recall then from Example A.1 that
ΩW
(1) = {[x1, . . . , xn, 0], (xi)1≤i≤n ∈ Cn \ {0}}. Hence, h−1(ΩW

(1)) = {[x, y] ∈ P1(C), fn+1(x, y) = 0}.
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By the choice of a generic basis, fn+1(0, 1) ̸= 0 and thus (0, 1) ̸∈ h−1(ΩW
(1)). Then, on the open

chart {x ̸= 0}, the maps h is given by

h : (1, y) 7→ [f1(1, y), . . . , fn+1(1, y)],

where each fj(1, y) are univariate polynomials of degree d. Hence,

h−1(ΩW
(1)) ∩ {x ̸= 0} = {[1, y], fn+1(1, y) = 0}.

Since fn+1(1, y) is a degree d polynomial, the latter equation has exactly d solutions, and finally

#h−1
(
ΩW
(1)

)
= d.

Hence, we see that in the simplest case k = 1, the degree of a holomorphic map coincides with
the algebraic degree of the map from P1(C) to Pn(C). The ring QH(G1,n+1) is then the ring of

univariate polynomials C[x], with the map σk 7→ xk for 1 ≤ k ≤ n and q 7→ xn+1.
In the simplest case n = 1, we can even recover a classical result. Let x1, . . . , x2p+1 and

y1, . . . , y2p+1 be generic elements of P(C). Each yi ∈ P1(C) defines a flag in C2 given by Wi{0 ⊂
yi ⊂ C2}. Moreover, saying that a map h ∈ Hol(P1(C),P1(C)) satisfies f(xi) = yi exactly means

that f(xi) ∈ ΩWi

(1). By (63),

σ2p
(1) =

∑
d≥0, λc

2p+1∈R1,2

2p+|λ2p+1|=2d+1

#

Ω
W2p+1

λ2p+1
∩

⋂
1≤i≤2p

V Wi

xi,(1)

 qdσλc
2p+1

,

and by the latter description of QH(G1,2),

σ2p
(1) = qp.

Hence, the only non zero terms arise for d = p, and then λ2p+1 = (1). We deduce that there is a
unique rational map of degree p such that f(xi) = yi for generic {xi, yi}1≤i≤2p+1 ∈ P1(C).
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[17] E. Cépa and D. Lépingle. Brownian particles with electrostatic repulsion on the circle: Dyson’s model for unitary

random matrices revisited. ESAIM: Probability and Statistics, 5, 203-224, (2001).
[18] M. Defosseux, (2016). Fusion coefficients and random walks in alcoves. Annales de l’Institut Henri Poincaré,
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