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Cell response heterogeneity upon treatment is a main obstacle in preclinical development of
efficacious cancer drugs, due to the emergence of drug-tolerant cells. We have previously developed
a single-cell workflow, Fate-Seq [2], to profile drug-tolerant persisters, based on predictions of
their drug response. To achieve this goal, Fate-Seq couples 3 single-cell techniques [1]: first the predic-
tion of the cell response phenotype (resistant or sensitive) for clonal cancer cells treated with a chosen
drug, then the separation of the predicted resistant cells from the predicted sensitive ones and finally
the RNA sequencing of the cells.

To automatize and increase the prediction throughput, we present 3 major improvements in
our workflow using machine learning models to classify cell drug response and determine the
molecular factors of non-genetic resistance to a drug. Theses molecular factors represent good
candidates to be targeted during a co-treatment, in combination with the first drug analyzed with
our pipeline.

First, we present how we combine image processes and machine learning classification
models to automatically track cells overtime and detects important cellular events like divi-
sion or death. The output of this first technique are short and sparse fluorescent time-trajectories, that
represents the transcriptomic activity in response to the drug, with a unique signal for each cell.

We then introduce our eDRUGs (early Drug Response UpGraded) classifier, that combines
mechanistic modeling of apoptosis (cell death) and machine learning classification models to
predict cell drug response, within an hour, for a maximum number of cells, using the fluorescent
time-trajectories as input. This new method is twice as accurate as our previous prediction method [3].

Finally, we will also propose a novel analysis method of sc-RNA-seq data obtained with Fate-
Seq. This method consists in training binary classifiers on the scRNAseq expression data obtained from
the pipeline, using a range of models and explainable AI techniques such as DeepLift [4], in addi-
tion to clustering techniques, to obtain attribution scores for each gene. These scores are expected to
reveal a reduced gene set, possibly containing only tens of genes, that are predictive of drug resistance.
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