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LOGARITHMIC SOBOLEV AND INTERPOLATION INEQUALITIES ON THE SPHERE:

CONSTRUCTIVE STABILITY RESULTS

GIOVANNI BRIGATI, JEAN DOLBEAULT, AND NIKITA SIMONOV

ABSTRACT. We consider Gagliardo–Nirenberg inequalities on the sphere which inter-
polate between the Poincaré inequality and the Sobolev inequality, and include the log-
arithmic Sobolev inequality as a special case. We establish explicit stability results in the
subcritical regime using spectral decomposition techniques, and entropy and carré du
champ methods applied to nonlinear diffusion flows.

1. INTRODUCTION AND MAIN RESULTS

Functional inequalities are essential in many areas of mathematics. The knowledge
of optimal constants, or at least good estimates of them, is crucial for various applica-
tions. Whether optimality cases are achieved is a standard issue in analysis. The next
natural question is to understand how the deficit, say the difference of the two sides of
the functional inequality, measures the distance to the set of optimal functions. Such
a question has been actively studied in critical Sobolev inequalities, but much less in
subcritical interpolation inequalities. In the case of the sphere, a global stability result
based on Bianchi–Egnell-type methods was recently obtained for a family of Gagliardo–
Nirenberg inequalities by Frank in [32], with the striking observation that only the power
4 of a natural distance is controlled by the deficit. Here we give a more detailed picture,
which includes the logarithmic Sobolev inequality, and provide explicit estimates.

On the sphere Sd with d ≥ 1, the logarithmic Sobolev inequality can be written as

(LS) ∫
Sd

∣∇F ∣2 dµ ≥ d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2
L2(Sd)

⎞
⎠

dµ ∀F ∈H1(Sd ,dµ) ,

where dµ denotes the uniform probability measure. The equality case is achieved by
constant functions and d/2 is the optimal constant as shown by taking the test functions
Fε(x) = 1+ εx ⋅ ν, for some arbitrary ν ∈ Sd , in the limit as ε → 0. Our first result is
an improved inequality under an orthogonality constraint, which improves upon [23,
Proposition 5.4].

Theorem 1. Let d ≥ 1. For any F ∈H1(Sd ,dµ) such that

(1.1) ∫
Sd

x F dµ = 0,

we have

(1.2) ∫
Sd

∣∇F ∣2 dµ− d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2
L2(Sd)

⎞
⎠

dµ ≥Cd ∫
Sd

∣∇F ∣2 dµ ,

with Cd = 2
d+2 .
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Since equality in (LS) is achieved if and only if F is a constant function, the right-hand
side in (1.2) is an estimate of the distance to the set of optimal functions under the con-
straint ∫Sd x F dµ = 0. Alternatively, Theorem 1 amounts to the improved logarithmic
Sobolev inequality

∫
Sd

∣∇F ∣2 dµ ≥ d +2

2 ∫
Sd

F 2 log
⎛
⎝

F 2

∥F∥2
L2(Sd)

⎞
⎠

dµ ∀F ∈H1(Sd ,dµ) s.t. ∫
Sd

x F dµ = 0.

Without condition (1.1), there is no such inequality as (1.2). With Fε(x) = 1+ εx ⋅ν as
above, as ε→ 0 one can indeed check that

∥∇Fε∥2
L2(Sd)−

d

2 ∫Sd
F 2
ε log

⎛
⎝

F 2
ε

∥Fε∥2
L2(Sd)

⎞
⎠

dµ =O(ε4) =O (∥∇Fε∥4
L2(Sd)) .

In the absence of an additional constraint, like (1.1), such behaviour is in fact optimal.
The following estimate arises from the carré du champ method.

Proposition 2. Let d ≥ 1, γ = 1/3 if d = 1 and γ = (4d −1)(d −1)2/(d +2)2 if d ≥ 2. Then,
for any F ∈H1(Sd ,dµ) we have

∫
Sd

∣∇F ∣2 dµ− d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2
L2(Sd)

⎞
⎠

dµ ≥ 1

2

γ ∥∇F∥4
L2(Sd)

γ ∥∇F∥2
L2(Sd)+d ∥F∥2

L2(Sd)

.

With ∥F∥2
L2(Sd) = 1, notice that the deficit can be estimated from below by

∫
Sd

∣∇F ∣2 dµ− d

2 ∫Sd
F 2 log(F 2)dµ ≥ γ

2d
∥∇F∥4

L2(Sd)+o (∥∇F∥4
L2(Sd))

if ∥∇F∥2
L2(Sd) is small enough.

Let Π1F denote the orthogonal projection of a function F ∈ L2(Sd) on the spherical
harmonics corresponding to the first positive eigenvalue of −∆ on Sd , i.e.,

Π1F(x) = (d +1)x ⋅∫
Sd

y F(y)dµ(y) ∀x ∈Sd .

Our main stability result for the logarithmic Sobolev inequality combines the results of
Theorem 1 and Proposition 2 as follows.

Theorem 3. Let d ≥ 1. For any F ∈H1(Sd ,dµ), we have

∫
Sd

∣∇F ∣2 dµ− d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2
L2(Sd)

⎞
⎠

dµ

≥Sd
⎛
⎝

∥∇Π1F∥4
L2(Sd)

∥∇F∥2
L2(Sd)+

d
2 ∥F∥2

L2(Sd)

+∥∇(Id−Π1)F∥2
L2(Sd)

⎞
⎠

for some stability constant Sd > 0.

An explicit estimate of Sd is given in Section 4.

We also consider the subcritical Gagliardo–Nirenberg inequalities

(GN) ∫
Sd

∣∇F ∣2 dµ ≥ d

p −2
(∥F∥2

Lp(Sd)−∥F∥2
L2(Sd)) ∀F ∈H1(Sd ,dµ) ,
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for any p ∈ [1,2)∪ (2,2∗). Here, dµ again denotes the uniform probability measure
on Sd , the critical Sobolev exponent is 2∗ ∶= 2d/(d −2) if d ≥ 3 and we adopt the con-
vention that 2∗ = +∞ if d = 1 or d = 2. Inequality (GN) with p = 1 is equivalent to the
Poincaré inequality. If d ≥ 3, inequality (GN) also holds for the critical exponent p = 2∗

and it is in fact Sobolev’s inequality with optimal constant on Sd , but this is out of the
scope of our paper which focuses on the subcritical regime p < 2∗. The logarithmic
Sobolev inequality (LS) is obtained from (GN) by taking the limit as p→ 2, and the coun-
terpart of the above results for p ≠ 2, in the subcritical range p < 2∗, goes as follows.

Theorem 4. Assume that d ≥ 1 and p ∈ (1,2)∪(2,2∗). For any function F ∈ H1(Sd ,dµ)
such that the orthogonality condition (1.1) holds, we have

(1.3) ∫
Sd

∣∇F ∣2 dµ− d

p −2
(∥F∥2

Lp(Sd)−∥F∥2
L2(Sd)) ≥Cd ,p ∫

Sd
∣∇F ∣2 dµ

with Cd ,p =
2 d−p (d−2)

2(d+p) .

Taking Fε(x) = 1+ εx ⋅ν as above shows that (1.1) is needed in Theorem 4. We also
have a higher-order estimate of the deficit as a consequence of the carré du champ
method.

Proposition 5. Let d ≥ 1 and p ∈ (1,2)∪(2,2∗). There is a convex function ψ on R+ with
ψ(0) =ψ′(0) = 0 such that, for any F ∈H1(Sd ,dµ), we have

∫
Sd

∣∇F ∣2 dµ− d

p −2
(∥F∥2

Lp(Sd)−∥F∥2
L2(Sd)) ≥ ∥F∥2

Lp(Sd) ψ
⎛
⎝
∥∇F∥2

L2(Sd)

∥F∥2
Lp(Sd)

⎞
⎠

.

An explicit expression forψwill be given in Section 3. The two results of Theorem 4 and
Proposition 5 can be combined to prove the analogue of Theorem 3 for p ≠ 2, with an
explicit constant: see Section 4.

Theorem 6. Let d ≥ 1 and p ∈ (1,2)∪(2,2∗). For any F ∈H1(Sd ,dµ), we have

∫
Sd

∣∇F ∣2 dµ− d

p −2
(∥F∥2

Lp(Sd)−∥F∥2
L2(Sd))

≥Sd ,p
⎛
⎝

∥∇Π1F∥4
L2(Sd)

∥∇F∥2
L2(Sd)+∥F∥2

L2(Sd)

+∥∇(Id−Π1)F∥2
L2(Sd)

⎞
⎠

for some explicit stability constant Sd ,p > 0.

Let us give a brief account of the literature. In this paper, we address the distinction
between improved inequalities (inequalities with improved constants under orthogo-
nality constraints) and quantitative stability (as a measure of a distance to the set of
optimal functions). There are many adjacent directions of research like, for instance,
stability in weaker norms (see for instance [25, 40] for Sobolev’s inequality) or notions
of stability with no explicit notion of distance. To our knowledge, not so much has
been done in subcritical interpolation inequalities (see [11, 32] and some references
therein), except for the logarithmic Sobolev inequality, for which we refer to [28, 30]
and [39, 31, 38, 41].

The Gagliardo–Nirenberg inequalities (GN) on the sphere have been established with
optimal constant for any p ∈ (2,2∗) in [10, Corollary 6.1] and in [7]. In dimension d = 2,
Onofri’s inequality is obtained from (GN) in the limit as p → 2∗ = +∞: see [7, 13]. With
p ∈ [1,2) or p > 2 but not too large (if d ≥ 2), inequality (GN) was known earlier from [3].
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A Markovian point of view is presented in [5], with many more references therein on
related questions. On Euclidean space, similar inequalities go back to [51, 34, 49]. The
logarithmic Sobolev inequality (LS) is a well known-limit case as p → 2 and can be con-
sidered in a common framework with (GN). Whenever possible, we shall adopt this
point of view. For an overview of early results on the sphere, we refer to [36, Section
6, (iv)]. The literature on (LS) on the circle and on the sphere can be traced back at least
to [56], [46, Theorem 1, page 268] with computations based on the ultraspherical oper-
ator, and [50] for a more variational approach. The inequality with optimal constant is
stated in [3, inequality (13) page 195] as a consequence of the carré du champ method.
Also see [4] and [14, page 342] for related results and [18, 22, 23] for a PDE approach
based on entropy estimates and the carré du champ method. After Schwarz foliated
symmetrization, the problem is reduced to a simpler family of interpolation inequali-
ties involving only the ultraspherical operator.

The interest for stability issues was raised by [12] and the stability result of Bianchi
and Egnell in [9], on Euclidean space. Over the years, various approaches have been
developed, based on compactness methods and contradiction arguments as in [9, 16],
spectral analysis and orthogonality conditions as in [23, Proposition 5.4] and [37], or
entropy methods and improved inequalities as in [2, 27, 21, 23, 19]. For spectral meth-
ods, a fruitful strategy relies on the Funk–Hecke formula, which is behind (2.2), and the
approach of [44, 7], which applies to the stability result for fractional interpolation in-
equalities of [16] and [29, Corollary 2.3]. This is the method we use in Section 2. Stability
issues for (GN) have recently been discussed in [32] with methods of Bianchi–Egnell-
type, with the drawback that no estimate of the stability constant is known. This draw-
back can be cured by a carré du champ method as we shall see in Section 3. Without
entering into details, let us mention some recent progress on stability in [11, 20, 42, 15]
for related critical inequalities.

This paper is organized as follows. Section 2 is devoted to the proof by spectral meth-
ods of Theorem 7 (see below), which is an extension of Theorems 1 and 4: under or-
thogonality constraints, these results are reduced to estimates of improved constants
in inequalities (LS) and (GN), with various refinements based on a decomposition in
spherical harmonics. An explicit stability result without constraints corresponding to
Propositions 2 and 5 is proved in Section 3. The proofs of Theorems 3 and 6, in Sec-
tion 4, is based on the spectral decomposition method developed by Frank in [32]. We
collect the previous estimates (with and without orthogonality constraints) in global re-
sults, with explicit constants. Various additional results are stated in two appendices:
the extension of the method to interpolation inequalities for the Gaussian measure on
Euclidean space and a discussion of its limitations in Appendix A, the details of the com-
putations of the carré du champ method on the sphere and its application in order to
establish improved functional inequalities in Appendix B.

2. IMPROVEMENTS UNDER ORTHOGONALITY CONSTRAINTS

In this section, we prove Theorems 1 and 4 in the slightly more general framework of
Theorem 7 below. Let us consider the generalized entropy functionals

E2[F ] ∶= 1

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2
L2(Sd)

⎞
⎠

dµ and Ep[F ] ∶=
∥F∥2

Lp(Sd)−∥F∥2
L2(Sd)

p −2
if p ≠ 2.
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With this notation, we can rephrase (LS) and (GN) as

∫
Sd

∣∇F ∣2 dµ ≥ d Ep[F ] ∀F ∈H1(Sd ,dµ) ,

for any p ∈ [1,2∗). The optimality case is achieved by considering the test function
Fε = 1+εϕ1 in the limit as ε→ 0, where ϕ1 is an eigenfunction of the Laplace–Beltrami
operator such that−∆ϕ1 = dϕ1, for instanceϕ1(x) = x ⋅ν for some ν ∈Sd as in Section 1.

Let us consider the decomposition into spherical harmonics of L2(Sd ,dµ),

L2(Sd ,dµ) =
∞

⊕
`=0
H` ,

whereH` is the subspace of spherical harmonics of degree ` ≥ 0. See for instance [47, 52,
8, 45]. For any integer k ≥ 1, let us define Πk as the orthogonal projection with respect
to L2(Sd ,dµ) onto⊕k

`=1H`. The following statement extends Theorems 1 and 4.

Theorem 7. Assume that d ≥ 1, p ∈ (1,2∗) and let k ≥ 1 be an integer. For any function
F ∈H1(Sd ,dµ), we have

(2.1) ∫
Sd

∣∇F ∣2 dµ−d Ep[F ] ≥Cd ,p,k ∫
Sd

∣∇(Id−Πk)F ∣2 dµ

for some explicit constant Cd ,p,k ∈ (0,1) such that Cd ,p,k ≤Cd ,p,1 =
2 d−p (d−2)

2(d+p) .

The expression for Cd ,p,k is given below in the proof. inequality (2.1) can be seen as an
improvement of (LS) and (GN), namely

(1−Cd ,p,k)∫
Sd

∣∇F ∣2 dµ ≥ d Ep[F ]

for any F ∈ H1(Sd ,dµ) such that Πk F = 0. With k = 1, this establishes (1.2) and (1.3),
thus proving Theorem 1 if p = 2, and Theorem 4 if p ≠ 2.

Proof of Theorem 7. Let (F j ) j∈N be the decomposition of F alongH j for any j ∈N. We
learn from [7, Ineq. (19)] or [29, Ineq. (1.6)] that the subcritical interpolation inequalities

(2.2) Ep[F ] ≤
∞

∑
j=1

ζ j (p)∫
Sd

∣F j ∣2 dµ ∀F ∈H1(Sd ,dµ)

hold for any p ∈ (1,2)∪(2,2∗) with

ζ j (p) ∶=
γ j (d

p )−1

p −2
and γ j (x) ∶= Γ(x)Γ( j +d − x)

Γ(d − x)Γ(x + j)
.

This result is based on the Funk–Hecke theorem (see for instance [33, Section 4]) and
Lieb’s ideas in [44]. Notice that ζ j (p) ≥ 0 for any p ∈ (1,2)∪ (2,2∗). According to [29,
Lemma 2.2], the function ζ j is strictly monotone increasing on (1,∞) for any j ≥ 2 and
the limits

λ j = d lim
p→2∗

ζ j (p)

are the eigenvalues of the Laplace–Beltrami on the sphere, with λ j = j ( j +d −1). Hence

d Ep[F ] ≤
∞

∑
j=1

λ j ∫
Sd

∣F j ∣2 dµ =∫
Sd

∣∇F ∣2 dµ ,

which is the essence of the proof of (GN) in [7] and also the main idea for the proof of
the stability result for fractional interpolation inequalities of [29, Corollary 2.3]. Here we
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draw some consequences in standard norms for nonfractional operators and identify
estimates of the stability constant in the corresponding stability result.

⊳ The case p ≠ 2. Let x = d/p ∈ ((d −2)/2,d] if d ≥ 2 and x ∈ (0,d] if d = 1. We consider

ξ j (x) ∶=
∣γ j (x)−1∣
j ( j +d −1)

and h j (x) = j ( j +d −1)( j +d − x)
( j +1)( j +d)( j + x)

;

notice that γ j (x) > 1 for x < d/2, while γ j (x) < 1 for x > d/2. An elementary computa-
tion shows that 0 < h j (x) < 1. Since γ j+1(x)λκ = h j (x)λ j+1γ j (x), we obtain

(2.3) ξ j+1(x) = h j (x)ξ j (x)+(1−h j (x))ξ⋆j (x) ,

where

ξ⋆j (x) ∶= 1

1−h j (x)
∣

h j (x)
λ j

− 1

λ j+1
∣ = ∣d −2 x∣

j ( j +d)(2 x −d +2)+d x
.

Notice that (ξ⋆j (x)) j≥2 is a monotone decreasing sequence for any fixed, admissible

value of x. We start at j = 2 with the observation that ξ⋆2 (x) < ξ2(x) if x is admissible.
This gives, by using (2.3), the following estimate

ξ3(x) = h2(x)ξ2(x)+(1−h2(x))ξ⋆2 (x) < ξ2(x) .

Using ξ⋆3 (x) < ξ⋆2 (x), we can iterate and conclude by induction that ξ j (x) < ξ2(x) for all
j ≥ 3. As a consequence, we obtain

sup
j≥3

ζ j (p)
j ( j +d −1)

< ζ2(p)
2(d +1)

= p

2(d +p)
< 1

d
∀p ∈ (1,2)∪(2,2∗) .

We deduce from (2.2) that

Ep[F ] ≤∫
Sd

∣F1∣2 dµ+ p

2(d +p)

∞

∑
j=2

j ( j +d −1)∫
Sd

∣F j ∣2 dµ

= 1

d ∫Sd
∣∇F ∣2 dµ+ 2d −p (d −2)

2d (d +p) ∫Sd
∣∇(Id−Π1)F ∣2 dµ ,

which proves the result with k = 1 and gives the expression for Cd ,p,1.
Let us consider the case k > 1. We already know that ξ2(x) > ξ⋆2 (x). For any j ≥ 2, we

deduce from (2.3) that

ξ j+1(x)−ξ⋆j+1(x) = h j (x)(ξ j −ξ⋆j (x))+ξ⋆j (x)−ξ⋆j+1(x) ≥ h j (x)(ξ j −ξ⋆j (x))

because j ↦ ξ⋆j (x) is monotone decreasing. By induction, this proves that ξ j (x) > ξ⋆j (x)
for any j ≥ 2. As a consequence of (2.3), j ↦ ξ j (x) is also monotone decreasing and

sup
j≥k+2

ζ j (p)
j ( j +d −1)

< ζk+1(p)
(k +1)(k +d)

< 1

d
∀p ∈ (1,2)∪(2,2∗) .

Altogether, for any k ≥ 1, we have

d Ep[F ] ≤∫
Sd

∣∇Πk F ∣2 dµ+ d ζk+1(p)
(k +1)(k +d) ∫Sd

∣∇F ∣2 dµ ,

and the stability constant in (2.1) is estimated by

Cd ,p,k = 1− d ζk+1(p)
(k +1)(k +d)

.
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In our method, this constant cannot be improved as shown by a test function such that
F j = 0 for any j ∈N such that j ≠ 0 and j ≠ k+1, but this does not prove the optimality of
Cd ,p,k .

⊳ The case p = 2. By taking the limit as p→ 2+ in (2.2), we obtain that

η j ∶=
2

d
lim

p→2+
ζ j (p) = ψ( j +d/2)−ψ(d/2) ,

where ψ(z) = Γ′(z)/Γ(z) is the digamma function, and

1

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2
L2(Sd)

⎞
⎠

dµ ≤ d

2

∞

∑
j=1

η j ∫
Sd

∣F j ∣2 dµ ∀F ∈H1(Sd ,dµ) .

Fromψ(z+1) =ψ(z)+1/z obtained by differentiating the identity Γ(z+1) = zΓ(z) with
respect to z, we learn that

η j+1 = η j +
2

d +2 j
.

We claim that

η2 ≤ η j ≤
2λ j

d (d +2)
∀ j ≥ 2

because there is equality for j = 2 as η2 = 4(d+1)
d (d+2) and λ2 = 2(d +1) on the one hand, and

η j+1−η j =
2

d +2 j
≤ 2(d +2 j)

d (d +2)
=

2(λ j+1−λ j )
d (d +2)

on the other hand, so that the result follows by induction.
Using λ j+1 =λ j +(d +2 j) =λ j +2 z j where z j ∶= j +d/2, we also have

η j+1

λ j+1
=
η j + 1

z j

λ j +2 z j
<
η j

λ j
,

where the inequality follows from

z2
j >

λ j

2η j
∀ j ≥ 1.

This inequality is indeed true for j = 1 because η1 = 2/d and we obtain the result for any
j ≥ 1 by induction using

η j+1−η j =
2

d +2 j
≥
λ j+1

2 z2
j+1

−
λ j

2 z2
j

= 2
4 j 2+2(d 2+2) j +d 3

(d +2 j)2 (d +2+2 j)2
.

Altogether, for any k ≥ 1, we have

d E2[F ] ≤∫
Sd

∣∇Πk F ∣2 dµ+ d ηk+1

(k +1)(k +d) ∫Sd
∣∇F ∣2 dµ

and the constant in (2.1) is given by

Cd ,2,k = 1− d ηk+1

(k +1)(k +d)
.

In the framework of our method, this estimate of the constant cannot be improved as
shown by a test function such that F j = 0 for any j ∈N such that j ≠ 0 and j ≠ k +1, but
again this does not prove the optimality of Cd ,p,k . �



8 G. BRIGATI, J. DOLBEAULT, AND N. SIMONOV

3. IMPROVEMENTS BY THE carré du champ METHOD

We improve upon Frank’s stability result in [32] by giving a constructive estimate
based on the carré du champ method, without assuming any additional constraint. Var-
ious computations that are needed for a complete proof, most of them already known
in the literature, are collected in Appendix B.

3.1. A simple estimate based on the heat flow, below the Bakry–Emery exponent.
Let us consider the constant γ given by

(3.1) γ ∶= (d −1

d +2
)

2

(p −1)(2#−p) if d ≥ 2, γ ∶= p −1

3
if d = 1,

where 2# ∶= 2 d 2
+1

(d−1)2 is the Bakry–Emery exponent. Notice that γ = 2− p with 1 ≤ p ≤ 2#

means that

d = 1 and p = 7/4 = p∗(1) ,

d > 1 and p = p∗(d) ∶= 3+d +2d 2−2
√

4d +4d 2+d 3

(d −1)2
.

Let us define

(3.2) s⋆ ∶=
1

p −2
if p > 2 and s⋆ ∶=+∞ if p ≤ 2.

For any s ∈ [0, s⋆), let

(3.3)

ϕ(s) = 1−(p−2) s−(1−(p−2) s)
− γ

p−2

2−p−γ if γ ≠ 2−p and p ≠ 2,

ϕ(s) = 1
2−p (1+(2−p) s) log(1+(2−p) s) if γ = 2−p ≠ 0,

ϕ(s) = 1
γ
(eγ s −1) if p = 2.

In [19, Theorem 2.1] (also see [21] and earlier related references therein) the improved
Gagliardo-Nirenberg inequalities

(3.4) ∥∇F∥2
L2(Sd) ≥ dϕ

⎛
⎝
Ep[F ]

∥F∥2
Lp(Sd)

⎞
⎠
∥F∥2

Lp(Sd) ∀F ∈H1(Sd)

are stated with γ given by (3.1) under the conditions

d ≥ 1 and 1 ≤ p ≤ 2# if d ≥ 2, p ≥ 1 if d = 1.

Why this estimate is based on the heat flow is explained in Appendix B. Additional jus-
tifications and discussion of the case p = 2 are also given in Appendix B.

Since ϕ(0) = 0, ϕ′(0) = 1, and ϕ is convex increasing, with an asymptote at s = s⋆ if
p ∈ (2,2#), we know that ϕ ∶ [0, s⋆)→ R+ is invertible and ψ ∶ R+ → [0, s⋆), s ↦ ψ(s) ∶=
s −ϕ−1(s), is convex increasing with ψ(0) =ψ′(0) = 0, limt→+∞ (t −ψ(t)) = s⋆, and

ψ′′(0) =ϕ′′(0) = (d −1)2

(d +2)2
(2#−p)(p −1) > 0 ∀p ∈ (1,2#) .

Proposition 8. With the above notation, d ≥ 1 and p ∈ (1,2#), we have

∥∇F∥2
L2(Sd)−d Ep[F ] ≥ d ∥F∥2

Lp(Sd) ψ
⎛
⎝

1

d

∥∇F∥2
L2(Sd)

∥F∥2
Lp(Sd)

⎞
⎠

∀F ∈H1(Sd) .
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If p = 2, notice that ψ is explicit and given by

ψ(t) ∶= t − 1

γ
log(1+γ t) ∀ t ≥ 0.

The proof of Proposition 2 follows from the observation that ψ(t) ≥ γ
2

t 2

1+γ t for any t ≥ 0.

3.2. An estimate based on the fast diffusion flow, valid up to the critical exponent.
The subcritical range p ∈ [2#,2∗) corresponding to exponents between the Bakry–

Emery exponent and the critical Sobolev exponent is not covered in Section 3.1. In that
case, we rely on entropy methods based on a fast diffusion or porous medium equation
of exponent m, which are detailed in Appendix B (with corresponding references), to
establish that an improved inequality (3.4) holds for any ϕ =ϕm,p , where

(3.5) ϕm,p(s) ∶=∫
s

0
exp[−ζ((1 − (p −2)z)1−δ−(1 − (p −2) s)1−δ)] d z ,

provided m ∈Ap ∶=Ap ∶= {m ∈ [m−(d , p),m+(d , p)] ∶ 2
p ≤m < 1 if p < 4}, where

(3.6) m±(d , p) ∶= 1

(d +2)p
(d p +2±

√
d (p −1)(2d −(d −2)p)) ,

while the parameters δ and ζ are defined by

δ ∶= 1+ (m−1)p2

4(p −2)
,

ζ ∶=
(d +2)2 p2 m2−2 p (d +2)(d p +2)m+d 2 (5 p2−12 p +8)+4d (3−2 p)p +4

(1−m)(d +2)2 p2
.

Let s⋆ ∶= 1/(p −2) as in (3.2) and consider the inverse function ϕ−1
m,p ∶ R+ → [0, s⋆) and

ψm,p(s) ∶= s −ϕ−1
m,p(s). Exactly as in the case m = 1, we have the improved entropy –

entropy production inequality

∥∇F∥2
L2(Sd) ≥ d ∥F∥2

Lp(Sd) ϕm,p
⎛
⎝
Ep[F ]

∥F∥2
Lp(Sd)

⎞
⎠

∀F ∈H1(Sd) ,

which provides us with the following stability estimate.

Proposition 9. With above notation, d ≥ 1, p ∈ (2,2∗) and m ∈Ap , we have

∥∇F∥2
L2(Sd)−d Ep[F ] ≥ d ∥F∥2

Lp(Sd) ψm,p
⎛
⎝
∥∇F∥2

L2(Sd)

d ∥F∥2
Lp(Sd)

⎞
⎠

∀F ∈H1(Sd) .

The functionϕm,p can be expressed in terms of the incompleteΓ function, whileψm,p

is known only implicitly.

3.3. Comparison with other estimates.
Let us assume that p ∈ (2,2∗). In [32], Frank proves the existence of a positive con-

stant c⋆(d , p) such that

∥∇F∥2
L2(Sd)−d Ep[F ] ≥ c⋆(d , p)

(∥∇F∥2
L2(Sd)+∥F −F∥2

L2(Sd)
)

2

∥∇F∥2
L2(Sd)+

d
p−2 ∥F∥2

L2(Sd)

∀F ∈H1(Sd ,dµ) ,
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where F ∶= ∫Sd F dµ, which in particular implies the existence of a positive constant
c(d , p) such that

(3.7) ∥∇F∥2
L2(Sd)−d Ep[F ] ≥ c(d , p)

∥∇F∥4
L2(Sd)

∥∇F∥2
L2(Sd)+

d
p−2 ∥F∥2

L2(Sd)

∀F ∈H1(Sd ,dµ) ,

for all p ∈ (2,2∗). The value of the constant c⋆(d , p) found in [32] is unknown as it
follows from a compactness argument, in the spirit of [9], but the exponent 4 in the
right-hand side of (3.7) is optimal. With the test functions Fε(x) = 1+ εx ⋅ν for some
arbitrary ν ∈Sd , we can indeed check that

lim
ε→0

1

ε4
(∥∇Fε∥2

L2(Sd)−d Ep[Fε]) =
(d +p)(p −1)

2d (d +3)
,

which gives the upper bounds

c(d , p) ≤ (p −1)(d +p)
2(p −2)(d +3)

and c⋆(d , p) ≤ d 2

(d +1)2

(p −1)(d +p)
2(p −2)(d +3)

.

Let us notice that ∥∇F∥2
L2(Sd) ≥ d ∥F −F∥2

L2(Sd)
by the Poincaré inequality, so that we

have

(∥∇F∥2
L2(Sd)+∥F −F∥2

L2(Sd)
)

2
≥ ∥∇F∥4

L2(Sd) ≥
d 2

(d +1)2
(∥∇F∥2

L2(Sd)+∥F −F∥2

L2(Sd)
)

2

and, at least if c⋆(d , p) and c(d , p) are the optimal constants,

d 2

(d +1)2
c(d , p) ≤ c⋆(d , p) ≤ c(d , p) .

We claim that the carré du champ method provides us with a constructive estimate
of c(d , p). Let

φc(s) ∶= d

2(1− c)
(2c s− s⋆+

√
s2
⋆+4c s (s − s⋆)) .

Corollary 10. Let p ∈ (2,2∗). With the notation of Proposition 9, inequality (3.7) holds
with

c = sup{c > 0 ∶ ∃m ∈Ap such thatφc(s) ≤ϕm,p(s)∀ s ∈ [0, s⋆)} .

Proof. With no loss of generality, let us assume that ∥F∥Lp(Sd) = 1 and define

i = ∥∇F∥2
L2(Sd) and e ∶=

1−∥F∥2
L2(Sd)

p −2
,

so that ∥F∥2
L2(Sd) = 1−(p −2)e. With c = c(d , p), we can rewrite (3.7) as

i−d e ≥ c i2

i+ d
p−2 −d e

,

which amounts to

i−d e ≥φc(e) .

Since we know that i−d e ≥ϕm,p(e), the conclusion follows for the largest possible c > 0
such that ϕm,p ≥φc . �
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4. GLOBAL STABILITY RESULTS

We collect the statements of Theorems 3 and 6 into a single result. The whole section
is devoted to its proof.

Theorem 11. Let d ≥ 1 and p ∈ (1,2∗). For any F ∈H1(Sd ,dµ), we have

(4.1) ∫
Sd

∣∇F ∣2 dµ−d Ep[F ] ≥Sd ,p
⎛
⎝

∥∇Π1F∥4
L2(Sd)

∥∇F∥2
L2(Sd)+∥F∥2

L2(Sd)

+∥∇(Id−Π1)F∥2
L2(Sd)

⎞
⎠

for some explicit stability constant Sd ,p > 0.

The value of Sd ,p is elementary and explicit but its expression is lengthy. We explain in
the proof how to compute it with all necessary details to obtain a numerical expression
for Sd ,p for given p and d , if needed.

Proof of Theorem 11. By homogeneity of (4.1), we can assume that ∥F∥L2(Sd) = 1 with-
out loss of generality. For clarity, we subdivide the proof into various steps. Let us start
with the case p > 2.

● An estimate based on the carré du champ method. If ∥∇F∥2
L2(Sd) /∥F∥2

Lp(Sd) ≥ ϑ0 > 0,
we know by the convexity of ψm,p that
(4.2)

∥∇F∥2
L2(Sd)−d Ep[F ] ≥ d ∥F∥2

Lp(Sd) ψm,p ( 1

d

∥∇F∥2
L2(Sd )

∥F∥2
Lp(Sd )

) ≥ d

ϑ0
ψm,p (ϑ0

d
) ∥∇F∥2

L2(Sd) .

In that case, we conclude from ∥∇F∥2
L2(Sd) = ∥∇Π1F∥2

L2(Sd)+∥∇(Id−Π1)F∥2
L2(Sd) and

∥∇Π1F∥2
L2(Sd) ≥

∥∇Π1F∥4
L2(Sd)

∥∇F∥2
L2(Sd)+∥F∥2

Lp(Sd)

.

Let us assume now that ∥∇F∥2
L2(Sd) < ϑ0 ∥F∥2

Lp(Sd). By taking into account (GN), we
obtain

∥∇F∥2
L2(Sd) <ϑ0 ∥F∥2

Lp(Sd) ≤ϑ0 (∥F∥2
L2(Sd)+

p −2

d
∥∇F∥2

L2(Sd)) .

Using ∥F∥L2(Sd) = 1, under the assumption that ϑ0 < d/(p −2), we know that

(4.3) ϑ ∶= ∥∇F∥2
L2(Sd) <

d ϑ0

d −(p −2)ϑ0
.

Notice that the parameter ϑ0 still has to be chosen.

● An estimate of the average. Let us estimateΠ0F ∶= ∫Sd F dµ. By the Poincaré inequality,
we have

1 = ∥F∥2
L2(Sd) = (∫

Sd
F dµ)

2

+∥(Id−Π0)F∥2
L2(Sd) ≤ (∫

Sd
F dµ)

2

+ ϑ
d

,

and on the other hand we know that (∫Sd F dµ)2 ≤ ∥F∥2
L2(Sd) = 1 by the Cauchy–Schwarz

inequality, so that

(4.4)
d −ϑ

d
< (∫

Sd
F dµ)

2

≤ 1.

We assume in the sequel that

(4.5) ϑ < d .
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● Partial decomposition on spherical harmonics. With no loss of generality, let us write

(4.6) F =M (1+εY +ηG)

such that M =Π0F and Π1F = εM Y where Y (x) =
√

d+1
d x ⋅ν for some given ν ∈ Sd .

Here the functions Y and G are normalized so that ∥∇Y ∥L2(Sd) = ∥∇G∥L2(Sd) = 1 and

M −2 ∥∇F∥2
L2(Sd) = ε

2+η2 =ϑ and M −2 ∥F∥2
L2(Sd) = 1+ 1

d
ε2+η2 ∥G∥2

L2(Sd) .

We observe thatΠ0(F −M ) = 0. Using (GN) and the Poincaré inequality, we have

∥F −M ∥2
Lp(Sd) ≤ ∥F −M ∥2

L2(Sd)+
p −2

d
∥∇F∥2

L2(Sd) ≤
p −1

d
∥∇F∥2

L2(Sd) .

Similarly, by (2.1), i.e.,

d p

2(d +p)
∥∇G∥2

L2(Sd) = (1− 2d −p (d −2)
2(d +p)

)∥∇G∥2
L2(Sd) ≥ d Ep[G] ,

and the improved Poincaré inequality (2.1) written with p = 1 and k = 1

∥G∥2
L2(Sd) ≤

1

2(d +1)
∥∇G∥2

L2(Sd) =
1

2(d +1)
,

we have

∥G∥2
Lp(Sd) ≤ ∥G∥2

L2(Sd)+
p (p −2)
2(d +p)

∥∇G∥2
L2(Sd) ≤Cp,d

using ∥∇G∥L2(Sd) = 1, with Cp,d ∶= 1
2(d+1) +

p (p−2)
2(d+p) . By the Cauchy–Schwarz inequality,

we also have

∥G∥L1(Rd) ≤
1√

2(d +1)
,

We recall that the eigenvalues of −∆ on Sd are λk = k (k +d −1) with k ∈N. In prepa-
ration for a detailed Taylor expansion as in [32], let us consider the function

Y (x) ∶=
√

d +1

d
x ⋅ν ,

which is such that −∆Y =λ1 Y with λ1 = d and

∥∇Y ∥2
L2(Sd) = 1, ∥Y ∥2

L2(Sd) =
1

d
,

∥Y ∥4
L4(Sd) =

3(d +1)
(d +3)d 2

, ∥Y ∥6
L6(Sd) =

15(d +1)2

(d +3)(d +5)d 2
.

The function Y2 ∶=Y 2− 1
d is such that −∆Y2 =λ2 Y2 with λ2 = 2(d +1) and

∥Y2∥2
L2(Sd) =

2

d (d +3)
, ∥∇Y2∥2

L2(Sd) =
4(d +1)
d (d +3)

.

The function Y3 ∶=Y 3− 3(d+1)
d (d+3) Y is such that −∆Y3 =λ3 Y3 with λ3 = 3(d +2) and

∥Y3∥2
L2(Sd) =

6(d +1)2

(d +5)(d +3)2 d 2
, ∥∇Y3∥2

L2(Sd) =
18(d +2)(d +1)2

(d +5)(d +3)2 d 2
.

As a consequence of (4.6), we know thatΠ0G =Π1G = 0 and ∥∇G∥L2(Sd) = 1. Let

g2 ∶=
∫Sd ∇Y2 ⋅∇G dµ

∥∇Y2∥L2(Sd)

and g3 ∶=
∫Sd ∇Y3 ⋅∇G dµ

∥∇Y3∥L2(Sd)

.
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With k = 1, 2, using −∆Yk =λk Yk with λk = ∥∇Yk∥2
L2(Sd) /∥Yk∥2

L2(Sd), we compute

∫
Sd

Y k G dµ =∫
Sd

Yk G dµ =
∥Yk∥2

L2(Sd)

∥∇Yk∥2
L2(Sd)

∫
Sd
∇Yk ⋅∇G dµ = gk

∥Yk∥2
L2(Sd)

∥∇Yk∥L2(Sd)

and obtain

∫
Sd

Y 2 G dµ =∫
Sd

Y2 G dµ = g2√
d (d +1)(d +3)

,

∫
Sd

Y 3 G dµ =∫
Sd

Y3 G dµ = c3 g3 with c3 ∶=
d +1

d (d +3)

√
2

(d +2)(d +5)
.

● Taylor expansions (1). Let us start with elementary estimates of ∥1+εY ∥Lp(Sd). If it

holds that 2 ≤ p < 3 and ∣s∣ < 1, we have

1

2
((1+ s)p +(1− s)p) ≤ 1+ p

2
(p −1) s2 (1+ 1

12
(p −2)(p −3) s2)

because all other terms in the series expansion of the left-hand side around s = 0 corre-
spond to even powers of s and appear with nonpositive coefficients. If either 1 ≤ p < 2
or p > 3 and ∣s∣ < 1/2, let

fp(s) ∶= 1

2
((1+ s)p +(1− s)p)−(1+ p

2
(p −1) s2)

and notice that f ′′p (s) = p
2 (p − 1)((1+ s)p−2 + (1− s)p−2 − 2) ≥ 0 by convexity of the

function y ↦ y p−2 so that c
(+)
p defined as the maximum of s↦ fp(s)/s6 on [−1/2,1/2] ∋

s is finite and we have

(4.7)
1

2
((1+ s)p +(1− s)p) ≤ 1+ p

2
(p −1) s2 (1+ 1

12
(p −2)(p −3) s2)+ c

(+)
p s6 .

We adapt the convention that c
(+)
p = 0 if p ∈ [2,3). Using the fact that Y (−x) =−Y (x),

∥1+εY ∥p
Lp(Sd)

= 1

2
(∥1+εY ∥p

Lp(Sd)
+∥1−εY ∥p

Lp(Sd)
) .

For any ε ∈ (0,1/2) we use (4.7) to write

∥1+εY ∥p
Lp(Sd)

−(1+ p

2
(p −1)(∥Y ∥2

L2(Sd)+
1

12
(p −2)(p −3) ∥Y ∥4

L4(Sd) ε
2)ε2)

≤ c
(+)
p ∥Y ∥6

L6(Sd) ε
6 .

For similar reasons, one can prove that there is another constant c
(−)
p which provides us

with a lower bound c
(−)
p ∥Y ∥6

L6(Sd) ε
6. Altogether, this amounts to

(4.8) c
(−)

p,d ε6 ≤ ∥1+εY ∥p
Lp(Sd)

−(1+ap,d ε
2+bp,d ε

4) ≤ c
(+)

p,d ε6 ,

with

ap,d ∶=
p (p −1)

2d
, bp,d ∶=

1

4
(p −2)(p −3) d +1

d (d +3)
ap,d ,

c
(±)

p,d ∶= 15(d +1)2

(d +3)(d +5)d 2
c
(±)
p .



14 G. BRIGATI, J. DOLBEAULT, AND N. SIMONOV

Estimate (4.8) is valid under the condition that ε < 1/2. We shall therefore request that

(4.9) ϑ < 1

4
,

which is an obvious sufficient condition according to (4.3). Now we draw two conse-
quences of (4.8). First, let us give an upper estimate of ∥1+εY ∥2

Lp(Sd). Using

(1+ s)
2
p ≤ 1+2

s

p
−(p −2) s2

p2
+ 2

3
(p −1)(p −2) s3

p3
,

we obtain

(4.10) ∥1+εY ∥2
Lp(Sd) ≤ 1+ 2

p
ap,d ε

2+ 1

p2
(2 p bp,d −(p −2)a2

p,d) ε
4+ r (+) ε6 ,

where the remainder term r (+) is explicitly estimated by

96 p3 r (+) = 64 a3
p,d (p2−3 p +2)+48 a2

p,d (p2−3 p +2)(2bp,d + cp,d)
+12 ap,d (p −2)(2bp,d + cp,d)(2bp,d (p −1)+ cp,d (p −1)−8 p)

+8b3
p,d (p2−3 p +2)+12b2

p,d (p −2)(cp,d (p −1)−4 p)
+6bp,d cp,d (p −2)(cp,d (p −1)−8 p)

+ cp,d (c2
p,d (p2−3 p +2)−12cp,d (p −2)p +192 p2) .

To do this estimate, we simply write that εα ≤ 26−α ε6 for any α > 6 using the (nonopti-
mal) bound ε2 < 1/2. Similarly, using

(1+ s)
2
p −1 ≤ 1−(p −2) s

p
+(p −1)(p −2) s2

p2
− 1

3
(p −1)(p −2)(3 p −2) s3

p3

+ 1

6
(p −1)(p −2)(3 p −2)(2 p −1) s4

p4
,

we obtain

(4.11) ∥1+εY ∥2−p
Lp(Sd)

≤ 1+ p −2

p
ap,d ε

2− p −2

p2
(p bp,d −(p −1)a2

p,d) ε
4+ r (−) ε6 ,

where the remainder term r (−) also has an explicit expression in terms of ap,d , bp,d and

c
(−)

p,d , which is not given here.

● Taylor expansions (2). With u ≥ 0, u+ r ≥ 0 and p > 2, we claim that

(u+ r)p ≤ up +p up−1 r + p

2
(p −1)up−2 r 2+ ∑

2<k<p

C p
k up−k ∣r ∣k +Kp ∣r ∣p

for some constant Kp > 0, where the coefficients

C p
k ∶=

Γ(p +1)
Γ(k +1)Γ(p −k +1)

are the binomial coefficients if p is an integer. It is proved in [20] that Kp = 1 if p ∈
(2,4]∪ {6}. The proof is similar to the above analysis and is left to the reader. Let us
integrate this inequality and raise both sides to the power 2/p to get

∥u+ r∥2
Lp(Sd) ≤ ∥u∥2

Lp(Sd) (1+ s)
2
p ,
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with

s = 1

∥u∥p
Lp(Sd)

(p∫
Sd

up−1 r dµ+ p

2
(p −1)∫

Sd
up−2 r 2 dµ

+ ∑
2<k<p

C p
k ∫

Sd
up−k ∣r ∣k dµ+Kp ∫

Sd
∣r ∣p dµ

⎞
⎠

.

By assumption 2/p < 1 so that we may use the identity (1+ s)2/p ≤ 1+ 2 s/p for any
s ≥ −1. Notice that we can assume that u + r ≥ 0 and deduce from (1) that s ≥ −1. As a
consequence, we have

∥u+ r∥2
Lp(Sd) ≤ ∥u∥2

Lp(Sd)

+ 2

p
∥u∥2−p

Lp(Sd)
(p∫

Sd
up−1 r dµ+ p

2
(p −1)∫

Sd
up−2 r 2 dµ

+ ∑
2<k<p

C p
k ∫

Sd
up−k ∣r ∣k dµ+Kp ∫

Sd
∣r ∣p dµ) .

We apply these computations to u = 1+εY and r = ηG to obtain

M −2 ∥F∥2
Lp(Sd)−∥1+εY ∥2

Lp(Sd)

≤ 2

p
∥1+εY ∥2−p

Lp(Sd)
η(p∫

Sd
(1+εY )p−1 G dµ

+ p

2
(p −1)η∫

Sd
(1+εY )p−2 ∣G ∣2 dµ

+ ∑
2<k<p

C p
k η

k ∫
Sd

(1+εY )p−k ∣G ∣k dµ+Kp η
p ∫

Sd
∣G ∣p dµ) .

Let us detail the expansion of each of the terms involving G in the right-hand side of this
estimates. For any s ∈ (−1/2,1/2), using the expansion

(1+ s)p−1 ≤ 1+(p −1) s + 1

2
(p −1)(p −2) s2+ 1

6
(p −1)(p −2)(p −3) s3+Rp s4

for some constant Rp > 0 applied with s = 1+εY , we obtain

η∫
Sd

(1+εY )p−1 G dµ ≤ 1

2
(p −1)(p −2) g2√

d (d +1)(d +3)
ηε2

+ 1

6
(p −1)(p −2)(p −3)c3 g3ηε

3+
Rp ηε

4

√
2(d +1)

.

The other terms admit simpler expansions:

η2∫
Sd

(1+εY )p−2 ∣G ∣2 dµ ≤ η2 (1+ε)p−2 ∥G∥2
L2(Sd)

≤ ∥G∥2
L2(Sd) η

2+ 1

2(d +1)
η2 ((1+ε)p−2−1)
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and

∑
2<k<p

C p
k η

k ∫
Sd

(1+εY )p−k ∣G ∣k dµ+Kp η
p ∫

Sd
∣G ∣p dµ

≤ ∑
2<k<p

C p
k η

k (1+ε)p−k ∥G∥k
Lp(Sd)+Kp η

p ∥G∥p
Lp(Sd)

≤ ∑
2<k<p

C p
k η

k (1+ε)p−k C
k/p
p,d +Kp η

p Cp,d .

Collecting (4.10) and (4.11) with the above estimates, we arrive at

M −2 ∥F∥2
Lp(Sd)

≤ 1+ 2

p
ap,d ε

2+ 1

p2
(2 p bp,d −(p −2)a2

p,d) ε
4+ r (+) ε6

+(1+ p −2

p
ap,d ε

2− p −2

p2
(p bp,d −(p −1)a2

p,d) ε
4+ r (−) ε6)

⋅[(p −1)(p −2) g2√
d (d +1)(d +3)

ηε2+ 1

3
(p −1)(p −2)(p −3)c3 g3ηε

3

+
2Rp ηε

4

√
2(d +1)

+(p −1)(∥G∥2
L2(Sd) η

2+ 1

2(d +1)
η2 ((1+ε)p−2−1))

+ 2

p

⎛
⎝ ∑2<k<p

C p
k η

k (1+ε)p−k C
k/p
p,d +Kp η

p Cp,d
⎞
⎠
] .

Using ∣g2∣ < 1, ∣g3∣ < 1, and 2(d +1) ∥G∥2
L2(Sd) < 1, this gives rise to an explicit although

lengthy expression for a positive constantRp,d such that

M −2 (∫
Sd

∣∇F ∣2 dµ−d Ep[F ]) ≥ Aε4−B ε2η+C η2−Rp,d (ϑp +ϑ5/2) ,

with A ∶= (p−1)(d+p)
2 d (d+3) , B ∶= d (p−1)

√
d (d+1)(d+3)

and C ∶= d+2
2(d+1) . The discriminant

B 2−4 A C =− 1

d (d +3)
(p −1)(2d −p (d −2))

is negative if (and only if) p ∈ (1,2∗), so that we can write

A s2−B s+C = (A−λ) s2−B s+(C −λ)+λ(s2+1) ≥λ(s2+1) ,

where

λ ∶= 1

2
(A+C +

√
(A−C)2+B 2)

is given by the condition that B 2−4(A−λ)(C −λ) = 0. Altogether, we obtain

M −2 (∫
Sd

∣∇F ∣2 dµ−d Ep[F ]) ≥λ(ε4+η2)−Rp,d (ϑp +ϑ5/2) .

● Conclusion if p > 2. We choose ϑ > 0 such that (4.5) and (4.9) are fulfilled. With the
additional assumption that

ϑ ≤ϑp,d ∶= {θ > 0 ∶ Rp,d (θp +θ5/2) = λ
4
θ2} ,
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using η4 ≤ η2 and 2ε2η2 ≤ ε4+η2 if η < 1, we have

Rp,d (ϑp +ϑ5/2) ≤ λ
4
ϑ2 = λ

4
(ε2+η2)2 ≤ λ

2
(ε4+η2) ≤ λ

2
( ε4

ε2+η2+1
+η2) .

For any F such that ∥∇F∥2
L2(Sd) =ϑ, we obtain

∫
Sd

∣∇F ∣2 dµ−d Ep[F ] ≥ λ
2

⎛
⎝

∥∇Π1F∥4
L2(Sd)

∥∇F∥2
L2(Sd)+∥F∥2

Lp(Sd)

+∥∇(Id−Π1)F∥2
L2(Sd)

⎞
⎠

.

Using (4.2) and (4.4), this completes the proof of Theorem 11 if p > 2 with

ϑ ≤min{d

2
,

1

4
, ϑp,d} =

d ϑ0

d −(p −2)ϑ0
and Sd ,p =min{ d

ϑ0
ψm,p (ϑ0

d
) ,

λ

2
} .

● The case p ≤ 2. The strategy is the same, with some simplifications, so we only sketch
the proof and emphasize the changes compared to the case p > 2. Let us notice that

(1+ s)p ≤ 1+p s + p

2
(p −1) s2 if 1 ≤ p < 2

and (1+s)2 log((1+s)2) ≤ 2 s+2 s2+ 2
3 s3 in the limit case p = 2. The estimates involving

1+εY are therefore essentially the same if we assume ε < 1/2, while the computation of

∥u+ r∥2
Lp(Sd) is in fact simpler, when applied to u = 1+εY and r = ηG . The estimate on

the average is simplified because ∥F∥Lp(Sd) ≤ ∥F∥L2(Sd) by Hölder’s inequality, since dµ

is a probability measure on Sd . Spectral estimates are exactly the same and the Taylor
expansions present no additional difficulty, as we can use (GN) for some exponent q ∈
(2,2∗) to control the remainder terms if p = 2, so that (1+ s)2 log((1+ s)2) ≤ 2 s +2 s2+
κq sq for some κq > 0. The conclusion is the same as for p > 2 except that we have to
replace ψm,p by ψ defined as in Proposition 8. �

APPENDIX A. IMPROVED GAUSSIAN INEQUALITIES, HYPERCONTRACTIVITY AND STABILITY

Whether the results of Theorems 1, 4 and 7 can be extended to Euclidean case with
the Gaussian measure is a very natural question. Spherical harmonics can indeed be
replaced by Hermite polynomials and there is a clear correspondence for spectral esti-
mates. The answer is yes for a whole family of interpolation inequalities, but it is no for
the logarithmic Sobolev inequality, which is an endpoint of the family.

Let us consider the normalized Gaussian measure on Rd defined by

dσ(x) = (2π)−
d
2 e−

1
2 ∣x∣

2
d x .

For any p ∈ [1,2), Beckner in [6] established the family of interpolation inequalities

(A.1)
∥ f ∥2

L2(Rd ,dσ)−∥ f ∥2
Lp(Rd ,dσ)

2−p
≤ ∥∇ f ∥2

L2(Rd ,dσ) ∀ f ∈H1(Rd ,dσ) .

With p = 1, inequality (A.1) is the Gaussian Poincaré inequality while one recovers the
Gaussian logarithmic Sobolev inequality of [35] in the limit as p → 2. For any p ∈ [1,2),
the inequality is optimal: using fε ∶= 1+ εϕ as a test function, where ϕ is such that

∫Rd ϕdσ = 0, we recover the Gaussian Poincaré inequality with optimal constant in the
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limit as ε→ 0, so that the constant in (A.1) cannot be improved. Based on [43, 1], the
improved version of the inequality

(A.2)
∥ f ∥2

L2(Rd ,dσ)−∥ f ∥2
Lp(Rd ,dσ)

2−p
≤ p

2
∥∇ f ∥2

L2(Rd ,dσ) ∀ f ∈H1(Rd ,dσ)

holds under the additional condition

(A.3) ∫
Rd

x f (x)dσ = 0.

Let us give a short proof of (A.2). Assume that f =∑k∈N fk is a decomposition on Hermite
functions such thatL fk =−k fk whereL =∆−x ⋅∇ is the Ornstein–Uhlenbeck operator,
and let ak ∶= ∥ fk∥2

L2(Rd ,dσ) for any k ∈N, so that

∥ f ∥2
L2(Rd ,dσ) =∑

k∈N

ak and ∥∇ f ∥2
L2(Rd ,dσ) =∑

k∈N

k ak .

Let us consider the solution of

(A.4)
∂u

∂t
=Lu

with initial datum u(t = 0, ⋅) = f and notice that

∥u(t , ⋅)∥2
L2(Rd ,dσ) =∑

k∈N

ak e−2 k t .

Hence, if (A.3) holds, a1 = 0 and
(A.5)

∥ f ∥2
L2(Rd ,dσ)−∥u(t , ⋅)∥2

L2(Rd ,dσ) =∑
k≥2

ak (1−e−2 k t)

≤ 1

2
(1−e−4 t)∑

k∈N

k ak =
1

2
(1−e−4 t)∥∇ f ∥2

L2(Rd ,dσ)

because k↦ (1−e−2 k t)/k is monotone nonincreasing for any given t ≥ 0. Next, we use
Nelson’s hypercontractivity estimate in [48, Theorem 3] to find t∗ > 0 such that

∥u(t∗, ⋅)∥2
L2(Rd ,dσ) ≤ ∥ f ∥2

Lp(Rd ,dσ) .

As noted in [35], this estimate can be seen as a consequence of the Gaussian logarithmic
Sobolev inequality

(A.6) ∫
Rd

∣v ∣2 log
⎛
⎝

∣v ∣2

∥v∥2
L2(Rd ,dσ)

⎞
⎠

dσ ≤ 2∫
Rd

∣∇v ∣2 dσ ∀v ∈H1(Rd ,dσ) ,

and the argument goes as follows. With h(t) ∶= ∥u(t , ⋅)∥Lq(t)(Rd ,dσ) for some exponent q

depending on t and u solving (A.4), we have

h′

h
= q′

q2 ∫Rd

∣u∣q

hq
log( ∣u∣q

hq
)dσ− 4

hq

q −1

q2 ∫Rd
∣∇(∣u∣q/2)∣

2
dσ ≤ 0

by (A.6) applied to v = ∣u∣q/2, if t ↦ q(t) solves the ordinary differential equation

q′ = 2(q −1) .

With q(0) = p < 2, we obtain q(t) = 1+ (p −1)e2t and find that Nelson’s time t∗ is de-
termined by the condition q(t∗) = 2 which means e−2t∗ = p −1. Replacing t = t∗ in (A.5)
completes the proof of (A.2), which can be recast in the form of a stability result for (A.1).
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Theorem 12. Let d ≥ 1 and p ∈ [1,2). For any f ∈H1(Rd ,dσ) such that (A.3) holds,

∥∇ f ∥2
L2(Rd ,dσ)−

1

2−p
(∥ f ∥2

L2(Rd ,dσ)−∥ f ∥2
Lp(Rd ,dσ) ) ≥

2−p

2
∥∇ f ∥2

L2(Rd ,dσ) .

As a byproduct of the proof, with t = t∗ in (A.5), we have the mode-by-mode interpo-
lation inequality

∥ f ∥2
L2(Rd ,dσ)−∥ f ∥2

Lp(Rd ,dσ)

2−p
≤∑

k≥1

1−(p −1)k

k (2−p)
∥∇ fk∥2

L2(Rd ,dσ) ∀ f ∈H1(Rd ,dσ) ,

without imposing condition (A.3), for any p ∈ [1,2). For any k ≥ 1,

lim
p→2−

1−(p −1)k

k (2−p)
= lim

p→2−

1−(1−(2−p))k

k (2−p)
= 1,

so that no improvement should be expected by this method. This is very similar to the
case of the critical exponent on the sphere of dimension d ≥ 3. In this sense p = 2 is the
critical case in the presence of a Gaussian weight, as all modes are equally involved in
the estimate of the constant. This is a limitation of the method which does not forbid a
stability result for (A.6), to be established by other methods.

Let us conclude this appendix with some bibliographic comments on the literature
on inequality (A.1), for the Gaussian measure. The analogue of Proposition 5 in the
Gaussian case is known from [2]; also see [26, Section 2.5]). Assuming that not only
condition (A.3) is satisfied, but also orthogonality conditions with all modes up to order
k0 ≥ 2, then an improvement of the order of

1−(p −1)k0

k0 (2−p)
can be achieved for inequality (A.1), which is the counterpart of Theorem 4 in the Gauss-
ian case. This has been studied in [43] but we can refer to [1] for a more abstract setting
and later papers, e.g., to [55, 53] for results on compact manifolds and generalizations
involving weights. For an overview of interpolation between Poincaré and logarithmic
Sobolev inequalities from the point of view of Markov processes, and for some spectral
considerations, we refer to [54, Chapter 6]. Notice that hypercontractivity appears as
one of the main motivations of the founding paper [3] of the carré du champ method.

APPENDIX B. Carré du champ METHOD AND IMPROVED INEQUALITIES

For sake of completeness, we collect various results of [22, 21, 24, 19] and draw some
new consequences. Computations similar to those of Section B.1 can be found in [10]
for the study of rigidity results in elliptic equations. For nonlinear parabolic flows, also
see [17, 18]. Other sections of this appendix collects results which are scattered in the
literature, but additional details needed in Section 3 are given, for instance a sketch of
the proof Proposition 16 or the computations in the case p = 2.

B.1. Algebraic preliminaries. Let us denote the Hessian by Hv and define the trace-free
Hessian by

Lv ∶=Hv − 1

d
(∆v)gd .

We also consider the trace-free tensor

Mv ∶= ∇v ⊗∇v

v
− 1

d

∣∇v ∣2

v
gd ,
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where (∇v ⊗∇v)i j ∶= ∂i v ∂ j v and ∥∇v ⊗∇v∥2 = ∣∇v ∣4 = (g i j
d ∂i v ∂ j v)2 using Einstein’s

convention. Using

L ∶ gd = 0, M ∶ gd = 0,

where a ∶ b denotes ai j bi j and ∥a∥2 ∶= a ∶ a, and

∥Lv∥2 = ∥Hv∥2− 1

d
(∆v)2 ,

∥Mv∥2 = ∥∇v ⊗∇v

v
∥

2

− 1

d

∣∇v ∣4

v2
= d −1

d

∣∇v ∣4

v2
,

we deduce from

∫
Sd
∆v

∣∇v ∣2

v
dµ =∫

Sd

∣∇v ∣4

v2
dµ−2∫

Sd
Hv ∶ ∇v ⊗∇v

v
dµ

= d

d −1 ∫Sd
∥Mv∥2 dµ−2∫

Sd
Lv ∶ ∇v ⊗∇v

v
dµ− 2

d ∫Sd
∆v

∣∇v ∣2

v
dµ

a first identity that reads

(B.1) ∫
Sd
∆v

∣∇v ∣2

v
dµ = d

d +2
( d

d −1 ∫Sd
∥Mv∥2 dµ−2∫

Sd
Lv ∶ ∇v ⊗∇v

v
dµ) .

The Bochner–Lichnerowicz–Weitzenböck formula on Sd takes the simple form

1

2
∆(∣∇v ∣2) = ∥Hv∥2+∇(∆v) ⋅∇v +(d −1)∣∇v ∣2 ,

where the last term, i.e., Ric(∇v,∇v) = (d − 1)∣∇v ∣2, accounts for the Ricci curvature
tensor contracted with ∇v ⊗∇v . An integration of this formula on Sd shows a second
identity,

(B.2) ∫
Sd

(∆v)2 dµ = d

d −1 ∫Sd
∥Lv∥2 dµ+d∫

Sd
∣∇v ∣2 dµ .

Hence

K [v] ∶=∫
Sd

(∆v +κ ∣∇v ∣2

v
)(∆v +(β−1) ∣∇v ∣2

v
)dµ

=∫
Sd

(∆v)2 dµ+(κ+β−1)∫
Sd
∆v

∣∇v ∣2

v
dµ+κ(β−1)∫

Sd

∣∇v ∣4

v2
dµ

can be rewritten using (B.1) and (B.2) as

K [v] = d

d −1 ∫Sd
∥Lv∥2 dµ+d∫

Sd
∣∇v ∣2 dµ

+(κ+β−1) d

d +2
( d

d −1 ∫Sd
∥Mv∥2 dµ−2∫

Sd
Lv ∶Mv dµ)

+κ(β−1) d

d −1 ∫Sd
∥Mv∥2 dµ

= d

d −1 ∫Sd
(∥Lv∥2−2b Lv ∶Mv + c ∥Mv∥2)dµ+d∫

Sd
∣∇v ∣2 dµ

= d

d −1 ∫Sd
(∥Lv − b Mv∥2+(c −b2)∥Mv∥2)dµ+d∫

Sd
∣∇v ∣2 dµ

= d

d −1 ∫Sd
∥Lv − b Mv∥2 dµ+(c −b2)∫

Sd

∣∇v ∣4

v2
dµ+d∫

Sd
∣∇v ∣2 dµ
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where

b = (κ+β−1) d −1

d +2
and c = d

d +2
(κ+β−1)+κ(β−1) .

Let κ =β(p −2)+1. The condition γ ∶= c −b2 ≥ 0 amounts to

(B.3) γ = d

d +2
β(p −1)+(1+β(p −2))(β−1)−(d −1

d +2
β(p −1))

2

,

where γ =−(Aβ2−2B β+C) with

A = (d −1

d +2
(p −1))

2

+2−p , B = d +3−p

d +2
and C = 1.

A necessary and sufficient condition for the existence of a β such that γ ≥ 0 is that the
reduced discriminant is nonnegative, which amounts to

B 2− A C = 4d (d −2)
(d +2)2

(p −1)(2∗−p) ≥ 0.

Summarizing, we have the following result, which can be found in [22] for a general
manifold with positive Ricci curvature.

Lemma 13. With the above notation, for any smooth function v on Sd , we have

K [v] ≥ γ∫
Sd

∣∇v ∣4

v2
dµ+d∫

Sd
∣∇v ∣2 dµ

for some γ > 0 given in terms of β by (B.3) if p ∈ (1,2∗).

Notice that we recover the expression for γ in (3.1) if we take β = 1. The case p = 2
does not add any difficulty compared to p ≠ 2.

B.2. Diffusion flow and monotonicity. Assume that u is a positive solution of

(B.4)
∂u

∂t
= u−p (1−m)(∆u+(m p −1) ∣∇u∣2

u
) .

In the linear case m = 1, up solves the heat equation. Otherwise we deal with the non-
linear case either of a fast diffusion flow with m < 1 or of a solution of the porous media
equation with m > 1. We claim that

d

d t
∥u∥2

Lp(Sd) = 0 and
d

d t
∥u∥2

L2(Sd) = 2(p −2)∫
Sd

u−p (1−m) ∣∇u∣2 dµ .

Let us assume that the parameters β and m are related by

(B.5) m = 1+ 2

p
( 1

β
−1) .

If v is a function such that u = vβ, then v solves

∂v

∂t
= v2−2β(∆v +κ ∣∇v ∣2

v
) ,

with κ =β(p −2)+1 and as a consequence we find that

d

d t
∥u∥2

L2(Sd) = 2(p −2)β2∫
Sd

∣∇v ∣2 dµ .

Similarly, we find that

(B.6)
d

d t
∥∇u∥2

L2(Sd) =−2∫
Sd

(βvβ−1 ∂v

∂t
)(∆vβ)dµ =−2β2 K [v] .
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By eliminating β in (B.3) using (B.5), we obtain

(B.7) γ = γ0+γ1 d +γ2 d 2

(d +2)2 (2−p (1−m))2 ,

withγ0 = 4(m p−1)2, γ1 =−4 p (m−3+p (2−m)(1+m)), γ2 = (m2−2m+5)p2−12 p +8.
The condition γ ≥ 0 determines the range m−(d , p) ≤ m ≤ m+(d , p) of admissible pa-
rameters m, where m±(d , p) is given by (3.6). Summarizing, we have the following re-
sult (also see [22]).

Lemma 14. Assume that p ∈ (1,2∗) and m ∈ [m−(d , p),m+(d , p)]. If u solves (B.4), then
we have

(B.8)
1

2β2

d

d t
(∥∇u∥2

L2(Sd)−d Ep[u]) ≤−γ∫
Sd

∣∇v ∣4

v2
dµ ,

where v = u1/β with β and γ given in terms of m by (B.3) and (B.7) respectively.

Notice that the case of the linear flow corresponds to the case m =β = 1 and v = u.

Proof of Lemma 14. For a smooth solution, the result follows from (B.6) and Lemma 13.
The result for a general solution is obtained by standard regularization procedures. �

B.3. Interpolation. Depending on the value of p, we shall consider various interpola-
tion inequalities. Let us define

(B.9) δ ∶= p − (4−p)β
2β(p −2)

if p > 2, δ ∶= 1 if p ∈ [1,2] .

Lemma 15. If one of the conditions

(i) p ∈ (1,2#) and β = 1 (so that δ = 1),
(ii) p ∈ (2,2∗), β > 1, and β ≤ 2/(4−p) if p < 4,

is satisfied, then u = vβ is such that

(B.10) ∫
Sd

∣∇v ∣4

∣v ∣2
dµ ≥ 1

β2
∫Sd ∣∇u∣2 dµ∫Sd ∣∇v ∣2 dµ

(∫Sd ∣u∣2 dµ)δ (∫Sd ∣u∣p dµ)
β−1

β(p−2)
.

Case (ii) was originally proved in [17, 18] and we refer to [21] for a proof in the case of
the ultraspherical operator.

Proof of Lemma 15. In case (i), v = u and inequality (B.10) is a consequence of the Cau-
chy–Schwarz inequality

∫
Sd

∣∇v ∣2 dµ =∫
Sd

∣∇v ∣2

v
⋅ v dµ ≤ (∫

Sd

∣∇v ∣4

v2
dµ)

1
2

(∫
Sd

∣u∣2 dµ)
1
2

,

Cases (i) and (ii) follow from two Hölder inequalities.

(1) With 1
2 +

β−1
2β + 1

2β = 1, we deduce from

∫
Sd

∣∇v ∣2 dµ =∫
Sd

∣∇v ∣2

v
⋅1 ⋅ v dµ ≤ (∫

Sd

∣∇v ∣4

v2
dµ)

1
2

(∫
Sd

1dµ)
β−1
2β

(∫
Sd

∣u∣2 dµ)
1

2β
,

and the assumption that dµ is a probability measure, the first estimate

(∫
Sd

∣∇v ∣4

v2
dµ)

1
2

≥ ∫Sd ∣∇v ∣2 dµ

(∫Sd ∣u∣2 dµ)
1

2β

.
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(2) With 1
2 +

β−1
β(p−2) +

2−(4−p)β
2β(p−2) = 1 and δ0 = 2−(4−p)β

2β(p−2) , Hölder’s inequality shows that

1

β2 ∫Sd
∣∇u∣2 dµ =∫

Sd
v2(β−1) ∣∇v ∣2 dµ =∫

Sd

∣∇v ∣2

v
⋅ v

p (β−1)
p−2 ⋅ v2βδ0 dµ

≤ (∫
Sd

∣∇v ∣4

v2
dµ)

1
2

(∫
Sd

∣u∣p dµ)
β−1

β(p−2)
(∫

Sd
∣u∣2 dµ)

δ0

,

from which we deduce the second estimate

(∫
Sd

∣∇v ∣4

v2
dµ)

1
2

≥ 1

β2
∫Sd ∣∇u∣2 dµ

(∫Sd ∣u∣2 dµ)δ0 (∫Sd ∣u∣p dµ)
β−1

β(p−2)
.

The combination of our two estimates proves (B.10) with δ = δ0+1/(2β). �

Using (B.5), condition (ii) in Lemma 15 is changed into the condition that 2/p ≤m < 1
and we may notice as in [17, 18] that it is always satisfied if we choose β = 4/(6− p)
corresponding to an admissible fast diffusion exponent m = (p + 2)/(2 p), for any p ∈
(2,2∗). By “admissible”, one should understand m−(d , p) ≤ m ≤ m+(d , p), so that γ is
nonnegative. With the choice of m = (p +2)/(2 p), we find δ = 1−p/8.

B.4. Improved functional inequalities. Let us denote the entropy and the Fisher infor-
mation respectively by

e ∶= 1

p −2
(∥u∥2

Lp(Sd)−∥u∥2
L2(Sd)) and i ∶= ∥∇u∥2

L2(Sd) ,

and let γ and δ be given respectively by (B.3) and (B.9). Up to the replacement of u by
u/∥u∥Lp(Sd), with no loss of generality, we shall assume that

∥u∥Lp(Sd) = 1.

We learn from (B.8) and (B.10) that

(B.11) (i− d e)′ ≤ γ ie′

β2 (1−(p −2)e)δ
.

Solving the ordinary differential equation in the equality case of (B.11) is equivalent to
solving

d

d t
(i− dϕ(e)) = γ

β2

e′

(1−(p −2)e)δ
(i− dϕ(e)) ,

where ϕ solves

(B.12) ϕ′(s) = 1+ γ

β2

ϕ(s)
(1 − (p −2) s)δ

.

The reader is invited to check that the solution of (B.12) with initial datum ϕ(0) = 0 is
given by (3.3) if m = 1 and by (3.5) with ζ = 2γ/(β(1−β)) in the nonlinear case. We learn
from (B.11) that

(i− dϕ(e))′ ≤ γ

β2

e′

(1−(p −2)e)δ
(i− dϕ(e)) .

This is enough to prove the following result.

Proposition 16. With the above notation, we claim that

i ≥ dϕ(e) .
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Proof. Let us give the scheme of a proof. Let γ̃ ∶= γ/β2, in order to simplify notation. We
can argue as follows:

(1) i′+2d i = (i−d e)′ ≤ 0 shows that

0 ≤ i(t) ≤ i(0)e−2 d t

and in particular lim
t→+∞

i(t) = 0.

(2) As t →+∞, e converges to a constant, hence lim
t→+∞

e(t) = 0.

(3) From (B.11), we learn that

(i−d e)′ ≤ d γ̃ee′ = 1

2
d γ̃(e2)′ ,

where the inequality follows from 1−(p −2)e ≤ 1 and i ≥ d e.
(4) It follows from (i−d e)′ ≤ 0 that i ≥ d e using an integration from any t ≥ 0 to +∞.
(5) Unless u is a constant, we read from (i−d e)′ ≤ 1

2 γ̃d (e2)′ that i−d e > 1
2 γ̃d e2,

using again an integration from any t ≥ 0 to +∞.
(6) Take some ϑ ∈ (0,1) and consider the solution of

(B.13) ϕ′(s) = 1+ ϑγ̃ϕ(s)
(1 − (p −2) s)δ

, ϕ(0) = 0.

In the spirit of (B.11), we have a following chain of elementary estimates:

(i− d ϑϕ(e))′ ≤ (i− dϕ(e))′+d (1−ϑ) (ϕ(e))′ ≤ (i− dϕ(e))′

and obtain

(B.14) (i− d ϑϕ(e))′ ≤ γ̃e′

(1−(p −2)e)δ
(i− d ϑϕ(e)) .

We know that ϕ(0) = 0 and read from (B.13) that ϕ′(0) = 1 and

ϕ′′(0) =ϑγ̃ϕ′(0) =ϑγ̃ ,

so that ϕ(e)−e ∼ 1
2 ϑγ̃e

2 as e→ 0. Using i−d e > 1
2 γ̃d e2, we learn that

i− dϕ(e) ≥ 1

2
γ̃d (1−ϑ)e2 (1+O(e))

for e = e(t) small enough, i.e, for t > 0 large enough.
(7) It is simple to check from (B.14) that i− d ϑϕ(e) cannot change sign.
(8) We conclude as above that i− d ϑϕ(e) ≥ 0 using an integration from any t ≥ 0

to +∞.
(9) Finally, we consider the limit as ϑ→ 1−.

Altogether, we conclude that i ≥ dϕ(e), where ϕ solves (B.12). This completes the
scheme of the proof of Proposition 16. �
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