STABILIZATION OF THE DAMPED PLATE EQUATION UNDER GENERAL BOUNDARY CONDITIONS

Jérôme Le Rousseau, Emmanuel Wend-Benedo Zongo

- To cite this version:

Jérôme Le Rousseau, Emmanuel Wend-Benedo Zongo. STABILIZATION OF THE DAMPED PLATE EQUATION UNDER GENERAL BOUNDARY CONDITIONS. Journal de l'École polytechnique Mathématiques, 2023, 10, pp.1-65. 10.5802/jep.213 . hal-03868483

HAL Id: hal-03868483

https://hal.science/hal-03868483

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STABILIZATION OF THE DAMPED PLATE EQUATION UNDER GENERAL BOUNDARY CONDITIONS

JÉRÔME LE ROUSSEAU AND EMMANUEL WEND-BENEDO ZONGO

Abstract

We consider a damped plate equation on a smooth open bounded subset of \mathbb{R}^{d}, or a smooth compact manifold with boundary, along with general boundary operators fulfilling the LopatinskiilŠapiro condition. The damping term acts on a internal region without imposing a geometrical condition. We derive a resolvent estimate for the generator of associated semigroup that yields a logarithmic decay of the energy of the solution to the plate equation. The resolvent estimate is a consequence of a Carleman inequality obtained for the bi-Laplace operator involving a spectral parameter under the considered boundary conditions. The derivation goes first through microlocal estimates, then local estimates, and finally a global estimate.

Keywords: Carleman estimates; stabilization; Lopatinskiì-Šapiro condition; resolvent estimate.

AMS 2020 subject classification: 35B45; 35J30; 35J40; 74K20; 93D15.

Contents

1. Introduction 3
1.1. Stabilization and control of Schrödinger and plate equations 3
1.2. Method 5
1.3. On Carleman estimates 5
1.4. Geometrical setting 7
1.5. Main results 7
1.6. Some open questions 9
1.7. Outline 10
1.8. Some notation 12
2. Pseudo-differential calculus 12
2.1. Pseudo-differential operators with a large a parameter 12
2.2. Tangential pseudo-differential operators 13

Date: November 22, 2022.
Acknowledgment: The authors wish to thank two anonymous reviewers that provided usefull corrections and remarks that improved the readability of the article.
2.3. Function norms 13
2.4. Differential quadratic forms 14
2.5. Symbols and operators with an additional large parameter 17
3. Lopatinskiĭ-S̆apiro boundary conditions for elliptic operator 17
3.1. Some examples 18
3.2. Case of the bi-Laplace operator 18
3.3. Formulation in normal geodesic coordinates 19
3.4. Stability of the Lopatinskiǐ-Šapiro condition 20
3.5. Examples of boundary operators yielding symmetry 21
4. Lopatinskiǐ-Šapiro condition for the conjugated bi-Laplacian 24
4.1. Lopatinskiĭ-Sapiro condition and root positions 26
4.2. Root configuration for each factor 27
4.3. Proof of Proposition 4.2 29
4.4. Local stability of the algebraic conditions 31
4.5. Symbol positivity at the boundary 33
5. Boundary norm estimate under Lopatinskiī-Šapiro condition 34
5.1. A microlocal estimate 35
5.2. Proof of Proposition 5.1 38
6. Microlocal estimates for second-order factors 40
6.1. Sub-ellipticity 42
6.2. Lopatinskiil-Sapiro condition for the second-order factors 44
6.3. Microlocal estimates 45
7. Local Carleman estimate for the fourth-order operator 57
7.1. A first estimate 57
7.2. Final estimate 60
8. Global Carleman estimate and observability 61
8.1. A global Carleman estimate 61
8.2. Observability inequality 62
9. Solutions to the damped plate equations 63
9.1. The unbounded bi-Laplace operator 64
9.2. The plate semigroup generator 66
9.3. Strong and weak solutions to the damped plate equation 68
10. Resolvent estimates and applications to stabilization 70
10.1. Resolvent estimate 70
10.2. Stabilization result 71
Appendix A. Some technical results and proofs 72
A.1. A perfect elliptic estimate 72
A.2. Basic resolvent estimation 72
A.3. Basic estimation for the resolvent set 73
References 74

1. Introduction

Let Ω be a bounded connected open subset in \mathbb{R}^{d}, or a smooth bounded connected d-dimensional manifold, with smooth boundary $\partial \Omega$, where we consider a damped plate equation

$$
\left\{\begin{array}{l}
\partial_{t}^{2} y+\Delta^{2} y+\alpha(x) \partial_{t} y=0 \quad(t, x) \in \mathbb{R}_{+} \times \Omega \tag{1.1}\\
B_{1} y_{\mid \mathbb{R}_{+} \times \partial \Omega}=B_{2} y_{\mid \mathbb{R}_{+} \times \partial \Omega}=0 \\
y_{\mid t=0}=y^{0}, \quad \partial_{t} y_{\mid t=0}=y^{1}
\end{array}\right.
$$

where $\alpha \geq 0$ and where B_{1} and B_{2} denote two boundary differential operators. The damping property is provided by $+\alpha(x) \partial_{t}$ thus referred as the damping term. As introduced below Δ^{2} is the bi-Laplace operator, that is, the square of the Laplace operator. Here, it is associated with a smooth metric g to be introduced below; it is thus rather the bi-LaplaceBeltrami operator. This equation appears in models for the description of mechanical vibrations of thin domains. The two boundary operators are of order $k_{j}, j=1,2$ respectively, yet at most of order 3 in the direction normal to the boundary. They are chosen such that the two following properties are fulfilled:
(1) the Lopatinskǐ̆-Šapiro boundary condition holds (this condition is fully described in what follows);
(2) along with the homogeneous boundary conditions given above the bi-Laplace operator is self-adjoint and nonnegative. This guarantees the conservation of the energy of the solution in the case of a damping free equation, that is, if $\alpha=0$.
We are concerned with the decay of the energy of the solution in the case α is not identically zero. We shall prove that the damping term yields a stabilization property: the energy decays to zero as time $t \rightarrow \infty$ and we shall prove that the decay rate is at least logarithmic.

1.1. Stabilization and control of Schrödinger and plate equa-

 tions. In the case of the "hinged" boundary conditions$$
y_{\mathbb{R}^{+} \times \partial \Omega}=\Delta y_{\mathbb{R}^{+} \times \partial \Omega}=0,
$$

the plate equation can be written as the product of two schrödinger equation since $\partial_{t}^{2} y+\Delta^{2} y=\left(-i \partial_{t}+\Delta\right)\left(i \partial_{t}+\Delta\right)$. As observed by Lebeau in [37] this allows one to transfer a control result obtained for the Schrödinger equation to the plates equations. In particular, Lebeau proved that controlability can be obtained for both equations if the control region fulfills the celebrated Rauch-Taylor condition, often coined GCC for geometrical control condition [6,42]. The GCC expresses that all rays of geometrical optics reach the control region. Yet, the GCC condition is not a necessary condition as expressed by the result of Jaffard [26] on the controllability
of the plate equation on a rectangle domain with an arbitrarily small control domain along with the "hinged" boundary conditions. Yet, the proof of [26] relies on the generalization of Ingham type inequalities in [28] and the very particular geometry that is considered.

For stabilization, GCC concerns the damping region, here given by the support of the function α. If GCC holds exponential stabilization holds. Note that in the same geometry as that of [26] an exponential stabilization result is proven in [41], using similar techniques. However, if no geometrical condition is imposed on the damping region, if a general geometry is considered, and if different boundary conditions are considered, one cannot expect an exponential decay rate. A logarithmic decay rate is quite natural if one has in mind the equivalent result obtained for the wave equation in the works of G. Lebeau [38] and G. Lebeau and L. Robbiano [40]. We also refer to Chapter 6 in [34] and Chapters 10 and 11 in [35] where the result of $[38,40]$ for the wave equation are reviewed and generalized in particular on the framework of general boundary conditions as those we consider here. See also the work of P. Cornilleau and L. Robbiano for a quite exotic boundary condition, namely the Zaremba condition.

Among the existing results available in the literature for plate type equations, many of them concern the "hinged" boundary conditions described above. In [41] where exponential stabilization is proven, the localized damping term involves the time derivative $\partial_{t} y$ as in (1.1). Interior nonlinear feedbacks can be used for exponential stabilization [45]. There, feedbacks are localized in a neighborhood of part of the boundary that fulfills multiplier-type conditions. A general analysis of nonlinear damping that includes the plate equation is provided in [2] under multiplier-type conditions. For "hinged" boundary conditions also, with a boundary damping term, we cite [4] where, on a square domain, a necessary and sufficient condition is provided for exponential stabilization.

Note that under "hinged" boundary conditions the bi-Laplace operator is precisely the square of the Dirichlet-Laplace operator. This makes its mathematical analysis much easier, in particular where using spectral properties, and this explains why this type of boundary conditions appears very frequently in the mathematical literature.

A more challenging type of boundary condition is the so-called "clamped" boundary conditions, that is, $u_{\mid \partial \Omega}=0$ and $\partial_{\nu} u_{\mid \partial \Omega}=0$, for which few results are available. We cite [1], where a general analysis of nonlinearly damped systems that includes the plate equation under multiplier-type conditions is provided. In [3], the analysis of discretized general nonlinearly damped system is also carried out, with the plate equation as an application. In [46], a nonlinear damping involving the p-Laplacian is
used also under multiplier-type conditions. In [15], an exponential decay is obtained in the case of "clamped" boundary conditions, yet with a damping term of the Kelvin-Voigt type, that is of the form $\partial_{t} \Delta y$, that acts over the whole domain. In the case of the "clamped" boundary conditions, the logarithmic-type stabilization result we obtain here was proven in [36]. The present article thus stands as a generalization of the stabilization result of [36] if considering a whole class of boundary condition instead of specializing to a certain type. The present work contains in particular also the case of "hinged" boundary conditions.
1.2. Method. Following the works of $[36,38,40]$ we obtain a logarithmic decay rate for the energy of the solution to (1.1) by means of a resolvent estimate for the generator of the semigroup associated with the damped plate equation (1.1). In [36] this was achieved by means of a Carleman estimate for the elliptic operator $D_{s}^{4}+\Delta^{2}$ with an additional variable s in the case of the "clamped" boundary conditions. Extension of this strategy has however not been possible in the case of general boundary conditions. The proof of the resolvent estimate we seek is yet also possible by means of a Carleman estimate for the operator $P_{\sigma}=\Delta^{2}-\sigma^{4}$ where σ is a spectral parameter for the generator of the semigroup and we found that this method of proof extends to general boundary conditions.

Our first goal is thus the derivation of the Carleman inequality for the operator P_{σ} near the boundary under the boundary conditions given by B_{1} and B_{2}.

Then, from the Carleman estimate one deduces an observation inequality for the operator P_{σ} in the case of the prescribed boundary conditions. The resolvent estimate then follows from this observation inequality.
1.3. On Carleman estimates. A Carleman estimate is a weighted a priori inequality for the solutions of a partial partial differential equation, where the weight is of exponential type. For instance, for a partial differential operator P away from the boundary, it takes the form

$$
\left\|e^{\tau \varphi} u\right\|_{L^{2}(\Omega)} \leq C\left\|e^{\tau \varphi} P u\right\|_{L^{2}(\Omega)}
$$

for $u \in \mathscr{C}_{c}^{\infty}(\Omega)$ and $\tau \geq \tau_{0}$ for φ well chosen and some τ_{0} chosen sufficiently large. The exponential weight function involves a parameter τ that can be taken as large as desired, making Carleman inequalities very powerful estimates. Additional terms on the left-hand side of the inequality can be obtained, including higher-order derivatives of the function u, depending of course of the order of the operator P itself. For a
second-order elliptic operator such as the Laplace operator one has

$$
\begin{aligned}
\tau^{3 / 2}\left\|e^{\tau \varphi} u\right\|_{L^{2}(\Omega)}+\tau^{1 / 2}\left\|e^{\tau \varphi} D u\right\|_{L^{2}(\Omega)}+\tau^{-1 / 2} \sum_{|\beta|=2} & \left\|e^{\tau \varphi} D^{\beta} u\right\|_{L^{2}(\Omega)} \\
& \leq C\left\|e^{\tau \varphi} \Delta u\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

under the so-called sub-ellipticity condition; see Chapter 3 in [34]. Note that the power of the large parameter τ adds to $3 / 2$ with the order of the derivative in each term on the left-hand side. In fact, in the calculus used to derive such estimates one power of τ is equivalent to a derivative of order one. Thus with this $3 / 2$ compared with the order two of the operator one says that one looses a half-derivative in the estimate.

This type of estimate was used for the first time by T. Carleman [13] to achieve uniqueness properties for the Cauchy problem of an elliptic operator. Later, A.-P. Calderón and L. Hörmander further developed Carleman's method [12, 20]. To this day, the method based on Carleman estimates remains essential to prove unique continuation properties; see for instance [47] for an overview. On such questions, more recent advances have been concerned with differential operators with singular potentials, starting with the contribution of D. Jerison and C. Kenig [27]. The reader is also referred to $[16,30-32,44]$. In more recent years, the field of applications of Carleman estimates has gone beyond the original domain; they are also used in the study of:

- Inverse problems, where Carleman estimates are used to obtain stability estimates for the unknown sought quantity (for instance coefficient, source term) with respect to norms on measurements performed on the solution of the PDE, see for instance $[11,24,25$, 33]; Carleman estimates are also fundamental in the construction of complex geometrical optic solutions that lead to the resolution of inverse problems such as the Calderón problem with partial data [17, 29].
- Control theory for PDEs; Carleman estimates yield the null controllability of linear parabolic equations [39] and the null controllability of classes of semi-linear parabolic equations [5, 18, 19]. They can also be used to prove unique continuation properties, that in turn are crucial for the treatment of low frequencies for exact controllability results for hyperbolic equations as in [6].

For a function supported near a point at the boundary, in normal geodesic coordinates where Ω is locally given by $\left\{x_{d}>0\right\}$ (see Section 1.4
below) the estimate can take the form

$$
\begin{aligned}
& \sum_{|\beta| \leq 2} \tau^{3 / 2-|\beta|}\left\|e^{\tau \varphi} D^{\beta} u\right\|_{L^{2}(\Omega)}+\sum_{|\beta| \leq 1} \tau^{3 / 2-|\beta|}\left|e^{\tau \varphi} D^{\beta} u_{\mid x_{d}=0^{+}}\right|_{L^{2}(\Omega)} \\
& \leq C\left\|e^{\tau \varphi} \Delta u\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

This is the type of estimate we seek here for the operator P_{σ}, with some uniformity with respect to σ.
1.4. Geometrical setting. On Ω we consider a Riemannian metric $g_{x}=\left(g_{i j}(x)\right)$, with associated cometric $\left(g^{i j}(x)\right)=\left(g_{x}\right)^{-1}$. It stands as a bilinear form that act on vector fields,

$$
g_{x}\left(u_{x}, v_{x}\right)=g_{i j}(x) u_{x}^{i} v_{x}^{j}, \quad u_{x}=u_{x}^{i} \partial_{x_{i}}, v_{x}=v_{x}^{i} \partial_{x_{i}}
$$

For $x \in \partial \Omega$ we denote by ν_{x} the unit outward pointing normal vector at x, unitary in the sense of the metric g, that is

$$
g_{x}\left(\nu_{x}, \nu_{x}\right)=1 \quad \text { and } g_{x}\left(\nu_{x}, u_{x}\right)=0 \quad \forall u_{x} \in T_{x} \partial \Omega .
$$

We denote by ∂_{ν} the associated derivative at the boundary, that is, $\partial_{\nu} f(x)=\nu_{x}(f)$. We also denote by n_{x} the unit outward pointing conormal vector at x, that is, $n_{x}=\nu_{x}^{b}$, that is, $\left(n_{x}\right)_{i}=g_{i j} \nu_{x}^{j}$.

Near a boundary point we shall often use normal geodesic coordinates where Ω is locally given by $\left\{x_{d}>0\right\}$ and the metric g takes the form

$$
g=d x^{d} \otimes d x^{d}+\sum_{1 \leq i, j \leq d-1} g_{i j} d x^{i} \otimes d x^{j}
$$

Then, the vector field ν_{x} is locally given by $(0, \ldots, 0,-1)$. The same for the one form n_{x}.

Normal geodesic coordinates allow us to locally formulate boundary problems in a half-space geometry. We write

$$
\mathbb{R}_{+}^{d}:=\left\{x \in \mathbb{R}^{d}, x_{d}>0\right\} \quad \text { where } x=\left(x^{\prime}, x_{d}\right) \text { with } x^{\prime} \in \mathbb{R}^{d-1}, x_{d} \in \mathbb{R}
$$

We shall denote its closure by $\overline{\mathbb{R}_{+}^{d}}$, that is, $\overline{\mathbb{R}_{+}^{d}}=\left\{x \in \mathbb{R}^{d} ; x_{d} \geq 0\right\}$.
The Laplace-Beltrami operator is given by

$$
\begin{equation*}
\left(\Delta_{g} f\right)(x)=\left(\operatorname{det} g_{x}\right)^{-1 / 2} \sum_{1 \leq i, j \leq d} \partial_{x_{i}}\left(\left(\operatorname{det} g_{x}\right)^{1 / 2} g^{i j}(x) \partial_{x_{j}} f\right)(x) \tag{1.2}
\end{equation*}
$$

in local coordinates. Its principal part is given by $\sum_{1 \leq i, j \leq d} g^{i j}(x) \partial_{x_{i}} \partial_{x_{j}}$ and its principal symbol by $\sum_{1 \leq i, j \leq d} g^{i j}(x) \xi_{i} \xi_{j}$.

The bi-Laplace operator is $P=\Delta_{g}^{2}$. In the main text of the article we shall write Δ, Δ^{2} in place of $\Delta_{g}, \Delta_{g}^{2}$.

1.5. Main results.

1.5.1. Stabilization result. Let $\left(\mathrm{P}_{0}, D\left(\mathrm{P}_{0}\right)\right)$ be the unbounded operator on $L^{2}(\Omega)$ given by the domain

$$
\begin{equation*}
D\left(\mathrm{P}_{0}\right)=\left\{u \in H^{4}(\Omega) ; B_{1} u_{\mid \partial \Omega}=B_{2} u_{\mid \partial \Omega}=0\right\} \tag{1.3}
\end{equation*}
$$

given by $\mathrm{P}_{0} u=\Delta^{2} u$ for $u \in D\left(\mathrm{P}_{0}\right)$. As written above the two boundary differential operators are such that $\left(\mathrm{P}_{0}, D\left(\mathrm{P}_{0}\right)\right)$ is self-adjoint and nonnegative.

Let $y(t)$ be a strong solution of the plate equation (1.1). A precise definition of strong solutions is given in Section 9.3. One has $y^{0} \in D\left(\mathrm{P}_{0}\right)$ and $y^{1} \in D\left(\mathrm{P}_{0}^{1 / 2}\right)$. Its energy is defined as

$$
\mathcal{E}(y)(t)=\frac{1}{2}\left(\left\|\partial_{t} y(t)\right\|_{L^{2}(\Omega)}^{2}+\left(\mathrm{P}_{0} y(t), y(t)\right)_{L^{2}(\Omega)}\right) .
$$

Theorem 1.1 (logarithmic stabilization for the damped plate equation). There exists $C>0$ such that for any such strong solution to the damped plate equation (1.1) one has

$$
\mathcal{E}(y)(t) \leq \frac{C}{(\log (2+t))^{4}}\left(\left\|\mathrm{P}_{0} y^{0}+\alpha y^{1}\right\|_{L^{2}(\Omega)}^{2}+\left\|\mathrm{P}_{0}^{1 / 2} y^{1}\right\|_{L^{2}(\Omega)}^{2}\right)
$$

A more precise and more general statement is given in Theorem 10.3 in Section 10.2. As explained in Section 1.2 the above stabilization result will be proven thanks to a Carleman estimate that we present now.
1.5.2. Carleman estimate. We state the main Carleman estimate for the operator $P_{\sigma}=\Delta^{2}-\sigma^{4}$ in normal geodesic coordinates as presented in Section 1.4. A point $x^{0} \in \partial \Omega$ is considered and a weight function φ is assumed to be defined locally and such that
(1) $\partial_{d} \varphi \geq C>0$ locally.
(2) $\left(\Delta \pm \sigma^{2}, \varphi\right)$ satisfies the sub-ellipticity condition of Definition 6.1 locally. This is a necessary and sufficient condition for a Carleman estimate to hold for a second-order operator $\Delta \pm \sigma^{2}$, regardless of boundary conditions [34, Chapters 3 and 4].
(3) $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ satisfies the Lopatinskiī-Šapiro condition of Definition 4.1 at $\varrho^{\prime}=\left(x^{0}, \xi^{\prime}, \tau, \sigma\right)$ for all $\left(\xi^{\prime}, \tau, \sigma\right) \in \mathbb{R}^{d-1} \times[0,+\infty) \times$ $[0,+\infty)$ such that $\tau \geq \kappa_{0} \sigma$, for some $\kappa_{0}>0$. This means that the Lopatinskiǐ-Šapiro condition holds after the conjugation of the operator P_{σ} and the boundary operators B_{1} and B_{2} by the weight function $\exp (\tau \varphi)$.

Theorem 1.2 (Carleman estimate for $P_{\sigma}=\Delta^{2}-\sigma^{4}$). Let $\kappa_{0}^{\prime}>\kappa_{0}>0$. Let $x^{0} \in \partial \Omega$. Let φ be such that the properties above hold locally. Then,
there exists W^{0} a neighborhood of $x^{0}, C>0, \tau_{0}>0$ such that

$$
\begin{align*}
\tau^{-1 / 2}\left\|e^{\tau \varphi} u\right\|_{4, \tau}+\mid & \left.\operatorname{tr}\left(e^{\tau \varphi} u\right)\right|_{3,1 / 2, \tau} \\
& \leq C\left(\left\|e^{\tau \varphi} P_{\sigma} u\right\|_{+}+\sum_{j=1}^{2}\left|e^{\tau \varphi} B_{j} v_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}\right) \tag{1.4}
\end{align*}
$$

for $\tau \geq \tau_{0}, \kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$, and $u \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}^{0}\right)$.
The volume norm is given by

$$
\left\|e^{\tau \varphi} u\right\|_{4, \tau}=\sum_{|\beta| \leq 4} \tau^{4-|\beta|}\left\|e^{\tau \varphi} D^{\beta} u\right\|_{L^{2}(\Omega)}
$$

The trace norm is given by

$$
\left|\operatorname{tr}\left(e^{\tau \varphi} u\right)\right|_{3,1 / 2, \tau}=\sum_{0 \leq n \leq 3}\left|\partial_{\nu}^{n}\left(e^{\tau \varphi} u\right)_{\mid x_{d}=0^{+}}\right|_{7 / 2-n, \tau},
$$

where the norm $|\cdot|_{7 / 2-n, \tau}$ is the L^{2}-norm in \mathbb{R}^{d-1} after applying the Fourier multiplier $\left(\tau^{2}+\left|\xi^{\prime}\right|^{2}\right)^{7 / 4-n / 2}$. These norms are well described in Section 2.3.

Observe that the Carleman estimate of Theorem 1.2 exhibits a loss of a half-derivative. A more precise statement is given in Theorem 7.4 in Section 7.2.

Remark 1.3. The condition $\kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$ in Theorem 1.2 calls for a comment as it is not classical in the case of Carleman estimates, even in the presence of a spectral parameter. Usually one has only $\kappa_{0} \sigma \leq \tau$ and in applications similar to that we have in mind one chooses $\tau=\kappa_{0} \sigma$. The extended condition we make here thus does not appear as a potential limitation.

We postpone the technical explanation to Remark 7.2 below Proposition 7.1 where this condition appears first.

1.6. Some open questions.

1.6.1. Boundary damping. Here, we have considered a damping that acts in the interior of the domain Ω. The study of boundary damping, as in [40] for the wave equation, is also of relevance. Yet we foresee that it requires to specify more the used boundary operators. This was not our goal as we wished to treat general boundary operators here.
1.6.2. Spectral inequality. If the boundary operators B_{1} and B_{2} are well chosen, the bi-Laplace operator Δ^{2} can be selfadjoint on $L^{2}(\Omega)$; see Section 9.1. Associated with the operator is then a Hilbert basis $\left(\phi_{j}\right)_{j \in \mathbb{N}}$ of $L^{2}(\Omega)$. In the case of "clamped" boundary condition the following spectral inequality was proven in [36].

Theorem 1.4 (Spectral inequality for the "clamped" bi-Laplace operator). Let \mathcal{O} be an open subset of Ω. There exists $C>0$ such that

$$
\|u\|_{L^{2}(\Omega)} \leq C e^{C \mu^{1 / 4}}\|u\|_{L^{2}(\mathcal{O})}, \quad \mu>0, \quad u \in \operatorname{Span}\left\{\phi_{j} ; \mu_{j} \leq \mu\right\}
$$

The proof of this theorem is based on a Carleman inequality for the fourth-order elliptic operator $D_{s}^{4}+\Delta^{2}$, that is, after the addition of a variable s. Extending this strategy to the type of boundary conditions treated here was not successful because it is not guaranteed that having the Lopatinskiĭ-Šapiro condition for Δ^{2}, B_{1}, and B_{2} implies that the Lopatinskiĭ-Šapiro condition holds for $D_{s}^{4}+\Delta^{2}, B_{1}$, and B_{2}. Yet, the Lopatinskiı̆-S̆apiro condition is at the heart of the proof of our Carleman estimate. Proving a spectral estimate as in the above statement for the general boundary conditions considered here is an open question.
1.6.3. Quantification of the unique continuation property. For a secondorder operator like the Laplace operator Δ and a boundary operator B of order k (yet of order at most one in the normal direction) such that the Lopatinskiil-Sapiro condition holds one can derive the following inequality that locally quantifies the unique continuation property up to the boundary; see [34, Lemma 9.2].

Proposition 1.5. Let $x^{0} \in \partial \Omega$ and V be a neighborhood of x^{0} where the Lopatinskǐ̆-Šapiro condition holds. There exist W an open neighborhood of $x^{0}, \varepsilon \in(0,1), \delta \in(0,1)$, and $C>0$, such that

$$
\begin{equation*}
\|u\|_{H^{1}(W)} \leq C\|u\|_{H^{1}(V)}^{1-\delta}\left(\|\Delta u\|_{L^{2}(V)}+|B u|_{H^{1-k}(V \cap \partial \Omega)}+\|u\|_{H^{1}\left(V_{\varepsilon}\right)}\right)^{\delta} \tag{1.5}
\end{equation*}
$$

for $u \in H^{2}(V)$, with $V_{\varepsilon}=\{x \in V$; $\operatorname{dist}(x, \partial \Omega)>\varepsilon\}$.
This inequality can be obtained from a Carleman estimate as in Theorem 1.2 for the Laplace operator, yet with the large parameter τ allowed to be chosen as large as desired. This is exploited in an optimization procedure on the parameter τ in $\left[\tau_{0},+\infty\left[\right.\right.$ for some τ_{0}. Note however that in the statement of Theorem 1.2 one has $\sigma \lesssim \tau \lesssim \sigma$. Thus, the optimization procedure cannot be carried out in $\left[\tau_{0},+\infty[\right.$. While having a result quantifying the unique continuation under Lopatinskiĭ-Šapiro-type conditions for the bi-Laplace operator similar to that of Proposition 1.5 can be expected, the Carleman estimate we obtain in the present article cannot be used, at least directly, for a proof as carried out in [34] or in former sources such as [39].
1.7. Outline. This article is organized as follows. In Section 2 we recall some basic aspects of pseudo-differential operators with a large parameters $\tau>0$ and some positivity inequality of Gårding type in particular
for quadratic forms in a half-space or at the boundary. Associated with the large parameters are Sobolev like norms, also in a half-space or at the boundary.

In Section 3, the Lopatinskiǐ-Šapiro boundary condition is properly defined for an elliptic operator, we give examples focusing on the Laplace and bi-Laplace operator and we give a formulation in local normal geodesic coordinates that we shall mostly use throughout the article. For the bi-Laplace operator we provide a series of examples of boundary operators for which the Lopatinskiī-Šapiro boundary condition holds and moreover the resulting operator is symmetric. We also show that the algebraic conditions that characterize the Lopatinskiĭ-Šapiro condition is robust under perturbation. This last aspect is key in the understanding of how the Lopatinskiil-Šapiro condition get preserved under conjugation and the introduction of a spectral parameter. This is done in Section 4, where an analysis of the configuration of the roots of the conjugated bi-Laplace operator is performed. In Section 4.5 the Lopatinskiǐ-Sapiro condition for the conjugated operator is exploited to obtain a symbol positivity for a quadratic form to prepare for the derivation of a Carleman estimate.

In Section 5 we derive an estimation of the boundary traces. This is precisely where the Lopatinski1̌-Šapiro condition is used. The result is first obtained microlocally and we then apply a patching procedure.

To obtain the Carleman estimate for the bi-Laplace operator with spectral parameter $\Delta^{2}-\sigma^{4}$ in Section 6 we first derive microlocal estimates for the operators $\Delta \pm \sigma^{2}$. Imposing σ to be non-zero, in the sense that $\sigma \gtrsim \tau$, the previous estimates exhibits losses in different microlocal regions. Thus concatenating the two estimates one derives an estimate for $\Delta^{2}-\sigma^{4}$ where losses do not accumulates. A local Carleman estimate with only a loss of a half-derivative is obtained. This is done in Section 7. With the traces estimation obtained in Section 5 one obtains the local Carleman estimate of Theorem 1.2.

For the application to stabilization we have in mind, in Section 8 we use a global weight function and derive a global version of the Carleman estimate for $\Delta^{2}-\sigma^{4}$ on the whole Ω. This leads to an observability inequality.

In Section 9 we recall aspects of strong and weak solutions to the damped plate equation, in particular through a semigroup formulation. With the observability inequality obtained in Section 8 we derive in Section 10 a resolvent estimate for the generator of the plate semigroup that in turn implies the stabilization result of Theorem 1.1.
1.8. Some notation. The canonical inner product in \mathbb{C}^{m} is denoted by $\left(z, z^{\prime}\right)_{\mathbb{C}^{m}}=\sum_{k=0}^{m-1} z_{k} \bar{z}^{\prime}{ }_{k}$, for $z=\left(z_{0}, \cdots, z_{m-1}\right) \in \mathbb{C}^{m}, z^{\prime}=\left(z_{0}^{\prime}, \cdots, z_{m-1}^{\prime}\right) \in$ \mathbb{C}^{m}. The associated norm will be denoted $|z|_{\mathbb{C}^{m}}^{2}=\sum_{k=0}^{m-1}\left|z_{k}\right|^{2}$.

We shall use the notations $a \lesssim b$ for $a \leq C b$ and $a \gtrsim b$ for $a \geq C b$, with a constant $C>0$ that may change from one line to another. We also write $a \asymp b$ to denote $a \lesssim b \lesssim a$.

For an open set U of \mathbb{R}^{d} we set $U_{+}=U \cap \mathbb{R}_{+}^{d}$ and

$$
\begin{equation*}
\overline{\mathscr{C}}_{c}^{\infty}\left(U_{+}\right)=\left\{u=v_{\mid \mathbb{R}_{+}^{d}} ; v \in \mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right) \text { and } \operatorname{supp}(v) \subset U\right\} . \tag{1.6}
\end{equation*}
$$

We set $\overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)=\left\{u_{\mid \mathbb{R}_{+}^{d}} ; u \in \mathscr{S}\left(\mathbb{R}^{d}\right)\right\}$ with $\mathscr{S}\left(\mathbb{R}^{d}\right)$ the usual Schwartz space in \mathbb{R}^{d} :

$$
u \in \mathscr{S}\left(\mathbb{R}^{d}\right) \Leftrightarrow u \in \mathscr{C}^{\infty}\left(\mathbb{R}^{d}\right) \text { and } \forall \alpha, \beta \in \mathbb{N}^{d} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} D_{x}^{\beta} u(x)\right|<\infty .
$$

We recall that the Poisson bracket of two smooth functions is given by

$$
\{f, g\}=\sum_{j=1}^{d}\left(\partial_{\xi_{j}} f \partial_{x_{j}} g-\partial_{x_{j}} f \partial_{\xi_{j}} g\right)
$$

2. Pseudo-differential calculus

In a half-space geometry motivated by the normal geodesic coordinates introduced in Section 1.4 we shall use $\xi=\left(\xi^{\prime}, \xi_{d}\right) \in \mathbb{R}^{d-1} \times \mathbb{R}$ and we shall consider the operators $D_{d}=-i \partial_{d}$ and $D^{\prime}=-i \partial^{\prime}$, with $\partial^{\prime}=\left(\partial_{x_{1}}, \ldots, \partial_{x_{d-1}}\right)$.
2.1. Pseudo-differential operators with a large a parameter. In this subsection we recall some notions on semi-classical pseudo-differential operators with large parameter $\tau \geq 1$. We denote by S_{τ}^{m} the space of smooth functions $a(x, \xi, \tau)$ defined on $\mathbb{R}^{d} \times \mathbb{R}^{d}$, with $\tau \geq 1$ as a large parameter, that satisfies the following : for all multi-indices $\alpha, \beta \in \mathbb{N}^{d}$ and $m \in \mathbb{R}$, there exists $C_{\alpha, \beta}>0$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi, \tau)\right| \leq C_{\alpha, \beta} \lambda_{\tau}^{m-|\beta|}, \quad \text { where } \quad \lambda_{\tau}^{2}=\tau^{2}+|\xi|^{2}
$$

for all $(x, \xi, \tau) \in \mathbb{R}^{d} \times \mathbb{R}^{d} \times[1, \infty)$. For $a \in S_{\tau}^{m}$, one defines the associated pseudo-differential operator of order m, denoted by $A=\operatorname{Op}(a)$,

$$
A u(x):=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} a(x, \xi, \tau) \hat{u}(\xi) d \xi, \quad u \in \mathscr{S}\left(\mathbb{R}^{d}\right)
$$

One says that a is the symbol of A. We denote Ψ_{τ}^{m} the set of pseudodifferential operators of order m. We shall denote by \mathscr{D}_{τ}^{m} the space
of semi-classical differential operators, i.e, the case when the symbol $a(x, \xi, \tau)$ is a polynomial of order m in (ξ, τ).
2.2. Tangential pseudo-differential operators. Here, we consider pseudo-differential operators that only act in the tangential direction x^{\prime} with x_{d} behaving as a parameter. We shall denote by $S_{\mathrm{T}, \tau}^{m}$, the set of smooth functions $b\left(x, \xi^{\prime}, \tau\right)$ defined for $\tau \geq 1$ as a large parameter and satisfying the following: for all multi-indices $\alpha \in \mathbb{N}^{d}, \beta \in \mathbb{N}^{d-1}$ and $m \in \mathbb{R}$, there exists $C_{\alpha, \beta}>0$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi^{\prime}}^{\beta} b\left(x, \xi^{\prime}, \tau\right)\right| \leq C_{\alpha, \beta} \lambda_{\mathrm{T}, \tau}^{m-|\beta|}, \quad \text { where } \quad \lambda_{\mathrm{T}, \tau}^{2}=\tau^{2}+\left|\xi^{\prime}\right|^{2}
$$

for all $\left(x, \xi^{\prime}, \tau\right) \in \mathbb{R}^{d} \times \mathbb{R}^{d-1} \times[1, \infty)$. For $b \in S_{\mathrm{T}, \tau}^{m}$, we define the associated tangential pseudo-differential operator $B=\mathrm{Op}_{\mathrm{T}}(b)$ of order m by

$$
B u(x):=\frac{1}{(2 \pi)^{d-1}} \int_{\mathbb{R}^{d-1}} e^{i x^{\prime} \cdot \xi^{\prime}} b\left(x, \xi^{\prime}, \tau\right) \hat{u}\left(\xi^{\prime}, x_{d}\right) d \xi^{\prime}, \quad u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)
$$

We define $\Psi_{\mathrm{T}, \tau}^{m}$ as the set of tangential pseudo-differential operators of order m, and $\mathscr{D}_{\mathrm{T}, \tau}^{m}$ the set of tangential differential operators of order m. We also set

$$
\Lambda_{\mathrm{T}, \tau}^{m}=\mathrm{Op}_{\mathrm{T}}\left(\lambda_{\mathrm{T}, \tau}^{m}\right) .
$$

Let $m \in \mathbb{N}$ and $m^{\prime} \in \mathbb{R}$. If we consider a of the form

$$
a(x, \xi, \tau)=\sum_{j=0}^{m} a_{j}\left(x, \xi^{\prime}, \tau\right) \xi_{d}^{j}, \quad a_{j} \in S_{\mathrm{T}, \tau}^{m+m^{\prime}-j}
$$

we define $\operatorname{Op}(a)=\sum_{j=0}^{m} \mathrm{Op}_{\mathbf{T}}\left(a_{j}\right) D_{x_{d}}^{j}$. We write $a \in S_{\tau}^{m, m^{\prime}}$ and $\operatorname{Op}(a) \in$ $\Psi_{\tau}^{m, m^{\prime}}$.
2.3. Function norms. For functions norms we use the notation $\|$.$\| for$ functions defined in the interior of the domain and $|$.$| for functions defined$ on the boundary. In that spirit, we shall use the notation

$$
\|u\|_{+}=\|u\|_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}, \quad(u, \tilde{u})_{+}=(u, \tilde{u})_{L^{2}\left(\mathbb{R}_{+}^{d}\right)}
$$

for functions defined in \mathbb{R}_{+}^{d} and

$$
|w|_{\partial}=\|w\|_{L^{2}\left(\mathbb{R}^{d-1}\right)}, \quad(w, \tilde{w})_{\partial}=(w, \tilde{w})_{L^{2}\left(\mathbb{R}^{d-1}\right)}
$$

for functions defined on $\left\{x_{d}=0\right\}$, such as traces.

We introduce the following norms, for $m \in \mathbb{N}$ and $m^{\prime} \in \mathbb{R}$,

$$
\begin{aligned}
& \|u\|_{m, m^{\prime}, \tau} \asymp \sum_{j=0}^{m}\left\|\Lambda_{\mathrm{T}, \tau}^{m+m^{\prime}-j} D_{x_{d}}^{j} u\right\|_{+}, \\
& \|u\|_{m, \tau}=\|u\|_{m, 0, \tau} \asymp \sum_{j=0}^{m}\left\|\Lambda_{\mathrm{T}, \tau}^{m-j} D_{x_{d}}^{j} u\right\|_{+},
\end{aligned}
$$

for $u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$. One has

$$
\|u\|_{m, \tau} \asymp \sum_{|\alpha| \leq m} \tau^{m-|\alpha|}\left\|D^{\alpha} u\right\|_{+}
$$

and in the case $m^{\prime} \in \mathbb{N}$ one has

$$
\|u\|_{m, m^{\prime}, \tau} \asymp \sum_{\substack{\alpha_{d} \leq m \\|\alpha| \leq m+m^{\prime}}} \tau^{m+m^{\prime}-|\alpha|}\left\|D^{\alpha} u\right\|_{+},
$$

with $\alpha=\left(\alpha^{\prime}, \alpha_{d}\right) \in \mathbb{N}^{d}$.
The following argument will be used on numerous occasions: for $m \in$ $\mathbb{N}, m^{\prime}, \ell \in \mathbb{R}$, with $\ell>0$,

$$
\|u\|_{m, m^{\prime}, \tau} \ll\|u\|_{m, m^{\prime}+\ell, \tau},
$$

if τ is chosen sufficiently large.
At the boundary $\left\{x_{d}=0\right\}$ we define the following norms, for $m \in \mathbb{N}$ and $m^{\prime} \in \mathbb{R}$,

$$
|\operatorname{tr}(u)|_{m, m^{\prime}, \tau}^{2}=\sum_{j=0}^{m}\left|\Lambda_{\mathrm{T}, \tau}^{m+m^{\prime}-j} D_{x_{d}}^{j} u_{\mid x_{d}=0^{+}}\right|_{\partial}^{2}, \quad u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)
$$

2.4. Differential quadratic forms. A differential quadradic form acts on a function and involves differentiations of various degrees of the function. One can associate to these forms a symbol and positivity inequality can be obtained in the form of a Gårding inequality. Such forms appear in proofs of Carleman estimates in the seminal work of Hörmander [21, Section 8.2].

Here differential quadradic forms are defined either in a half-space or at the boundary. The results we present here without proof can be found in [8] and [35].
2.4.1. Differential quadratic forms in a half-space.

Definition 2.1 (interior differential quadratic form). Let $u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$. We say that

$$
\begin{equation*}
Q(u)=\sum_{s=1}^{N}\left(A^{s} u, B^{s} u\right)_{+}, \quad A^{s}=\operatorname{Op}\left(a^{s}\right), B^{s}=\operatorname{Op}\left(b^{s}\right), \tag{2.1}
\end{equation*}
$$

is an interior differential quadratic form of type (m, r) with smooth coefficients, if for each $s=1, \ldots N$, we have $a^{s}(\varrho) \in S_{\tau}^{m, r^{\prime}}$ and $b^{s}(\varrho) \in S_{\tau}^{m, r^{\prime \prime}}$, with $r^{\prime}+r^{\prime \prime}=2 r, \varrho=(x, \xi, \tau)$.

The principal symbol of the quadratic form Q is defined as the class of

$$
\begin{equation*}
q(\varrho)=\sum_{s=1}^{N} a^{s}(\varrho) \overline{b^{s}}(\varrho) \tag{2.2}
\end{equation*}
$$

in $S_{\tau}^{2 m, 2 r} / S_{\tau}^{2 m, 2 r-1}$.
A result we shall use is the following microlocal Gårding inequality.
Proposition 2.2 (microlocal Gårding inequality). Let K be a compact set of $\overline{\mathbb{R}_{+}^{d}}$ and let \mathscr{U} be an conic open set of $\overline{\mathbb{R}_{+}^{d}} \times \mathbb{R}^{d-1} \times \mathbb{R}_{+}$contained in $K \times \mathbb{R}^{d-1} \times \mathbb{R}_{+}$. Let also $\chi \in S_{\mathrm{T}, \tau}^{0}$ be homogeneous of degree 0 and such that $\operatorname{supp}(\chi) \subset \mathscr{U}$. Let Q be an interior differential quadratic form of type (m, r) with homogeneous principal symbol $q \in S_{\tau}^{2 m, 2 r}$ satisfying, for some $C_{0}>0$ and $\tau_{0}>0$,

$$
\operatorname{Re} q(\varrho) \geq C_{0} \lambda_{\tau}^{2 m} \lambda_{\mathrm{T}, \tau}^{2 r},
$$

for $\tau \geq \tau_{0}, \varrho=\left(\varrho^{\prime}, \xi_{d}\right), \varrho^{\prime}=\left(x, \xi^{\prime}, \tau\right) \in \mathscr{U}$, and $\xi_{d} \in \mathbb{R}$.
For $0<C_{1}<C_{0}$ and $N \in \mathbb{N}$ there exist $\tau_{*}, C>0$, and $C_{N}>0$ such that

$$
\begin{aligned}
\operatorname{Re} Q\left(\mathrm{Op}_{\mathbf{T}}(\chi) u\right) \geq & C_{1}\left\|\mathrm{Op}_{\mathbf{T}}(\chi) u\right\|_{m, r, \tau}^{2}-C\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}(\chi) u\right)\right|_{m-1, r+1 / 2, \tau}^{2} \\
& -C_{N}\|u\|_{m,-N, \tau}^{2},
\end{aligned}
$$

for $u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$ and $\tau \geq \tau_{*}$.
We refer to [8, Proposition 3.5] and [35, Theorem 6.17] for a proof. We also state a local version of the result that follows from Proposition 2.2.

Proposition 2.3 (Gårding inequality). Let U_{0} be a bounded open subset of $\overline{\mathbb{R}_{+}^{d}}$ and let Q be an interior differential quadratic form of type (m, r) with homogeneous principal symbol $q \in S_{\tau}^{2 m, 2 r}$ satisfying, for some $C_{0}>0$ and $\tau_{0}>0$,

$$
\operatorname{Re} q(\varrho) \geq C_{0} \lambda_{\tau}^{2 m} \lambda_{\mathrm{T}, \tau}^{2 r},
$$

for $\tau \geq \tau_{0}, \varrho=\left(\varrho^{\prime}, \xi_{d}\right), \varrho^{\prime}=\left(x, \xi^{\prime}, \tau\right) \in U_{0} \times \mathbb{R}^{d-1} \times \mathbb{R}_{+}$, and $\xi_{d} \in \mathbb{R}$.

For $0<C_{1}<C_{0}$ there exist $\tau_{*}, C>0$ such that

$$
\operatorname{Re} Q(u) \geq C_{1}\|u\|_{m, r, \tau}^{2}-C|\operatorname{tr}(u)|_{m-1, r+1 / 2, \tau}^{2},
$$

for $u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$ and $\tau \geq \tau_{*}$.

2.4.2. Boundary differential quadratic forms.

Definition 2.4. Let $u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$. We say that
$Q(u)=\sum_{s=1}^{N}\left(A^{s} u_{\mid x_{d}=0^{+}}, B^{s} u_{\mid x_{d}=0^{+}}\right)_{\partial}, \quad A^{s}=a^{s}(x, D, \tau), B^{s}=b^{s}(x, D, \tau)$,
is a boundary differential quadratic form of type $(m-1, r)$ with \mathscr{C}^{∞} coefficients, if for each $s=1, \ldots N$, we have $a^{s}(\varrho) \in S_{\tau}^{m-1, r^{\prime}}\left(\overline{\mathbb{R}_{+}^{d}} \times \mathbb{R}^{d}\right)$, $b^{s}(\varrho) \in S_{\tau}^{m-1, r^{\prime \prime}}\left(\overline{\mathbb{R}_{+}^{d}} \times \mathbb{R}^{d}\right)$ with $r^{\prime}+r^{\prime \prime}=2 r, \varrho=\left(\varrho^{\prime}, \xi_{d}\right)$ with $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau\right)$. The symbol of the boundary differential quadratic form Q is defined by

$$
q\left(\varrho^{\prime}, \xi_{d}, \tilde{\xi}_{d}\right)=\sum_{s=1}^{N} a^{s}\left(\varrho^{\prime}, \xi_{d}\right) \overline{b^{s}}\left(\varrho^{\prime}, \tilde{\xi}_{d}\right)
$$

For $\mathbf{z}=\left(z_{0}, \ldots, z_{\ell-1}\right) \in \mathbb{C}^{\ell}$ and $a(\varrho) \in S_{\tau}^{\ell-1, t}$, of the form $a\left(\varrho^{\prime}, \xi_{d}\right)=$ $\sum_{j=0}^{\ell-1} a_{j}\left(\varrho^{\prime}\right) \xi_{d}^{j}$ with $a_{j}\left(\varrho^{\prime}\right) \in S_{\mathrm{T}, \tau}^{\ell-1+t-j}$ we set

$$
\begin{equation*}
\Sigma_{a}\left(\varrho^{\prime}, \mathbf{z}\right)=\sum_{j=0}^{\ell-1} a_{j}\left(\varrho^{\prime}\right) z_{j} \tag{2.3}
\end{equation*}
$$

From the boundary differential quadratic form Q we introduce the following bilinear symbol $\Sigma_{Q}: \mathbb{C}^{m} \times \mathbb{C}^{m} \rightarrow \mathbb{C}$

$$
\begin{equation*}
\Sigma_{Q}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}^{\prime}\right)=\sum_{s=1}^{N} \Sigma_{a^{s}}\left(\varrho^{\prime}, \mathbf{z}\right) \overline{\Sigma_{b^{s}}}\left(\varrho^{\prime}, \overline{\mathbf{z}}^{\prime}\right), \quad \mathbf{z}, \mathbf{z}^{\prime} \in \mathbb{C}^{m} \tag{2.4}
\end{equation*}
$$

We let \mathscr{W} be an open conic set in $\mathbb{R}^{d-1} \times \mathbb{R}^{d-1} \times \mathbb{R}_{+}$.
Definition 2.5. Let Q be a boundary differential quadratic form of type ($m-1, r$) with homogeneous principal symbol and associated with the bilinear symbol $\Sigma_{Q}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}^{\prime}\right)$. We say that Q is positive definite in \mathscr{W} if there exist $C>0$ and $R>0$ such that

$$
\operatorname{Re} \Sigma_{Q}\left(\varrho^{\prime \prime}, x_{d}=0^{+}, \mathbf{z}, \mathbf{z}\right) \geq C \sum_{j=0}^{m-1} \lambda_{\mathrm{T}, \tau}^{2(m-1-j+r)}\left|z_{j}\right|^{2}
$$

for $\varrho^{\prime \prime}=\left(x^{\prime}, \xi^{\prime}, \tau\right) \in \mathscr{W}$, with $\left|\left(\xi^{\prime}, \tau\right)\right| \geq R$, and $\mathbf{z}=\left(z_{0}, \ldots, z_{m-1}\right) \in \mathbb{C}^{m}$.
We have the following Gårding inequality.

Proposition 2.6. Let Q be a boundary differential quadratic form of type $(m-1, r)$, positive definite in \mathscr{W}, an open conic set in $\mathbb{R}^{d-1} \times \mathbb{R}^{d-1} \times \mathbb{R}_{+}$, with bilinear symbol $\Sigma_{Q}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}^{\prime}\right)$. Let $\chi \in S_{\top, \tau}^{0}$ be homogeneous of degree 0 , with $\operatorname{supp}\left(\chi_{\mid x_{d}=0^{+}}\right) \subset \mathscr{W}$ and let $N \in \mathbb{N}$. Then there exist $\tau_{*} \geq 1$, $C>0, C_{N}>0$ such that

$$
\operatorname{Re} Q\left(\operatorname{Op}_{\mathrm{T}}(\chi) u\right) \geq C\left|\operatorname{tr}\left(\mathrm{Op}_{\mathrm{T}}(\chi) u\right)\right|_{m-1, r, \tau}^{2}-C_{N}|\operatorname{tr}(u)|_{m-1,-N, \tau}^{2},
$$

for $u \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$ and $\tau \geq \tau_{*}$.

2.5. Symbols and operators with an additional large parameter.

 In this article, we shall use operators with a symbol that depends on an additional large parameter σ, say $a(x, \xi, \tau, \sigma)$. They will satisfy estimate of the form$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi, \tau, \sigma)\right| \leq C_{\alpha, \beta}\left(\tau^{2}+|\xi|^{2}+\sigma^{2}\right)^{(m-|\beta|) / 2}
$$

We observe that if $\tau \gtrsim \sigma$ one has

$$
\lambda_{\tau}^{2} \leq \tau^{2}+|\xi|^{2}+\sigma^{2} \lesssim \lambda_{\tau}^{2}
$$

Thus, as far as pseudo-differential calculus is concerned it is as if $a \in S_{\tau}^{m}$ and this property will be exploited in what follows.

Similarly if $a=a\left(x, \xi^{\prime}, \tau, \sigma\right)$ fulfills a tangential-type estimate of the form

$$
\left|\partial_{x}^{\alpha} \partial_{\xi^{\prime}}^{\beta} a\left(x, \xi^{\prime}, \tau, \sigma\right)\right| \leq C_{\alpha, \beta}\left(\tau^{2}+\left|\xi^{\prime}\right|^{2}+\sigma^{2}\right)^{(m-|\beta|) / 2}
$$

if one has $\tau \gtrsim \sigma$ one will be able to apply techniques adapted to symbols in $S_{\mathrm{T}, \tau}^{m}$ and associated operators, like for instance the results on differential quadratic forms listed in Section 2.4.

3. LOPATINSKIǏ-ŠAPIRO BOUNDARY CONDITIONS FOR ELLIPTIC OPERATOR

Let P be an elliptic differential operator of order $2 k$ on $\Omega,(k \geq 1)$, with principal symbol $p(x, \omega)$ for $(x, \omega) \in T^{*} \Omega$. One defines the following polynomial in z,

$$
\tilde{p}\left(x, \omega^{\prime}, z\right)=p\left(x, \omega^{\prime}-z n_{x}\right),
$$

for $x \in \partial \Omega, \omega^{\prime} \in T_{x}^{*} \partial \Omega, z \in \mathbb{R}$ and where n_{x} denotes the outward unit pointing conormal vector at x (see Section 1.4). Here x and ω^{\prime} are considered to act as parameters. We denote by $\rho_{j}\left(x, \omega^{\prime}\right), 1 \leq j \leq 2 k$ the complex roots of $z \mapsto \tilde{p}\left(x, \omega^{\prime}, z\right)$. One sets

$$
\tilde{p}^{+}\left(x, \omega^{\prime}, z\right)=\prod_{\operatorname{Im} \rho_{j}\left(x, \omega^{\prime}\right) \geq 0}\left(z-\rho_{j}\left(x, \omega^{\prime}\right)\right) .
$$

Given boundary operators B_{1}, \cdots, B_{k} in a neighborhood of $\partial \Omega$, with principal symbols $b_{j}(x, \omega), j=1, \cdots, k$, one also sets $\tilde{b}_{j}\left(x, \omega^{\prime}, z\right)=$ $b_{j}\left(x, \omega^{\prime}-z n_{x}\right)$.
Definition 3.1 (Lopatinski1̌-Šapiro boundary condition). Let $\left(x, \omega^{\prime}\right) \in$ $T^{*} \partial \Omega$ with $\omega^{\prime} \neq 0$. One says that the Lopatinskiǐ-Šapiro condition holds for $\left(P, B_{1}, \cdots, B_{k}\right)$ at $\left(x, \omega^{\prime}\right)$ if for any polynomial $f(z)$ with complex coefficients, there exists $c_{1}, \cdots, c_{k} \in \mathbb{C}$ and a polynomial $g(z)$ with complex coefficients such that, for all $z \in \mathbb{C}$,

$$
f(z)=\sum_{1 \leq j \leq k} c_{j} \tilde{b}_{j}\left(x, \omega^{\prime}, z\right)+g(z) \tilde{p}^{+}\left(x, \omega^{\prime}, z\right)
$$

We say that the Lopatinskiī-Šapiro condition holds for $\left(P, B_{1}, \cdots, B_{k}\right)$ at $x \in \partial \Omega$ if it holds at $\left(x, \omega^{\prime}\right)$ for all $\omega^{\prime} \in T_{x}^{*} \partial \Omega$ with $\omega^{\prime} \neq 0$.

The Lopatinskiǐ-Šapiro boundary condition is of great importance in the analysis of elliptic equations. In fact, the Lopatinskiľ-Šapiro condition is equivalent to having the operator

$$
\begin{aligned}
L: H^{m+2 k}(\Omega) & \rightarrow H^{m}(\Omega) \oplus H^{m+2 k-\ell_{1}-1 / 2}(\partial \Omega) \oplus \cdots \oplus H^{m+2 k-\ell_{k}-1 / 2}(\partial \Omega) \\
u & \mapsto\left(P u, B_{1} u_{\mid \partial \Omega}, \ldots, B_{k} u_{\mid \partial \Omega}\right)
\end{aligned}
$$

to be Fredholm, if $m \geq 0$ and if each operator B_{j} is of order ℓ_{j}. This is done in great generality in [22, Chapter 20]. If P is the Laplace operator this is presented in great details in [35, Chapter 3].

Roughly speaking the Lopatinskiĭ-Sapiro condition states that modes exponentialy small in the interior of the domain Ω (as frequency increases) yet not small at the boudary cannot be estimated without the use of a proper boundary operator. No boundary operator is needed for mode that do not have this asympotic behavior. This is explained in [35, Section 2.1.1].
3.1. Some examples. The Lopatinskiī-Šapiro condition holds in the following cases

- $P=-\Delta$ on Ω, with the Dirichlet boundary condition, $B u_{\mid \partial \Omega}=$ $u_{\partial \Omega}$.
- $P=\Delta^{2}$ on Ω, along with the so-called clamped boundary conditions, i.e, $B_{1} u_{\mid \partial \Omega}=u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\partial_{\nu} u_{\mid \partial \Omega}$, where ν is the normal outward pointing unit vector to $\partial \Omega$; see Section 1.4.
- $P=\Delta^{2}$ on Ω, along with the so-called hinged boundary conditions, i.e, $B_{1} u_{\mid \partial \Omega}=u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\Delta u_{\mid \partial \Omega}$.
3.2. Case of the bi-Laplace operator. With $P=\Delta^{2}$ on Ω, along with the general boundary operators B_{1} and B_{2} of orders k_{1} and k_{2} respectively, we give a matrix criterion of the Lopatinskiǐ-Šapiro condition.

The general boundary operators B_{1} and B_{2} are then given by

$$
B_{\ell}(x, D)=\sum_{0 \leq j \leq \min \left(3, k_{\ell}\right)} B_{\ell}^{k_{\ell}-j}\left(x, D^{\prime}\right)\left(i \partial_{\nu}\right)^{j}, \quad \ell=1,2,
$$

with $B_{\ell}^{k_{\ell}-j}\left(x, D^{\prime}\right)$ differential operators acting in the tangential variables. We denote by $b_{1}(x, \omega)$ and $b_{2}(x, \omega)$ the principal symbols of B_{1} and B_{2} respectively. For $\left(x, \omega^{\prime}\right) \in T^{*} \partial \Omega$, we set

$$
\tilde{b}_{\ell}\left(x, \omega^{\prime}, z\right)=\sum_{0 \leq j \leq \min \left(3, k_{\ell}\right)} b_{\ell}^{k_{\ell}-j}\left(x, \omega^{\prime}\right) z^{j}, \quad \ell=1,2 .
$$

We recall that the principal symbol of P is given by $p(x, \omega)=|\omega|_{g}^{4}$. One thus has

$$
\tilde{p}\left(x, \omega^{\prime}, z\right)=p\left(x, \omega^{\prime}-z n_{x}\right)=\left(z^{2}+\left|\omega^{\prime}\right|_{g}^{2}\right)^{2}
$$

Therefore $\tilde{p}\left(x, \omega^{\prime}, z\right)=\left(z-i\left|\omega^{\prime}\right|_{g}\right)^{2}\left(z+i\left|\omega^{\prime}\right|_{g}\right)^{2}$. According to the above definition we set $\tilde{p}^{+}\left(x, \omega^{\prime}, z\right)=\left(z-i\left|\omega^{\prime}\right|_{g}\right)^{2}$. Thus, the Lopatinskiŭ-Sapiro condition holds at $\left(x, \omega^{\prime}\right)$ with $\omega^{\prime} \neq 0$ if and only if for any function $f(z)$ the complex number $i\left|\omega^{\prime}\right|_{g}$ is a root of the polynomial $z \mapsto f(z)-$ $c_{1} \tilde{b}_{1}\left(x, \omega^{\prime}, z\right)-c_{2} \tilde{b}_{2}\left(x, \omega^{\prime}, z\right)$ and its derivative for some $c_{1}, c_{2} \in \mathbb{C}$. This leads to the following determinant condition.

Lemma 3.2. Let $P=\Delta^{2}$ on Ω, B_{1} and B_{2} be two boundary operators. If $x \in \partial \Omega, \omega^{\prime} \in T_{x}^{*} \partial \Omega$, with $\omega^{\prime} \neq 0$, the Lopatinskǐ-Šapiro condition holds at $\left(x, \omega^{\prime}\right)$ if and only if

$$
\operatorname{det}\left(\begin{array}{cc}
\tilde{b}_{1} & \tilde{b}_{2} \tag{3.1}\\
\partial_{z} \tilde{b}_{1} & \partial_{z} \tilde{b}_{2}
\end{array}\right)\left(x, \omega^{\prime}, z=i\left|\omega^{\prime}\right|_{g}\right) \neq 0
$$

Remark 3.3. With the determinant condition and homogeneity, we note that if the Lopatinskiǐ-Sapiro condition holds for $\left(P, B_{1}, B_{2}\right)$ at $\left(x, \omega^{\prime}\right)$ it also holds in a conic neighborhood of $\left(x, \omega^{\prime}\right)$ by continuity. If it holds at $x \in \Omega$, it also holds in a neighborhood of x.
3.3. Formulation in normal geodesic coordinates. Near a boundary point $x \in \partial \Omega$, we shall use normal geodesic coordinates. These coordinates are recalled in Section 1.4. Then the principal symbols of Δ and Δ^{2} are given by $\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)$ and $\left(\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)\right)^{2}$ respectively, where $r\left(x, \xi^{\prime}\right)$ is the principal symbol of a tangential differential elliptic operator $R\left(x, D^{\prime}\right)$ of order 2 , with

$$
r\left(x, \xi^{\prime}\right)=\sum_{1 \leq i, j \leq d-1} g^{i j}(x) \xi_{i}^{\prime} \xi_{j}^{\prime} \text { and } r\left(x, \xi^{\prime}\right) \geq C\left|\xi^{\prime}\right|^{2}
$$

Here $g^{i j}$ is the inverse of the metric $g_{i j}$. Below, we shall often write $\left|\xi^{\prime}\right|_{x}^{2}=r\left(x, \xi^{\prime}\right)$ and we shall also write $|\xi|_{x}^{2}=\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)$, for $\xi=\left(\xi^{\prime}, \xi_{d}\right)$.

If $b_{1}(x, \xi)$ and $b_{2}(x, \xi)$ are the principal symbols of the boundary operators B_{1} and B_{2} in the normal geodesic coordinates then the Lopatin-skiǐ-Šapiro condition for $\left(P, B_{1}, B_{2}\right)$ with $P=\Delta^{2}$ at $\left(x, \xi^{\prime}\right)$ reads

$$
\operatorname{det}\left(\begin{array}{cc}
b_{1} & b_{2} \\
\partial_{\xi_{d}} b_{1} & \partial_{\xi_{d}} b_{2}
\end{array}\right)\left(x, \xi^{\prime}, \xi_{d}=i\left|\xi^{\prime}\right|_{x}\right) \neq 0
$$

if $\left|\xi^{\prime}\right|_{x} \neq 0$ according to Lemma 3.2. If the Lopatinskiŭ-Šapiro condition holds at some x^{0}, because of homogeneity, there exists $C_{0}>0$ such that

$$
\left|\operatorname{det}\left(\begin{array}{cc}
b_{1} & b_{2} \tag{3.2}\\
\partial_{\xi_{d}} b_{1} & \partial_{\xi_{d}} b_{2}
\end{array}\right)\right|\left(x^{0}, \xi^{\prime}, i\left|\xi^{\prime}\right|_{x}\right) \geq C_{0}\left|\xi^{\prime}\right|_{x}^{k_{1}+k_{2}-1}, \quad \xi^{\prime} \in \mathbb{R}^{d-1}
$$

3.4. Stability of the Lopatinskiŭ-Šapiro condition. To prepare for the study of how the Lopatinskiǐ-Šapiro condition behaves under conjugation with Carleman exponential weight and the addition of a spectral parameter, we introduce some perturbations in the formulation of the Lopatinskiǐ-Sapiro condition for $\left(P, B_{1}, B_{2}\right)$ as written in (3.2).

Lemma 3.4. Let V^{0} be a compact set of $\partial \Omega$ such that the LopatinskiuŠapiro condition holds for $\left(P, B_{1}, B_{2}\right)$ at every point x of V^{0}. There exist $C_{1}>0$ and $\varepsilon>0$ such that

$$
\left|\operatorname{det}\left(\begin{array}{cc}
b_{1} & b_{2} \tag{3.3}\\
\partial_{\xi_{d}} b_{1} & \partial_{\xi_{d}} b_{2}
\end{array}\right)\right|\left(x, \xi^{\prime}+\zeta^{\prime}, \xi_{d}=i\left|\xi^{\prime}\right|_{x}+\delta\right) \geq C_{1}\left|\xi^{\prime}\right|_{x}^{k_{1}+k_{2}-1}
$$

for $x \in V^{0}$, $\xi^{\prime} \in \mathbb{R}^{d-1}, \zeta^{\prime} \in \mathbb{C}^{d-1}$, and $\delta \in \mathbb{C}$, if $\left|\zeta^{\prime}\right|+|\delta| \leq \varepsilon\left|\xi^{\prime}\right|_{x}$. Moreover one has

$$
\begin{array}{r}
\operatorname{det}\left(\begin{array}{cc}
b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, \xi_{d}=i\left|\xi^{\prime}\right|_{x}+\delta\right) & b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, \xi_{d}=i\left|\xi^{\prime}\right|_{x}+\delta\right) \\
b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, \xi_{d}=i\left|\xi^{\prime}\right|_{x}+\tilde{\delta}\right) & b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, \xi_{d}=i\left|\xi^{\prime}\right|_{x}+\tilde{\delta}\right)
\end{array}\right) \\
\geq C_{1}|\delta-\tilde{\delta}|\left|\xi^{\prime}\right|_{x}^{k_{1}+k_{2}-1} \tag{3.4}
\end{array}
$$

for $x \in V^{0}, \xi^{\prime} \in \mathbb{R}^{d-1}, \zeta^{\prime} \in \mathbb{C}^{d-1}$, and $\delta, \tilde{\delta} \in \mathbb{C}$, if $\left|\zeta^{\prime}\right|+|\delta|+|\tilde{\delta}| \leq \varepsilon\left|\xi^{\prime}\right|_{x}$.
Proof. From (3.2), since V^{0} is compact having the Lopatinskiǐ-Šapiro condition holding at every point x of V^{0} means there exists $C_{0}>0$ such that

$$
\left|\operatorname{det}\left(\begin{array}{cc}
b_{1} & b_{2} \tag{3.5}\\
\partial_{\xi_{d}} b_{1} & \partial_{\xi_{d}} b_{2}
\end{array}\right)\right|\left(x, \xi^{\prime}, i\left|\xi^{\prime}\right|_{x}\right) \geq C_{0}\left|\xi^{\prime}\right|_{x}^{k_{1}+k_{2}-1}, \quad x \in V^{0}, \xi^{\prime} \in \mathbb{R}^{d-1} .
$$

The first part is a consequence of the mean value theorem, homogeneity and (3.5) with say $C_{1}=C_{0} / 2$.

For the second part it is sufficient to assume that $\delta \neq \tilde{\delta}$ since the result is obvious otherwise. For $j=1,2$ one writes the Taylor formula

$$
\begin{aligned}
b_{j}\left(x, \xi^{\prime}\right. & \left.+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\tilde{\delta}\right) \\
= & b_{j}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right)+(\tilde{\delta}-\delta) \partial_{\xi_{d}} b_{j}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) \\
& \quad+(\tilde{\delta}-\delta)^{2} \int_{0}^{1}(1-s) \partial_{\xi_{d}}^{2} b_{j}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta_{s}\right) d s
\end{aligned}
$$

with $\delta_{s}=(1-s) \delta+s \tilde{\delta}$, yielding

$$
\begin{aligned}
& \frac{1}{\tilde{\delta}-\delta} \operatorname{det}\left(\begin{array}{cc}
b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) & b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) \\
b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\tilde{\delta}\right) & b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\tilde{\delta}\right)
\end{array}\right) \\
&=\operatorname{det}\left(\begin{array}{cc}
b_{1} & b_{2} \\
\partial_{\xi_{d}} b_{1} & \partial_{\xi_{d}} b_{2}
\end{array}\right)\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) \\
&+(\tilde{\delta}-\delta) \int_{0}^{1}(1-s) f\left(x, \xi^{\prime}, \zeta^{\prime}, \delta, s\right) d s,
\end{aligned}
$$

with

$$
\begin{aligned}
& f\left(x, \xi^{\prime}, \zeta^{\prime}, \delta, s\right) \\
& \quad=\operatorname{det}\left(\begin{array}{cc}
b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) & b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) \\
\partial_{\xi_{d}}^{2} b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta_{s}\right) & \partial_{\xi_{d}}^{2} b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta_{s}\right)
\end{array}\right) .
\end{aligned}
$$

With homogeneity, if $\left|\zeta^{\prime}\right|+|\delta|+|\tilde{\delta}| \lesssim\left|\xi^{\prime}\right|_{x}$ one finds

$$
\begin{array}{r}
\left.\operatorname{det}\left(\begin{array}{cc}
b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) & b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta\right) \\
\partial_{\xi_{d}}^{2} b_{1}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta_{s}\right) & \partial_{\xi_{d}}^{2} b_{2}\left(x, \xi^{\prime}+\zeta^{\prime}, i\left|\xi^{\prime}\right|_{x}+\delta_{s}\right)
\end{array}\right)\right|^{\lesssim\left|\xi^{\prime}\right|_{x}^{k_{1}+k_{2}-2}}, \\
\end{array}
$$

Thus with $|\delta-\tilde{\delta}| \leq \varepsilon\left|\xi^{\prime}\right|_{x}$, for $\varepsilon>0$ chosen sufficiently small, using the first part of the lemma one obtains the second result.
3.5. Examples of boundary operators yielding symmetry. We give some examples of pairs of boundary operators B_{1}, B_{2} that
(1) fulfill the Lopatinskiī-Šapiro condition,
(2) yield symmetry for the bi-Lalace operator $P=\Delta^{2}$, that is,

$$
(P u, v)_{L^{2}(\Omega)}=(u, P v)_{L^{2}(\Omega)}
$$

for $u, v \in H^{4}(\Omega)$ such that $B_{j} u_{\mid \partial \Omega}=B_{j} v_{\mid \partial \Omega}=0, j=1,2$.
We first recall that following Green formula

$$
\begin{equation*}
(\Delta u, v)_{L^{2}(\Omega)}=(u, \Delta v)_{L^{2}(\Omega)}+\left(\partial_{n} u_{\mid \partial \Omega}, v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}-\left(u_{\mid \partial \Omega}, \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)} \tag{3.6}
\end{equation*}
$$

which applied twice gives $(P u, v)_{L^{2}(\Omega)}=(u, P v)_{L^{2}(\Omega)}+T(u, v)$ with

$$
\begin{align*}
T(u, v)= & \left(\partial_{n} \Delta u_{\mid \partial \Omega}, v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}-\left(\Delta u_{\mid \partial \Omega}, \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)} \\
& +\left(\partial_{n} u_{\mid \partial \Omega}, \Delta v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}-\left(u_{\mid \partial \Omega}, \partial_{n} \Delta v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)} . \tag{3.7}
\end{align*}
$$

Using normal geodesic coordinates in a neighborhood of the whole boundary $\partial \Omega$ allows one to write $\Delta=\partial_{n}^{2}+\Delta^{\prime}$ where Δ^{\prime} is the resulting Laplace operator on the boundary, that is, associated with the trace of the metric on $\partial \Omega$. Since Δ^{\prime} is selfadjoint on $\partial \Omega$ this allows one to write formula (3.7) in the alternative forms

$$
\begin{align*}
T(u, v)= & \left(\partial_{n}^{3} u_{\mid \partial \Omega}, v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}-\left(\left(\partial_{n}^{2}+2 \Delta^{\prime}\right) u_{\mid \partial \Omega}, \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)} \\
& +\left(\partial_{n} u_{\mid \partial \Omega},\left(\partial_{n}^{2}+2 \Delta^{\prime}\right) v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}-\left(u_{\mid \partial \Omega}, \partial_{n}^{3} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)} \tag{3.8}
\end{align*}
$$

or

$$
\begin{align*}
T(u, v)= & \left(\left(\partial_{n}^{3}+2 \Delta^{\prime} \partial_{n}\right) u_{\mid \partial \Omega}, v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}-\left(\partial_{n}^{2} u_{\mid \partial \Omega}, \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)} \\
& +\left(\partial_{n} u_{\mid \partial \Omega}, \partial_{n}^{2} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}-\left(u_{\mid \partial \Omega},\left(\partial_{n}^{3}+2 \Delta^{\prime} \partial_{n}\right) v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)} \tag{3.9}
\end{align*}
$$

We start our list of examples with the most basics ones.
Example 3.5 (Hinged boundary conditions). This type of conditions refers to $B_{1} u_{\mid \partial \Omega}=u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\Delta u_{\mid \partial \Omega}$. With (3.7) one finds $T(u, v)=0$ in the case of homogeneous conditions, hence symmetry.

Note that the hinged boundary conditions are equivalent to having $B_{1} u_{\mid \partial \Omega}=u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\partial_{n}^{2} u_{\mid \partial \Omega}$. With the notation of Section 3 this gives $\tilde{b}_{1}\left(x, \omega^{\prime}, z\right)=1$ and $\tilde{b}_{2}\left(x, \omega^{\prime}, z\right)=(-i z)^{2}=-z^{2}$. It follows that

$$
\operatorname{det}\left(\begin{array}{cc}
\tilde{b}_{1} & \tilde{b}_{2} \\
\partial_{z} \tilde{b}_{1} & \partial_{z} \tilde{b}_{2}
\end{array}\right)\left(x, \omega^{\prime}, z=i\left|\omega^{\prime}\right|_{g}\right)=\operatorname{det}\left(\begin{array}{cc}
1 & \left|\omega^{\prime}\right|_{g}^{2} \\
0 & -2 i\left|\omega^{\prime}\right|_{g}
\end{array}\right)=-2 i\left|\omega^{\prime}\right|_{g} \neq 0
$$

if $\omega^{\prime} \neq 0$ and thus the Lopatinskiĭ-Šapiro condition holds by Lemma 3.2.
With the hinged boundary conditions observe that the bi-Laplace operator is precisely the square of the Dirichlet-Laplace operator. This makes its analysis quite simple and this explains why this type of boundary condition is often chosen in the mathematical literature. Observe that symmetry is then obvious without invoking the above formulae.

Example 3.6 (Clamped boundary conditions). This type of conditions refers to $B_{1} u_{\mid \partial \Omega}=u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\partial_{n} u_{\mid \partial \Omega}$. With (3.8) one finds $T(u, v)=0$ in the case of homogeneous conditions, hence symmetry. With the notation of Section 3 this gives $\tilde{b}_{1}\left(x, \omega^{\prime}, z\right)=1$ and $\tilde{b}_{2}\left(x, \omega^{\prime}, z\right)=$ $-i z$. It follows that

$$
\operatorname{det}\left(\begin{array}{cc}
\tilde{b}_{1} & \tilde{b}_{2} \\
\partial_{z} \tilde{b}_{1} & \partial_{z} \tilde{b}_{2}
\end{array}\right)\left(x, \omega^{\prime}, z=i\left|\omega^{\prime}\right|_{g}\right)=\operatorname{det}\left(\begin{array}{cc}
1 & \left|\omega^{\prime}\right|_{g} \\
0 & -i
\end{array}\right)=-i \neq 0
$$

Thus the Lopatinskǐ̆-Šapiro condition holds by Lemma 3.2.
Note that with the clamped boundary conditions the bi-Laplace operator cannot be seen as the square of the Laplace operator with some well chosen boundary condition as opposed to the case of the hinged boundary conditions displayed above.

Examples 3.7 (More examples).
(1) Take $B_{1} u_{\mid \partial \Omega}=\partial_{n} u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\partial_{n} \Delta u_{\mid \partial \Omega}$. With these boundary conditions the bi-Laplace operator is precisely the square of the Neumann-Laplace operator. The symmetry property is immediate and so is the Lopatinskiŭ-Šapiro condition.
(2) Take $B_{1} u_{\mid \partial \Omega}=\left(\partial_{n}^{2}+2 \Delta^{\prime}\right) u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\partial_{n}^{3} u_{\mid \partial \Omega}$. With (3.8) one finds $T(u, v)=0$ in the case of homogeneous conditions, hence symmetry.

We have $\tilde{b}_{1}\left(x, \omega^{\prime}, z\right)=-z^{2}-2\left|\omega^{\prime}\right|_{g}^{2}$ and $\tilde{b}_{2}\left(x, \omega^{\prime}, z\right)=i z^{3}$ and

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
\tilde{b}_{1} & \tilde{b}_{2} \\
\partial_{z} \tilde{b}_{1} & \partial_{z} \tilde{b}_{2}
\end{array}\right)\left(x, \omega^{\prime}, z=i\left|\omega^{\prime}\right|_{g}\right) & =\operatorname{det}\left(\begin{array}{cc}
-\left|\omega^{\prime}\right|_{g}^{2} & \left|\omega^{\prime}\right|_{g}^{3} \\
-2 i\left|\omega^{\prime}\right|_{g} & -3 i\left|\omega^{\prime}\right|_{g}^{2}
\end{array}\right) \\
& =5 i\left|\omega^{\prime}\right|_{g}^{4} \neq 0
\end{aligned}
$$

if $\omega^{\prime} \neq 0$ and thus the Lopatinskiǐ-Šapiro condition holds by Lemma 3.2.
(3) Take $B_{1} u_{\mid \partial \Omega}=\partial_{n} u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\left(\partial_{n}^{3}+A^{\prime}\right) u_{\mid \partial \Omega}$, with A^{\prime} a symmetric differential operator of order less than or equal to three on $\partial \Omega$, with homogeneous principal symbol $a^{\prime}\left(x, \omega^{\prime}\right)$ such that $a^{\prime}\left(x, \omega^{\prime}\right) \neq 2\left|\omega^{\prime}\right|_{g}^{3}$ for $\omega^{\prime} \neq 0$, that is, $a^{\prime}\left(x, \omega^{\prime}\right) \neq 2$ for $\left|\omega^{\prime}\right|_{g}=1$.

With (3.8) one finds

$$
T(u, v)=\left(-A^{\prime} u_{\mid \partial \Omega}, v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}+\left(u_{\mid \partial \Omega}, A^{\prime} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}=0
$$

in the case of homogeneous conditions, hence symmetry for P.
We have $\tilde{b}_{1}\left(x, \omega^{\prime}, z\right)=-i z$ and $\tilde{b}_{2}\left(x, \omega^{\prime}, z\right)=i z^{3}+a^{\prime}\left(x, \omega^{\prime}\right)$ with a^{\prime} the principal symbol of A^{\prime}.
$\operatorname{det}\left(\begin{array}{cc}\tilde{b}_{1} & \tilde{b}_{2} \\ \partial_{z} \tilde{b}_{1} & \partial_{z} \tilde{b}_{2}\end{array}\right)\left(x, \omega^{\prime}, z=i\left|\omega^{\prime}\right|_{g}\right)=\operatorname{det}\left(\begin{array}{cc}\left|\omega^{\prime}\right|_{g} & \left|\omega^{\prime}\right|_{g}^{3}+a^{\prime}\left(x, \omega^{\prime}\right) \\ -i & -3 i\left|\omega^{\prime}\right|_{g}^{2}\end{array}\right)$

$$
=i\left(a^{\prime}\left(x, \omega^{\prime}\right)-2\left|\omega^{\prime}\right|_{g}^{3}\right) \neq 0
$$

if $\omega^{\prime} \neq 0$ since $a^{\prime}\left(x, \omega^{\prime}\right) \neq 2\left|\omega^{\prime}\right|_{g}^{3}$ by assumption implying that the Lopatinskiŭ-Šapiro condition holds by Lemma 3.2.
(4) Take $B_{1} u_{\mid \partial \Omega}=u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\left(\partial_{n}^{2}+A^{\prime} \partial_{n}\right) u_{\mid \partial \Omega}$ with A^{\prime} a symmetric differential operator of order less than or equal to one on $\partial \Omega$, with homogeneous principal symbol $a^{\prime}\left(x, \omega^{\prime}\right)$ such that $a^{\prime}\left(x, \omega^{\prime}\right) \neq-2\left|\omega^{\prime}\right|_{g}$ for $\omega^{\prime} \neq 0$, that is, $a^{\prime}\left(x, \omega^{\prime}\right) \neq-2$ for $\left|\omega^{\prime}\right|_{g}=1$.

This is a refinement of the case of hinged boundary conditions given in Example 3.5 above.

With (3.8) one finds

$$
T(u, v)=\left(A^{\prime} \partial_{n} u_{\mid \partial \Omega}, \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}+\left(\partial_{n} u_{\mid \partial \Omega},-A^{\prime} \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}=0
$$

in the case of homogeneous conditions, hence symmetry for P.
We have $\tilde{b}_{1}\left(x, \omega^{\prime}, z\right)=1$ and $\tilde{b}_{2}\left(x, \omega^{\prime}, z\right)=-z^{2}-i z a^{\prime}\left(x, \omega^{\prime}\right)$ with a^{\prime} the principal symbol of A^{\prime}.

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
\tilde{b}_{1} & \tilde{b}_{2} \\
\partial_{z} \tilde{b}_{1} & \partial_{z} \tilde{b}_{2}
\end{array}\right)\left(x, \omega^{\prime}, z=i\left|\omega^{\prime}\right|_{g}\right) & =\operatorname{det}\left(\begin{array}{cc}
1 & \left|\omega^{\prime}\right|_{g}^{2}+\left|\omega^{\prime}\right|_{g} a^{\prime}\left(x, \omega^{\prime}\right) \\
0 & -2 i\left|\omega^{\prime}\right|_{g}-i a^{\prime}\left(x, \omega^{\prime}\right)
\end{array}\right) \\
& =-i\left(a^{\prime}\left(x, \omega^{\prime}\right)+2\left|\omega^{\prime}\right|_{g}\right) \neq 0,
\end{aligned}
$$

if $\omega^{\prime} \neq 0$ since $a^{\prime}\left(x, \omega^{\prime}\right) \neq-2\left|\omega^{\prime}\right|_{g}$ by assumption implying that the Lopatinskiǐ-Šapiro condition holds by Lemma 3.2.
(5) Take $B_{1} u_{\mid \partial \Omega}=\left(\partial_{n}^{2}+A^{\prime} \partial_{n}\right) u_{\mid \partial \Omega}$ and $B_{2} u_{\mid \partial \Omega}=\left(\partial_{n}^{3}+2 \partial_{n} \Delta^{\prime}\right) u_{\mid \partial \Omega}$, with A^{\prime} a symmetric differential operator of order less than or equal to one on $\partial \Omega$, with homogeneous principal symbol $a^{\prime}\left(x, \omega^{\prime}\right)$ such that $2 a^{\prime}\left(x, \omega^{\prime}\right) \neq-3\left|\omega^{\prime}\right|_{g}$ for $\omega^{\prime} \neq 0$, that is, $a^{\prime}\left(x, \omega^{\prime}\right) \neq-3 / 2$ for $\left|\omega^{\prime}\right|_{g}=1$. With (3.9) one finds

$$
T(u, v)=\left(A^{\prime} \partial_{n} u_{\mid \partial \Omega}, \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}+\left(\partial_{n} u_{\mid \partial \Omega},-A^{\prime} \partial_{n} v_{\mid \partial \Omega}\right)_{L^{2}(\partial \Omega)}=0,
$$

in the case of homogeneous conditions, hence symmetry for P.
We have $\tilde{b}_{1}\left(x, \omega^{\prime}, z\right)=-z^{2}-i z a^{\prime}\left(x, \omega^{\prime}\right)$ and $\tilde{b}_{2}\left(x, \omega^{\prime}, z\right)=i z^{3}+$ $2 i z\left|\omega^{\prime}\right|_{g}^{2}$ and

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
\tilde{b}_{1} & \tilde{b}_{2} \\
\partial_{z} \tilde{b}_{1} & \partial_{z} \tilde{b}_{2}
\end{array}\right)\left(x, \omega^{\prime}, z=i\left|\omega^{\prime}\right|_{g}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
\left|\omega^{\prime}\right|_{g}^{2}+\left|\omega^{\prime}\right|_{g} a^{\prime}\left(x, \omega^{\prime}\right) & -\left|\omega^{\prime}\right|_{g}^{3} \\
-2 i\left|\omega^{\prime}\right|_{g}-i a^{\prime}\left(x, \omega^{\prime}\right) & -i\left|\omega^{\prime}\right|_{g}^{2}
\end{array}\right) \\
& =-i\left|\omega^{\prime}\right|_{g}^{3}\left(2 a^{\prime}\left(x, \omega^{\prime}\right)+3\left|\omega^{\prime}\right|_{g}\right) \neq 0,
\end{aligned}
$$

if $\omega^{\prime} \neq 0$ since $2 a^{\prime}\left(x, \omega^{\prime}\right)+3\left|\omega^{\prime}\right|_{g} \neq 0$ by assumption implying that the Lopatinskiĭ-Šapiro condition holds by Lemma 3.2.

4. LOPATINSKIĬ-ŠAPIRO CONDITION FOR THE CONJUGATED Bi-Laplacian

Set $P_{\sigma}=\Delta^{2}-\sigma^{4}$ with $\sigma \in[0,+\infty)$ and denote by $P_{\sigma, \varphi}=e^{\tau \varphi} P_{\sigma} e^{-\tau \varphi}$ the conjugate operator of P_{σ} with $\tau \geq 0$ a large parameter and $\varphi \in$ $\mathscr{C}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$. We shall refer to φ as the weight function. The principal symbol of P_{σ} in normal geodesic coordinates is given by

$$
p_{\sigma}(x, \xi)=\left(\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)\right)^{2}-\sigma^{4}
$$

Observe that $e^{\tau \varphi} D_{j} e^{-\tau \varphi}=D_{j}+i \tau \partial_{j} \varphi \in \mathscr{D}_{\tau}^{1}$. So, after conjugation, the principal symbol becomes

$$
\begin{aligned}
p_{\sigma, \varphi}(x, \xi, \tau)= & p_{\sigma}\left(x, \xi+i \tau d_{x} \varphi\right) \\
= & \left(\left(\xi_{d}+i \tau \partial_{d} \varphi\right)^{2}+r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)\right)^{2}-\sigma^{4} \\
= & \left(\left(\xi_{d}+i \tau \partial_{d} \varphi\right)^{2}+r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)-\sigma^{2}\right) \\
& \times\left(\left(\xi_{d}+i \tau \partial_{d} \varphi\right)^{2}+r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+\sigma^{2}\right)
\end{aligned}
$$

We write $p_{\sigma, \varphi}(x, \xi, \tau)=q_{\sigma, \varphi}^{1}(x, \xi, \tau) q_{\sigma, \varphi}^{2}(x, \xi, \tau)$ with

$$
q_{\sigma, \varphi}^{j}(x, \xi, \tau)=\left(\xi_{d}+i \tau \partial_{d} \varphi\right)^{2}+r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2}, \quad j=1,2 .
$$

We consider two boundary operators B_{1} and B_{2} of order k_{1} and k_{2} with $b_{j}(x, \xi)$ for principal symbol, $j=1,2$. The associated conjugated operators

$$
B_{j, \varphi}=e^{\tau \varphi} B_{j} e^{-\tau \varphi}
$$

have respective principal symbols

$$
b_{j, \varphi}(x, \xi, \tau)=b_{j}(x, \xi+i \tau d \varphi), \quad j=1,2 .
$$

We assume that the Lopatinskiü-Sapiro condition holds for $\left(P_{0}, B_{1}, B_{2}\right)$ as in Definition 3.1 for any point $\left(x, \omega^{\prime}\right) \in T_{x}^{*} \partial \Omega$. We wish to know if the Lopatinskiı̆-Sapiro condition can hold for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$, as given by the following definition (in the chosen local normal geodesic coordinates for simplicity).

Definition 4.1. Let $\left(x, \xi^{\prime}, \tau, \sigma\right) \in \partial \Omega \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ with $\left(\xi^{\prime}, \tau, \sigma\right) \neq 0$. One says that the Lopatinskiǐ-Šapiro condition holds for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ at $\left(x, \xi^{\prime}, \tau, \sigma\right)$ if for any polynomial $f(z)$ with complex coefficients there exist $c_{1}, c_{2} \in \mathbb{C}$ and a polynomial $\ell(z)$ with complex coefficients such that, for all $z \in \mathbb{C}$

$$
\begin{aligned}
f(z)= & c_{1} b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=z, \tau\right)+c_{2} b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=z, \tau\right) \\
& +\ell(z) p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}=z, \tau\right),
\end{aligned}
$$

with

$$
p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}=z, \tau\right)=\prod_{\operatorname{Im} \rho_{j}\left(\xi^{\prime}, \tau, \sigma\right) \geq 0}\left(z-\rho_{j}\left(\xi^{\prime}, \tau, \sigma\right)\right)
$$

where $\rho_{j}\left(x, \xi^{\prime}, \tau, \sigma\right), j=1, \cdots, 4$, are the complex roots of the polynomial $z \mapsto p_{\sigma, \varphi}\left(x, \xi^{\prime}, \xi_{d}=z, \tau\right)$.

In what follows, we shall assume that $\partial_{d} \varphi>0$. Locally, one has $\partial_{d} \varphi \geq$ $C_{1}>0$, for some $C_{1}>0$.
4.1. Lopatinskiĭ-Šapiro condition and root positions. With the assumption that $\partial_{d} \varphi>0$, for any point $\left(x, \xi^{\prime}, \tau, \sigma\right)$ at most two roots lie in the upper complex closed half-plane (this is explained below). We then enumerate the following cases.

- Case 1: No root lying in the upper complex closed half-plane, then $p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=1$ and the Lopatinskiī-Šapiro condition of Definition 4.1 holds trivially at $\left(x, \xi^{\prime}, \tau, \sigma\right)$.
- Case 2: One root lying in the upper complex closed half-plane. Let us denote by ρ^{+}that root, then $p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\xi_{d}-\rho^{+}$. With Definition 4.1, for any choice of f, the polynomial $\xi_{d} \mapsto$ $f\left(\xi_{d}\right)-c_{1} b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)-c_{2} b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ admits ρ^{+}as a root for $c_{1}, c_{2} \in \mathbb{C}$ well chosen. Hence, the Lopatinskiǐ-Šapiro condition holds at $\left(x, \xi^{\prime}, \tau, \sigma\right)$ if and only if

$$
b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right) \neq 0 \quad \text { or } \quad b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right) \neq 0 .
$$

Note that it then suffices to have

$$
\operatorname{det}\left(\begin{array}{cc}
b_{1, \varphi} & b_{2, \varphi} \\
\partial_{\xi_{d}} b_{1, \varphi} & \partial_{\xi_{d}} b_{2, \varphi}
\end{array}\right)\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right) \neq 0 .
$$

- Case 3: Two different roots lying in the upper complex closed half-plane. Let denote by ρ_{1}^{+}and ρ_{2}^{+}these roots. One has $p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\left(\xi_{d}-\rho_{1}^{+}\right)\left(\xi_{d}-\rho_{2}^{+}\right)$. The Lopatinskiĭ-Šapiro condition holds at $\left(x, \xi^{\prime}, \tau, \sigma\right)$ if and only if the complex numbers ρ_{1}^{+}and ρ_{2}^{+}are the roots of the polynomial $\xi_{d} \mapsto f\left(\xi_{d}\right)-c_{1} b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)-$ $c_{2} b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$, for c_{1}, c_{2} well chosen. This reads

$$
\left\{\begin{array}{l}
f\left(\rho_{1}^{+}\right)=c_{1} b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{1}^{+}, \tau\right)+c_{2} b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{1}^{+}, \tau\right), \\
f\left(\rho_{2}^{+}\right)=c_{1} b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{2}^{+}, \tau\right)+c_{2} b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{2}^{+}, \tau\right)
\end{array}\right.
$$

Being able to solve this system in c_{1} and c_{2} for any f is equivalent to having

$$
\operatorname{det}\left(\begin{array}{ll}
b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{1}^{+}, \tau\right) & b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{1}^{+}, \tau\right) \tag{4.1}\\
b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{2}^{+}, \tau\right) & b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho_{2}^{+}, \tau\right)
\end{array}\right) \neq 0
$$

- Case 4 : A double root lying in the upper complex closed halfplane. Denote by ρ^{+}this root; one has $p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\left(\xi_{d}-\right.$ $\left.\rho^{+}\right)^{2}$. The Lopatinskǐ̆-Šapiro condition holds at at $\left(x, \xi^{\prime}, \tau, \sigma\right)$ if and only if for any choice of f, the complex number ρ^{+}is a double root of the polynomial $\xi_{d} \mapsto f\left(\xi_{d}\right)-c_{1} b_{1, \varphi}\left(x, \xi^{\prime}, \xi, \tau\right)-$ $c_{2} b_{2, \varphi}\left(x, \xi^{\prime}, \xi, \tau\right)$ for some $c_{1}, c_{2} \in \mathbb{C}$. Thus having the LopatinskiilŠapiro condition is equivalent of having the following determinant
condition,

$$
\operatorname{det}\left(\begin{array}{cc}
b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right) & b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right) \tag{4.2}\\
\partial_{\xi_{d}} b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right) & \partial_{\xi_{d}} b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right)
\end{array}\right) \neq 0
$$

Observe that case 4 can only occur if $\sigma=0$ (then one has $\left(\xi^{\prime}, \tau\right) \neq$ $(0,0))$. If $\sigma>0$ then only cases 1,2 , and 3 are possible. This is precisely stated in Lemma 4.7. This will be an important point in what follows.

We now state the following important proposition.
Proposition 4.2. Let $x^{0} \in \partial \Omega$. Assume that the Lopatinskǐ̆-Šapiro condition holds for $\left(P_{0}, B_{1}, B_{2}\right)$ at x^{0} and thus in a compact neighborhood V^{0} of x^{0} (by Remark 3.3). Assume also that $\partial_{d} \varphi \geq C_{1}>0$ in V^{0}. There exist $\mu_{0}>0$ and $\mu_{1}>0$ such that if $\left(x, \xi^{\prime}, \tau, \sigma\right) \in V^{0} \times \mathbb{R}^{d-1} \times[0,+\infty) \times$ $[0,+\infty)$ with $\left(\xi^{\prime}, \tau, \sigma\right) \neq(0,0,0)$,

$$
\left|d_{x^{\prime}} \varphi(x)\right| \leq \mu_{0} \partial_{d} \varphi(x) \quad \text { and } \quad \sigma \leq \mu_{1} \tau \partial_{d} \varphi(x)
$$

then the Lopatinskiǔ-Šapiro condition holds for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ at $\left(x, \xi^{\prime}, \tau, \sigma\right)$.
The proof of Proposition 4.2 is given below. We first need to analyze the configuration of the roots of the symbol $p_{\sigma, \varphi}$ starting with each factor $q_{\sigma, \varphi}^{j}, j=1,2$.
4.2. Root configuration for each factor. We consider either factors $\xi_{d} \mapsto q_{\sigma, \varphi}^{j}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$. We recall that

$$
q_{\sigma, \varphi}^{j}(x, \xi, \tau)=\left(\xi_{d}+i \tau \partial_{d} \varphi\right)^{2}+r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2}, \quad j=1,2
$$

First, we consider the case $r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2} \in \mathbb{R}^{-}$, that is, equal to $-\beta^{2}$ with $\beta \in \mathbb{R}$. Then, the roots of $\xi_{d} \mapsto q_{\sigma, \varphi}^{j}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ are given by

$$
-i \tau \partial_{d} \varphi+\beta \quad \text { and } \quad-i \tau \partial_{d} \varphi-\beta
$$

Both lie in the lower complex open half-plane.
Second, we consider the case $r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2} \in \mathbb{C} \backslash \mathbb{R}^{-}$. There exists a unique $\alpha_{j} \in \mathbb{C}$ such that $\operatorname{Re} \alpha_{j}>0$ and

$$
\begin{align*}
& \alpha_{j}^{2}\left(x, \xi^{\prime}, \tau, \sigma\right) \\
& \quad=r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi(x)\right)+(-1)^{j} \sigma^{2} \\
& \quad=r\left(x, \xi^{\prime}\right)-\tau^{2} r\left(x, d_{x^{\prime}} \varphi(x)\right)+(-1)^{j} \sigma^{2}+i 2 \tau \tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi(x)\right)^{2} \tag{4.3}
\end{align*}
$$

where $\tilde{r}(x, .,$.$) denotes the symmetric bilinear form associated with the$ quadratic form $r(x,$.$) . Then, the two roots of \xi_{d} \mapsto q_{\sigma, \varphi}^{j}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ are given by

$$
\begin{equation*}
\pi_{j, 1}\left(x, \xi^{\prime}, \tau, \sigma\right)=-i \tau \partial_{d} \varphi(x)-i \alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)=-i \tau \partial_{d} \varphi(x)+i \alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right) \tag{4.5}
\end{equation*}
$$

One has $\operatorname{Im} \pi_{j, 1}<0$ since $\partial_{d} \varphi \geq C_{1}>0$. With $\operatorname{Im} \pi_{j, 2}=-\tau \partial_{d} \varphi+\operatorname{Re} \alpha_{j}$ one sees that the sign of $\operatorname{Im} \pi_{j, 2}$ may change. The following lemma gives an algebraic characterization of the sign of $\operatorname{Im} \pi_{j, 2}$.

Lemma 4.3. Assume that $\partial_{d} \varphi>0$. Having $\operatorname{Im} \pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)<0$ is equivalent to having

$$
\left(\partial_{d} \varphi\right)^{2} r\left(x, \xi^{\prime}\right)+\tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)^{2}<\tau^{2}\left(\partial_{d} \varphi\right)^{2}\left|d_{x} \varphi\right|_{x}^{2}+(-1)^{j+1} \sigma^{2}\left(\partial_{d} \varphi\right)^{2}
$$

Proof. From (4.4)-(4.5) one has $\operatorname{Im} \pi_{j, 2}<0$ if and only if $\operatorname{Re} \alpha_{j}<\tau \partial_{d} \varphi=$ $\left|\tau \partial_{d} \varphi\right|$, that is, if and only if

$$
4\left(\tau \partial_{d} \varphi\right)^{2} \operatorname{Re} \alpha_{j}^{2}-4\left(\tau \partial_{d} \varphi\right)^{4}+\left(\operatorname{Im} \alpha_{j}^{2}\right)^{2}<0
$$

by Lemma 4.4 below. With (4.3) this gives the result.
Lemma 4.4. Let $z \in \mathbb{C}$ such that $m=z^{2}$. For $x_{0} \in \mathbb{R}$ such that $x_{0} \neq 0$, we have

$$
|\operatorname{Re} z| \risingdotseq\left|x_{0}\right| \quad \Longleftrightarrow \quad 4 x_{0}^{2} \operatorname{Re} m-4 x_{0}^{4}+(\operatorname{Im} m)^{2} \lesseqgtr 0 .
$$

The notation \lesseqgtr is to be understood as $<,=$, or $>$ in each term of the equivalence respectively.

Proof. Let $z=x+i y \in \mathbb{C}$. On the one hand we have $z^{2}=x^{2}-y^{2}+2 i x y=$ m and $\operatorname{Re} m=x^{2}-y^{2}, \operatorname{Im} m=2 x y$. On the other hand we have

$$
\begin{aligned}
4 x_{0}^{2} \operatorname{Re} m-4 x_{0}^{4}+(\operatorname{Im} m)^{2} & =4 x_{0}^{2}\left(x^{2}-y^{2}\right)-4 x_{0}^{4}+4 x^{2} y^{2} \\
& =4\left(x_{0}^{2}+y^{2}\right)\left(x^{2}-x_{0}^{2}\right),
\end{aligned}
$$

thus with the same sign as $\left(x^{2}-x_{0}^{2}\right)$. Since $|\operatorname{Re} z| \lesseqgtr\left|x_{0}\right| \Leftrightarrow x^{2}-x_{0}^{2} \lesseqgtr 0$ the conclusion follows.

With the following two lemmata we now connect the sign of $\operatorname{Im} \pi_{j, 2}$ with the low frequency regime $\left|\xi^{\prime}\right| \lesssim \tau$.

Lemma 4.5. Assume there exists $K_{0}>0$ such that $\left|d_{x^{\prime}} \varphi\right| \leq K_{0}\left|\partial_{d} \varphi\right|$. Then, there exists $C_{K_{0}}>0$ such that $\operatorname{Im} \pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)<0$ if $C_{K_{0}}\left|\xi^{\prime}\right|+$ $\sigma \leq \tau \partial_{d} \varphi, j=0,1$.

Proof. With Lemma 4.3 having $\operatorname{Im} \pi_{j, 2}<0$ reads

$$
\begin{equation*}
\left(\partial_{d} \varphi\right)^{2} r\left(x, \xi^{\prime}\right)+\tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)^{2}<\tau^{2}\left(\partial_{d} \varphi\right)^{2}\left|d_{x} \varphi\right|_{x}^{2}+(-1)^{j+1} \sigma^{2}\left(\partial_{d} \varphi\right)^{2} \tag{4.6}
\end{equation*}
$$

On the one hand, since $\left|d_{x^{\prime}} \varphi\right| \leq K_{0}\left|\partial_{d} \varphi\right|$ one has

$$
\left(\partial_{d} \varphi\right)^{2} r\left(x, \xi^{\prime}\right)+\tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)^{2} \leq K\left(\partial_{d} \varphi\right)^{2}\left|\xi^{\prime}\right|^{2}
$$

for some $K>0$ that depends on K_{0}, using that $\left|\xi^{\prime}\right|_{x} \approx\left|\xi^{\prime}\right|$. On the other hand one has

$$
\tau^{2}\left(\partial_{d} \varphi\right)^{2}\left|d_{x} \varphi\right|_{x}^{2}+(-1)^{j+1} \sigma^{2}\left(\partial_{d} \varphi\right)^{2} \geq \tau^{2}\left(\partial_{d} \varphi\right)^{4}-\sigma^{2}\left(\partial_{d} \varphi\right)^{2}
$$

Thus (4.6) holds if one has

$$
\tau^{2}\left(\partial_{d} \varphi\right)^{4}-\sigma^{2}\left(\partial_{d} \varphi\right)^{2} \geq K\left(\partial_{d} \varphi\right)^{2}\left|\xi^{\prime}\right|^{2}
$$

that is, $\tau^{2}\left(\partial_{d} \varphi\right)^{2} \geq K\left|\xi^{\prime}\right|^{2}+\sigma^{2}$.
Lemma 4.6. Let W be a bounded open set of \mathbb{R}^{d} and $x^{0} \in W$. Assume that $\partial_{d} \varphi>0$ in \bar{W} and let $\kappa_{0}>0$. Then, there exists $C>0$ such that

$$
\left|\xi^{\prime}\right| \leq C \tau \quad \text { if } \operatorname{Im} \pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)<0 \text { and } \kappa_{0} \sigma \leq \tau, \quad x \in W .
$$

Proof. With Lemma 4.3 having $\operatorname{Im} \pi_{j, 2}<0$ reads

$$
\left(\partial_{d} \varphi\right)^{2} r\left(x, \xi^{\prime}\right)+\tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)^{2}<\tau^{2}\left(\partial_{d} \varphi\right)^{2}\left|d_{x} \varphi\right|_{x}^{2}+(-1)^{j+1} \sigma^{2}\left(\partial_{d} \varphi\right)^{2}
$$

In particular, this implies

$$
r\left(x, \xi^{\prime}\right)<\tau^{2}\left|d_{x} \varphi\right|_{x}^{2}+(-1)^{j+1} \sigma^{2} \leq\left(\sup _{W}\left|d_{x} \varphi\right|_{x}^{2}+1 / \kappa_{0}^{2}\right) \tau^{2}
$$

The result follows since $\left|\xi^{\prime}\right| \asymp r\left(x, \xi^{\prime}\right)$.
As mentioned in Section 4.1, we have the following result.
Lemma 4.7. Assume that $\sigma>0$. Then, $\pi_{1,2}\left(x, \xi^{\prime}, \tau, \sigma\right) \neq \pi_{2,2}\left(x, \xi^{\prime}, \tau, \sigma\right)$. Moreover, the roots $\pi_{1,2}\left(x, \xi^{\prime}, \tau, \sigma\right)$ and $\pi_{2,2}\left(x, \xi^{\prime}, \tau, \sigma\right)$ cannot be both real.

Proof. With the forms of the roots given in (4.4)-(4.5) if $\pi_{1,2}=\pi_{2,2}$ then $\alpha_{1}=\alpha_{2}$, thus $\alpha_{1}^{2}=\alpha_{2}^{2}$ implying $\sigma^{2}=0$.

Assume now that $\pi_{1,2} \in \mathbb{R}$ and $\pi_{2,2} \in \mathbb{R}$, that is, $\operatorname{Im} \pi_{1,2}=\operatorname{Im} \pi_{2,2}=0$. This reads $\operatorname{Re} \alpha_{j}=\tau \partial_{d} \varphi$, giving $\left|\operatorname{Re} \alpha_{j}\right|=\left|\partial_{d} \varphi\right|$, for $j=1$ and 2. With Lemma 4.4 one has

$$
4\left(\tau \partial_{d} \varphi\right)^{2} \operatorname{Re} \alpha_{j}^{2}-4\left(\tau \partial_{d} \varphi\right)^{4}+\left(\operatorname{Im} \alpha_{j}^{2}\right)^{2}=0, \quad j=1,2
$$

Observing that $\operatorname{Im} \alpha_{1}^{2}=\operatorname{Im} \alpha_{2}^{2}$ one thus obtains $\operatorname{Re} \alpha_{1}^{2}=\operatorname{Re} \alpha_{2}^{2}$, and the conclusion follows as for the first part.
4.3. Proof of Proposition 4.2. Here, according to the statement of Proposition 4.2 we consider

$$
\left|d_{x^{\prime}} \varphi\right| \leq \mu_{0} \partial_{d} \varphi \text { and } \sigma \leq \mu_{1} \tau \partial_{d} \varphi
$$

First, we choose $0<\mu_{0} \leq 1$ and $0<\mu_{1} \leq 1 / 2$. Below both may be chosen much smaller. According to Lemma 4.5, with $K_{0}=1$ therein, for some $C_{2}=2 C_{K_{0}}>0$ if one has $C_{2}\left|\xi^{\prime}\right| \leq \tau \partial_{d} \varphi$ then all four roots of $\xi_{d} \mapsto p_{\sigma, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ lie in the lower complex open half-plane. If so, we face Case 1 as in the discussion of Section 4.1 and the Lopatinskiǐ-Šapiro
condition holds. To carry on with the proof of Proposition 4.2 we now only have to consider having

$$
\begin{equation*}
\tau \partial_{d} \varphi \leq C_{2}\left|\xi^{\prime}\right| \tag{4.7}
\end{equation*}
$$

Our proof of Proposition 4.2 relies on the following lemma.
Lemma 4.8. There exists $C_{3}>0$ such that, for $j=1$ or 2 , for $0<\mu_{0} \leq$ $1,0<\mu_{1} \leq 1 / 2$, and for all $\left(x, \xi^{\prime}, \tau, \sigma\right) \in \overline{V^{0}} \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$, one has

$$
\begin{aligned}
\left|d_{x^{\prime}} \varphi(x)\right| \leq \mu_{0} \partial_{d} \varphi(x) & \quad \sigma \leq \mu_{1} \tau \partial_{d} \varphi(x) \quad \text { and } \quad \operatorname{Im} \pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right) \geq 0 \\
\Longrightarrow & \left|\alpha_{j}-\left|\xi^{\prime}\right|_{x}\right|+\tau\left|d_{x^{\prime}} \varphi(x)\right| \leq\left|\xi^{\prime}\right|_{x} C_{3}\left(\mu_{0}+\mu_{1}^{2}\right)
\end{aligned}
$$

Proof. With (4.7) one has

$$
\begin{equation*}
\tau\left|d_{x^{\prime}} \varphi\right| \leq \mu_{0} \tau \partial_{d} \varphi \lesssim \mu_{0}\left|\xi^{\prime}\right|_{x} \tag{4.8}
\end{equation*}
$$

With the first-order Taylor formula one has

$$
\begin{aligned}
\alpha_{j}^{2} & =r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2} \\
& =r\left(x, \xi^{\prime}\right)+\int_{0}^{1} d_{\xi^{\prime}} r\left(x, \xi^{\prime}+i \tau s d_{x^{\prime}} \varphi\right)\left(i \tau d_{x^{\prime}} \varphi\right) d s+(-1)^{j} \sigma^{2} .
\end{aligned}
$$

With (4.8) and homogeneity one has

$$
\left|d_{\xi^{\prime}} r\left(x, \xi^{\prime}+i \tau s d_{x^{\prime}} \varphi\right)\left(i \tau d_{x^{\prime}} \varphi\right)\right| \lesssim \mu_{0}\left|\xi^{\prime}\right|_{x}^{2} .
$$

One also has $\sigma \leq \mu_{1} \tau \partial_{d} \varphi \lesssim \mu_{1}\left|\xi^{\prime}\right|_{x}$. Since $r\left(x, \xi^{\prime}\right)=\left|\xi^{\prime}\right|_{x}^{2}$, this yields $\alpha_{j}^{2}=\left|\xi^{\prime}\right|_{x}^{2}\left(1+O\left(\mu_{0}+\mu_{1}^{2}\right)\right)$ and hence $\alpha_{j}=\left|\xi^{\prime}\right|_{x}\left(1+O\left(\mu_{0}+\mu_{1}^{2}\right)\right)$. This and (4.8) give the result.

Before proceeding, we make the following computation. For $j=1,2$ and $\ell=1,2$ we write

$$
\begin{align*}
b_{\ell, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{j, 2}, \tau\right) & =b_{\ell}\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi, \pi_{j, 2}+i \tau \partial_{d} \varphi\right) \\
& =b_{\ell}\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi, i \alpha_{j}\right) \\
& =b_{\ell}\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi, i\left|\xi^{\prime}\right|_{x}+i\left(\alpha_{j}-\left|\xi^{\prime}\right|_{x}\right)\right) \tag{4.9}
\end{align*}
$$

We use Lemma 3.4 and the value of $\varepsilon>0$ given therein. We choose $0<\mu_{0} \leq 1$ and $0<\mu_{1} \leq 1 / 2$ such that

$$
\begin{equation*}
C_{3}\left(\mu_{0}+\mu_{1}^{2}\right) \leq \varepsilon \tag{4.10}
\end{equation*}
$$

with $C_{3}>0$ as given by Lemma 4.8.
We now consider the root configurations that remain to consider according to the discussion in Section 4.1.

Case 2.

In this case, one root of $p_{\sigma, \varphi}$ lies in the upper complex closed half-plane.

We denote this root by ρ^{+}. According to the discussion in Section 4.1 it suffices to prove that

$$
\operatorname{det}\left(\begin{array}{cc}
b_{1, \varphi} & b_{2, \varphi} \tag{4.11}\\
\partial_{\xi_{d}} b_{1, \varphi} & \partial_{\xi_{d}} b_{2, \varphi}
\end{array}\right)\left(x, \xi^{\prime}, \xi_{d}=\rho^{+}, \tau\right) \neq 0
$$

In fact, one has $\rho^{+}=\pi_{j, 2}$ with $j=1$ or 2 . We use the first part of Lemma 3.4 with $\zeta^{\prime}=i \tau d_{x^{\prime}} \varphi$ and $\delta=i\left(\alpha_{j}-|\xi|_{x}\right)$. With (4.9) and (4.10) with Lemma 4.8 and the first part of Lemma 3.4 one obtains (4.11).
Case 3.
In this case $\operatorname{Im} \pi_{1,2}>0$ and $\operatorname{Im} \pi_{2,2}>0$. According to the discussion in Section 4.1 it suffices to prove that

$$
\operatorname{det}\left(\begin{array}{ll}
b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{1,2}, \tau\right) & b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{1,2}, \tau\right) \tag{4.12}\\
b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{2,2}, \tau\right) & b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{2,2}, \tau\right)
\end{array}\right) \neq 0
$$

We use the second part of Lemma 3.4 with $\zeta^{\prime}=i \tau d_{x^{\prime}} \varphi, \delta=i\left(\alpha_{1}-|\xi|_{x}\right)$, and $\tilde{\delta}=i\left(\alpha_{2}-|\xi|_{x}\right)$. With (4.9) and (4.10) with Lemma 4.8 and the second part of Lemma 3.4 one obtains (4.12).
Case 4.
In this case (that only occurs if $\sigma=0$) the Lopatinskiǐ-Šapiro condition holds also if one has (4.11). The proof is thus the same as for Case 2. This concludes the proof of Proposition 4.2.
4.4. Local stability of the algebraic conditions. In Section 3 we saw that the Lopatinskǐ̆-Šapiro condition for $\left(P_{\sigma}, B_{1}, B_{2}\right)$ in Definition 3.1 exhibits some stability property. This was used in the statement of Proposition 4.2 that states how the Lopatinskiĭ-Sapiro condition for $\left(P_{\sigma}, B_{1}, B_{2}\right)$ can imply the Lopatinskiŭ-Šapiro condition of Definition 4.1 for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$, that is, the version of this condition for the conjugated operators.

A natural question would then be: does the Lopatinskiī-Šapiro condition for the conjugated operators enjoy the same stability property? The answer is yes. Yet, this is not needed in what follows. In fact, below one exploits the algebraic conditions listed in Section 4.1 once the Lopatin-skiǐ-Šapiro condition is known to hold at a point $\varrho^{0 \prime}=\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right)$ in tangential phase space. One thus rather needs to know that these algebraic conditions are stable. Here also the answer is positive and is the subject of the present section.

As in Definition 4.1 for $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$ one denotes by $\rho_{j}\left(\varrho^{\prime}\right)$ the roots of $p_{\sigma, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ viewed as a polynomial in ξ_{d}.

Let $\varrho^{0 \prime}=\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right) \in \partial \Omega \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$. One sets

$$
\begin{aligned}
J^{+} & =\left\{j \in\{1,2,3,4\} ; \operatorname{Im} \rho_{j}\left(\varrho^{0 \prime}\right) \geq 0\right\}, \\
J^{-} & =\left\{j \in\{1,2,3,4\} ; \operatorname{Im} \rho_{j}\left(\varrho^{0 \prime}\right)<0\right\},
\end{aligned}
$$

and, for $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$,

$$
\kappa_{\varrho^{0}}^{+}\left(\varrho^{\prime}\right)=\prod_{j \in J^{+}}\left(\xi_{d}-\rho_{j}\left(\varrho^{\prime}\right)\right), \quad \kappa_{\varrho^{\prime \prime}}^{-}\left(\varrho^{\prime}\right)=\prod_{j \in J^{-}}\left(\xi_{d}-\rho_{j}\left(\varrho^{\prime}\right)\right) .
$$

Naturally, one has $\kappa_{\varrho^{\prime \prime}}^{+}\left(\varrho^{0^{\prime \prime}}, \xi_{d}\right)=p_{\sigma, \varphi}^{+}\left(x^{0}, \xi^{0 \prime}, \xi_{d}, \tau^{0}\right)$ and $\kappa_{\varrho^{\prime \prime}}^{-}\left(\varrho^{0^{\prime \prime}}, \xi_{d}\right)=$ $p_{\sigma, \varphi}^{-}\left(x^{0}, \xi^{0 \prime}, \xi_{d}, \tau^{0}\right)$. Moreover, there exists a conic open neighborhood \mathscr{U}_{0} of $\varrho^{0 \prime}$ where both $\kappa_{\varrho^{0 \prime}}^{+}\left(\varrho^{\prime}\right)$ and $\kappa_{\varrho^{0 \prime}}^{-}\left(\varrho^{\prime}\right)$ are smooth with respect to ϱ^{\prime}. One has

$$
p_{\sigma, \varphi}=p_{\sigma, \varphi}^{+} p_{\sigma, \varphi}^{-}=\kappa_{\varrho^{\prime}}^{+} \kappa_{\varrho^{0 \prime}}^{-} .
$$

Note however that for $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in \mathscr{U}_{0}$ it may very well happen that $p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right) \neq \kappa_{\varrho^{\prime}}^{+}\left(\varrho^{\prime}, \xi_{d}\right)$ and $p_{\sigma, \varphi}^{-}\left(x, \xi^{\prime}, \xi_{d}, \tau\right) \neq \kappa_{\varrho^{0}}^{-}\left(\varrho^{\prime}, \xi_{d}\right)$.

The following proposition can be found in [8, proposition 1.8].
Proposition 4.9. Let the Lopatinskiǔ-Šapiro condition hold at $\varrho^{0 \prime}=$ $\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right) \in \partial \Omega \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$. Then,
(1) The polynomial $\xi_{d} \mapsto p_{\sigma, \varphi}^{+}\left(x^{0}, \xi^{0 \prime}, \xi_{d}, \tau^{0}\right)$ is of degree less than or equal to two.
(2) There exists a conic open neighborhood \mathscr{U} of $\varrho^{0 \prime}$ such that the family $\left\{b_{\varphi}^{1}\left(\varrho^{\prime}, \xi_{d}\right), b_{\varphi}^{2}\left(\varrho^{\prime}, \xi_{d}\right)\right\}$ is complete modulo $\kappa_{\varrho^{0}}^{+}\left(\varrho^{\prime}, \xi_{d}\right)$ at every point $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in \mathscr{U}$, namely for any polynomial $f\left(\xi_{d}\right)$ with complex coefficients there exist $c_{1}, c_{2} \in \mathbb{C}$ and a polynomial $\ell\left(\xi_{d}\right)$ with complex coefficients such that, for all $\xi_{d} \in \mathbb{C}$

$$
\begin{equation*}
f\left(\xi_{d}\right)=c_{1} b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)+c_{2} b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)+\ell\left(\xi_{d}\right) \kappa_{\varrho^{0}}^{+}\left(\varrho^{\prime}, \xi_{d}\right) . \tag{4.13}
\end{equation*}
$$

We emphasize again that the second property in Proposition 4.9 looks very much like the statement of Lopatinskiī-Šapiro condition for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ at ϱ^{\prime} in Definition 4.1. Yet, it differs by having $p_{\sigma, \varphi}^{+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ that only depends on the root configuration at ϱ^{\prime} replaced by $\kappa_{\varrho^{\prime}}^{+}\left(\varrho^{\prime}, \xi_{d}\right)$ whose structure is based on the root configuration at $\varrho^{0 \prime}$.

Let m^{+}be the common degree of $p_{\sigma, \varphi}^{+}\left(\varrho^{0^{\prime}}, \xi_{d}\right)$ and $\kappa_{\varrho^{\prime}}^{+}\left(\varrho^{\prime}, \xi_{d}\right)$ and m^{-} be the common degree of $p_{\sigma, \varphi}^{-}\left(\varrho^{0 \prime}, \xi_{d}\right)$ and $\kappa_{\varrho^{\prime \prime}}^{-}\left(\varrho^{\prime}, \xi_{d}\right)$ for $\varrho^{\prime} \in \mathscr{U}$. One has $m^{+}+m^{-}=4$ and thus $m^{-} \geq 2$ for $\varrho^{\prime} \in \mathscr{U}$ since $m^{+} \leq 2$.

Invoking the Euclidean division of polynomials, one sees that it is sufficient to consider polynomials f of degree less than or equal to $m^{+}-$ $1 \leq 1$ in (4.13). Since the degree of $b_{j, \varphi}\left(\varrho^{\prime}, \xi_{d}\right)$ can be as high as $3>m^{+}-1$ it however makes sense to consider f of degree less than or equal to $m=3$. Then, the second property in Proposition 4.9 is equivalent to having

$$
\left\{b_{1, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right), b_{2, \varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)\right\} \cup \bigcup_{0 \leq \ell \leq 3-m^{+}}\left\{\kappa_{\varrho^{\prime}}^{+}\left(\varrho^{\prime}, \xi_{d}\right) \xi_{d}^{\ell}\right\}
$$

be a complete in the set of polynomials of degree less than or equal to $m=3$. Note that this family is made of $m^{\prime}=6-m^{+}=2+m^{-}$ polynomials.

We now express an inequality that follows from Proposition 4.9 that will be key in the boundary estimation given in Proposition 5.1 below.
4.5. Symbol positivity at the boundary. The symbols $b_{j, \varphi}, j=1,2$, are polynomial in ξ_{d} of degree $k_{j} \leq 3$ and we may thus write them in the form

$$
b_{j, \varphi}\left(\varrho^{\prime}, \xi_{d}\right)=\sum_{\ell=0}^{k_{j}} b_{j, \varphi}^{\ell}\left(\varrho^{\prime}\right) \xi_{d}^{\ell}
$$

with $b_{j, \varphi}^{\ell}$ homogeneous of degree $k_{j}-\ell$.
The polynomial $\xi_{d} \mapsto \kappa_{\varrho^{0}}^{+}\left(\varrho^{\prime}, \xi_{d}\right)$ is of degree $m^{+} \leq 2$ for $\varrho^{\prime} \in \mathscr{U}$ with \mathscr{U} given by Proposition 4.9. Similarly, we write

$$
\kappa_{\varrho^{\prime}}^{+}\left(\varrho^{\prime}, \xi_{d}\right)=\sum_{\ell=0}^{m^{+}} \kappa_{\varrho^{o^{\prime}}}^{+, \ell}\left(\varrho^{\prime}\right) \xi_{d}^{\ell},
$$

with $\kappa_{\varrho^{0}}^{+, \ell}$ homogeneous of degree $m^{+}-\ell$. We introduce

$$
e_{j, \varrho^{0}}\left(\varrho^{\prime}, \xi_{d}\right)= \begin{cases}b_{j, \varphi}\left(\varrho^{\prime}, \xi_{d}\right) & \text { if } j=1,2 \\ \kappa_{\varrho^{0}}^{+}\left(\varrho^{\prime}, \xi_{d}\right) \xi_{d}^{j-3} & \text { if } j=3, \ldots, m^{\prime}\end{cases}
$$

As explained above, all these polynomials are of degree less than or equal to three. If we now write

$$
e_{j, \varrho^{0}}\left(\varrho^{\prime}, \xi_{d}\right)=\sum_{\ell=0}^{3} e_{j, \varrho^{\prime}}^{\ell}\left(\varrho^{\prime}\right) \xi_{d}^{\ell}
$$

for $j=1,2$ one has $e_{j, \varrho^{\prime}}^{\ell}\left(\varrho^{\prime}\right)=b_{j, \varphi}^{\ell}\left(\varrho^{\prime}\right)$, with $\ell=0, \ldots, k_{j}$ and $e_{j, \varrho^{\prime}}^{\ell}\left(\varrho^{\prime}\right)=$ 0 for $\ell>k_{j}$, and for $j=3, \ldots, m^{\prime}$,

$$
e_{j, \varrho^{0 \prime}}^{\ell}\left(\varrho^{\prime}\right)= \begin{cases}0 & \text { if } \ell<j-3, \\ \kappa_{\varrho^{0^{\prime}}}^{+\ell+3-j}\left(\varrho^{\prime}\right) & \text { if } \ell=j-3, \ldots, m^{+}+j-3 \leq m^{+}+m^{\prime}-3 \\ 0 & \text { if } \ell>m^{+}+j-3\end{cases}
$$

In particular $e_{j, \ell^{\prime}}^{\ell}\left(\varrho^{\prime}\right)$ is homogeneous of degree $m^{+}+j-\ell-3$. Note that $m^{+}+m^{\prime}-3=3$. We thus have the following result.

Lemma 4.10. Set the $m^{\prime} \times(m+1)$ matrix $M\left(\varrho^{\prime}\right)=\left(M_{j, \ell}\left(\varrho^{\prime}\right)\right)_{\substack{1 \leq j \leq m^{\prime} \\ 0 \leq \ell \leq m}}$ with $M_{j, \ell}\left(\varrho^{\prime}\right)=e_{j, \varrho^{0}}^{\ell}\left(\varrho^{\prime}\right)$. Then, the second point in Proposition 4.9 states that $M\left(\varrho^{\prime}\right)$ is of rank $m+1=4$ for $\varrho^{\prime} \in \mathscr{U}$.

Recall that $m^{\prime}=m^{-}+2 \geq 4$.
We now set

$$
\begin{equation*}
\Sigma_{e_{j, \varrho^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right)=\sum_{\ell=0}^{3} e_{j, \varrho^{0 \prime}}^{\ell}\left(\varrho^{\prime}\right) z_{\ell}=\sum_{\ell=0}^{3} M_{j, \ell}\left(\varrho^{\prime}\right) z_{\ell}, \quad \mathbf{z}=\left(z_{0}, \ldots, z_{3}\right) . \tag{4.14}
\end{equation*}
$$

in agreement with the notation introduced in (2.3) in Section 2.4.2. One has the following positivity result.

Lemma 4.11. Let the Lopatinskǐ̌-Šapiro condition hold at a point $\varrho^{0 \prime}=$ $\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right) \in \partial \Omega \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ and let \mathscr{U} be as given by Proposition 4.9. Then, if $\varrho^{\prime} \in \mathscr{U}$ there exists $C>0$ such that

$$
\sum_{j=1}^{m^{\prime}}\left|\Sigma_{e_{j, \varrho^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right)\right|^{2} \geq C|\mathbf{z}|_{\mathbb{C}^{4}}^{2}, \quad \mathbf{z}=\left(z_{0}, \ldots, z_{3}\right) \in \mathbb{C}^{4}
$$

Proof. In \mathbb{C}^{4} define the bilinear form

$$
\Sigma_{\mathscr{B}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\sum_{j=1}^{m^{\prime}} \Sigma_{e_{j, \varrho^{\prime}}}\left(\varrho^{\prime}, \mathbf{z}\right) \overline{\Sigma_{e_{j, \varrho^{\prime}}}\left(\varrho^{\prime}, \mathbf{z}^{\prime}\right)} .
$$

With (4.14) one has

$$
\Sigma_{\mathscr{B}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\left(M\left(\varrho^{\prime}\right) \mathbf{z}, M\left(\varrho^{\prime}\right) \mathbf{z}^{\prime}\right)_{\mathbb{C}^{m^{\prime}}}=\left({ }^{t} \overline{M\left(\varrho^{\prime}\right)} M\left(\varrho^{\prime}\right) \mathbf{z}, \mathbf{z}^{\prime}\right)_{\mathbb{C}^{4}}
$$

As rank ${ }^{t} \overline{M\left(\varrho^{\prime}\right)} M\left(\varrho^{\prime}\right)=\operatorname{rank} M\left(\varrho^{\prime}\right)=4$ by Lemma 4.10 one obtains the result.

5. Boundary norm estimate under Lopatinskil̆-Šapiro CONDITION

Near $x^{0} \in \partial \Omega$ we consider two boundary operators B_{1} and B_{2}. As in Section 4 the associated conjugated operators are denoted by $B_{j, \varphi}$, $j=1,2$ with respective principal symbols $b_{j, \varphi}(x, \xi, \tau)$.

The main result of this section is the following proposition for the fourth-order conjugated operator $P_{\sigma, \varphi}$. It is key in the final result of the present article. It states that all traces are controlled by norms of $B_{1, \varphi} v_{\mid x_{d}=0^{+}}$and $B_{2, \varphi} v_{\mid x_{d}=0^{+}}$if the Lopatinski1̌-Sapiro condition holds for $\left(P, B_{1}, B_{2}, \varphi\right)$.

Proposition 5.1. Let $\kappa_{0}>0$. Let $x^{0} \in \partial \Omega$, with Ω locally given by $\left\{x_{d}>0\right\}$. Assume that $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ satisfies the Lopatinskǐ̌-Šapiro condition of Definition 4.1 at $\varrho^{\prime}=\left(x^{0}, \xi^{\prime}, \tau, \sigma\right)$ for all $\left(\xi^{\prime}, \tau, \sigma\right) \in \mathbb{R}^{d-1} \times$ $[0,+\infty) \times[0,+\infty)$ such that $\tau \geq \kappa_{0} \sigma$.

Then, there exist W^{0} a neighborhood of $x^{0}, C>0, \tau_{0}>0$ such that

$$
|\operatorname{tr}(v)|_{3,1 / 2, \tau} \leq C\left(\left\|P_{\sigma, \varphi} v\right\|_{+}+\left.\sum_{j=1}^{2}\left|B_{j, \varphi} v\right|_{x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}+\|v\|_{4,-1, \tau}\right)
$$

for $\sigma \geq 0, \tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$ and $v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}^{0}\right)$.
The notation of the function space $\overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}^{0}\right)$ is introduced in (1.6).
For the proof of Proposition 5.1 we start with a microlocal version of the result.

5.1. A microlocal estimate.

Proposition 5.2. Let $\kappa_{1}>\kappa_{0}>0$. Let $x^{0} \in \partial \Omega$, with Ω locally given by $\left\{x_{d}>0\right\}$ and let W be a bounded open neighborhood of x^{0} in \mathbb{R}^{d}. Let $\left(\xi^{0 \prime}, \tau^{0}, \sigma^{0}\right) \in \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ nonvanishing with $\tau^{0} \geq \kappa_{1} \sigma^{0}$ and such that $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ satisfies the Lopatinskiü-S゙apiro condition of Definition 4.1 at $\varrho^{0 \prime}=\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right)$.

Then, there exists \mathscr{U} a conic neighborhood of ϱ^{01} in $W \times \mathbb{R}^{d-1} \times$ $[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0} \sigma$ such that if $\chi \in S_{\top, \tau}^{0}$, homogeneous of degree 0 in $\left(\xi^{\prime}, \tau, \sigma\right)$ with $\operatorname{supp}(\chi) \subset \mathscr{U}$, there exist $C>0$ and $\tau_{0}>0$ such that

$$
\begin{aligned}
&\left|\operatorname{tr}\left(\mathrm{Op}_{\mathrm{T}}(\chi) v\right)\right|_{3,1 / 2, \tau} \leq C\left(\left.\sum_{j=1}^{2}\left|B_{j, \varphi} v\right|_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}+\left\|P_{\sigma, \varphi} v\right\|_{+}\right. \\
&\left.+\|v\|_{4,-1, \tau}+|\operatorname{tr}(v)|_{3,-1 / 2, \tau}\right),
\end{aligned}
$$

for $\sigma \geq 0, \tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$ and $v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$.
Proof. We choose a conic open neighborhood \mathscr{U}_{0} of $\varrho^{0 \prime}$ according to Proposition 4.9 and such that $\mathscr{U}_{0} \subset W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$. Assume moreover that $\tau \geq \kappa_{0} \sigma$ in \mathscr{U}_{0}.

In Section 4.5 we introduced the symbols $e_{j, \varrho^{\prime}}\left(\varrho^{\prime}, \xi_{d}\right), j=1, \ldots, m^{\prime}=$ $m^{-}+2=6-m^{+}$. For a conic set \mathscr{V} denote $\mathbb{S}_{\mathscr{V}}=\left\{\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in\right.$ $\left.\mathscr{V} ;\left|\left(\xi^{\prime}, \tau, \sigma\right)\right|=1\right\}$.

Consequence of the Lopatinskiī-Šapiro condition holding at $\varrho^{0 \prime}$, by Lemma 4.11 for all $\varrho^{\prime} \in \mathbb{S}_{\mathscr{U}_{0}}$ there exists $C>0$ such that

$$
\sum_{j=1}^{m^{\prime}}\left|\Sigma_{e_{j, \varrho^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right)\right|^{2} \geq C|\mathbf{z}|_{\mathbb{C}^{4}}^{2}, \quad \mathbf{z}=\left(z_{0}, \ldots, z_{3}\right) \in \mathbb{C}^{4}
$$

Let \mathscr{U}_{1} be a second conic open neighborhood of $\varrho^{0 \prime}$ such that $\overline{\mathscr{U}_{1}} \subset \mathscr{U}_{0}$. Since $\mathbb{S}_{\overline{\mathscr{U}_{1}}}$ is compact (recall that W is bounded), there exists $C_{0}>0$
such that

$$
\sum_{j=1}^{m^{\prime}}\left|\Sigma_{e_{j, \varrho^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right)\right|^{2} \geq C_{0}|\mathbf{z}|_{\mathbb{C}^{4}}^{2}, \quad \mathbf{z}=\left(z_{0}, \ldots, z_{3}\right) \in \mathbb{C}^{4}, \varrho^{\prime} \in \mathbb{S}_{\overline{\mathscr{U}_{1}}}
$$

Introducing the map $N_{t} \varrho^{\prime}=\left(x, t \xi^{\prime}, t \tau, t \sigma\right)$, for $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$ with $t=$ $\left|\left(\xi^{\prime}, \tau, \sigma\right)\right|^{-1}$ one has

$$
\begin{equation*}
\sum_{j=1}^{m^{\prime}}\left|\Sigma_{e_{j, \varrho^{0}}}\left(N_{t} \varrho^{\prime}, \mathbf{z}\right)\right|^{2} \geq C_{0}|\mathbf{z}|_{\mathbb{C}^{4}}^{2}, \quad \mathbf{z}=\left(z_{0}, \ldots, z_{3}\right) \in \mathbb{C}^{4}, \varrho^{\prime} \in \mathscr{U}_{1} \tag{5.1}
\end{equation*}
$$

since $N_{t} \varrho^{\prime} \in \mathbb{S}_{\overline{\mathscr{U}_{1}}}$. Now, for $j=1,2$ one has

$$
\Sigma_{e_{j, \varrho^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right)=\sum_{\ell=0}^{k_{j}} e_{j, \varrho^{0}}^{\ell}\left(\varrho^{\prime}\right) z_{\ell}
$$

with $e_{j, \varrho^{\prime}}^{\ell}\left(\varrho^{\prime}\right)$ homogeneous of degree $k_{j}-\ell$, and for $3 \leq j \leq m^{\prime}$ one has

$$
\Sigma_{e_{j, \varrho^{\prime}}}\left(\varrho^{\prime}, \mathbf{z}\right)=\sum_{\ell=0}^{3} e_{j, \varrho^{\prime \prime}}^{\ell}\left(\varrho^{\prime}\right) z_{\ell},
$$

with $e_{j, \varrho^{0}}^{\ell}\left(\varrho^{\prime}\right)$ homogeneous of degree $m^{+}+j-\ell-3$. We define $\mathbf{z}^{\prime} \in \mathbb{C}^{4}$ by $z_{\ell}^{\prime}=t^{\ell-7 / 2} z_{\ell}, \ell=0, \ldots, 3$. One has

$$
\Sigma_{e_{j, \varrho^{\prime}}}\left(N_{t} \varrho^{\prime}, \mathbf{z}^{\prime}\right)=t^{k_{j}-7 / 2} \Sigma_{e_{j, \varrho^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right), \quad j=1,2
$$

and

$$
\Sigma_{e_{j, \varrho^{0}}}\left(N_{t} \varrho^{\prime}, \mathbf{z}^{\prime}\right)=t^{m^{+}+j-13 / 2} \Sigma_{e_{j, \varrho^{\prime}}}\left(\varrho^{\prime}, \mathbf{z}\right), \quad j=3, \ldots, m^{\prime}
$$

Thus, from (5.1) we deduce

$$
\begin{array}{r}
\sum_{j=1}^{2} \lambda_{\mathrm{T}, \tau}^{2\left(7 / 2-k_{j}\right)}\left|\Sigma_{e_{j, e^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right)\right|^{2}+\sum_{j=3}^{m^{\prime}} \lambda_{\mathrm{T}, \tau}^{2\left(13 / 2-m^{+}-j\right)}\left|\Sigma_{e_{j, e^{0}}}\left(\varrho^{\prime}, \mathbf{z}\right)\right|^{2} \\
\geq C_{0} \sum_{\ell=0}^{3} \lambda_{\mathrm{T}, \tau}^{2(7 / 2-\ell)}\left|z_{\ell}\right|^{2} \tag{5.2}
\end{array}
$$

for $\mathbf{z}=\left(z_{0}, \ldots, z_{3}\right) \in \mathbb{C}^{4}$, and $\varrho^{\prime} \in \mathscr{U}_{1}$, since $t \asymp \lambda_{\boldsymbol{\top}, \tau}^{-1}$ as $\tau \gtrsim \sigma$ in \mathscr{U}_{1}.
We now choose \mathscr{U} a conic open neighborhood of $\varrho^{0 \prime}$, such that $\overline{\mathscr{U}} \subset \mathscr{U}_{1}$. Let $\chi \in S_{\mathrm{T}, \tau}^{0}$ be as in the statement and let $\tilde{\chi} \in S_{\mathrm{T}, \tau}^{0}$ be homogeneous of degree 0 , with $\operatorname{supp}(\tilde{\chi}) \subset \mathscr{U}_{1}$ and $\tilde{\chi} \equiv 1$ in a neighborhood of $\overline{\mathscr{U}}$, and thus in a neighborhood of $\operatorname{supp}(\chi)$.

For $j=3, \ldots, m^{\prime}$ one has $e_{j, \varrho^{\prime}}\left(\varrho^{\prime}, \xi_{d}\right)=\kappa_{\varrho^{0^{\prime}}}^{+}\left(\varrho^{\prime}, \xi_{d}\right) \xi_{d}^{j-3} \in S_{\tau}^{m^{+}+j-3,0}$. Set $E_{j}=\operatorname{Op}\left(\tilde{\chi} e_{j, \varrho^{\prime}}\right)$. The introduction of $\tilde{\chi}$ is made such that $\tilde{\chi} e_{j, \varrho^{0^{\prime}}}$ is defined on the whole tangential phase-space. Observe that

$$
\begin{aligned}
\mathscr{B}(w) & =\sum_{j=1}^{2}\left|B_{j, \varphi} w_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}^{2}+\sum_{j=3}^{m^{\prime}}\left|E_{j} w_{\mid x_{d}=0^{+}}\right|_{13 / 2-m^{+}-j, \tau}^{2} \\
& =\sum_{j=1}^{2}\left|\Lambda_{\mathbf{T}, \tau}^{7 / 2-k_{j}} B_{j, \varphi} w_{\mid x_{d}=0^{+}}\right|_{\partial}^{2}+\sum_{j=3}^{m^{\prime}}\left|\Lambda_{\mathrm{T}, \tau}^{13 / 2-m^{+}-j} E_{j} w_{\mid x_{d}=0^{+}}\right|_{\partial}^{2}
\end{aligned}
$$

is a boundary quadratic form of type $(3,1 / 2)$ as in Definition 2.4. From Proposition 2.6 and (5.2) we have

$$
\begin{align*}
|\operatorname{tr}(u)|_{3,1 / 2, \tau}^{2} \lesssim & \sum_{j=1}^{2}\left|B_{j, \varphi} u_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}^{2}+\sum_{j=3}^{m^{\prime}}\left|E_{j} u_{\mid x_{d}=0^{+}}\right|_{13 / 2-m^{+}-j, \tau}^{2} \\
& +|\operatorname{tr}(v)|_{3,-N, \tau^{*}}^{2} \tag{5.3}
\end{align*}
$$

for $u=\mathrm{Op}_{\mathrm{T}}(\chi) v$ and $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large.
In \mathscr{U}_{1} one can write

$$
p_{\sigma, \varphi}=p_{\sigma, \varphi}^{+} p_{\sigma, \varphi}^{-}=\kappa_{\varrho^{0}}^{+} \kappa_{\varrho^{0 \prime}}^{-},
$$

with $\kappa_{\varrho^{0}}^{+}$of degree m^{+}and $\kappa_{\varrho^{\prime \prime}}^{-}$of degree m^{-}. In fact we set

$$
\tilde{\kappa}_{\varrho^{0}}^{+}\left(\varrho^{\prime}\right)=\prod_{j \in J^{+}}\left(\xi_{d}-\tilde{\chi} \rho_{j}\left(\varrho^{\prime}\right)\right), \quad \tilde{\kappa}_{\varrho^{0}}^{-}\left(\varrho^{\prime}\right)=\prod_{j \in J^{-}}\left(\xi_{d}-\tilde{\chi} \rho_{j}\left(\varrho^{\prime}\right)\right)
$$

with the notation of Section 4.4, thus making the two symbols defined on the whole tangential phase-space. In \mathscr{U}, one has also

$$
p_{\sigma, \varphi}=\tilde{\kappa}_{\varrho^{0}}^{+} \tilde{\kappa}_{\varrho^{0}}^{-} .
$$

The factor $\tilde{\kappa}_{\varrho^{0}}^{-}$is associated with roots with negative imaginary part. With Lemma A. 1 given in Appendix A. 1 one has the following microlocal elliptic estimate

$$
\begin{aligned}
&\left\|\mathrm{Op}_{\mathrm{T}}(\chi) w\right\|_{m^{-}, \tau}+\left|\operatorname{tr}\left(\mathrm{Op}_{\mathrm{T}}(\chi) w\right)\right|_{m^{-}-1,1 / 2, \tau} \\
& \lesssim\left\|\mathrm{Op}_{\mathbf{T}}\left(\tilde{\kappa}_{\rho^{0 \prime}}^{-}\right) \mathrm{Op}_{\mathbf{T}}(\chi) w\right\|_{+}+\|w\|_{m^{-},-N, \tau},
\end{aligned}
$$

for $w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$ and $\tau \geq \kappa_{0} \tau$ chosen sufficiently large. We apply this inequality to $w=\operatorname{Op}_{\mathrm{T}}\left(\tilde{\kappa}_{\varrho^{0}}^{+}\right) v$. Since

$$
\operatorname{Op}_{\mathbf{T}}\left(\tilde{\kappa}_{\varrho^{\prime \prime}}^{-}\right) \operatorname{Op}_{\mathbf{T}}(\chi) \mathrm{Op}_{\mathbf{T}}\left(\tilde{\kappa}_{\varrho^{0^{\prime}}}^{+}\right)=\mathrm{Op}_{\mathbf{T}}(\chi) P_{\sigma, \varphi} \quad \bmod \Psi_{\tau}^{4,-1}
$$

one obtains

$$
\left|\operatorname{tr}\left(\mathrm{Op}_{\mathrm{T}}(\chi) \mathrm{Op}_{\mathrm{T}}\left(\tilde{\kappa}_{\varrho^{\prime}}^{+}\right) v\right)\right|_{m^{-}-1,1 / 2, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+\|v\|_{4,-1, \tau} .
$$

With $\left[\mathrm{Op}_{\mathrm{T}}(\chi), \mathrm{Op}_{\mathrm{T}}\left(\tilde{\kappa}_{\varrho^{0}}^{+}\right)\right] \in \Psi_{\tau}^{m^{+},-1}$ one then has

$$
\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}\left(\tilde{\kappa}_{\varrho^{0}}^{+}\right) u\right)\right|_{m^{-}-1,1 / 2, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+\|v\|_{4,-1, \tau}+|\operatorname{tr}(v)|_{3,-1 / 2, \tau},
$$

with $u=\mathrm{Op}_{\mathrm{T}}(\chi) v$ as above, using that $m^{+}+m^{-}=4$. Note that

$$
\begin{aligned}
& \left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}\left(\tilde{\kappa}_{\varrho^{0}}^{+}\right) u\right)\right|_{m^{-}-1,1 / 2, \tau} \\
& \quad \asymp \sum_{j=0}^{m^{-}-1}\left|D_{d}^{j} \mathrm{Op}_{\mathbf{T}}\left(\tilde{\kappa}_{\varrho^{0 \prime}}^{+}\right) u_{\mid x_{d}=0^{+}}\right|_{m^{--j-1 / 2, \tau}} \\
& \quad \gtrsim \sum_{j=3}^{m^{\prime}}\left|E_{j} u_{\mid x_{d}=0^{+}}\right|_{5 / 2+m^{-}-j, \tau}-\left|\operatorname{tr}(v)_{\mid x_{d}=0^{+}}\right|_{3,-1 / 2, \tau},
\end{aligned}
$$

using that $\xi_{d}^{j} \tilde{\kappa}_{\rho^{\prime \prime}}^{+}=\tilde{\chi} e_{j+3, \varrho^{0 \prime}}$ in a conic neighborhood of $\operatorname{supp}(\chi)$ and using that $m^{-}=m^{\prime}-2$. We thus obtain

$$
\sum_{j=3}^{m^{\prime}}\left|E_{j} u_{\mid x_{d}=0^{+}}\right|_{13 / 2-m^{+}-j, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+\|v\|_{4,-1, \tau}+|\operatorname{tr}(v)|_{3,-1 / 2, \tau},
$$

since $13 / 2-m^{+}=5 / 2+m^{-}$. With (5.3) then one finds

$$
\begin{aligned}
|\operatorname{tr}(u)|_{3,1 / 2, \tau} \lesssim & \sum_{j=1}^{2}\left|B_{j, \varphi} u_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}^{2}+\left\|P_{\sigma, \varphi} v\right\|_{+}+\|v\|_{4,-1, \tau} \\
& +|\operatorname{tr}(v)|_{3,-1 / 2, \tau} .
\end{aligned}
$$

In addition, observing that

$$
\left|B_{j, \varphi} u_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau} \lesssim\left|B_{j, \varphi} v_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}+|\operatorname{tr}(v)|_{3,-1 / 2, \tau},
$$

the result of Proposition 5.2 follows.
5.2. Proof of Proposition 5.1. As mentioned above the proof relies on a patching procedure of microlocal estimates given by Proposition 5.2.

Let $0<\kappa_{0}^{\prime}<\kappa_{0}$. We set

$$
\Gamma_{+, \kappa_{0}}^{d-1}=\left\{\left(\xi^{\prime}, \tau, \sigma\right) \in \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty) ; \tau \geq \kappa_{0} \sigma,\right\}
$$

and

$$
\mathbb{S}_{+, \kappa_{0}}^{d-1}=\left\{\left(\xi^{\prime}, \tau, \sigma\right) \in \Gamma_{+, \kappa_{0}}^{d-1} ;\left|\left(\xi^{\prime}, \tau, \sigma\right)\right|=1\right\} .
$$

Consider $\left(\xi^{0 \prime}, \tau^{0}, \sigma^{0}\right) \in \mathbb{S}_{+, \kappa_{0}}^{d-1}$. Since the Lopatinskiǔ-Šapiro condition holds at $\varrho^{0 \prime}=\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right)$, we can invoke Proposition 5.2:
(1) There exists a conic open neighborhood $\mathscr{U}_{\varrho^{0 \prime}}$ of $\varrho^{0 \prime}$ in $W \times \mathbb{R}^{d-1} \times$ $[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0}^{\prime} \sigma ;$
(2) For any $\chi_{\varrho^{0 \prime}} \in S_{\top, \tau}^{0}$ homogeneous of degree 0 supported in $\mathscr{U}_{\varrho^{01}}$ the estimate of Proposition 5.2 applies to $\mathrm{Op}_{\boldsymbol{\top}}\left(\chi_{\rho^{0}}\right) v$ for $\tau \geq$ $\max \left(\tau_{\varrho^{0}}, \kappa_{0} \sigma\right)$.

Without any loss of generality we may choose $\mathscr{U}_{\varrho^{01}}$ of the form $\mathscr{U}_{\varrho^{01}}=$ $\mathscr{O}_{\varrho^{0 \prime}} \times \Gamma_{\varrho^{0 /}}$, with $\mathscr{O}_{\varrho^{0 /}} \subset W$ an open neighborhood of x^{0} and $\Gamma_{\varrho^{0 \prime}}$ a conic open neighborhood of $\left(\xi^{0 \prime}, \tau^{0}, \sigma^{0}\right)$ in $\mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0}^{\prime} \sigma$.

Since $\left\{x^{0}\right\} \times \mathbb{S}_{+, \kappa_{0}}^{d-1}$ is compact we can extract a finite covering of it by open sets of the form of $\mathscr{U}_{\varrho^{0}}$. We denote by $\tilde{\mathscr{U}}_{i}, i \in I$ with $|I|<\infty$, such a finite covering. This is also a finite covering of $\left\{x^{0}\right\} \times \Gamma_{+, \kappa_{0}}^{d-1}$.

Each $\tilde{\mathscr{U}}_{i}$ has the form $\tilde{\mathscr{U}}_{i}=\mathscr{O}_{i} \times \Gamma_{i}$, with \mathscr{O}_{i} an open neighborhood of x^{0} and Γ_{i} a conic open set in $\mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0}^{\prime} \sigma$.

We set $\mathscr{O}=\cap_{i \in I} \mathscr{O}_{i}$ and $\mathscr{U}_{i}=\mathscr{O} \times \Gamma_{i}, i \in I$.
Let W^{0} be an open neighborhood of x^{0} such that $W^{0} \Subset \mathscr{O}$. The open sets \mathscr{U}_{i} give also an open covering of $\overline{W^{0}} \times \mathbb{S}_{+, \kappa_{0}}^{d-1}$ and $\overline{W^{0}} \times \Gamma_{+, \kappa_{0}}^{d-1}$. With this second covering we associate a partition of unity $\chi_{i}, i \in I$, of $\overline{W^{0}} \times \mathbb{S}_{+, \kappa_{0}}^{d-1}$, where each χ_{i} is chosen smooth and homogeneous of degree one for $\left|\left(\xi^{\prime}, \tau, \sigma\right)\right| \geq 1$, that is:

$$
\sum_{i \in I} \chi_{i}\left(\varrho^{\prime}\right)=1
$$

for $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$ in a neighborhood of $\overline{W^{0}} \times \Gamma_{+, \kappa_{0}}^{d-1}$, and $\left|\left(\xi^{\prime}, \tau, \sigma\right)\right| \geq 1$.
Let $\left.u \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}^{0}\right)\right)$. Since each χ_{i} is in $S_{\mathrm{T}, \tau}^{0}$ and supported in \mathscr{U}_{i}, Proposition 5.2 applies:

$$
\begin{align*}
&\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}\left(\chi_{i}\right) v\right)\right|_{3,1 / 2, \tau} \leq C_{i}\left(\sum_{j=1}^{2}\left|B_{j, \varphi} v_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}+\left\|P_{\sigma, \varphi} v\right\|_{+}\right. \\
&+\left.\|v\|_{4,-1, \tau}+|\operatorname{tr}(v)|_{3,-1 / 2, \tau}\right) \tag{5.4}
\end{align*}
$$

for some $C_{i}>0$, for $\sigma \geq 0, \tau \geq \max \left(\tau_{i}, \kappa_{0} \sigma\right)$ for some $\tau_{i}>0$.
We set $\tilde{\chi}=1-\sum_{i \in I} \chi_{i}$. One has $\tilde{\chi} \in S_{\mathrm{T}, \tau}^{-\infty}$ microlocally in a neighborhood of $\overline{W^{0}} \times \Gamma_{+, \kappa_{0}}^{d-1}$. Thus, considering the definition of $\Gamma_{+, \kappa_{0}}^{d-1}$, if one imposes $\tau \geq \kappa_{0} \sigma$, as we do, then $\tilde{\chi} \in S_{\mathrm{T}, \tau}^{-\infty}$ locally in a neighborhood of $\overline{W^{0}}$.

For any $N \in \mathbb{N}$ using that $\operatorname{supp}(v) \subset W^{0}$ one has

$$
\begin{aligned}
|\operatorname{tr}(v)|_{3,1 / 2, \tau} & \leq \sum_{i \in I}\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}\left(\chi_{i}\right) v\right)\right|_{3,1 / 2, \tau}+\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}(\tilde{\chi}) v\right)\right|_{3,1 / 2, \tau} \\
& \lesssim \sum_{i \in I}\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{\top}}\left(\chi_{i}\right) v\right)\right|_{3,1 / 2, \tau}+|\operatorname{tr}(v)|_{3,-N, \tau} \\
& \lesssim \sum_{i \in I}\left|\operatorname{tr}\left(\mathrm{Op}_{\boldsymbol{\top}}\left(\chi_{i}\right) v\right)\right|_{3,1 / 2, \tau}+\|v\|_{4,-N, \tau} .
\end{aligned}
$$

Summing estimates (5.4) together for $i \in I$ we thus obtain

$$
\begin{aligned}
&|\operatorname{tr}(v)|_{3,1 / 2, \tau} \lesssim \sum_{j=1}^{2}\left|B_{j, \varphi} v\right| x_{d}=0^{+} \\
&\left.\right|_{7 / 2-k_{j}, \tau}+\left\|P_{\sigma, \varphi} v\right\|_{+} \\
&+\|v\|_{4,-1, \tau}+|\operatorname{tr}(v)|_{3,-1 / 2, \tau},
\end{aligned}
$$

for $\tau \geq \max \left(\max _{i} \tau_{i}, \kappa_{0} \sigma\right)$. Therefore, by choosing $\tau \geq \kappa_{0} \sigma$ sufficiently large one obtains the result of Proposition 5.1.

6. Microlocal estimates for second-order factors

We recall that $P_{\sigma}=\Delta^{2}-\sigma^{4}=\left(-\Delta-\sigma^{2}\right)\left(-\Delta+\sigma^{2}\right)$ with $\sigma \geq 0$. Set $Q_{\sigma}^{j}=-\Delta+(-1)^{j} \sigma^{2}$; then $P_{\sigma}=Q_{\sigma}^{1} Q_{\sigma}^{2}$. We also set $Q=-\Delta$, that is, $Q=Q_{0}^{1}=Q_{0}^{2}$.

The principal symbols of Q_{σ}^{j} and Q are given by

$$
\begin{equation*}
q_{\sigma}^{j}(x, \xi)=\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)+(-1)^{j} \sigma^{2} \text { and } q(x, \xi)=\xi_{d}^{2}+r\left(x, \xi^{\prime}\right) \tag{6.1}
\end{equation*}
$$

respectively. The conjugated operator $P_{\sigma, \varphi}=e^{\tau \varphi} P_{\sigma} e^{-\tau \varphi}$ reads

$$
P_{\sigma, \varphi}=Q_{\sigma, \varphi}^{1} Q_{\sigma, \varphi}^{2}, \quad \text { with } Q_{\sigma, \varphi}^{j}=e^{\tau \varphi} Q_{\sigma}^{j} e^{-\tau \varphi} .
$$

We set

$$
Q_{s}^{j}=\frac{Q_{\sigma, \varphi}^{j}+\left(Q_{\sigma, \varphi}^{j}\right)^{*}}{2} \text { and } Q_{a}=\frac{Q_{\sigma, \varphi}^{j}-\left(Q_{\sigma, \varphi}^{j}\right)^{*}}{2 i}
$$

both formally selfadjoint and such that $Q_{\sigma, \varphi}^{j}=Q_{s}^{j}+i Q_{a}$. Note that Q_{a} is independent of σ. Their respective principal symbols are

$$
\begin{aligned}
& q_{s}^{j}(x, \xi, \tau, \sigma)=\xi_{d}^{2}-\left(\tau \partial_{d} \varphi\right)^{2}+r\left(x, \xi^{\prime}\right)+(-1)^{j} \sigma^{2}-\tau^{2} r\left(x, d_{x^{\prime}} \varphi\right) \\
& q_{a}(x, \xi, \tau)=2 \tau \xi_{d} \partial_{d} \varphi+2 \tau \tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right) .
\end{aligned}
$$

Note that Q_{s}^{j} and Q_{a} take the forms

$$
\begin{equation*}
Q_{s}^{j}=D_{d}^{2}+T_{s}^{j}, \quad Q_{a}=\tau\left(\partial_{d} \varphi D_{d}+D_{d} \partial_{d} \varphi\right)+T_{a} \tag{6.2}
\end{equation*}
$$

where $T_{s}^{j}, T_{a} \in \mathscr{D}_{\top}^{2}, \tau$ are such that $\left(T_{s}^{j}\right)^{*}=T_{s}^{j}$ and $T_{a}^{*}=T_{a}$. Naturally, the principal symbol of $Q_{\sigma, \varphi}^{j}$ is

$$
q_{\sigma, \varphi}^{j}(x, \xi, \tau)=q_{s}^{j}(x, \xi, \tau, \sigma)+i q_{a}(x, \xi, \tau)
$$

The principal symbol of $Q_{\sigma, \varphi}^{j}=e^{\tau \varphi} Q_{\sigma}^{j} e^{-\tau \varphi}$ is

$$
\begin{aligned}
q_{\sigma, \varphi}^{j}(x, \xi, \tau, \sigma)= & \left(\xi_{d}+i \tau \partial_{d} \varphi\right)^{2}+r\left(x, \xi^{\prime}\right)+(-1)^{j} \sigma^{2} \\
& -\tau^{2} r\left(x, d_{x^{\prime}} \varphi\right)+2 i \tau \tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)
\end{aligned}
$$

As in Section 4.2 we let $\alpha_{j} \in \mathbb{C}$ be such that

$$
\begin{aligned}
\alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right)^{2} & =r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2} \\
& =r\left(x, \xi^{\prime}\right)-\tau^{2} r\left(x, d_{x^{\prime}} \varphi\right)+2 i \tau \tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2}
\end{aligned}
$$

and $\operatorname{Re} \alpha_{j} \geq 0$. Note that uniqueness in the choice of α_{j} holds except if $r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \varphi\right)+(-1)^{j} \sigma^{2} \in \mathbb{R}^{-}$; this lack of uniqueness in that case is however not an issue in what follows. One has

$$
\begin{aligned}
q_{\sigma, \varphi}^{j}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)= & \left(\xi_{d}+i \tau \partial_{d} \varphi\right)^{2}+\alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right)^{2} \\
= & \left(\xi_{d}+i \tau \partial_{d} \varphi+i \alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right)\right) \\
& \times\left(\xi_{d}+i \tau \partial_{d} \varphi-i \alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right)\right)
\end{aligned}
$$

We recall from (4.4)-(4.5) that we write $q_{\sigma, \varphi}^{j}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\left(\xi_{d}-\pi_{j, 1}\right)\left(\xi_{d}-\right.$ $\pi_{j, 2}$) with

$$
\pi_{j, 1}=-i \tau \partial_{d} \varphi-i \alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right) \text { and } \pi_{j, 2}=-i \tau \partial_{d} \varphi+i \alpha_{j}\left(x, \xi^{\prime}, \tau, \sigma\right)
$$

The roots $\pi_{j, k}, k=1,2$ are functions of x, ξ^{\prime}, τ and σ.

We denote by B a boundary operator of order k that takes the form

$$
B(x, D)=B^{k}\left(x, D^{\prime}\right)+B^{k-1}\left(x, D^{\prime}\right) D_{d}
$$

with $B^{k}\left(x, D^{\prime}\right)$ and $B^{k-1}\left(x, D^{\prime}\right)$ tangential differential operators of order k and $k-1$ respectively. The boundary operator $B(x, D)$ has $b(x, \xi)=$ $b^{k}\left(x, \xi^{\prime}\right)+b^{k-1}\left(x, \xi^{\prime}\right) \xi_{d}$ for principal symbol. The conjugate boundary operator $B_{\varphi}=e^{\tau \varphi} B e^{-\tau \varphi}$ is then given by

$$
\begin{aligned}
B_{\varphi}(x, D, \tau) & =B_{\varphi}^{k}\left(x, D^{\prime}, \tau\right)+B_{\varphi}^{k-1}\left(x, D^{\prime}, \tau\right)\left(D_{d}+i \tau \partial_{d} \varphi\right) \\
& =\hat{B}_{\varphi}^{k}\left(x, D^{\prime}, \tau\right)+B_{\varphi}^{k-1}\left(x, D^{\prime}, \tau\right) D_{d}
\end{aligned}
$$

with $\hat{B}_{\varphi}^{k}\left(x, D^{\prime}, \tau\right)=B_{\varphi}^{k}\left(x, D^{\prime}, \tau\right)+i \tau B_{\varphi}^{k-1}\left(x, D^{\prime}, \tau\right) \partial_{d} \varphi$. The principal symbol of $B_{\varphi}(x, D, \tau)$ is

$$
b_{\varphi}(x, \xi, \tau)=\hat{b}_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right)+b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right) \xi_{d}
$$

where $b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right)$ is homogeneous of degree $k-1$ in $\lambda_{\mathrm{T}, \tau}$ and $\hat{b}_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right)=$ $b_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right)+i \tau b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right) \partial_{d} \varphi$ is homogeneous of degree k in $\lambda_{\mathrm{T}, \tau}$.

6.1. Sub-ellipticity. Set

$$
q_{s}(x, \xi, \tau)=\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)-\left(\tau \partial_{d} \varphi\right)^{2}-r\left(x, \tau d_{x^{\prime}} \varphi\right)=|\xi|_{x}^{2}-|\tau d \varphi|_{x}^{2}
$$

where $|\xi|_{x}^{2}=\xi_{d}^{2}+r\left(x, \xi^{\prime}\right)$. One has $q_{s}^{j}=q_{s}+(-1)^{j} \sigma^{2}$. Observe that $\left\{q_{s}^{j}, q_{a}\right\}=\left\{q_{s}, q_{a}\right\}$.

Definition 6.1 (Sub-ellipticity). Let W be a bounded open subset of \mathbb{R}^{d} and $\varphi \in \mathscr{C}^{\infty}(\bar{W})$ such that $\left|d_{x} \varphi\right|>0$. Let $j=1$ or 2 . We say that the couple $\left(Q_{\sigma}^{j}, \varphi\right)$ satisfies the sub-ellipticity condition in \bar{W} if there exist $C>0$ and $\tau_{0}>0$ such that for $\sigma>0$

$$
\begin{aligned}
& \forall(x, \xi) \in \bar{W} \times \mathbb{R}^{d}, \tau \geq \tau_{0} \sigma \\
& \quad q_{\sigma, \varphi}^{j}(x, \xi, \tau)=0 \Rightarrow\left\{q_{s}^{j}, q_{a}\right\}(x, \xi, \tau)=\left\{q_{s}, q_{a}\right\}(x, \xi, \tau) \geq C>0
\end{aligned}
$$

Remark 6.2. Note that with homogeneity the sub-ellipticity property also reads

$$
\forall(x, \xi) \in \bar{W} \times \mathbb{R}^{d}, \tau \geq \tau_{0} \sigma, q_{\sigma, \varphi}^{j}(x, \xi, \tau)=0 \Rightarrow\left\{q_{s}^{j}, q_{a}\right\}(x, \xi, \tau) \geq C \lambda_{\tau}^{3} .
$$

Proposition 6.3. Let W be a bounded open subset of \mathbb{R}^{d} and $\psi \in$ $\mathscr{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\psi \geq 0$ and $\left|d_{x} \psi\right| \geq C>0$ on \bar{W}. Let $\tau_{0}>0$. Then, there exists $\gamma_{0} \geq 1$ such that $\left(Q_{\sigma}^{j}, \varphi\right)$ satisfies the sub-ellipticity condition on \bar{W} for $\tau \geq \tau_{0} \sigma$ for $\varphi=e^{\gamma \psi}$, with $\gamma \geq \gamma_{0}$, for both $j=1$ and 2 .

Proof. We note that $\left|d_{x} \varphi(x)\right| \neq 0$.
The proof is slightly different whether one considers the symbol $q_{\sigma, \varphi}^{1}$ or the symbol $q_{\sigma, \varphi}^{2}$.
Case 1: proof for $\boldsymbol{q}_{\boldsymbol{\sigma}, \varphi}^{\mathbf{1}}$. Assume that $q_{\sigma, \varphi}^{1}=0$. Thus $|\xi|_{x}^{2}-|\tau d \varphi|_{x}^{2}-\sigma^{2}=$ 0 implying $|\xi| \sim \sigma+\gamma \tau \varphi$. On the one hand by Lemma 3.55 in [34], one has

$$
\begin{align*}
\left\{q_{s}, q_{a}\right\}(x, \xi, \tau)= & \tau\left(\gamma^{2} \varphi\right)(\gamma \varphi)^{2}\left(\left(H_{q} \psi(x, \beta)\right)^{2}+4 \tau^{2} q(x, d \psi(x))^{2}\right) \\
& +(\gamma \varphi)^{3} \frac{1}{2 i}\left\{\overline{q_{\psi}}, q_{\psi}\right\}(x, \beta, \tau) \tag{6.3}
\end{align*}
$$

with $\beta=\xi /(\gamma \varphi)$, and where H_{q} denotes the Hamiltonian vector field associated with the symbol q as defined in (6.1). Here, q_{ψ} denotes the principal symbol of $e^{\tau \psi} Q e^{-\tau \psi}$, that is,

$$
\begin{aligned}
q_{\psi}(x, \xi, \tau) & =q\left(x, \xi+i \tau d_{x} \psi(x)\right) \\
& =\left(\xi_{d}+i \tau \partial_{d} \psi(x)\right)^{2}+r\left(x, \xi^{\prime}+i \tau d_{x^{\prime}} \psi(x)\right)
\end{aligned}
$$

On the other hand, one has $\left(H_{q} \psi(x, \beta)\right)^{2}+4 \tau^{2} q(x, d \psi(x))^{2} \gtrsim \tau^{2}$ and since $\frac{1}{2 i}\left\{\overline{q_{\psi}}, q_{\psi}\right\}(x, \beta, \tau)$ is homogeneous of degree 3 in (β, τ), we obtain

$$
\left\{q_{s}, q_{a}\right\} \geq C \gamma(\gamma \tau \varphi)^{3}-C^{\prime}(\gamma \tau \varphi+|\beta| \gamma \varphi)^{3}=C \gamma \tilde{\tau}^{3}-C^{\prime \prime}(\tilde{\tau}+|\xi|)^{3},
$$

with $\tilde{\tau}=\gamma \tau \varphi$. Yet, one has $|\xi| \sim \sigma+\tilde{\tau}$ implying

$$
\left\{q_{s}, q_{a}\right\} \geq C \gamma \tilde{\tau}^{3}-C^{\prime \prime \prime}(\tilde{\tau}+|\xi|)^{3} \geq C \gamma \tilde{\tau}^{3}-C^{(4)}(\tilde{\tau}+\sigma)^{3}
$$

Since $\psi \geq 0$ and $\gamma \geq 1$ one has $\varphi \geq 1$ implying $\tau_{0} \sigma \leq \tau \lesssim \tilde{\tau}$ and thus

$$
\left\{q_{s}, q_{a}\right\}(x, \xi, \tau) \geq \tilde{\tau}^{3}\left(C \gamma-C^{(5)}\right)
$$

It follows that for γ chosen sufficiently large one finds $\left\{q_{s}, q_{a}\right\}(x, \xi, \tau) \geq$ $C>0$.

Case 2: proof for $\boldsymbol{q}_{\boldsymbol{\sigma}, \varphi}^{2}$. Assume that $q_{\sigma, \varphi}^{2}=0$. Then $|\xi|_{x}^{2}+\sigma^{2}=$ $|\tau d \varphi|_{x}^{2}$ implying $|\xi|+\sigma \sim \tau|d \varphi| \sim \tilde{\tau}$. The same computation as in Case 1 gives

$$
\left\{q_{s}, q_{a}\right\}(x, \xi, \tau) \geq C \gamma \tilde{\tau}^{3}-C^{\prime}(\tilde{\tau}+|\xi|)^{3}
$$

Here $|\xi|+\tilde{\tau} \lesssim \tilde{\tau}$ yielding

$$
\left\{q_{s}, q_{a}\right\}(x, \xi, \tau) \geq\left(C \gamma-C^{\prime \prime}\right) \tilde{\tau}^{3}
$$

The remaining part of the proof is the same.
Lemma 6.4. Let $j=1$ or 2 . Let $\left(Q_{\sigma}^{j}, \varphi\right)$ have the sub-ellipticity property of Definition 6.1 in \bar{W}. For $\mu>0$ one sets $t(\varrho)=\mu\left(\left(q_{s}^{j}\right)^{2}+q_{a}^{2}\right)(\varrho)+$ $\tau\left\{q_{s}^{j}, q_{a}\right\}(\varrho)$ with $\varrho=(x, \xi, \tau, \sigma) \in \bar{W} \times \mathbb{R}^{d} \times[0, \infty) \times[0, \infty)$. Let $\tau_{0}>0$. Then, for μ chosen sufficiently large and $\tau \geq \tau_{0} \sigma$ one has $t(\varrho) \geq C \lambda_{\tau}^{4}$ for some $C>0$.

The proof of Lemma 6.4 uses the following lemma.
Lemma 6.5. Consider two continuous functions, f and g, defined in a compact set \mathscr{L}, and assume that $f \geq 0$ and moreover

$$
f(y)=0 \Rightarrow g(y)>0 \quad \text { for all } \quad y \in \mathscr{L} .
$$

Setting $h_{\mu}=\mu f+g$, we have $h_{\mu} \geq C>0$ for $\mu>0$ chosen sufficiently large.

Proof of Lemma 6.4. Consider the compact set

$$
\mathscr{L}=\left\{(x, \xi, \tau, \sigma) ; x \in \bar{W},|\xi|^{2}+\tau^{2}+\sigma^{2}=1, \tau \geq \tau_{0} \sigma\right\} .
$$

Applying the result of Lemma 6.5 to $t(\varrho)$ on \mathscr{L} with $f=\left(q_{s}^{j}\right)^{2}+q_{a}^{2}$ and $g=\tau\left\{q_{s}^{j}, q_{a}\right\}$ we find for $t(\varrho) \geq C$ on \mathscr{L} for some $C>0$ for μ chosen sufficiently large. Since $t(\varrho)$ is homogeneous of degree 4 in the variables (ξ, τ, σ) it follows that $t(\varrho) \geq C\left(\sigma^{2}+\tau^{2}+|\xi|^{2}\right)^{2} \gtrsim \lambda_{\tau}^{4}$.
6.2. Lopatinskiǐ-Šapiro condition for the second-order factors. Above, in Section 4, the Lopatinskiĭ-Šapiro condition is addressed for the fourth-order operator $P_{\sigma, \varphi}$. Here, we consider the two second-order factors $Q_{\sigma, \varphi}^{j}$.

With the roots $\pi_{j, 1}$ and $\pi_{j, 2}$ defined in (4.4)-(4.5) one sets

$$
q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\prod_{\substack{\operatorname{Im} \pi_{j, k} \geq 0 \\ k=1,2}}\left(\xi_{d}-\pi_{j, k}\left(x, \xi^{\prime}, \tau, \sigma\right)\right) .
$$

Definition 6.6. Let $j=1,2$. Let $x \in \partial \Omega$, with Ω locally given by $\left\{x_{d}>0\right\}$. Let $\left(\xi^{\prime}, \tau, \sigma\right) \in \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ with $\left(\xi^{\prime}, \tau, \sigma\right) \neq 0$. One says that the Lopatinskiǐ-Šapiro condition holds for $\left(Q_{\sigma}^{j}, B, \varphi\right)$ at $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$ if for any polynomial $f\left(\xi_{d}\right)$ with complex coefficients there exist $c \in \mathbb{C}$ and a polynomial $\ell\left(\xi_{d}\right)$ with complex coefficients such that, for all $\xi_{d} \in \mathbb{C}$

$$
\begin{equation*}
f\left(\xi_{d}\right)=c b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)+\ell\left(\xi_{d}\right) q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right) \tag{6.4}
\end{equation*}
$$

Remark 6.7. With the Euclidean division of polynomials, we see that it suffices to consider the polynomial $f\left(\xi_{d}\right)$ to be of degree less than that of $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ in (6.4). Thus, in any case, the degree of $f\left(\xi_{d}\right)$ can be chosen less than or equal to one.

Lemma 6.8. Let $j=1$ or 2 . Let $x \in \partial \Omega$ and $\left(\xi^{\prime}, \tau, \sigma\right) \in \mathbb{R}^{d-1} \times$ $[0,+\infty) \times[0,+\infty)$ with $\left(\xi^{\prime}, \tau, \sigma\right) \neq 0$. The Lopatinskiŭ-Šapiro condition holds for $\left(Q_{\sigma}^{j}, B, \varphi\right)$ at $\left(x, \xi^{\prime}, \tau, \sigma\right)$ if and only if
(1) either $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=1$;
(2) or $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\xi_{d}-\pi$ and $b_{\varphi}\left(x, \xi^{\prime}, \pi, \tau\right) \neq 0$.

Proof. If $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\left(\xi_{d}-\pi_{j, 1}\left(x, \xi^{\prime}, \tau, \sigma\right)\right)\left(\xi_{d}-\pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)\right)$, that is, both roots $\pi_{j, 1}\left(x, \xi^{\prime}, \tau, \sigma\right)$ and $\pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)$ are in the upper complex half-plane, then condition (6.4) cannot hold, since by Remark 6.7 it means that the vector space of polynomials of degree less than or equal to one would be generated by the single polynomial $b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$.
Suppose that $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\xi_{d}-\pi$ that is one the root $\pi_{j, 1}\left(x, \xi^{\prime}, \tau, \sigma\right)$ and $\pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)$ has a nonnegative imaginary part and the other root has a negative imaginary part. Then, the Lopatinskiĭ-Šapiro condition holds at $\left(x, \xi^{\prime}, \sigma, \tau\right)$ if for any $f\left(\xi_{d}\right)$, the polynomial $\xi_{d} \mapsto f\left(\xi_{d}\right)-$ $c b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)$ admits π as a root for some $c \in \mathbb{C}$. A necessary and sufficient condition is then $b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi, \tau\right) \neq 0$.
Finally if $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=1$, that is, both roots $\pi_{j, 1}\left(x, \xi^{\prime}, \tau, \sigma\right)$ and $\pi_{j, 2}\left(x, \xi^{\prime}, \tau, \sigma\right)$ lie in the lower complex half-plane, then condition (6.4) trivially holds.
6.3. Microlocal estimates. Here, for $j=1$ or 2, we establish estimates for the operator Q_{σ}^{j} in a microlocal neighborhood of point at the boundary where $\left(Q_{\sigma}^{j}, B, \varphi\right)$ satisfies the Lopatinskiī-Šapiro condition (after conjugaison) of Definition 6.6.

The quality of the estimation depends on the position of the roots. We shall assume that $\partial_{d} \varphi>0$. Thus, from the form of the roots $\pi_{j, 1}$ and $\pi_{j, 2}$ given in (4.4)-(4.5), the root $\pi_{j, 1}$ always lies in the lower complex half-plane. The sign of $\operatorname{Im} \pi_{j, 2}$ may however vary. Three cases can thus occur:
(1) The root $\pi_{j, 2}$ at the considered point lies in the upper complex half-plane.
(2) The root $\pi_{j, 2}$ at the considered point is real.
(3) The root $\pi_{j, 2}$ at the considered point lies in the lower complex half-plane.

Proposition 6.9. Let $j=1$ or 2 and $\kappa_{1}>\kappa_{0}>0$. Let $x^{0} \in \partial \Omega$, with Ω locally given by $\left\{x_{d}>0\right\}$ and let W be a bounded open neighborhood of x^{0} in \mathbb{R}^{d}. Let φ be such that $\partial_{d} \varphi \geq C>0$ in W and such that $\left(Q_{\sigma}^{j}, \varphi\right)$ satisfies the sub-ellipticity condition in \bar{W}. Let $\varrho^{0 \prime}=\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right)$ with $\left(\xi^{0 \prime}, \tau^{0}, \sigma^{0}\right) \in \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ nonvanishing with $\tau^{0} \geq \kappa_{1} \sigma^{0}$ and such that $\left(Q_{\sigma}^{j}, B, \varphi\right)$ satisfies the Lopatinskiŭ-Sapiro condition of Definition 6.6 at $\varrho^{0 \prime}$.
(1) Assume that $\operatorname{Im} \pi_{j, 2}\left(\varrho^{0 \prime}\right)>0$. Then, there exists \mathscr{U} a conic neighborhood of $\varrho^{0 \prime}$ in $W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0} \sigma$ such that if $\chi \in S_{\top, \tau}^{0}$, homogeneous of degree 0 in $\left(\xi^{\prime}, \tau, \sigma\right)$ with $\operatorname{supp}(\chi) \subset \mathscr{U}$, there exist $C>0$ and $\tau_{0}>0$ such that

$$
\begin{align*}
& \left\|\mathrm{Op}_{\mathrm{T}}(\chi) v\right\|_{2, \tau}+\left|\operatorname{tr}\left(\mathrm{Op}_{\mathrm{T}}(\chi) v\right)\right|_{1,1 / 2, \tau} \\
& \quad \leq C\left(\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\left|B_{\varphi} v_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\|v\|_{2,-1, \tau}\right) \tag{6.5}
\end{align*}
$$

for $\sigma \geq 0, \tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$ and $v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$.
(2) Assume that $\operatorname{Im} \pi_{j, 2}\left(\varrho^{0 \prime}\right)=0$. Then, there exists \mathscr{U} a conic neighborhood of $\varrho^{0 \prime}$ in $W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0} \sigma$ such that if $\chi \in S_{\mathrm{T}, \tau}^{0}$, homogeneous of degree 0 in $\left(\xi^{\prime}, \tau, \sigma\right)$ with $\operatorname{supp}(\chi) \subset \mathscr{U}$, there exist $C>0$ and $\tau_{0}>0$ such that

$$
\begin{align*}
& \tau^{-1 / 2}\left\|\mathrm{Op}_{\mathbf{T}}(\chi) v\right\|_{2, \tau}+\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}(\chi) v\right)\right|_{1,1 / 2, \tau} \\
& \quad \leq C\left(\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\left|B_{\varphi} v_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\|v\|_{2,-1, \tau}\right) \tag{6.6}
\end{align*}
$$

for $\sigma \geq 0, \tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$ and $v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$.
(3) Assume that $\operatorname{Im} \pi_{j, 2}\left(\varrho^{0 \prime}\right)<0$. Then, there exists \mathscr{U} a conic neighborhood of $\varrho^{0 \prime}$ in $W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0} \sigma$ such that if $\chi \in S_{\mathbf{T}, \tau}^{0}$, homogeneous of degree 0 in $\left(\xi^{\prime}, \tau, \sigma\right)$ with

$$
\operatorname{supp}(\chi) \subset \mathscr{U} \text {, there exist } C>0 \text { and } \tau_{0}>0 \text { such that }
$$

$$
\begin{align*}
& \left\|\mathrm{Op}_{\mathbf{T}}(\chi) v\right\|_{2, \tau}+\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}(\chi) v\right)\right|_{1,1 / 2, \tau} \leq C\left(\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{2,-1, \tau}\right) \tag{6.7}\\
& \quad \text { for } \sigma \geq 0, \tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right) \text { and } v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)
\end{align*}
$$

The notation of the function space $\overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$is introduced in (1.6).
6.3.1. Case (i): one root lying in the upper complex half-plane. One has $\operatorname{Im} \pi_{j, 2}\left(\varrho^{0 \prime}\right)>0$ and $\operatorname{Im} \pi_{j, 1}\left(\varrho^{0 \prime}\right)<0$.

Since the Lopatinskiī-Šapiro condition holds for $\left(Q_{\sigma}^{j}, B, \varphi\right)$ at $\varrho^{0 \prime}$, by Lemma 6.8 one has

$$
b_{\varphi}\left(x^{0}, \xi^{0 \prime}, \xi_{d}=\pi_{j, 2}\left(\varrho^{0 \prime}\right), \tau^{0}\right)=b\left(x^{0}, \xi^{0 \prime}+i \tau^{0} d_{x^{\prime}} \varphi\left(x^{0}\right), i \alpha_{j}\left(\varrho^{0 \prime}\right)\right) \neq 0
$$

As the roots $\pi_{j, 1}$ and $\pi_{j, 2}$ are locally smooth with respect to $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$ and homogeneous of degree one in $\left(\xi^{\prime}, \tau, \sigma\right)$, there exists \mathscr{U} a conic neighborhood of $\varrho^{0 \prime}$ in $W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ and $C_{1}>0, C_{2}>0$ such that $\mathbb{S}_{\overline{\mathscr{U}}}=\left\{\varrho^{\prime} \in \overline{\mathscr{U}} ;\left|\xi^{\prime}\right|^{2}+\tau^{2}+\sigma^{2}=1\right\}$ is compact and

$$
\tau \geq \kappa_{0} \sigma, \quad \operatorname{Im} \pi_{j, 2}\left(\varrho^{\prime}\right) \geq C_{2} \lambda_{\mathrm{T}, \tau}, \quad \text { and } \operatorname{Im} \pi_{j, 1}\left(\varrho^{\prime}\right) \leq-C_{1} \lambda_{\mathrm{T}, \tau}
$$

and

$$
\begin{equation*}
b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{j, 2}\left(\varrho^{\prime}\right), \tau\right) \neq 0 \tag{6.8}
\end{equation*}
$$

if $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in \overline{\mathscr{U}}$.
We let $\chi \in S_{\mathrm{T}, \tau}^{0}$ and $\tilde{\chi} \in S_{\mathrm{T}, \tau}^{0}$ be homogeneous of degree zero in the variable $\left(\xi^{\prime}, \tau, \sigma\right)$ and be such that $\operatorname{supp}(\tilde{\chi}) \subset \mathscr{U}$ and $\tilde{\chi} \equiv 1$ on a neighborhood of $\operatorname{supp}(\chi)$. From the smoothness and the homogeneity of the roots, one has $\tilde{\chi} \pi_{j, k} \in S_{\mathrm{T}, \tau}^{1}, k=1,2$. We set

$$
L_{2}=D_{d}-\mathrm{Op}_{\mathbf{T}}\left(\tilde{\chi} \pi_{j, 2}\right) \quad \text { and } L_{1}=D_{d}-\mathrm{Op}_{\mathbf{T}}\left(\tilde{\chi} \pi_{j, 1}\right)
$$

The proof of Estimate (6.5) is based on three lemmata that we now list. Their proofs are given at the end of this section.

The following lemma provides an estimate for L_{2} and boundary traces.
Lemma 6.10. There exist $C>0$ and $\tau_{0}>0$ such that for any $N \in \mathbb{N}$, there exists $C_{N}>0$ such that

$$
\begin{aligned}
\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}(\chi) w\right)\right|_{1,1 / 2, \tau} \leq C & \left(\left|B_{\varphi} \mathrm{Op}_{\mathbf{T}}(\chi) w_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}\right. \\
& \left.+\left|L_{2} \mathrm{Op}_{\mathbf{T}}(\chi) w_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau}\right)+C_{N}|\operatorname{tr}(w)|_{1,-N, \tau},
\end{aligned}
$$

for $\tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$ and $w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$.
The proof of Lemma 6.10 relies on the Lopatinskiǔ-Šapiro condition.
The following lemma gives an estimate for L_{1}.

Lemma 6.11. Let $\chi \in S_{\mathrm{T}_{, \tau}}^{0}$, homogeneous of degree 0, be such that $\operatorname{supp}(\chi) \subset \mathscr{U}$ and $s \in \mathbb{R}$. There exist $C>0, \tau_{0}>0$ and $N \in \mathbb{N}$ such that

$$
\begin{aligned}
\left\|\mathrm{Op}_{\mathrm{T}}(\chi) w\right\|_{1, s, \tau}+\mid \mathrm{Op}_{\mathrm{T}}(\chi) w_{\mid x_{d}=0^{+}} & \left.\right|_{s+1 / 2, \tau} \\
& \leq C\left(\left\|L_{1} \mathrm{Op}_{\mathrm{T}}(\chi) w\right\|_{0, s, \tau}+\|w\|_{0,-N, \tau}\right)
\end{aligned}
$$

for $w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$ and $\tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$.
The proof of Lemma 6.11 is based on a multiplier method and relies on the fact that the root $\pi_{j, 1}$ that appears in the principal symbol of L_{1} lies in the lower complex half-plane.

The following lemma gives an estimate for L_{2}.
Lemma 6.12. Let $\chi \in S_{\mathrm{T}, \tau}^{0}$, homogeneous of degree 0, be such that $\operatorname{supp}(\chi) \subset \mathscr{U}$ and $s \in \mathbb{R}$. There exist $C>0, \tau_{0}>0$ and $N \in \mathbb{N}$ such that

$$
\begin{aligned}
\left\|\mathrm{Op}_{\mathrm{T}}(\chi) w\right\|_{1, s, \tau} \leq C & \left(\left\|L_{2} \mathrm{Op}_{\mathbf{T}}(\chi) w\right\|_{0, s, \tau}+\left|\mathrm{Op}_{\mathbf{T}}(\chi) w_{\mid x_{d}=0^{+}}\right|_{s+1 / 2, \tau}\right. \\
& \left.+\|w\|_{0,-N, \tau}\right)
\end{aligned}
$$

for $w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$ and $\tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$.
Note that this estimate is weaker than that of Lemma 6.11
Observing that

$$
\begin{array}{rlr}
L_{1} \mathrm{Op}_{\mathrm{T}}(\chi) L_{2} & =\mathrm{Op}_{\mathbf{T}}(\chi) L_{1} L_{2} \quad \bmod \Psi_{\tau}^{1,0} \\
& =\mathrm{Op}_{\boldsymbol{\top}}(\chi) Q_{\sigma, \varphi}^{j} \quad \bmod \Psi_{\tau}^{1,0}
\end{array}
$$

and applying Lemma 6.11 to $w=L_{2} v$ with $s=0$, one obtains

$$
\begin{aligned}
& \left\|\mathrm{Op}_{\mathrm{T}}(\chi) L_{2} v\right\|_{1, \tau}+\left|\mathrm{Op}_{\mathrm{T}}(\chi) L_{2} v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \\
& \quad \lesssim\left\|L_{1} \mathrm{Op}_{\mathrm{T}}(\chi) L_{2} v\right\|_{+}+\|v\|_{1,-N, \tau} \\
& \quad \lesssim\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{1, \tau},
\end{aligned}
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large. We set $u=\mathrm{Op}_{\mathrm{T}}(\chi) v$, and using the trace inequality

$$
\left|w_{\mid x_{d}=0^{+}}\right|_{s, \tau} \lesssim\|w\|_{s+1 / 2, \tau}, \quad w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right) \text { and } s>0
$$

we have

$$
\begin{aligned}
\left\|L_{2} u\right\|_{1, \tau}+\left|L_{2} u_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \lesssim & \left\|\mathrm{Op}_{\mathbf{T}}(\chi) L_{2} v\right\|_{1, \tau}+\left|\mathrm{Op}_{\mathbf{T}}(\chi) L_{2} v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \\
& +\|v\|_{1, \tau}+\left|v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \\
\lesssim & \left\|\mathrm{Op}_{\mathbf{T}}(\chi) L_{2} v\right\|_{1, \tau}+\left|\mathrm{Op}_{\mathbf{T}}(\chi) L_{2} v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \\
& +\|v\|_{1, \tau} .
\end{aligned}
$$

Therefore, we obtain

$$
\left\|L_{2} u\right\|_{1, \tau}+\left|L_{2} u_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{1, \tau} .
$$

With Lemma 6.10, one has the estimate

$$
|\operatorname{tr}(u)|_{1,1 / 2, \tau}+\left\|L_{2} u\right\|_{1, \tau} \lesssim\left|B_{\varphi} u_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{2,-1, \tau},
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large using the following trace inequality

$$
|\operatorname{tr}(w)|_{m, s, \tau} \lesssim\|w\|_{m+1, s-1 / 2, \tau}, \quad w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right) \text { and } m \in \mathbb{N}, s \in \mathbb{R}
$$

With Lemma 6.12 for $s=1$ one obtains

$$
\begin{aligned}
& \|u\|_{1,1, \tau}+|\operatorname{tr}(u)|_{1,1 / 2, \tau}+\left\|L_{2} u\right\|_{1, \tau} \\
& \quad \lesssim\left|B_{\varphi} u_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{2,-1, \tau},
\end{aligned}
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large. Finally, we write

$$
\left\|D_{d} u\right\|_{1, \tau} \leq\left\|L_{2} u\right\|_{1, \tau}+\left\|\mathrm{Op}_{\boldsymbol{\top}}\left(\tilde{\chi} \pi_{j, 2}\right) u\right\|_{1, \tau} \lesssim\left\|L_{2} u\right\|_{1, \tau}+\|u\|_{1,1, \tau},
$$

yielding

$$
\|u\|_{2, \tau}+|\operatorname{tr}(u)|_{1,1 / 2, \tau} \lesssim\left|B_{\varphi} u_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{2,-1, \tau} .
$$

As $u=\mathrm{Op}_{\mathrm{T}}(\chi) v$, with a commutator argument we obtain

$$
\begin{aligned}
\left|B_{\varphi} u_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau} & \lesssim\left|B_{\varphi} v_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+|\operatorname{tr}(v)|_{1,-1 / 2, \tau} \\
& \lesssim\left|B_{\varphi} v_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\|v\|_{2,-1, \tau} .
\end{aligned}
$$

yielding (6.5) and thus concluding the proof of Proposition 6.9 in Case (i).

We now provide the proofs the three key lemmata used above.
Proof of Lemma 6.10. Set

$$
\begin{aligned}
\mathcal{T}(w) & =\left|B_{\varphi} w_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}^{2}+\left|L_{2} w_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau}^{2} \\
& =\left|\Lambda_{\mathrm{T}, \tau}^{3 / 2-k} B_{\varphi} w_{\mid x_{d}=0^{+}}\right|_{\partial}^{2}+\left|\Lambda_{\mathrm{T}, \tau}^{1 / 2} L_{2} w_{\mid x_{d}=0^{+}}\right|_{\partial \partial}^{2} .
\end{aligned}
$$

This is a boundary differential quadratic form of type $(1,1 / 2)$ in the sense of Definition 2.4. The associated bilinear symbol is given by

$$
\begin{aligned}
\Sigma_{\mathcal{T}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}^{\prime}\right)= & \lambda_{\mathbf{T}, \tau}^{3-2 k}\left(\hat{b}_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right) z_{0}\right. \\
& \left.+b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right) z_{1}\right)\left(\overline{\hat{b}_{\varphi}^{k}}\left(x, \xi^{\prime}, \tau\right) \bar{z}_{0}^{\prime}+\overline{b_{\varphi}^{k-1}}\left(x, \xi^{\prime}, \tau\right) \bar{z}_{1}^{\prime}\right) \\
& +\lambda_{\mathbf{T}, \tau}\left(z_{1}-\tilde{\chi} \pi_{j, 2}\left(\varrho^{\prime}\right) z_{0}\right)\left(\bar{z}_{1}^{\prime}-\tilde{\chi} \bar{\pi}_{j, 2}\left(\varrho^{\prime}\right) \bar{z}_{0}^{\prime}\right),
\end{aligned}
$$

with $\mathbf{z}=\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2}$ and $\mathbf{z}^{\prime}=\left(z_{0}^{\prime}, z_{1}^{\prime}\right) \in \mathbb{C}^{2}$, yielding

$$
\begin{aligned}
\Sigma_{\mathcal{T}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}\right)= & \lambda_{\mathbf{T}, \tau}^{3-2 k}\left|\hat{b}_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right) z_{0}+b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right) z_{1}\right|^{2} \\
& +\lambda_{\mathbf{T}, \tau}\left|z_{1}-\tilde{\chi} \pi_{j, 2}\left(\varrho^{\prime}\right) z_{0}\right|^{2}
\end{aligned}
$$

One has $\Sigma_{\mathcal{T}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}\right) \geq 0$. For $\mathbf{z} \neq(0,0)$ if $\Sigma_{\mathcal{T}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}\right)=0$ then

$$
\left\{\begin{array}{l}
z_{1}=\tilde{\chi} \pi_{j, 2}\left(\varrho^{\prime}\right) z_{0} \\
\hat{b}_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right) z_{0}+b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right) z_{1}=0,
\end{array}\right.
$$

implying that $z_{0} \neq 0$ and

$$
b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}=\tilde{\chi} \pi_{j, 2}\left(\varrho^{\prime}\right), \tau\right)=\hat{b}_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right)+b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right) \tilde{\chi} \pi_{j, 2}\left(\varrho^{\prime}\right)=0 .
$$

Let $\mathscr{U}_{1} \subset \mathscr{U}$ be a conic open set such that $\operatorname{supp}(\chi) \subset \mathscr{U}_{1}$ and $\tilde{\chi}=1$ in a conic neighborhood of $\overline{\mathscr{U}_{1}}$. Then, for $\varrho^{\prime} \in \overline{\mathscr{U}_{1}}$ one has

$$
b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}=\tilde{\chi} \pi_{j, 2}\left(\varrho^{\prime}\right), \tau\right)=b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{j, 2}\left(\varrho^{\prime}\right), \tau\right) \neq 0
$$

by (6.8). From the homogeneity of $b_{\varphi}^{k-1}\left(x, \xi^{\prime}, \tau\right)$ and $\hat{b}_{\varphi}^{k}\left(x, \xi^{\prime}, \tau\right)$ in ϱ^{\prime}, it follows that there exists some $C>0$ such that

$$
\Sigma_{\mathcal{T}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}\right) \geq C\left(\lambda_{\mathrm{T}, \tau}^{3}\left|z_{0}\right|^{2}+\lambda_{\mathrm{T}, \tau}\left|z_{1}\right|^{2}\right)
$$

if $\varrho^{\prime} \in \mathscr{U}_{1}$. The result of Lemma 6.10 thus follows from Proposition 2.6, having in mind what is exposed in Section 2.5 since we have $\tau \geq \kappa_{0} \sigma$ here.

Proof of Lemma 6.11. We let $u=\mathrm{Op}_{\mathrm{T}}(\chi) w$. Performing an integration by parts, one has

$$
\begin{aligned}
2 \operatorname{Re}\left(L_{1} u, i \Lambda_{\mathrm{T}, \tau}^{2 s+1} u\right)_{+}= & 2 \operatorname{Re}\left(\left(D_{d}-\mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 1}\right)\right) u, i \Lambda_{\mathrm{T}, \tau}^{2 s+1} u\right)_{+} \\
= & \operatorname{Re}\left(i\left(\Lambda_{\mathrm{T}, \tau}^{2 s+1} \mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 1}\right)-\mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 1}\right)^{*} \Lambda_{\mathrm{T}, \tau}^{1}\right) u, u\right)_{+} \\
& +\operatorname{Re}\left(\Lambda_{\mathrm{T}, \tau}^{2 s+1} u_{\mid x_{d}=0^{+}}, u_{\mid x_{d}=0^{+}}\right)_{\partial} .
\end{aligned}
$$

Note that $\operatorname{Re}\left(\Lambda_{\mathrm{T}, \tau}^{2 s+1} u_{\mid x_{d}=0^{+}}, u_{\mid x_{d}=0^{+}}\right)_{\partial}=\left|u_{\mid x_{d}=0^{+}}\right|_{s+1 / 2, \tau}^{2}$.
Next, the operator $i\left(\Lambda_{\mathrm{T}, \tau}^{2 s+1} \mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 1}\right)-\mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 1}\right)^{*} \Lambda_{\mathrm{T}, \tau}^{2 s+1}\right)$ has the following real principal symbol

$$
\vartheta\left(\varrho^{\prime}\right)=-2 \operatorname{Im} \pi_{j, 1}\left(\varrho^{\prime}\right) \lambda_{\mathrm{T}, \tau}^{2 s+1}
$$

and since $\operatorname{Im} \pi_{j, 1}\left(\varrho^{\prime}\right) \leq-C_{1} \lambda_{\mathrm{T}, \tau}<0$ in \mathscr{U} one obtains $\vartheta\left(\varrho^{\prime}\right) \gtrsim \lambda_{\mathrm{T}, \tau}^{2 s+2}$ in \mathscr{U}. Since \mathscr{U} is neighborhood of $\operatorname{supp}(\chi)$, the microlocal Gårding inequality of Theorem 2.49 in [34] (the proof adapts to the case with parameter σ as explained in Section 2.5 since $\sigma \lesssim \tau$) yields

$$
2 \operatorname{Re}\left(L_{1} u, i \Lambda_{\mathrm{T}, \tau}^{2 s+1} u\right)_{+} \geq\left|u_{\mid x_{d}=0^{+}}\right|_{s+1 / 2, \tau}^{2}+C\left\|\Lambda_{\mathrm{T}, \tau}^{s+1} u\right\|_{+}^{2}-C_{N}\|w\|_{0,-N, \tau}^{2},
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large. With the Young inequality one obtains

$$
\left|\left(L_{1} u, i \Lambda_{\mathrm{T}, \tau}^{2 s+1} u\right)_{+}\right| \lesssim \frac{1}{\varepsilon}\left\|\Lambda_{\mathrm{T}, \tau}^{s} L_{1} u\right\|_{+}^{2}+\varepsilon\left\|\Lambda_{\mathrm{T}, \tau}^{s+1} u\right\|_{+}^{2},
$$

which yields for ε chosen sufficiently small,

$$
\begin{equation*}
\left|u_{\mid x_{d}=0^{+}}\right|_{s+1 / 2, \tau}+\|u\|_{0, s+1, \tau} \lesssim\left\|L_{1} u\right\|_{0, s, \tau}+\|w\|_{0,-N, \tau} . \tag{6.9}
\end{equation*}
$$

Finally, we write

$$
\begin{equation*}
\left\|D_{d} u\right\|_{0, s, \tau} \leq\left\|L_{1} u\right\|_{0, s, \tau}+\left\|\mathrm{Op}_{\mathbf{T}}\left(\tilde{\chi} \pi_{j, 1}\right) u\right\|_{0, s, \tau} \lesssim\left\|L_{1} u\right\|_{0, s, \tau}+\|u\|_{0, s+1, \tau} . \tag{6.10}
\end{equation*}
$$

Putting together (6.9) and (6.10), the result of Lemma 6.11 follows.
Proof of Lemma 6.12. We let $u=\mathrm{Op}_{\mathrm{T}}(\chi) w$. Performing an integration by parts, one has

$$
\begin{aligned}
2 \operatorname{Re} & \left(L_{2} u,-i \Lambda_{\mathrm{T}, \tau}^{2 s+1} u\right)_{+} \\
= & 2 \operatorname{Re}\left(\left(D_{d}-\operatorname{Op}_{\mathbf{T}}\left(\tilde{\chi} \pi_{j, 2}\right)\right) u,-i \Lambda_{\mathrm{T}, \tau}^{2 s+1} u\right)_{+} \\
= & \operatorname{Re}\left(i\left(\operatorname{Op}_{\mathbf{T}}\left(\tilde{\chi} \pi_{j, 2}\right)^{*} \Lambda_{\mathrm{T}, \tau}^{1}-\Lambda_{\mathrm{T}, \tau}^{2 s+1} \mathrm{Op}_{\mathbf{T}}\left(\tilde{\chi} \pi_{j, 2}\right)\right) u, u\right)_{+} \\
& \quad-\operatorname{Re}\left(\Lambda_{\mathrm{T}, \tau}^{2 s+1} u_{\mid x_{d}=0^{+}}, u_{\mid x_{d}=0^{+}}\right)_{\partial} .
\end{aligned}
$$

Note that $\operatorname{Re}\left(\Lambda_{\mathrm{T}, \tau}^{2 s+1} u_{\mid x_{d}=0^{+}}, u_{\mid x_{d}=0^{+}}\right)_{\partial}=\left|u_{\mid x_{d}=0^{+}}\right|_{s+1 / 2, \tau}^{2}$.
Next, the operator $i\left(\operatorname{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 2}\right)^{*} \Lambda_{\mathrm{T}, \tau}^{2 s+1}-\Lambda_{\mathrm{T}, \tau}^{2 s+1} \mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 2}\right)\right)$ has the following real principal symbol

$$
\vartheta\left(\varrho^{\prime}\right)=2 \operatorname{Im} \pi_{j, 2}\left(\varrho^{\prime}\right) \lambda_{\mathrm{T}, \tau}^{2 s+1}
$$

and since $\operatorname{Im} \pi_{j, 2}\left(\varrho^{\prime}\right) \geq C_{2} \lambda_{\mathrm{T}, \tau}>0$ in \mathscr{U} one obtains $\vartheta\left(\varrho^{\prime}\right) \gtrsim \lambda_{\mathrm{T}, \tau}^{2 s+2}$ in \mathscr{U}. Since \mathscr{U} is neighborhood of $\operatorname{supp}(\chi)$, the microlocal Gårding inequality of Theorem 2.49 in [34] (the proof adapts to the case with parameter σ as explained in Section 2.5 since $\sigma \lesssim \tau$) yields

$$
2 \operatorname{Re}\left(L_{2} u, i \Lambda_{\mathrm{T}, \tau}^{2 s+1} u\right)_{+} \geq-\left|u_{\mid x_{d}=0^{+}}\right|_{s+1 / 2, \tau}^{2}+C\left\|\Lambda_{\mathrm{T}, \tau}^{s+1} u\right\|_{+}^{2}-C_{N}\|w\|_{0,-N, \tau}^{2},
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large. The end of the proof is then similar to that of Lemma 6.11.
6.3.2. Case (ii): one real root. One has $\operatorname{Im} \pi_{j, 2}\left(\varrho^{0 \prime}\right)=0$ and $\operatorname{Im} \pi_{j, 1}\left(\varrho^{0 \prime}\right)<$ 0.

Since the Lopatinskiī-Šapiro condition holds for $\left(Q_{\sigma}^{j}, B, \varphi\right)$ at $\varrho^{0 \prime}$, by Lemma 6.8 one has

$$
b_{\varphi}\left(x^{0}, \xi^{0 \prime}, \xi_{d}=\pi_{j, 2}\left(\varrho^{0 \prime}\right), \tau^{0}\right)=b\left(x^{0}, \xi^{0 \prime}+i \tau^{0} d_{x^{\prime}} \varphi\left(x^{0}\right), i \alpha_{j}\left(\varrho^{0 \prime}\right)\right) \neq 0
$$

As the roots $\pi_{j, 1}$ and $\pi_{j, 2}$ are locally smooth with respect to $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$ and homogeneous of degree one in $\left(\xi^{\prime}, \tau, \sigma\right)$, there exists \mathscr{U} a conic neighborhood of $\varrho^{0 \prime}$ in $W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ and $C_{1}>0, C_{2}>0$ such that $\mathbb{S}_{\overline{\mathscr{U}}}=\left\{\varrho^{\prime} \in \overline{\mathscr{U}} ;\left|\xi^{\prime}\right|^{2}+\tau^{2}+\sigma^{2}=1\right\}$ is compact and

$$
\begin{aligned}
& \tau \geq \kappa_{0} \sigma, \quad \pi_{j, 1}\left(\varrho^{\prime}\right) \neq \pi_{j, 2}\left(\varrho^{\prime}\right), \\
& \operatorname{Im} \pi_{j, 2}\left(\varrho^{\prime}\right) \geq-C_{2} \lambda_{\mathrm{T}, \tau}, \quad \text { and } \operatorname{Im} \pi_{j, 1}\left(\varrho^{\prime}\right) \leq-C_{1} \lambda_{\mathrm{T}, \tau},
\end{aligned}
$$

and

$$
\begin{equation*}
b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}=\pi_{j, 2}\left(\varrho^{\prime}\right), \tau\right) \neq 0 \tag{6.11}
\end{equation*}
$$

if $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in \overline{\mathscr{U}}$.
We let $\chi \in S_{\mathrm{T}, \tau}^{0}$ and $\tilde{\chi} \in S_{\mathrm{T}, \tau}^{0}$ be homogeneous of degree zero in the variable $\left(\xi^{\prime}, \tau, \sigma\right)$ and be such that $\operatorname{supp}(\tilde{\chi}) \subset \mathscr{U}$ and $\tilde{\chi} \equiv 1$ on $\operatorname{supp}(\chi)$. From the smoothness and the homogeneity of the roots, one has $\tilde{\chi} \pi_{j, k} \in S_{\mathrm{T}, \tau}^{1}, k=1,2$. We set

$$
L_{2}=D_{d}-\mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 2}\right) \quad \text { and } L_{1}=D_{d}-\mathrm{Op}_{\mathrm{T}}\left(\tilde{\chi} \pi_{j, 1}\right)
$$

Lemma 6.10 and Lemma 6.11 also apply in Case (ii) and we shall use them. In addition to these two lemmata we shall need the following lemma.

Lemma 6.13. There exist $C>0, \tau_{0}>0$ such that

$$
\tau^{-1 / 2}\|w\|_{2, \tau} \leq C\left(\left\|Q_{\sigma, \varphi}^{j} w\right\|_{+}+|\operatorname{tr}(w)|_{1,1 / 2, \tau}\right)
$$

for $\tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$ and $w \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$.
Proving Lemma 6.13 is fairly classical, based on writing $Q_{\sigma, \varphi}^{j}=Q_{s}^{j}+$ $i Q_{a}$ and on an expansion of $\left\|Q_{\sigma, \varphi}^{j} w\right\|_{+}^{2}$ and some integration by parts. We provide the details in the proof below as the occurence of the parameter σ is not that classical. Lemma 6.13 expresses the loss of a half-derivative if one root, here $\pi_{j, 2}$, is real.

Observing that

$$
\begin{aligned}
L_{1} \mathrm{Op}_{\mathrm{T}}(\chi) L_{2} & =\mathrm{Op}_{\mathrm{T}}(\chi) L_{1} L_{2} \quad \bmod \Psi_{\tau}^{1,0} \\
& =\mathrm{Op}_{\mathrm{T}}(\chi) Q_{\sigma, \varphi}^{j} \quad \bmod \Psi_{\tau}^{1,0}
\end{aligned}
$$

and applying Lemma 6.11 to $w=L_{2} v$, one obtains

$$
\begin{aligned}
\left|\mathrm{Op}_{\mathrm{T}}(\chi) L_{2} v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} & \lesssim\left\|L_{1} \mathrm{Op}_{\mathrm{T}}(\chi) L_{2} v\right\|_{+}+\|v\|_{1,-N, \tau} \\
& \lesssim\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{1, \tau},
\end{aligned}
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large. We set $u=\mathrm{Op}_{\mathrm{T}}(\chi) v$, and using the trace inequality

$$
\left|w_{\mid x_{d}=0^{+}}\right|_{s, \tau} \lesssim\|w\|_{s+1 / 2, \tau}, \quad w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right) \text { and } s>0
$$

we have

$$
\begin{aligned}
\left|L_{2} u_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} & \lesssim\left|\mathrm{Op}_{\mathbf{T}}(\chi) L_{2} v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau}+\left|v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \\
& \lesssim\left|\mathrm{Op}_{\mathbf{T}}(\chi) L_{2} v_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau}+\|v\|_{1, \tau} .
\end{aligned}
$$

Therefore, we obtain

$$
\left|L_{2} u_{\mid x_{d}=0^{+}}\right|_{1 / 2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{1, \tau} .
$$

On the one hand, together with Lemma 6.10, one has the estimate

$$
\begin{equation*}
|\operatorname{tr}(u)|_{1,1 / 2, \tau} \lesssim\left|B_{\varphi} u_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{2,-1, \tau}, \tag{6.12}
\end{equation*}
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large using the following trace inequality

$$
|\operatorname{tr}(w)|_{m, s, \tau} \lesssim\|w\|_{m+1, s-1 / 2, \tau}, \quad w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right) \text { and } m \in \mathbb{N}, s \in \mathbb{R}
$$

On the other hand, with Lemma 6.13 one has

$$
\tau^{-1 / 2}\|u\|_{2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{j} u\right\|_{+}+|\operatorname{tr}(u)|_{1,1 / 2, \tau}
$$

again for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large and since $\left[Q_{\sigma, \varphi}^{j}, \mathrm{Op}_{\mathrm{T}}(\chi)\right] \in \Psi_{\tau}^{1,0}$ one finds

$$
\begin{equation*}
\tau^{-1 / 2}\|u\|_{2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{1, \tau}+|\operatorname{tr}(u)|_{1,1 / 2, \tau} \tag{6.13}
\end{equation*}
$$

Now, with $\varepsilon>0$ chosen sufficiently small one computes (6.12) $+\varepsilon \times(6.13)$ and obtains

$$
\tau^{-1 / 2}\|u\|_{2, \tau}+|\operatorname{tr}(u)|_{1,1 / 2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\left|B_{\varphi} u_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\|v\|_{2,-1, \tau} .
$$

As $u=\mathrm{Op}_{\mathrm{T}}(\chi) v$, with a commutator argument we obtain

$$
\begin{aligned}
\left|B_{\varphi} u_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau} & \lesssim\left|B_{\varphi} v_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+|\operatorname{tr}(v)|_{1,-1 / 2, \tau} \\
& \lesssim\left|B_{\varphi} v_{\mid x_{d}=0^{+}}\right|_{3 / 2-k, \tau}+\|v\|_{2,-1, \tau} .
\end{aligned}
$$

yielding (6.6) and thus concluding the proof of Proposition 6.9 in Case (ii).

We now provide a proof of Lemma 6.13.
Proof of Lemma 6.13. We recall that $Q_{\sigma, \varphi}^{j}=Q_{s}^{j}+i Q_{a}$, yielding

$$
\begin{equation*}
\left\|Q_{\sigma, \varphi}^{j} w\right\|_{+}^{2}=\left\|Q_{s}^{j} w\right\|_{+}^{2}+\left\|Q_{a} w\right\|_{+}^{2}+2 \operatorname{Re}\left(Q_{s}^{j} w, i Q_{a} w\right)_{+} . \tag{6.14}
\end{equation*}
$$

With the integration by parts formula

$$
\left(f, D_{d} g\right)_{+}=\left(D_{d} f, g\right)_{+}-i\left(f_{\mid x_{d}=0^{+}}, g_{\mid x_{d}=0^{+}}\right)_{\partial},
$$

and the forms of Q_{s}^{j} and Q_{a} given in (6.2) one has

$$
\left(f, Q_{s}^{j} g\right)_{+}=\left(Q_{s}^{j} f, g\right)_{+}-i\left(f_{\mid x_{d}=0^{+}}, D_{d} g_{\mid x_{d}=0^{+}}\right)_{\partial}-i\left(D_{d} f_{\mid x_{d}=0^{+}}, g_{\mid x_{d}=0^{+}}\right)_{\partial}
$$

and

$$
\left(f, Q_{a} g\right)_{+}=\left(Q_{a} f, g\right)_{+}-2 \tau i\left(\partial_{d} \varphi f_{\mid x_{d}=0^{+}}, g_{\mid x_{d}=0^{+}}\right)_{\partial}
$$

yiedling

$$
\begin{aligned}
\left(Q_{a} w, Q_{s}^{j} w\right)_{+}= & \left(Q_{s}^{j} Q_{a} w, w\right)_{+}-i\left(Q_{a} w_{\mid x_{d}=0^{+}}, D_{d} w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& -i\left(D_{d} Q_{a} w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
\left(Q_{s}^{j} w, Q_{a} w\right)_{+}= & \left(Q_{a} Q_{s}^{j} w, w\right)_{+}-2 i \tau\left(\partial_{d} \varphi Q_{s}^{j} w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} .
\end{aligned}
$$

This gives

$$
\begin{equation*}
2 \operatorname{Re}\left(Q_{s}^{j} w, i Q_{a} w\right)_{+}=i\left(\left[Q_{s}^{j}, Q_{a}\right] w, w\right)_{+}+\tau \mathcal{A}(w) \tag{6.15}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{A}(w)=\tau^{-1}\left(Q_{a} w, D_{d} w\right)_{\partial}+\tau^{-1}\left(\left(D_{d} Q_{a}-2 \tau \partial_{d} \varphi Q_{s}^{j}\right) w, w\right)_{\partial} . \tag{6.16}
\end{equation*}
$$

We have the following lemma adapted from Lemma 3.25 in [34].
Lemma 6.14. The operators $Q_{a} \in \tau \mathscr{D}^{1}$ and $D_{d} Q_{a}-2 \tau \partial_{d} \varphi Q_{s}^{j} \in \mathscr{D}_{\tau}^{3}$ can be cast in the following forms

$$
Q_{a}=2 \tau \partial_{d} \varphi D_{d}+2 \tilde{r}\left(x, D^{\prime}, \tau d_{x^{\prime}} \varphi\right) \quad \bmod \tau \mathscr{D}^{0}
$$

and

$$
\begin{aligned}
& D_{d} Q_{a}-2 \tau \partial_{d} \varphi Q_{s}^{j} \\
& \qquad=-2 \tau \partial_{d} \varphi\left(R\left(x, D^{\prime}\right)+(-1)^{j} \sigma^{2}-\left(\tau \partial_{d} \varphi\right)^{2}-r\left(x, \tau d_{x^{\prime}} \varphi\right)\right) \\
& \quad+2 \tilde{r}\left(x, D^{\prime}, \tau d_{x^{\prime}} \varphi\right) D_{d} \quad \bmod \tau \Psi_{\tau}^{1,0} .
\end{aligned}
$$

With this lemma we find

$$
\begin{align*}
\mathcal{A}(w)= & 2\left(\partial_{d} \varphi D_{d} w_{\mid x_{d}=0^{+}}, D_{d} w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +2\left(\tilde{r}\left(x, D^{\prime}, d_{x^{\prime}} \varphi\right) w_{\mid x_{d}=0^{+}}, D_{d} w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +2\left(\tilde{r}\left(x, D^{\prime}, d_{x^{\prime}} \varphi\right) D_{d} w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& -2\left(\partial_{d} \varphi\left(R\left(x, D^{\prime}\right)+(-1)^{j} \sigma^{2}\right) w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +2\left(\partial_{d} \varphi\left(\left(\tau \partial_{d} \varphi\right)^{2}+r\left(x, \tau d_{x^{\prime}} \varphi\right)\right) w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +\left(\operatorname{Op}\left(c_{0}\right) w_{\mid x_{d}=0^{+}}, D_{d} w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +\left(\left(\operatorname{Op}\left(\tilde{c}_{0}\right) D_{d}+\operatorname{Op}\left(c_{1}\right)\right) w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} \tag{6.17}
\end{align*}
$$

with $\operatorname{Op}\left(c_{0}\right), \operatorname{Op}\left(\tilde{c}_{0}\right) \in \mathscr{D}^{0}$ and $\operatorname{Op}\left(c_{1}\right) \in \mathscr{D}_{\mathrm{T}, \tau}^{1}$. Observe that one has

$$
\begin{equation*}
|\mathcal{A}(w)| \lesssim|\operatorname{tr}(w)|_{1,0, \tau}^{2} \tag{6.18}
\end{equation*}
$$

From (6.14) and (6.15) one writes

$$
\begin{equation*}
\left\|Q_{\sigma, \varphi}^{j} w\right\|_{+}^{2}+\tau|\operatorname{tr}(w)|_{1,0, \tau}^{2} \gtrsim\left\|Q_{s}^{j} w\right\|_{+}^{2}+\left\|Q_{a} w\right\|_{+}^{2}+\operatorname{Re}\left(i\left[Q_{s}^{j}, Q_{a}\right] w, w\right)_{+} \tag{6.19}
\end{equation*}
$$

We now use the following lemma whose proof is given below.
Lemma 6.15. There exists $C, C^{\prime}>0, \mu>0$ and $\tau_{0}>0$ such that

$$
\begin{aligned}
& \mu\left(\left\|Q_{s}^{j} w\right\|_{+}^{2}+\left\|Q_{a} w\right\|_{+}^{2}\right)+\tau \operatorname{Re}\left(i\left[Q_{s}^{j}, Q_{a}\right] w, w\right)_{+} \\
& \quad \geq C\|w\|_{2, \tau}^{2}-C^{\prime}|\operatorname{tr}(w)|_{1,1 / 2, \tau}^{2}
\end{aligned}
$$

for $\tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$ and $w \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$

Let $\mu>0$ be as in Lemma 6.15 and let $\tau>0$ be such that $\mu \tau^{-1} \leq 1$. From (6.19) one then writes

$$
\begin{aligned}
& \left\|Q_{\sigma, \varphi}^{j} w\right\|_{+}^{2}+\tau|\operatorname{tr}(w)|_{1,0, \tau}^{2} \\
& \quad \gtrsim \tau^{-1}\left(\mu\left(\left\|Q_{s}^{j} w\right\|_{+}^{2}+\left\|Q_{a} w\right\|_{+}^{2}\right)+i \tau\left(\left[Q_{s}^{j}, Q_{a}\right] w, w\right)_{+}\right),
\end{aligned}
$$

which with Lemma 6.15 yields the result of Lemma 6.13 using that $\tau|\operatorname{tr}(w)|_{1,0, \tau} \lesssim|\operatorname{tr}(w)|_{1,1 / 2, \tau}$.

Proof of Lemma 6.15. One has $\left[Q_{s}^{j}, Q_{a}\right] \in \tau \mathscr{D}_{\tau}^{2}$. Writing

$$
\tau \operatorname{Re}\left(i\left[Q_{s}^{j}, Q_{a}\right] w, w\right)_{+}=\operatorname{Re}\left(i \tau^{-1}\left[Q_{s}^{j}, Q_{a}\right] w, \tau^{2} w\right)_{+}
$$

it can be seen as a interior differential quadratic form of type $(2,0)$ as in Definition 2.1. Therefore

$$
T(w)=\mu\left(\left\|Q_{s}^{j} w\right\|_{+}^{2}+\left\|Q_{a} w\right\|_{+}^{2}\right)+\tau \operatorname{Re}\left(i\left[Q_{s}^{j}, Q_{a}\right] w, w\right)_{+}
$$

is also an interior differential quadratic form of this type with principal symbol given by

$$
t(\varrho)=\mu\left|q_{\sigma, \varphi}^{j}(\varrho)\right|^{2}+\tau\left\{q_{s}^{j}, q_{a}\right\}(\varrho), \quad \varrho=(x, \xi, \tau, \sigma) .
$$

Let $\tau_{0}>0$. By Lemma 6.4, the sub-ellipticity property of $\left(Q_{\sigma}^{j}, \varphi\right)$ implies

$$
t(\varrho) \gtrsim \lambda_{\tau}^{4}, \quad \varrho \in \bar{W} \times \mathbb{R}^{d} \times[0,+\infty) \times[0,+\infty), \tau \geq \tau_{0} \sigma
$$

for $\mu>0$ chosen sufficiently large. The Gårding inequality of proposition 2.3 yields

$$
T(w) \geq C\|w\|_{2, \tau}^{2}-C^{\prime}|\operatorname{tr}(w)|_{1,1 / 2, \tau}^{2}
$$

for some $C, C^{\prime}>0$ and for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large.
6.3.3. Case (iii): both roots lying in the lower complex half-plane. The result in the present case is a simple consequence of the general result given in Lemma A. 1 whose proof can be found in [8]. In the second order case however, the proof does not require the same level of technicality.

One has $\operatorname{Im} \pi_{j, 1}\left(\varrho^{0 \prime}\right)<0$ and $\operatorname{Im} \pi_{j, 2}\left(\varrho^{0 \prime}\right)<0$. As the roots $\pi_{j, 1}$ and $\pi_{j, 2}$ depend continuously on the variable $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$, there exists \mathscr{U} a conic open neighborhood of $\varrho^{0 \prime}$ in $W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ and $C_{0}>0$ such that
$\tau \geq \kappa_{0} \sigma, \quad \operatorname{Im} \pi_{j, 1}\left(\varrho^{\prime}\right) \leq-C_{0} \lambda_{\mathrm{T}, \tau}, \quad$ and $\operatorname{Im} \pi_{j, 2}\left(\varrho^{\prime}\right) \leq-C_{0} \lambda_{\mathrm{T}, \tau}$, if $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in \overline{\mathscr{U}}$.

Let $\chi \in S_{\mathrm{T}, \tau}^{0}$ be as in the statement of Proposition 6.9 and set $u=$ $\mathrm{Op}_{\mathrm{T}}(\chi) v$.

We recall that $Q_{\sigma, \varphi}^{j}=Q_{s}^{j}+i Q_{a}$, yielding

$$
\left\|Q_{\sigma, \varphi}^{j} u\right\|_{+}^{2}=\left\|Q_{s}^{j} u\right\|_{+}^{2}+\left\|Q_{a} u\right\|_{+}^{2}+2 \operatorname{Re}\left(Q_{s}^{j} u, i Q_{a} u\right)_{+} .
$$

We set $L(u)=\left\|Q_{s}^{j} u\right\|_{+}^{2}+\left\|Q_{a} u\right\|_{+}^{2}$. This is an interior differential quadratic form in the sense of Definition 2.1. Its principal symbol is given by

$$
\ell(\varrho)=\left(q_{s}^{j}\right)(\varrho)^{2}+q_{a}(\varrho)^{2}, \quad \varrho=(x, \xi, \tau, \sigma) .
$$

For $\varepsilon \in(0,1)$ we write

$$
\begin{equation*}
\left\|Q_{\sigma, \varphi}^{j} u\right\|_{+}^{2} \geq \varepsilon L(u)+2 \operatorname{Re}\left(Q_{s}^{j} u, i Q_{a} u\right)_{+} . \tag{6.20}
\end{equation*}
$$

For concision we write $\varrho=\left(\varrho^{\prime}, \xi_{d}\right)$ with $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$. The set

$$
\mathscr{L}=\left\{\varrho=\left(\varrho^{\prime}, \xi_{d}\right) ; \varrho^{\prime} \in \overline{\mathscr{U}}, \xi_{d} \in \mathbb{R}, \text { and }|\xi|^{2}+\tau^{2}+\sigma^{2}=1\right\}
$$

is compact recalling that W is bounded. On \mathscr{L} one has $\left|q_{\sigma, \varphi}^{j}(\varrho)\right| \geq C>0$. By homogeneity one has

$$
\begin{equation*}
\left|q_{\sigma, \varphi}^{j}(\varrho)\right| \gtrsim \lambda_{\tau}^{2}, \quad \varrho^{\prime} \in \mathscr{U}, \xi_{d} \in \mathbb{R}, \quad \text { if } \tau \geq \tau_{0} \sigma \tag{6.21}
\end{equation*}
$$

for some $\tau_{0}>0$. Therefore

$$
\begin{equation*}
\ell(\varrho) \gtrsim \lambda_{\tau}^{4}, \quad \varrho^{\prime} \in \mathscr{U}, \xi_{d} \in \mathbb{R}, \quad \text { if } \tau \geq \tau_{0} \sigma \tag{6.22}
\end{equation*}
$$

By the Gårding inequality of Proposition 2.2 one obtains

$$
\begin{equation*}
\operatorname{Re} L(u) \geq C\|u\|_{2, \tau}^{2}-C^{\prime}|\operatorname{tr}(u)|_{1,1 / 2}^{2}-C_{N}\|v\|_{2,-N, \tau}^{2}, \tag{6.23}
\end{equation*}
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large.
From the proof of Lemma 6.13 one has

$$
\begin{equation*}
2 \operatorname{Re}\left(Q_{s}^{j} u, i Q_{a} u\right)_{+}=i\left(\left[Q_{s}^{j}, Q_{a}\right] u, u\right)_{+}+\tau \mathcal{A}(u) \tag{6.24}
\end{equation*}
$$

with the boundary quadratic form \mathcal{A} given in (6.16)-(6.17).
On the one hand, one has $\left[Q_{s}^{j}, Q_{a}\right] \in \tau \mathscr{D}_{\tau}^{2}$ and therefore

$$
\begin{equation*}
\left|\operatorname{Re}\left(\left[Q_{s}^{j}, Q_{a}\right] u, u\right)_{+}\right| \lesssim \tau\|u\|_{2,-1, \tau}^{2} \lesssim \tau^{-1}\|u\|_{2, \tau}^{2} . \tag{6.25}
\end{equation*}
$$

On the other hand, we have the following lemma that provides a microlocal positivity property for the boundary quadratic form \mathcal{A}. A proof is given below.

Lemma 6.16. There exist C, C_{N} and $\tau_{0}>0$ such that
$\tau \operatorname{Re} \mathcal{A}(u) \geq C|\operatorname{tr}(u)|_{1,1 / 2, \tau}^{2}-C_{N}|\operatorname{tr}(v)|_{1,-N, \tau}^{2}, \quad$ for $u=\operatorname{Op}_{\mathrm{T}}(\chi) v$, for $\tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$.

With (6.24)-(6.25), and Lemma 6.16 one obtains

$$
\begin{align*}
2 \operatorname{Re}\left(Q_{s}^{j} u, i Q_{a} u\right)_{+} & \geq C|\operatorname{tr}(u)|_{1,1 / 2, \tau}^{2}-C^{\prime} \tau^{-1}\|u\|_{2, \tau}^{2}-C_{N}|\operatorname{tr}(v)|_{1,-N, \tau}^{2} \\
& \geq C|\operatorname{tr}(u)|_{1,1 / 2, \tau}^{2}-C^{\prime} \tau^{-1}\|u\|_{2, \tau}^{2}-C_{N}^{\prime}\|v\|_{2,-N, \tau}^{2}, \tag{6.26}
\end{align*}
$$

with a trace inequality, for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large.

With (6.20), (6.23), and (6.26) one obtains

$$
\begin{aligned}
\left\|Q_{\sigma, \varphi}^{j} u\right\|_{+}^{2} \geq & \varepsilon C\|u\|_{2, \tau}^{2}-C^{\prime} \varepsilon|\operatorname{tr}(u)|_{1,1 / 2}^{2}-C_{N} \varepsilon\|v\|_{2,-N, \tau}^{2} \\
& +C|\operatorname{tr}(u)|_{1,1 / 2, \tau}^{2}-C^{\prime} \tau^{-1}\|u\|_{2, \tau}^{2}-C_{N}^{\prime}\|v\|_{2,-N, \tau}^{2} .
\end{aligned}
$$

With ε chosen sufficiently small and $\tau \geq \kappa_{0} \sigma$ sufficiently large one obtains for any $N \in \mathbb{N}$

$$
\|u\|_{2, \tau}+|\operatorname{tr}(u)|_{1,1 / 2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{j} u\right\|_{+}+\|v\|_{2,-N, \tau} .
$$

With a commutator argument, as $u=\mathrm{Op}_{\mathrm{T}}(\chi) v$ one finds $\left\|Q_{\sigma, \varphi}^{j} u\right\|_{+} \lesssim$ $\left\|Q_{\sigma, \varphi}^{j} v\right\|_{+}+\|v\|_{2,-1, \tau}$, yielding estimate (6.7) and thus concluding the proof of Proposition 6.9 in Case (iii).

Proof of Lemma 6.16. With (6.17) one sees that it suffices to consider the following boundary quadratic form

$$
\begin{aligned}
\tilde{\mathcal{A}}(w)= & 2\left(\partial_{d} \varphi D_{d} w_{\mid x_{d}=0^{+}}, D_{d} w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +2\left(\tilde{r}\left(x, D^{\prime}, d_{x^{\prime}} \varphi\right) w_{\mid x_{d}=0^{+}}, D_{d} w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +2\left(\tilde{r}\left(x, D^{\prime}, d_{x^{\prime}} \varphi\right) D_{d} w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& -2\left(\partial_{d} \varphi\left(R\left(x, D^{\prime}\right)+(-1)^{j} \sigma^{2}\right) w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial} \\
& +2\left(\partial_{d} \varphi\left(\left(\tau \partial_{d} \varphi\right)^{2}+r\left(x, \tau d_{x^{\prime}} \varphi\right)\right) w_{\mid x_{d}=0^{+}}, w_{\mid x_{d}=0^{+}}\right)_{\partial}
\end{aligned}
$$

in place of \mathcal{A}. It is of type $(1,0)$ in the sense of Definition 2.4. Its principal symbol is given by $a_{0}\left(\varrho^{\prime}, \xi_{d}, \xi_{d}^{\prime}\right)=\left(1, \xi_{d}\right) A\left(\varrho^{\prime}\right)^{t}\left(1, \xi_{d}\right)$ with

$$
A\left(\varrho^{\prime}\right)=2\left(\begin{array}{cc}
A_{11}\left(\varrho^{\prime}\right) & \tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)_{\mid x_{d}=0^{+}} \\
\tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime} \varphi} \varphi\right)_{\mid x_{d}=0^{+}} & \partial_{d} \varphi_{\mid x_{d}=0^{+}}
\end{array}\right),
$$

where

$$
A_{11}\left(\varrho^{\prime}\right)=-\left(\partial_{d} \varphi\right)\left(r\left(x, \xi^{\prime}\right)+(-1)^{j} \sigma^{2}-\left(\tau \partial_{d} \varphi\right)^{2}-r\left(x, \tau d_{x^{\prime}} \varphi\right)\right)_{\mid x_{d}=0^{+}}
$$

with $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$. The associated bilinear symbol introduced in (2.4) is given by

$$
\Sigma_{\mathcal{A}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}^{\prime}\right)=\mathbf{z} A\left(\varrho^{\prime}\right)^{t} \overline{\mathbf{z}}^{\prime}, \quad \mathbf{z}=\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2}, \mathbf{z}^{\prime}=\left(z_{0}^{\prime}, z_{1}^{\prime}\right) \in \mathbb{C}^{2}
$$

One computes

$$
\begin{aligned}
\operatorname{det} A\left(\varrho^{\prime}\right)=-4 & \left(\partial_{d} \varphi\right)^{2}\left(r\left(x, \xi^{\prime}\right)+(-1)^{j} \sigma^{2}-\left(\tau \partial_{d} \varphi\right)^{2}\right. \\
& \left.\left.-r\left(x, \tau d_{x^{\prime}} \varphi\right)\right)+\tilde{r}\left(x, \xi^{\prime}, d_{x^{\prime}} \varphi\right)^{2}\right)_{\mid x_{d}=0^{+}}
\end{aligned}
$$

With Lemma 4.3 one sees that $\operatorname{Im} \pi_{j, 2}<0$ is equivalent to having $\operatorname{det} A\left(\varrho^{\prime}\right)>$ 0 . We thus have

$$
\operatorname{det} A\left(\varrho^{\prime}\right) \geq C>0, \quad \text { for } \varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in \mathbb{S}_{\overline{\mathscr{U}}},
$$

with $\mathbb{S}_{\overline{\mathscr{U}}}=\left\{\varrho^{\prime} \in \overline{\mathscr{U}} ; \xi_{d} \in \mathbb{R},|\xi|^{2}+\tau^{2}+\sigma^{2}=1\right\}$ since $\mathbb{S}_{\overline{\mathscr{U}}}$ is compact. Since $\partial_{d} \varphi_{\mid x_{d}=0^{+}} \geq C^{\prime}>0$ then one finds that

$$
\begin{aligned}
\operatorname{Re} \Sigma_{\mathcal{A}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}\right) \geq C\left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}\right) & \\
\qquad \varrho^{\prime} & =\left(x, \xi^{\prime}, \tau, \sigma\right) \in \overline{\mathscr{U}}, \quad\left|\left(\xi^{\prime}, \tau, \sigma\right)\right|=1 .
\end{aligned}
$$

By homogeneity one obtains

$$
\begin{aligned}
& \operatorname{Re} \Sigma_{\mathcal{A}}\left(\varrho^{\prime}, \mathbf{z}, \mathbf{z}\right) \geq C\left(\lambda_{\mathbf{T}, \tau}^{2}\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}\right) \\
& \varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right) \in \overline{\mathscr{U}}, \quad\left|\left(\xi^{\prime}, \tau, \sigma\right)\right| \geq 1
\end{aligned}
$$

With Proposition 2.6, having in mind what is exposed in Section 2.5 since we have $\tau \geq \kappa_{0} \sigma$ here, one obtains

$$
\operatorname{Re} \tilde{\mathcal{A}}(u) \geq C|\operatorname{tr}(u)|_{1,0, \tau}^{2}-C_{N}|\operatorname{tr}(v)|_{1,-N, \tau}^{2}, \quad \text { for } u=\mathrm{Op}_{\mathbf{T}}(\chi) v
$$

for $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large.
Here, we have $\operatorname{Im} \pi_{j, 2}<0$ and thus $\left|\xi^{\prime}\right| \lesssim \tau$ by Lemma 4.6. Thus one has

$$
\tau|\operatorname{tr}(u)|_{1,0, \tau}^{2} \gtrsim|\operatorname{tr}(u)|_{1,1 / 2, \tau}^{2}-|\operatorname{tr}(v)|_{1,-N, \tau}^{2},
$$

by the microlocal Gårding inequality, for instance invoking Proposition 2.6 for a boundary quadratic form of type $(1,1 / 2)$. This concludes the proof.

7. Local Carleman estimate for the fourth-order OPERATOR

In Proposition 5.1, we proved that a norm of all traces at the boundary could be estimates from the values taken by the boundary operators. That result relied on the Lopatinskiĭ-Šapiro condition. Here we aim to moveover estimate a volume norm. The strategy is to estimate this norm from all traces at the boundary and not from the boundary operators. The proof is then much simpler. Yet combined with Proposition 5.1 an estimation of both volume and trace norms will be obtained from the the values taken by the boundary operators.

7.1. A first estimate.

Proposition 7.1. Let $\kappa_{0}^{\prime}>\kappa_{1}^{\prime}>\kappa_{1}>\kappa_{0}>0$. Let $x^{0} \in \partial \Omega$, with Ω locally given by $\left\{x_{d}>0\right\}$ and let W be a bounded open neighborhood of x^{0} in \mathbb{R}^{d}. Let φ be such that $\partial_{d} \varphi \geq C>0$ in W and such that $\left(Q_{\sigma}^{j}, \varphi\right)$ satisfies the sub-ellipticity condition in \bar{W} for both $j=1$ and 2 . Let $\varrho^{0 \prime}=\left(x^{0}, \xi^{0 \prime}, \tau^{0}, \sigma^{0}\right)$ with $\left(\xi^{0 \prime}, \tau^{0}, \sigma^{0}\right) \in \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ nonvanishing with $\kappa_{1} \sigma^{0} \leq \tau^{0} \leq \kappa_{1}^{\prime} \sigma^{0}$.

Then, there exists \mathscr{U} a conic neighborhood of ϱ^{01} in $W \times \mathbb{R}^{d-1} \times$ $[0,+\infty) \times[0,+\infty)$ where $\kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$ such that if $\chi \in S_{\top, \tau}^{0}$, homogeneous of degree 0 in $\left(\xi^{\prime}, \tau, \sigma\right)$ with $\operatorname{supp}(\chi) \subset \mathscr{U}$, there exist $C>0$ and $\tau_{0}>0$ such that

$$
\begin{equation*}
\tau^{-1 / 2}\left\|\mathrm{Op}_{\mathrm{T}}(\chi) v\right\|_{4, \tau} \leq C\left(\left\|P_{\sigma, \varphi} v\right\|_{+}+|\operatorname{tr}(v)|_{3,1 / 2, \tau}+\|v\|_{4,-1, \tau}\right) \tag{7.1}
\end{equation*}
$$

for $\tau \geq \tau_{0}, \kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$, and $v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$.
The proof of Proposition 7.1 is based on the microlocal results of Proposition 6.9.
Remark 7.2. An important aspect is that here we have $\sigma \gtrsim \tau$; it is key to have only a loss of a half-derivative. Losses are due to lack of ellipticity, that is, having root(s) of $p_{\sigma, \varphi}$ lying on the real axis. If $\sigma=0$ the operator is a square and two roots can lie and the real axis yielding a loss of a full derivative.

Note that the issue of having two potential roots on the real axis and thus a loss of a full derivative is independant of the choice of boundary operators.

Having $\sigma>0$ implies that only one root of $p_{\sigma, \varphi}$ can lie on the real axis. In the proof we shall write P_{σ} as a factor of two operators and we apply the Carleman estimates of Proposition 7.1 to each one. Each estimates exhibits a loss of a half-derivative. If naively concatenated the two estimates indeed yield a Carleman estimate with a loss of a full derivative. In fact the loss of each estimate occurs in different microlocal regions and a microlocal concatenation allows one to have a loss of only a half derivative.

Having $\sigma>0$ was not sufficient for us to separate microlocal regions if τ increases because of homogeneity issues. This explains the introduction of the condition is $\sigma \gtrsim \tau$. We do not exclude that $\sigma>0$ could suffice to reach a similar estimate; we could not prove it.

Proof. We shall concatenate the estimates of Proposition 6.9 for $Q_{\sigma, \varphi}^{1}$ and $Q_{\sigma, \varphi}^{2}$ with the boundary operator B simply given by the Dirichlet trace operator, $B u_{\mid x_{d}=0^{+}}=u_{\mid x_{d}=0^{+}}$.

One has $b(x, \xi)=1$ and $b_{\varphi}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=1$. Since $\partial_{d} \varphi>0$ then $\operatorname{Im} \pi_{j, 1}<0$. Thus, either $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=1$ or $q_{\sigma, \varphi}^{j,+}\left(x, \xi^{\prime}, \xi_{d}, \tau\right)=\xi_{d}-$ $\pi_{j, 2}$. With Lemma 6.8 one sees that the Lopatinskiŭ-Šapiro holds for $\left(Q_{\sigma, \varphi}^{1}, B, \varphi\right)$ and $\left(Q_{\sigma, \varphi}^{2}, B, \varphi\right)$ at $\varrho^{0 \prime}$.

Proposition 6.9 thus applies. Let \mathscr{U}_{j} be the conic neighborhood of $\varrho^{0 \prime}$ obtained invoking this proposition for $Q_{\sigma, \varphi}^{j}$, for $j=1$ or 2 . In \mathscr{U}_{j} one has $\tau \geq \kappa_{0} \sigma$. We set

$$
\mathscr{U}=\mathscr{U}_{1} \cap \mathscr{U}_{2} \cap\left\{\tau \leq \kappa_{0}^{\prime} \sigma\right\},
$$

and we consider $\chi \in S_{\mathbf{T}, \tau}^{0}$, homogeneous of degree 0 in $\left(\xi^{\prime}, \tau, \sigma\right)$ with $\operatorname{supp}(\chi) \subset \mathscr{U}$.

Since in \mathscr{U} one has $\sigma>0$ then $\pi_{1,2}$ and $\pi_{2,2}$ cannot be both real by Lemma 4.7. Proposition 6.9 thus implies that we necessarily have the following two estimates

$$
\begin{equation*}
\tau^{-\ell_{1}}\left\|\mathrm{Op}_{\mathbf{T}}(\chi) w\right\|_{2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{1} w\right\|_{+}+\left|w_{\mid x_{d}=0^{+}}\right|_{3 / 2, \tau}+\|w\|_{2,-1, \tau}, \tag{7.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau^{-\ell_{2}}\left\|\mathrm{Op}_{\mathrm{T}}(\chi) w\right\|_{2, \tau} \lesssim\left\|Q_{\sigma, \varphi}^{2} w\right\|_{+}+|w|_{3 / 2, \tau}+\|w\|_{2,-1, \tau}, \tag{7.3}
\end{equation*}
$$

with either $\left(\ell_{1}, \ell_{2}\right)=(1 / 2,0)$ or $\left(\ell_{1}, \ell_{2}\right)=(0,1 / 2)$, for $w \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$and $\tau \geq \kappa_{0} \sigma$ chosen sufficiently large.

Let us assume that $\left(\ell_{1}, \ell_{2}\right)=(1 / 2,0)$. The other case can be treated similarly. Writing $P_{\sigma, \varphi}=Q_{\sigma, \varphi}^{2} Q_{\sigma, \varphi}^{1}$, with (7.3) one has

$$
\begin{aligned}
\left\|\mathrm{Op}_{\mathbf{T}}(\chi) Q_{\sigma, \varphi}^{1} v\right\|_{2, \tau} & \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+\left|Q_{\sigma, \varphi}^{1} v_{\mid x_{d}=0^{+}}\right|_{3 / 2, \tau}+\|v\|_{4,-1, \tau} \\
& \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+|\operatorname{tr}(v)|_{2,3 / 2, \tau}+\|v\|_{4,-1, \tau} .
\end{aligned}
$$

Since $\left[\mathrm{Op}_{\mathrm{T}}(\chi), Q_{\sigma, \varphi}^{1}\right] \in \Psi_{\tau}^{1,0}$ one finds

$$
\begin{equation*}
\left\|Q_{\sigma, \varphi}^{1} \mathrm{Op}_{\mathbf{T}}(\chi) v\right\|_{2, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+|\operatorname{tr}(v)|_{3,1 / 2, \tau}+\|v\|_{4,-1, \tau} . \tag{7.4}
\end{equation*}
$$

For $k=0,1$ or 2 , one writes

$$
\begin{array}{rl}
\| Q_{\sigma, \varphi}^{1} \mathrm{Op}_{\mathbf{T}}(\chi) D_{d}^{k} \Lambda_{\mathrm{T}, \tau}^{2-k} & v \|_{+}+\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}(\chi) D_{d}^{k} \Lambda_{\mathrm{T}, \tau}^{2-k} v\right)\right|_{1,1 / 2, \tau} \\
& +\left\|\mathrm{Op}_{\mathbf{T}}(\chi) D_{d}^{k} \Lambda_{\mathrm{T}, \tau}^{2-k} v\right\|_{2,-1, \tau} \\
& \lesssim\left\|Q_{\sigma, \varphi}^{1} \mathrm{Op}_{\mathbf{T}}(\chi) v\right\|_{2, \tau}+|\operatorname{tr}(v)|_{3,1 / 2, \tau}+\|v\|_{4,-1, \tau},
\end{array}
$$

since $\left[Q_{\sigma, \varphi}^{1} \mathrm{Op}_{\mathrm{T}}(\chi), D_{d}^{k} \Lambda_{\mathrm{T}, \tau}^{2-k}\right] \in \Psi_{\tau}^{4,-1}$.
Let $\tilde{\chi} \in S_{\top, \tau}^{0}$ be homogeneous of degree zero in the variable $\left(\xi^{\prime}, \tau, \sigma\right)$ and be such that $\operatorname{supp}(\tilde{\chi}) \subset \mathscr{U}$ and $\tilde{\chi} \equiv 1$ on a neighborhood of $\operatorname{supp}(\chi)$. With (7.2), from (7.4) one thus obtains
$\tau^{-1 / 2}\left\|\mathrm{Op}_{\mathbf{T}}(\tilde{\chi}) \mathrm{Op}_{\mathbf{T}}(\chi) D_{d}^{k} \Lambda_{\mathbf{T}, \tau}^{2-k} v\right\|_{2, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+|\operatorname{tr}(v)|_{3,1 / 2, \tau}+\|v\|_{4,-1, \tau}$.
Since $\mathrm{Op}_{\mathbf{T}}(\tilde{\chi}) \mathrm{Op}_{\mathbf{T}}(\chi) D_{d}^{k} \Lambda_{\mathrm{T}, \tau}^{2-k}=\Lambda_{\mathrm{T}, \tau}^{2-k} D_{d}^{k} \mathrm{Op}_{\mathbf{T}}(\chi) \bmod \Psi_{\tau}^{2,-1}$ one deduces

$$
\tau^{-1 / 2}\left\|D_{d}^{k} \mathrm{Op}_{\mathbf{T}}(\chi) v\right\|_{2,2-k, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+|\operatorname{tr}(v)|_{3,1 / 2, \tau}+\|v\|_{4,-1, \tau} .
$$

Using that $k=0,1$ or 2 , the result follows.
Consequence of this microlocal result is the following local result by means of a patching procedure as for the proof of Proposition 5.1 in Section 5.2.

Proposition 7.3. Let $\kappa_{0}^{\prime}>\kappa_{0}>0$. Let $x^{0} \in \partial \Omega$, with Ω locally given by $\left\{x_{d}>0\right\}$ and let W be a bounded open neighborhood of x^{0} in \mathbb{R}^{d}. Let φ be such that $\partial_{d} \varphi \geq C>0$ in W and such that $\left(Q_{\sigma}^{j}, \varphi\right)$ satisfies the sub-ellipticity condition in \bar{W} for both $j=1$ and 2 .

Then, there exists W^{0} a neighborhood of $x^{0}, C>0, \tau_{0}>0$ such that

$$
\begin{equation*}
\tau^{-1 / 2}\|v\|_{4, \tau} \leq C\left(\left\|P_{\sigma, \varphi} v\right\|_{+}+|\operatorname{tr}(v)|_{3,1 / 2, \tau}\right) \tag{7.5}
\end{equation*}
$$

for $\tau \geq \tau_{0}, \kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$, and $v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}\right)$.
7.2. Final estimate. Combining the local results of Section 5 for the estimation of the boundary norm under the Lopatinskiǐ-Šapiro condition and the previous local result without any prescribed boundary condition we obtain the Carleman estimate of Theorem 1.2. For a precise statement we write the following theorem.

Theorem 7.4 (local Carleman estimate for P_{σ}). Let $\kappa_{0}^{\prime}>\kappa_{0}>0$. Let $x^{0} \in \partial \Omega$, with Ω locally given by $\left\{x_{d}>0\right\}$ and let W be a bounded open neighborhood of x^{0} in \mathbb{R}^{d}. Let φ be such that $\partial_{d} \varphi \geq C>0$ in W and such that $\left(Q_{\sigma}^{j}, \varphi\right)$ satisfies the sub-ellipticity condition in \bar{W} for both $j=1$ and 2.

Assume that $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ satisfies the Lopatinskǐ̌-Šapiro condition of Definition 4.1 at $\varrho^{\prime}=\left(x^{0}, \xi^{\prime}, \tau, \sigma\right)$ for all $\left(\xi^{\prime}, \tau, \sigma\right) \in \mathbb{R}^{d-1} \times[0,+\infty) \times$ $[0,+\infty)$ such that $\tau \geq \kappa_{0} \sigma$.

Then, there exists W^{0} a neighborhood of $x^{0}, C>0, \tau_{0}>0$ such that

$$
\begin{align*}
\tau^{-1 / 2}\left\|e^{\tau \varphi} u\right\|_{4, \tau}+ & \left|\operatorname{tr}\left(e^{\tau \varphi} u\right)\right|_{3,1 / 2, \tau} \\
& \leq C\left(\left\|e^{\tau \varphi} P_{\sigma} u\right\|_{+}+\sum_{j=1}^{2}\left|e^{\tau \varphi} B_{j} v_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}\right) \tag{7.6}
\end{align*}
$$

for $\tau \geq \tau_{0}, \kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$, and $u \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}^{0}\right)$.
The notation of the function space $\overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}^{0}\right)$ is introduced in (1.6).
For the application of this theorem, one has to design a weight function that yields the two important properties: sub-ellipticity and the Lopatin-ski1̌-Sapiro condition. Sub-ellipticity is obtained by means of Proposition 6.3; the Lopatinskiī-Šapiro condition by means of Proposition 4.2.

Proof of Theorem 7.4. The assumption of the theorem allows one to invoke both Propositions 5.1 and 7.3 yielding the existence of a neighborhood W^{0} of x^{0} where, by Proposition 5.1, one has

$$
\begin{equation*}
|\operatorname{tr}(v)|_{3,1 / 2, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+\sum_{j=1}^{2}\left|B_{j, \varphi} v_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}+\|v\|_{4,-1, \tau}, \tag{7.7}
\end{equation*}
$$

for $\sigma \geq 0, \tau \geq \max \left(\tau_{1}, \kappa_{0} \sigma\right)$ for some $\tau_{1}>0$ and $v \in \overline{\mathscr{C}}_{c}^{\infty}\left(W_{+}^{0}\right)$. With the Proposition 7.3 one also has

$$
\begin{equation*}
\tau^{-1 / 2}\|v\|_{4, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+|\operatorname{tr}(v)|_{3,1 / 2, \tau} \tag{7.8}
\end{equation*}
$$

for $\tau \geq \tau_{1}^{\prime}$ and $\kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$ for some $\tau_{1}^{\prime}>0$.
Consider $\sigma>0$ and $\tau \geq \max \left(\tau_{1}, \tau_{1}^{\prime}\right)$ such that $\kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$. Combined together (7.7) and (7.8) yield

$$
\begin{aligned}
& \tau^{-1 / 2}\|v\|_{4, \tau}+|\operatorname{tr}(v)|_{3,1 / 2, \tau} \\
& \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+\sum_{j=1}^{2}\left|B_{j, \varphi} v_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}+\|v\|_{4,-1, \tau}
\end{aligned}
$$

Since $\|v\|_{4,-1, \tau} \ll \tau^{-1 / 2}\|v\|_{4, \tau}$ for τ large one obtains

$$
\tau^{-1 / 2}\|v\|_{4, \tau}+|\operatorname{tr}(v)|_{3,1 / 2, \tau} \lesssim\left\|P_{\sigma, \varphi} v\right\|_{+}+\sum_{j=1}^{2}\left|B_{j, \varphi} v_{\mid x_{d}=0^{+}}\right|_{7 / 2-k_{j}, \tau}
$$

If we set $v=e^{\tau \varphi} u$ then the conclusion follows.

8. Global Carleman estimate and observability

Using the local Carleman estimate of Theorem 7.4 we prove a global version of this estimate. This allows us to obtain an observability inequality with observation in some open subset \mathscr{O} of Ω. In turn in Section 10 we use this latter inequality to obtain a resolvent estimate for the plate semigroup generator that allows one to deduce a stabilization result for the damped plate equation.
8.1. A global Carleman estimate. Assume that the Lopatinskiī-Šapiro condition of Definition 3.1 holds for $\left(P_{0}, B_{1}, B_{2}\right)$ on $\partial \Omega$.

Let $\mathscr{O}_{0}, \mathscr{O}_{1}, \mathscr{O}$ be open sets such that $\mathscr{O}_{0} \Subset \mathscr{O}_{1} \Subset \mathscr{O} \Subset \Omega$. With Proposition 3.31 and Remark 3.32 in [34] there exists $\psi \in \mathscr{C}^{\infty}(\bar{\Omega})$ such that
(1) $\psi=0$ and $\partial_{\nu} \psi<-C_{0}<0$ on $\partial \Omega$;
(2) $\psi>0$ in Ω;
(3) $d \psi \neq 0$ in $\Omega \backslash \mathscr{O}_{0}$.

Then, by Proposition 6.3, for γ chosen sufficiently large, one finds that $\varphi=\exp (\gamma \psi)$ is such that a
(1) $\varphi=1$ and $\partial_{\nu} \varphi<-C_{0}<0$ on $\partial \Omega$;
(2) $\varphi>1$ in Ω;
(3) $\left(Q_{\sigma}^{j}, \varphi\right)$ satisfies the sub-ellipticity condition in $\Omega \backslash \mathscr{O}_{0}$, for $j=1,2$, for $\tau \geq \tau_{0} \sigma$ for τ_{0} chosen sufficiently large.

Then, with Proposition 4.2, for $\kappa_{0}>0$ chosen sufficiently large one finds that the Lopatinskiĭ-Šapiro condition holds for $\left(P_{\sigma}, B_{1}, B_{2}, \varphi\right)$ at any $\left(x, \xi^{\prime}, \tau, \sigma\right)$ for any $x \in \partial \Omega, \xi^{\prime} \in T_{x}^{*} \partial \Omega \simeq \mathbb{R}^{d-1}, \tau>0$, and $\sigma>0$ such that $\tau \geq \kappa_{0} \sigma$, for κ_{0} chosen sufficiently large, using that $\partial \Omega$ is compact.

Thus for any $x \in \partial \Omega$ the local estimate of Theorem 7.4 applies. A similar result applies in the neighborhood of any point of $\Omega \backslash \mathscr{O}_{0}$.

With the weight function φ constructed above, following the patching procedure described in the proof of Theorem 3.34 in [34], one obtains the following global estimate

$$
\begin{align*}
& \tau^{-1 / 2}\left\|e^{\tau \varphi} u\right\|_{4, \tau}+\left|\operatorname{tr}\left(e^{\tau \varphi} u\right)\right|_{3,1 / 2, \tau} \\
& \quad \lesssim\left\|e^{\tau \varphi} P_{\sigma} u\right\|_{L^{2}(\Omega)}+\sum_{j=1}^{2}\left|e^{\tau \varphi} B_{j} u_{\mid \partial \Omega}\right|_{\tau / 2-k_{j}, \tau}+\tau^{-1 / 2}\left\|e^{\tau \varphi} \chi_{0} u\right\|_{4, \tau} \tag{8.1}
\end{align*}
$$

for $\tau \geq \tau_{0}, \kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$, and $u \in \mathscr{C}^{\infty}(\bar{\Omega})$, and where $\chi_{0} \in \mathscr{C}_{c}^{\infty}(\mathscr{O})$ such that $\chi_{0} \equiv 1$ in a neighborhood of $\overline{\mathscr{O}_{1}}$. Here, $\|\cdot\|_{s, \tau}$ and $|\cdot|_{s, \tau}$, the Sobolev norms with the large parameter τ, are understood in Ω and $\partial \Omega$ respectively.

Remark 8.1. Observe that inequality (8.1) also holds for third-order perturbations of P_{σ}. Below, we shall use it for a second-order perturbation $P_{\sigma}-i \sigma^{2} \alpha=\Delta^{2}-\sigma^{4}-i \sigma^{2} \alpha$.
8.2. Observability inequality. By density one finds that inequality 8.1 holds for $u \in H^{4}(\Omega)$.

Let $C_{0}>\sup _{\bar{\Omega}} \varphi-1$. Since $1 \leq \varphi \leq \sup _{\bar{\Omega}} \varphi$ one obtains

$$
\begin{equation*}
\|u\|_{H^{4}(\Omega)} \lesssim e^{C_{0} \tau}\left(\left\|P_{\sigma} u\right\|_{L^{2}(\Omega)}+\sum_{j=1}^{2}\left|B_{j} u_{\mid \partial \Omega}\right|_{H^{7 / 2-k_{j}}(\partial \Omega)}+\|u\|_{H^{4}\left(\mathscr{O}_{1}\right)}\right) \tag{8.2}
\end{equation*}
$$

for $\tau \geq \tau_{0}, \kappa_{0} \sigma \leq \tau \leq \kappa_{0}^{\prime} \sigma$.
With the ellipticity of P_{0} one has

$$
\|u\|_{H^{4}\left(\mathscr{O}_{1}\right)} \lesssim\left\|P_{0} u\right\|_{L^{2}(\mathscr{O})}+\|u\|_{L^{2}(\mathscr{O})}
$$

since $\mathscr{O}_{1} \Subset \mathscr{O}$. This can be proven by the introduction of a parametrics for P_{0}. One thus obtain

$$
\|u\|_{H^{4}\left(\mathscr{O}_{1}\right)} \lesssim\left\|P_{\sigma} u\right\|_{L^{2}(\Omega)}+\left(1+\sigma^{4}\right)\|u\|_{L^{2}(\mathscr{O})}
$$

and thus with (8.2) one obtains the following observability result.
Theorem 8.2 (observability inequality). Let $P_{\sigma}=\Delta^{2}-\sigma^{4}$ and let B_{1} and B_{2} be two boundary operators of order k_{1} and k_{2} as given in Section 3.2. Assume that the Lopatinskiu-Šapiro condition of Definition 3.1
holds. Let \mathscr{O} be an open set of Ω. There exists $C>0$ such that

$$
\|u\|_{H^{4}(\Omega)} \leq C e^{C|\sigma|}\left(\left\|P_{\sigma} u\right\|_{L^{2}(\Omega)}+\sum_{j=1}^{2}\left|B_{j} u_{\mid \partial \Omega}\right|_{H^{7 / 2-k_{j}}(\partial \Omega)}+\|u\|_{L^{2}(\sigma)}\right)
$$

for $u \in H^{4}(\Omega)$.
Remark 8.3. With Remark 8.1 the result of Theorem 8.2 hold for $P_{\sigma}=$ $\Delta^{2}-\sigma^{4}$ replaced by $P_{\sigma}-i \sigma^{2} \alpha=\Delta^{2}-\sigma^{4}-i \sigma^{2} \alpha$.

9. Solutions to the damped plate equations

Here, we review some aspects of the solutions of the damped plate equation whose form we recall from the introduction:

$$
\left\{\begin{array}{l}
\partial_{t}^{2} y+P y+\alpha(x) \partial_{t} y=0 \tag{9.1}\\
B_{1} y_{\mid \mathbb{R}_{+} \times \partial \Omega}=B_{2} u_{\mid \mathbb{R}_{+} \times \partial \Omega}=0 \\
y_{\mid t=0}=y^{0}, \quad \partial_{t} y_{\mid t=0}=y^{1}
\end{array} \quad(t, x) \in \mathbb{R}_{+} \times \Omega\right.
$$

where $P=\Delta^{2}$ and $\alpha \geq 0$, positive on some open subset of Ω. The boundary operators B_{1} and B_{2} of orders $k_{j}, j=1,2$, less than or equal to 3 in the normal direction are chosen so that
(i) the Lopatinskiŭ-Šapiro condition of Definition 3.1 is fulfilled for $\left(P, B_{1}, B_{2}\right)$ on $\partial \Omega$;
(ii) the operator P is symmetric under homogeneous boundary conditions, that is,

$$
\begin{equation*}
(P u, v)_{L^{2}(\Omega)}=(u, P v)_{L^{2}(\Omega)}, \tag{9.2}
\end{equation*}
$$

for $u, v \in H^{4}(\Omega)$ such that $B_{j} u_{\mid \partial \Omega}=B_{j} v_{\mid \partial \Omega}=0$ on $\partial \Omega, j=1,2$. Examples of such conditions are given in Section 3.5.
With the assumed Lopatinskiī-Šapiro condition the operator

$$
\begin{align*}
L: H^{4}(\Omega) & \rightarrow L^{2}(\Omega) \oplus H^{7 / 2-k_{1}}(\partial \Omega) \oplus H^{7 / 2-k_{2}}(\partial \Omega), \\
u & \mapsto\left(P u, B_{1} u_{\mid \partial \Omega}, B_{2} u_{\mid \partial \Omega}\right), \tag{9.3}
\end{align*}
$$

is Fredholm.
(iii) We shall further assume that the Fredholm index of the operator L is zero.
The previous symmetry property gives $(P u, u)_{L^{2}(\Omega)} \in \mathbb{R}$. We further assume the following nonnegativity property:
(iv) For $u \in H^{4}(\Omega)$ such that $B_{j} u_{\mid \partial \Omega}=0$ on $\partial \Omega, j=1,2$ one has

$$
\begin{equation*}
(P u, u)_{L^{2}(\Omega)} \geq 0 \tag{9.4}
\end{equation*}
$$

This last property is very natural to define a nonnegative energy for the plate equation given in (9.1).

We first review some properties of the unbounded operator associated with the bi-Laplace operator and the two homogeneous boundary conditions based on the assumptions made here. Second, the well-posedness of the plate equation is reviewed by means of the a semigroup formulation. This semigroup formalism is also central in the stabilization result in Sections 10.1-10.2.
9.1. The unbounded bi-Laplace operator. Associated with P and the boundary operators B_{1} and B_{2} is the operator $\left(\mathrm{P}_{0}, D\left(\mathrm{P}_{0}\right)\right)$ on $L^{2}(\Omega)$, with domain

$$
D\left(\mathrm{P}_{0}\right)=\left\{u \in L^{2}(\Omega) ; P u \in L^{2}(\Omega), B_{1} u_{\mid \partial \Omega}=B_{2} u_{\mid \partial \Omega}=0\right\},
$$

and given by $\mathrm{P}_{0} u=P u \in L^{2}(\Omega)$ for $u \in D\left(\mathrm{P}_{0}\right)$. The definition of $D\left(\mathrm{P}_{0}\right)$ makes sense since having $P u \in L^{2}(\Omega)$ for $u \in L^{2}(\Omega)$ implies that the traces $\partial_{\nu}^{k} u_{\mid \partial \Omega}$ are well defined for $k=0,1,2,3$.

Since the Lopatinskiī-Šapiro condition holds on $\partial \Omega$ one has $D\left(\mathrm{P}_{0}\right) \subset$ $H^{4}(\Omega)$ (see for instance Theorem 20.1.7 in [22]) and thus one can also write $D\left(\mathrm{P}_{0}\right)$ as in (1.3). From the assumed nonnegativity in (9.4) above one finds that $\mathrm{P}_{0}+\mathrm{Id}$ is injective. Since the operator

$$
\begin{aligned}
L^{\prime}: H^{4}(\Omega) & \rightarrow L^{2}(\Omega) \oplus H^{7 / 2-k_{1}}(\partial \Omega) \oplus H^{7 / 2-k_{2}}(\partial \Omega) \\
u & \mapsto\left(P u+u, B_{1} u_{\mid \partial \Omega}, B_{2} u_{\mid \partial \Omega}\right)
\end{aligned}
$$

is Fredholm and has the same zero index as L defined in (9.3), one finds that L^{\prime} is surjective. Thus $\operatorname{Ran}\left(\mathrm{P}_{0}+\mathrm{Id}\right)=L^{2}(\Omega)$. One thus concludes that P_{0} is maximal monotone. From the assumed symmetry property (9.2) and one finds that P_{0} is selfadjoint, using that a symmetric maximal monotone operator is selfadjoint (see for instance Proposition 7.6 in [9]).

The resolvent of $\mathrm{P}_{0}+\mathrm{Id}$ being compact on $L^{2}(\Omega), \mathrm{P}_{0}$ has a sequence of eigenvalues with finite multiplicities. With the assumed nonnegativity (9.4) they take the form of a sequence

$$
0 \leq \mu_{0} \leq \mu_{1} \leq \cdots \leq \mu_{k} \leq \cdots
$$

that grows to $+\infty$. Associated with this sequence is $\left(\phi_{j}\right)_{j \in \mathbb{N}}$ a Hilbert basis of $L^{2}(\Omega)$. Any $u \in L^{2}(\Omega)$ reads $u=\sum_{j \in \mathbb{N}} u_{j} \phi_{j}$, with $u_{j}=\left(u, \phi_{j}\right)_{L^{2}(\Omega)}$. We define the Sobolev-like scale

$$
\begin{equation*}
H_{B}^{k}(\Omega)=\left\{u \in L^{2}(\Omega) ;\left(\mu_{j}^{k / 4} u_{j}\right)_{j} \in \ell^{2}(\mathbb{C})\right\} \quad \text { for } k \geq 0 \tag{9.5}
\end{equation*}
$$

One has $D\left(\mathrm{P}_{0}\right)=H_{B}^{4}(\Omega)$ and $L^{2}(\Omega)=H_{B}^{0}(\Omega)$. Each $H_{B}^{k}(\Omega), k \geq 0$, is equipped with the inner product and norm

$$
(u, v)_{H_{B}^{k}(\Omega)}=\sum_{j \in \mathbb{N}}\left(1+\mu_{j}\right)^{k / 2} u_{j} \overline{v_{j}} . \quad\|u\|_{H_{B}^{k}(\Omega)}^{2}=\sum_{j \in \mathbb{N}}\left(1+\mu_{j}\right)^{k / 2}\left|u_{j}\right|^{2},
$$

yielding a Hilbert space structure. The space $H_{B}^{k}(\Omega)$ is dense in $H_{B}^{k^{\prime}}(\Omega)$ if $0 \leq k^{\prime} \leq k$ and the injection is compact. Note that one uses $\left(1+\mu_{j}\right)^{k / 2}$ in place of $\mu_{j}^{k / 2}$ since $\operatorname{ker}\left(\mathrm{P}_{0}\right)$ may not be trivial. Note that if $k=0$ one recovers the standard L^{2}-inner product and norm.

Using $L^{2}(\Omega)$ as a pivot space, for $k>0$ we also define the space $H_{B}^{-k}(\Omega)$ as the dual space of $H_{B}^{k}(\Omega)$. One finds that any $u \in H_{B}^{-k}(\Omega)$ takes the form of the following limit of L^{2}-functions

$$
u=\lim _{\ell \rightarrow \infty} \sum_{j=0}^{\ell} u_{j} \phi_{j}
$$

for some $\left(u_{j}\right)_{j} \subset \mathbb{C}$ such that $\left(\left(1+\mu_{j}\right)^{-k / 4} u_{j}\right)_{j} \in \ell^{2}(\mathbb{C})$, with the limit occurring in $\left(H_{B}^{k}(\Omega)\right)^{\prime}$ with the natural dual strong topology. Moreover, one has $u_{j}=\left\langle u, \overline{\phi_{j}}\right\rangle_{H_{B}^{-k}, H_{B}^{k}}$. If $u=\sum_{j \in \mathbb{N}} u_{j} \phi_{j} \in H_{B}^{-k}(\Omega)$ and $v=$ $\sum_{j \in \mathbb{N}} v_{j} \phi_{j} \in H_{B}^{k}(\Omega)$ one finds

$$
\langle u, \bar{v}\rangle_{H_{B}^{-k}, H_{B}^{k}}=\sum_{j \in \mathbb{N}} u_{j} \overline{v_{j}} .
$$

One can then extend (or restrict) the action of P_{0} on any space $H_{B}^{k}(\Omega)$, $k \in \mathbb{R}$. One has $\mathrm{P}_{0}: H_{B}^{k}(\Omega) \rightarrow H_{B}^{k-4}(\Omega)$ continuously with

$$
\begin{equation*}
\mathrm{P}_{0} u=\sum_{j \in \mathbb{N}} \mu_{j} u_{j} \phi_{j} \tag{9.6}
\end{equation*}
$$

with convergence in $H_{B}^{k-4}(\Omega)$ for $u=\sum_{j \in \mathbb{N}} u_{j} \phi_{j} \in H_{B}^{k}(\Omega)$. In particular, for $u \in H_{B}^{4}(\Omega)=D\left(\mathrm{P}_{0}\right)$ and $v \in H_{B}^{2}(\Omega)$ one has

$$
\begin{equation*}
\left(\mathrm{P}_{0} u, v\right)_{L^{2}(\Omega)}=\left\langle\mathrm{P}_{0} u, \bar{v}\right\rangle_{H_{B}^{-2}, H_{B}^{2}}=\sum_{j \in \mathbb{N}} \mu_{j} u_{j} \overline{v_{j}} \tag{9.7}
\end{equation*}
$$

and if $u, v \in H_{B}^{2}(\Omega)$ one has

$$
\begin{equation*}
(u, v)_{H_{B}^{2}(\Omega)}=(u, v)_{L^{2}(\Omega)}+\left\langle\mathrm{P}_{0} u, \bar{v}\right\rangle_{H_{B}^{-2}, H_{B}^{2}}=\sum_{j \in \mathbb{N}}\left(1+\mu_{j}\right) u_{j} \overline{v_{j}} \tag{9.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left\langle\mathrm{P}_{0} u, \bar{v}\right\rangle_{H_{B}^{-2}, H_{B}^{2}}=\left(\mathrm{P}_{0}^{1 / 2} u, \mathrm{P}_{0}^{1 / 2} v\right)_{L^{2}(\Omega)} \tag{9.9}
\end{equation*}
$$

with the operator $P_{0}^{1 / 2}$ easily defined by means of the Hilbert basis $\left(\phi_{j}\right)_{j \in \mathbb{N}}$. In fact, $H_{B}^{2}(\Omega)$ is the domain of $\mathrm{P}_{0}^{1 / 2}$ viewed as un unbounded operator on $L^{2}(\Omega)$.

We make the following observations.
(1) If $\operatorname{ker}\left(\mathrm{P}_{0}\right)=\{0\}$ then

$$
(u, v) \mapsto\left\langle\mathrm{P}_{0} u, \bar{u}\right\rangle_{H_{B}^{-2}, H_{B}^{2}},
$$

is also an inner-product on $H_{B}^{2}(\Omega)$, that yields an equivalent norm.
(2) If 0 is an eigenvalue, that is, $\operatorname{dim} \operatorname{ker}\left(\mathrm{P}_{0}\right)=n \geq 1$ then $\left(\phi_{0}, \ldots, \phi_{n-1}\right)$ is a orthonormal basis of $\operatorname{ker}\left(\mathrm{P}_{0}\right)$ for the L^{2}-inner product. From a classical unique continuation property, since $\alpha(x)>0$ for x in an open subset of Ω one sees that

$$
\begin{equation*}
(u, v) \mapsto(\alpha u, v)_{L^{2}(\Omega)} \tag{9.10}
\end{equation*}
$$

is also an inner product on the finite dimensional space $\operatorname{ker}\left(\mathrm{P}_{0}\right) \subset$ $L^{2}(\Omega)$. We introduce a second basis $\left(\varphi_{0}, \ldots, \varphi_{n-1}\right)$ of $\operatorname{ker}\left(\mathrm{P}_{0}\right)$ orthonormal with respect to this second inner product.
In what follows, we treat the more difficult case where $\operatorname{dim} \operatorname{ker}\left(\mathrm{P}_{0}\right)=n \geq$ 1. The case $\operatorname{ker}\left(\mathrm{P}_{0}\right)=\{0\}$ is left to the reader.
9.2. The plate semigroup generator. Set $\mathcal{H}=H_{B}^{2}(\Omega) \oplus L^{2}(\Omega)$ with natural inner product and norm

$$
\begin{align*}
& \left(\left(u^{0}, u^{1}\right),\left(v^{0}, v^{1}\right)\right)_{\mathcal{H}}=\left(u^{0}, v^{0}\right)_{H_{B}^{2}(\Omega)}+\left(u^{1}, v^{1}\right)_{L^{2}(\Omega)}, \tag{9.11}\\
& \left\|\left(u^{0}, u^{1}\right)\right\|_{\mathcal{H}}^{2}=\left\|u^{0}\right\|_{H_{B}^{2}(\Omega)}^{2}+\left\|u^{1}\right\|_{L^{2}(\Omega)}^{2} \tag{9.12}
\end{align*}
$$

Define the unbounded operator

$$
A=\left(\begin{array}{cc}
0 & -1 \tag{9.13}\\
\mathrm{P}_{0} & \alpha(x)
\end{array}\right)
$$

on \mathcal{H} with domain given by $D(A)=D\left(\mathrm{P}_{0}\right) \oplus H_{B}^{2}(\Omega)$. This domain is dense in \mathcal{H} and A is a closed operator. One has

$$
\mathcal{N}=\operatorname{ker}(A)=\left\{{ }^{t}\left(u^{0}, 0\right) ; u^{0} \in \operatorname{ker}\left(\mathrm{P}_{0}\right)\right\}
$$

The important result of this section is the following proposition.
Proposition 9.1. The operator $(A, D(A))$ generates a bounded semigroup $S(t)=e^{-t A}$ on \mathcal{H}.

The understanding of this generator property relies on the introduction of a reduced function space associated with $\operatorname{ker}\left(\mathrm{P}_{0}\right)$, following for instance the analysis of [40]. It will be also important in the derivation of a precise resolvent estimate in Section 10.1. If $\operatorname{ker}\left(\mathrm{P}_{0}\right)=\{0\}$, that is, $\mu_{0}>0$, this procedure is not necessary. For $v \in \operatorname{ker}\left(\mathrm{P}_{0}\right), v \neq 0$, we introduce the linear form

$$
\begin{align*}
F_{v}: \mathcal{H} & \rightarrow \mathbb{C} \tag{9.14}\\
\left(u^{0}, u^{1}\right) & \mapsto(\alpha v, v)_{L^{2}(\Omega)}^{-1}\left(\left(\alpha u^{0}, v\right)_{L^{2}(\Omega)}+\left(u^{1}, v\right)_{L^{2}(\Omega)}\right)
\end{align*}
$$

We set

$$
\begin{equation*}
\dot{\mathcal{H}}=\bigcap_{\substack{v \in \operatorname{ker}\left(\mathrm{P}_{0}\right) \\ v \neq 0}} \operatorname{ker}\left(F_{v}\right)=\bigcap_{0 \leq j \leq n-1} \operatorname{ker}\left(F_{\varphi_{j}}\right) \tag{9.15}
\end{equation*}
$$

with the basis $\left(\varphi_{0}, \ldots, \varphi_{n-1}\right)$ of $\operatorname{ker}\left(\mathrm{P}_{0}\right)$ introduced above. If $(v, 0) \in$ $\operatorname{ker}(A)$, with $0 \neq v \in \operatorname{ker}\left(\mathrm{P}_{0}\right)$, note that $F_{v}(v, 0)=1$. We set $\Theta_{j}=$ ${ }^{t}\left(\varphi_{j}, 0\right), j=0, \ldots, n-1$ and

$$
\Pi_{\mathcal{N}} V=\sum_{j=0}^{n-1} F_{\varphi_{j}}(V) \Theta_{j}, \quad \text { for } V \in \mathcal{H}
$$

and $\Pi_{\dot{\mathcal{H}}}=\operatorname{Id}_{\mathcal{H}}-\Pi_{\mathcal{N}}$. We obtain that $\Pi_{\mathcal{N}}$ and $\Pi_{\dot{\mathcal{H}}}$ are continuous projectors associated with the direct sum

$$
\begin{equation*}
\mathcal{H}=\dot{\mathcal{H}} \oplus \mathcal{N} \text { and } \dot{\mathcal{H}}=\operatorname{ker}\left(\Pi_{\mathcal{N}}\right) \tag{9.16}
\end{equation*}
$$

Note that $\dot{\mathcal{H}}$ and \mathcal{N} are not orthogonal in \mathcal{H}. Yet, it is important to note the following result.

Lemma 9.2. We have $\operatorname{Ran}(A) \subset \dot{\mathcal{H}}$.
Proof. Let $U={ }^{t}\left(u^{0}, u^{1}\right)=A V$ with $V={ }^{t}\left(v^{0}, v^{1}\right) \in D(A)$. One has $u^{0}=-v^{1} \in H_{B}^{2}(\Omega)$ and $u^{1}=\mathrm{P}_{0} v^{0}+\alpha v_{1} \in L^{2}(\Omega)$. If $0 \neq \varphi \in \operatorname{ker}\left(\mathrm{P}_{0}\right)$ one writes

$$
\begin{aligned}
(\alpha \varphi, \varphi)_{L^{2}(\Omega)} F_{\varphi}(U) & =\left(-\alpha v^{1}, \varphi\right)_{L^{2}(\Omega)}+\left(\mathrm{P}_{0} v^{0}+\alpha v^{1}, \varphi\right)_{L^{2}(\Omega)} \\
& =\left(\mathrm{P}_{0} v^{0}, \varphi\right)_{L^{2}(\Omega)}=\left(v^{0}, \mathrm{P}_{0} \varphi\right)_{L^{2}(\Omega)}=0 .
\end{aligned}
$$

using that $v^{0}, \varphi \in D\left(\mathrm{P}_{0}\right)$, that $\left(\mathrm{P}_{0}, D\left(\mathrm{P}_{0}\right)\right)$ is selfadjoint, and that $\varphi \in$ $\operatorname{ker}\left(\mathrm{P}_{0}\right)$. The conclusion follows from the definition of $\dot{\mathcal{H}}$ in (9.15).

The space $\dot{\mathcal{H}}$ inherits the natural inner product and norm of \mathcal{H} given in (9.11). Yet one finds that the inner product

$$
\begin{equation*}
\left(\left(u^{0}, u^{1}\right),\left(v^{0}, v^{1}\right)\right)_{\dot{\mathcal{H}}}=\left\langle\mathrm{P}_{0} u^{0}, \overline{v^{0}}\right\rangle_{H_{B}^{-2}, H_{B}^{2}}+\left(u^{1}, v^{1}\right)_{L^{2}(\Omega)} \tag{9.17}
\end{equation*}
$$

and associated norm

$$
\begin{equation*}
\left\|\left(u^{0}, u^{1}\right)\right\|_{\dot{\mathcal{H}}}^{2}=\left\langle\mathrm{P}_{0} u^{0}, \overline{u^{0}}\right\rangle_{H_{B}^{-2}, H_{B}^{2}}+\left\|u^{1}\right\|_{L^{2}(\Omega)}^{2} \tag{9.18}
\end{equation*}
$$

yields an equivalent norm on $\dot{\mathcal{H}}$ by a Poincaré-like argument.
We introduce the unbounded operator \dot{A} on $\dot{\mathcal{H}}$ given by the domain $D(\dot{A})=D(A) \cap \dot{\mathcal{H}}$ and such that $\dot{A} V=A V$ for $V \in D(\dot{A})$. We then have $A=\dot{A} \circ \Pi_{\dot{\mathcal{H}}}$. Observe that $D(\dot{A})=\Pi_{\dot{\mathcal{H}}}(D(A))$ since $\mathcal{N}=\operatorname{ker}(A) \subset D(A)$. Thus, one has

$$
\begin{equation*}
D(A)=D(\dot{A}) \oplus \mathcal{N} \tag{9.19}
\end{equation*}
$$

As for the decomposition of \mathcal{H} given in (9.16) note that $D(\dot{A})$ and \mathcal{N} are not orthogonal.

Lemma 9.3. Let $z \in \mathbb{C}$ be such that $\operatorname{Re} z<0$. We have

$$
\left\|\left(z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}\right) U\right\|_{\dot{\mathcal{H}}} \geq|\operatorname{Re} z|\|U\|_{\dot{\mathcal{H}}}, \quad U \in D(\dot{A})
$$

The proof of this lemma is quite classical. It is given in Appendix A.2.
With the previous lemma, with the Hille-Yosida theorem one proves the following result.

Lemma 9.4. The operator $(\dot{A}, D(\dot{A}))$ generates a semigroup of contraction $\dot{S}(t)=e^{-t \dot{A}}$ on $\dot{\mathcal{H}}$.

If we set

$$
\begin{equation*}
S(t)=\dot{S}(t) \circ \Pi_{\dot{\mathcal{H}}}+\Pi_{\mathcal{N}} \tag{9.20}
\end{equation*}
$$

we find that $S(t)$ is a semigroup on \mathcal{H} generated by $(A, D(A)$), thus proving Proposition 9.1. If $Y^{0} \in D(A)$, the solution of the semigroup equation $\frac{d}{d t} Y(t)+A Y(t)=0$ reads

$$
\begin{equation*}
Y(t)=S(t) Y^{0}=\dot{S}(t) \circ \Pi_{\dot{\mathcal{H}}} Y^{0}+\Pi_{\mathcal{N}} Y^{0} \tag{9.21}
\end{equation*}
$$

We set $\dot{Y}(t)=\Pi_{\dot{\mathcal{H}}} Y(t)=\dot{S}(t) \circ \Pi_{\dot{\mathcal{H}}} Y^{0}$.
The adjoint of \dot{A} has domain $D\left(\dot{A}^{*}\right)=D(A)$ and is given by

$$
\dot{A}^{*}=\left(\begin{array}{cc}
0 & 1 \\
-\mathrm{P}_{0} & \alpha(x)
\end{array}\right) .
$$

Similarly to Lemma 9.3 one has the following result with a similar proof.
Lemma 9.5. Let $z \in \mathbb{C}$ be such that $\operatorname{Re} z<0$. We have

$$
\left\|\left(z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}^{*}\right) U\right\|_{\dot{\mathcal{H}}} \geq|\operatorname{Re} z|\|U\|_{\dot{\mathcal{H}}}, \quad U \in D\left(\dot{A}^{*}\right)=D(\dot{A})
$$

9.3. Strong and weak solutions to the damped plate equation. For $y(t)$ a solution to the damped plate equation (9.1) one has $Y(t)=$ ${ }^{t}\left(y(t), \partial_{t} y(t)\right)$ formally solution to $\frac{d}{d t} Y(t)+A Y(t)=0$ and conversely.

The semigroup $S(t)$ generated by A as given by Proposition 9.1 allows one to go beyond this formal observation and one obtains the following well-posedness result for strong solutions of the damped plate equation.

Proposition 9.6 (strong solutions of the damped plate equation). For $\left(y^{0}, y^{1}\right) \in H_{B}^{4}(\Omega) \times H_{B}^{2}(\Omega)$ there exists a unique

$$
y \in \mathscr{C}^{0}\left([0,+\infty) ; H_{B}^{4}(\Omega)\right) \cap \mathscr{C}^{1}\left([0,+\infty) ; H_{B}^{2}(\Omega)\right) \cap \mathscr{C}^{2}\left([0,+\infty) ; L^{2}(\Omega)\right)
$$

such that

$$
\begin{align*}
& \partial_{t}^{2} y+P y+\alpha \partial_{t} y=0 \quad \text { in } L^{\infty}\left([0,+\infty) ; L^{2}(\Omega)\right), \\
& y_{\mid t=0}=y^{0}, \partial_{t} y_{\mid t=0}=y^{1} \tag{9.22}
\end{align*}
$$

Moreover, there exists $C>0$ such that

$$
\begin{equation*}
\|y(t)\|_{H_{B}^{4}(\Omega)}+\left\|\partial_{t} y(t)\right\|_{H_{B}^{2}(\Omega)} \leq C\left(\left\|y^{0}\right\|_{H_{B}^{4}(\Omega)}+\left\|y^{1}\right\|_{H_{B}^{2}(\Omega)}\right), \quad t \geq 0 \tag{9.23}
\end{equation*}
$$

With $Y(t)$ as above, for such a solution $y(t)$ one has

$$
\frac{d}{d t} Y(t)+A Y(t)=0, \quad Y(0)=Y^{0}={ }^{t}\left(y^{0}, y^{1}\right)
$$

that is,

$$
Y(t)=S(t) Y^{0} \in \mathscr{C}^{0}([0,+\infty) ; D(A)) \cap \mathscr{C}^{1}\left([0,+\infty) ; H_{B}^{2}(\Omega) \oplus L^{2}(\Omega)\right)
$$

A weak solution to the damped plate equation is simply associated with an initial data $\left(y^{0}, y^{1}\right) \in H_{B}^{2}(\Omega) \times L^{2}(\Omega)$ and given by the first coordinate of $Y(t)=S(t) Y^{0}$. Then one has

$$
Y(t) \in \mathscr{C}^{0}([0,+\infty) ; \mathcal{H}) \cap \mathscr{C}^{1}\left([0,+\infty) ; L^{2}(\Omega) \oplus H_{B}^{-2}(\Omega)\right)
$$

or equivalently
$y \in \mathscr{C}^{0}\left([0,+\infty) ; H_{B}^{2}(\Omega)\right) \cap \mathscr{C}^{1}\left([0,+\infty) ; L^{2}(\Omega)\right) \cap \mathscr{C}^{2}\left([0,+\infty) ; H_{B}^{-2}(\Omega)\right)$.
For a strong solution, the natural energy is given by

$$
\begin{equation*}
\mathcal{E}(y)(t)=\frac{1}{2}\left(\left\|\partial_{t} y(t)\right\|_{L^{2}(\Omega)}^{2}+\left(\mathrm{P}_{0} y(t), y(t)\right)_{L^{2}(\Omega)}\right) \tag{9.24}
\end{equation*}
$$

Observe that if $y^{0} \in \operatorname{ker}\left(\mathrm{P}_{0}\right)$ then $y(t)=y^{0}$ is solution to (9.1) with $y^{1}=0$. This is consistent with the form of the semigroup $S(t)$ given in (9.20). Such a solution is independent of the evolution variable t, and thus, despite damping, there is no decay. However, note that such a solution is 'invisible' for the energy defined in (9.24). In fact, for a strong solution to (9.1) as given by Proposition 9.6 one has

$$
\begin{equation*}
\mathcal{E}(y)(t)=\frac{1}{2}\|\dot{Y}(t)\|_{\dot{\mathcal{H}}}^{2}, \tag{9.25}
\end{equation*}
$$

with $\dot{Y}(t)$ as defined below (9.21) and $\|\cdot\|_{\dot{\mathcal{H}}}$ defined in (9.18). For a strong solution, we write

$$
\begin{aligned}
\frac{d}{d t} \mathcal{E}(y)(t)= & \operatorname{Re}\left(\partial_{t} y(t), \partial_{t}^{2} y(t)\right)_{L^{2}(\Omega)}+\frac{1}{2}\left\langle\mathrm{P}_{0} \partial_{t} y(t), \overline{y(t)}\right\rangle_{H_{B}^{-2}, H_{B}^{2}} \\
& +\frac{1}{2}\left(\mathrm{P}_{0} y(t), \partial_{t} y(t)\right)_{L^{2}(\Omega)} \\
= & \operatorname{Re}\left(\partial_{t} y(t),\left(\partial_{t}^{2}+\mathrm{P}_{0}\right) y(t)\right)_{L^{2}(\Omega)} \\
= & -\operatorname{Re}\left(\partial_{t} y(t), \alpha \partial_{t} y(t)\right)_{L^{2}(\Omega)} \leq 0
\end{aligned}
$$

since $\alpha \geq 0$. Thus, the energy of a strong solution is nonincreasing. To understand the decay of the energy one has to focus on the properties of the semigroup $\dot{S}(t)$ and its generator $(\dot{A}, D(\dot{A}))$ on $\dot{\mathcal{H}}$. This is done in Section 10.1.

For a weak solution $y(t) \in \mathscr{C}^{0}\left([0,+\infty) ; H_{B}^{2}(\Omega)\right) \cap \mathscr{C}^{1}\left([0,+\infty) ; L^{2}(\Omega)\right)$ the energy is defined by

$$
\mathcal{E}(y)(t)=\frac{1}{2}\left(\left\|\partial_{t} y(t)\right\|_{L^{2}(\Omega)}^{2}+\left\langle\mathrm{P}_{0} y(t), \overline{y(t)}\right\rangle_{H_{B}^{-2}, H_{B}^{2}}\right)
$$

that coincides with (9.24) for a strong solution. The stabilization result we are interested in only concerns strong solutions (see Section 10.2). Thus, we shall not mention weak solutions in what follows.

10. Resolvent estimates and applications to stabilization

Here we use the observability inequality of Theorem 8.2 to obtain a resolvent estimate for the plate semigroup generator that allows one to deduce a stabilization result for the damped plate equation. This a sequence of argument comes from the seminal works of Lebeau [38] and Lebeau-Robbiano [40].
10.1. Resolvent estimate. We prove a resolvent estimate for the unbounded operator $(\dot{A}, D(\dot{A}))$ that acts on $\dot{\mathcal{H}}$. First, we establish that $\{\operatorname{Re} z \leq 0\}$ lies in the resolvent set of \dot{A}.
Proposition 10.1. The spectrum of $(\dot{A}, D(\dot{A}))$ is contained in $\{z \in$ $\mathbb{C} ; \operatorname{Re}(z)>0\}$.

The proof of this proposition is rather classical based on a unique continuation argument and a Fredholm index argument for a compact perturbation. It is given in Appendix A.3.

Theorem 10.2. Let \mathscr{O} be an open subset of Ω such that $\alpha \geq \delta>0$ on \mathscr{O}. Then, for $\sigma \in \mathbb{R}$ the unbounded operator $i \sigma \operatorname{Id}-\dot{A}$ is invertible on $\dot{\mathcal{H}}$ and for there exist $C>0$ such that

$$
\begin{equation*}
\left\|(i \sigma \operatorname{Id}-\dot{A})^{-1}\right\|_{\mathcal{L}(\dot{\mathcal{H}})} \leq C e^{C|\sigma|^{1 / 2}}, \quad \sigma \in \mathbb{R} \tag{10.1}
\end{equation*}
$$

Proof. By Proposition $10.1 i \sigma \mathrm{Id}-\dot{A}$ is indeed invertible. Observe that it then suffices to prove the resolvent estimate (10.1) for $|\sigma| \geq \sigma_{0}$ for some $\sigma_{0}>0$.

Let $U={ }^{t}\left(u^{0}, u^{1}\right) \in D(\dot{A})$ and $F={ }^{t}\left(f^{0}, f^{1}\right) \in \dot{\mathcal{H}}$ be such that $(i \sigma \operatorname{Id}-\dot{A}) U=F$. This reads

$$
f^{0}=i \sigma u^{0}+u^{1}, \quad f^{1}=-\mathrm{P}_{0} u^{0}+(i \sigma-\alpha) u^{1} .
$$

which gives

$$
\left(\mathrm{P}_{0}-\sigma^{2}-i \sigma \alpha\right) u^{0}=f
$$

with $f=(i \sigma-\alpha) f^{0}-f^{1}$. Computing the L^{2}-inner product with u^{0} one finds

$$
\left(\left(\mathrm{P}_{0}-\sigma^{2}\right) u^{0}, u^{0}\right)_{L^{2}(\Omega)}-i \sigma\left(\alpha u^{0}, u^{0}\right)_{L^{2}(\Omega)}=\left(f, u^{0}\right)_{L^{2}(\Omega)} .
$$

As $\alpha \geq 0$, computing the imaginary part one obtains

$$
\sigma\left\|\alpha^{1 / 2} u^{0}\right\|_{L^{2}(\Omega)}^{2}=-\operatorname{Im}\left(f, u^{0}\right)_{L^{2}(\Omega)} .
$$

Since $\alpha \geq \delta>0$ in \mathscr{O} by assumption and since we consider $|\sigma| \geq \sigma_{0}$ one has

$$
\delta \sigma^{0}\left\|u^{0}\right\|_{L^{2}(\mathscr{O})}^{2} \leq\|f\|_{L^{2}(\Omega)}\left\|u^{0}\right\|_{L^{2}(\Omega)} .
$$

Applying Theorem 8.2 (with Remark 8.3) one has

$$
\left\|u^{0}\right\|_{H^{4}(\Omega)} \lesssim e^{C|\sigma|^{1 / 2}}\left(\|f\|_{L^{2}(\Omega)}+\left\|u^{0}\right\|_{L^{2}(\mathscr{O})}\right)
$$

replacing $|\sigma|$ by $|\sigma|^{2}$ therein. Thus, we obtain

$$
\left\|u^{0}\right\|_{H^{4}(\Omega)} \lesssim e^{C|\sigma|^{1 / 2}}\left(\|f\|_{L^{2}(\Omega)}+\|f\|_{L^{2}(\Omega)}^{1 / 2}\left\|u^{0}\right\|_{L^{2}(\Omega)}^{1 / 2}\right)
$$

for $|\sigma| \geq \sigma_{0}$. With Young inequality we write, for $\varepsilon>0$,

$$
e^{C|\sigma|^{1 / 2}}\|f\|_{L^{2}(\Omega)}^{1 / 2}\left\|u^{0}\right\|_{L^{2}(\Omega)}^{1 / 2} \lesssim \varepsilon^{-1} e^{2 C|\sigma|^{1 / 2}}\|f\|_{L^{2}(\Omega)}+\varepsilon\left\|u^{0}\right\|_{L^{2}(\Omega)} .
$$

Thus, with ε chosen sufficiently small one obtains

$$
\left\|u^{0}\right\|_{H^{4}(\Omega)} \lesssim e^{C|\sigma|^{1 / 2}}\|f\|_{L^{2}(\Omega)} .
$$

Since $u^{1}=f^{0}-i \sigma u^{0}$ and $f=(i \sigma-\alpha) f^{0}-f^{1}$ we finally obtain that

$$
\begin{aligned}
\left\|u^{0}\right\|_{H^{4}(\Omega)}+\left\|u^{1}\right\|_{L^{2}(\Omega)} & \lesssim e^{C|\sigma|^{1 / 2}}\left(\left\|f^{0}\right\|_{L^{2}(\Omega)}+\left\|f^{1}\right\|_{L^{2}(\Omega)}\right) \\
& \lesssim e^{C|\sigma|^{1 / 2}}\|F\|_{\dot{\mathcal{H}}} .
\end{aligned}
$$

Since $u^{0} \in H^{4}(\Omega)$ one has

$$
\left|\left(\mathrm{P}_{0} u^{0}, u^{0}\right)_{L^{2}(\Omega)}\right| \leq\left\|u^{0}\right\|_{H^{4}(\Omega)}\left\|u^{0}\right\|_{L^{2}(\Omega)} \leq\left\|u^{0}\right\|_{H^{4}(\Omega)}^{2}
$$

and thus one finally obtains

$$
\|U\|_{\dot{\mathcal{H}}}^{2}=\left(\mathrm{P}_{0} u^{0}, u^{0}\right)_{L^{2}(\Omega)}+\left\|u^{1}\right\|_{L^{2}(\Omega)}^{2} \lesssim e^{C|\sigma|^{1 / 2}}\|F\|_{\dot{\mathcal{H}}}^{2},
$$

which concludes the proof of the resolvent estimate (10.1).
10.2. Stabilization result. As an application of the resolvent estimate of Theorem 10.2, we give a logarithmic stabilization result of the damped plate equation (1.1).

For the plate generator $(A, D(A))$ its iterated domains are inductively given by

$$
D\left(A^{n+1}\right)=\left\{U \in D\left(A^{n}\right) ; A U \in D\left(A^{n}\right)\right\}
$$

With Proposition 9.6, for $Y^{0}={ }^{t}\left(y^{0}, y^{1}\right) \in D\left(A^{n}\right)$ then the first component of $Y(t)=S(t) Y^{0}$ is precisely the solution to (9.1). One has $Y(t)=\dot{Y}(t)+\Pi_{\mathcal{N}} Y^{0}$ with $\dot{Y}(t)=\dot{S}(t) \Pi_{\dot{\mathcal{H}}} Y^{0}$ with the semigroup $\dot{S}(t)$ defined in Section 9.2. Moreover, by (9.25) the energy of $y(t)$ is given by the square of the $\dot{\mathcal{H}}$-norm of $\dot{Y}(t)$.

With the resolvent estimate of Theorem 10.2, with the result of Theorem 1.5 in [7] one obtains the following bound for the energy of $y(t)$:

$$
\begin{equation*}
\mathcal{E}(y)(t)=\|\dot{Y}(t)\|_{\dot{\mathcal{H}}}^{2} \leq \frac{C}{(\log (2+t))^{4 n}}\left\|A^{n} Y^{0}\right\|_{\dot{\mathcal{H}}}^{2} . \tag{10.2}
\end{equation*}
$$

We have thus obtain the following theorem.
Theorem 10.3 (logarithmic stabilization for the damped plate equation). Assume that conditions (i) to (iv) of Section 9 hold. Let $n \in \mathbb{N}$, $n \geq 1$. Then, there exists $C>0$ such that for any $Y^{0}={ }^{t}\left(y^{0}, y^{1}\right) \in D\left(A^{n}\right)$ the associated solution $y(t)$ of the damped plate equation (1.1) has the logarithmic energy decay given by (10.2).

Note that for $n=1$ using the form of A and (9.9) one recovers the statement of Theorem 1.1 in the introductory section.

Appendix A. Some technical results and proofs

A.1. A perfect elliptic estimate. Here we consider $a\left(\varrho^{\prime}, \xi_{d}\right)$ polynomial in the ξ_{d} variable and such that its root have negative imaginary parts microlocally.

Lemma A.1. Let $\kappa_{0}>0$. Let $a\left(\varrho^{\prime}, \xi_{d}\right) \in S_{\tau}^{k, 0}$, with $\varrho^{\prime}=\left(x, \xi^{\prime}, \tau, \sigma\right)$ and with $k \geq 1$, that is, $a\left(\varrho^{\prime}, \xi_{d}\right)=\sum_{j=0}^{k} a_{j}\left(\varrho^{\prime}\right) \xi_{d}^{k-j}$, and where the coefficients a_{j} are homogeneous in $\left(\xi^{\prime}, \tau, \sigma\right)$. Moreover, assume that $a_{0}\left(\varrho^{\prime}\right)=1$. Set $A=\operatorname{Op}(a)$.

Let \mathscr{U} be a conic open subset of $W \times \mathbb{R}^{d-1} \times[0,+\infty) \times[0,+\infty)$ where $\tau \geq \kappa_{0} \sigma$ and such that all the roots of $a\left(\varrho^{\prime}, \xi_{d}\right)$ have a negative imaginary part for $\varrho^{\prime} \in \mathscr{U}$.

Let $\chi\left(\varrho^{\prime}\right) \in S_{\mathrm{T}, \tau}^{0}$ be homogeneous of degree zero and such that $\operatorname{supp}(\chi) \subset$ \mathscr{U} and $N \in \mathbb{N}$. Then there exist $C>0, C_{N}>0$, and $\tau_{0}>0$ such that

$$
\left\|\mathrm{Op}_{\mathrm{T}}(\chi) v\right\|_{k, \tau}+\left|\operatorname{tr}\left(\mathrm{Op}_{\mathbf{T}}(\chi) v\right)\right|_{k-1,1 / 2, \tau} \leq C\left\|A \mathrm{Op}_{\mathrm{T}}(\chi) v\right\|_{+}+\|v\|_{k,-N, \tau},
$$

for $w \in \overline{\mathscr{S}}\left(\mathbb{R}_{+}^{d}\right)$ and $\tau \geq \max \left(\tau_{0}, \kappa_{0} \sigma\right)$.
We refer to [8] for a proof (see Lemma 4.1 therein and its proof that adapts to the presence of the parameter σ with $\sigma \lesssim \tau$ in a straightforward manner).
A.2. Basic resolvent estimation. Here we provide a proof of Lemma 9.3

Let $U={ }^{t}\left(u^{0}, u^{1}\right) \in D(\dot{A})$. With (9.17) We write

$$
\begin{aligned}
\left(\left(z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}\right) U, U\right)_{\dot{\mathcal{H}}}= & \left(\binom{z u^{0}+u^{1}}{z u^{1}-\mathrm{P}_{0} u^{0}-\alpha u^{1}},\binom{u^{0}}{u^{1}}\right)_{\dot{\mathcal{H}}} \\
= & z\|U\|_{\dot{\mathcal{H}}}^{2}+\left\langle\mathrm{P}_{0} u^{1}, \overline{u^{0}}\right\rangle_{H_{B}^{-2}, H_{B}^{2}} \\
& -\left(\mathrm{P}_{0} u^{0}, u^{1}\right)_{L^{2}(\Omega)}-\left(\alpha u^{1}, u^{1}\right)_{L^{2}(\Omega)} \\
= & z\|U\|_{\dot{\mathcal{H}}}^{2}+2 i \operatorname{Im}\left(u^{1}, \mathrm{P}_{0} u^{0}\right)_{L^{2}(\Omega)}-\left(\alpha u^{1}, u^{1}\right)_{L^{2}(\Omega)} .
\end{aligned}
$$

Computing the real part one obtains

$$
\begin{equation*}
-\operatorname{Re}\left(\left(z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}\right) U, U\right)_{\dot{\mathcal{H}}}=-\operatorname{Re}(z)\|U\|_{\dot{\mathcal{H}}}^{2}+\left(\alpha u^{1}, u^{1}\right)_{L^{2}(\Omega)} . \tag{A.1}
\end{equation*}
$$

As $\alpha \geq 0$ and $\operatorname{Re} z<0$, this gives

$$
\left|\operatorname{Re}\left(\left(z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}\right) U, U\right)_{\dot{\mathcal{H}}}\right| \geq|\operatorname{Re}(z)|\|U\|_{\dot{\mathcal{H}}}^{2},
$$

which yields the conclusion of Lemma 9.3.
A.3. Basic estimation for the resolvent set. Here we provide a proof of Proposition 10.1.

Let $z \in \mathbb{C}$. We consider the two cases.
Case 1: $\boldsymbol{\operatorname { R e }} \boldsymbol{z}<\mathbf{0}$. By Lemma $9.3 z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}$ is injective. Moreover, as its adjoint $\bar{z} \mathrm{Id}_{\dot{\mathcal{H}}}-\dot{\dot{A}}^{*}$ is injective and satisfies $\left\|\left(\bar{z} \mathrm{Id}_{\dot{\mathcal{H}}}-\dot{\dot{A}}^{*}\right) U\right\|_{\dot{\mathcal{H}}} \gtrsim\|U\|_{\dot{\mathcal{H}}}$ for $U \in D(\dot{A})$ by Lemma 9.5 the map $z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}$ is surjective (see for instance [9, Theorem 2.20]). The estimation of Lemma 9.3 then gives the continuity of the operator $\left(z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}\right)^{-1}$ on $\dot{\mathcal{H}}$.
Case 2: $\operatorname{Re} \boldsymbol{z}=\mathbf{0}$. We start by proving the injectivity of $z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}$. Let thus $U={ }^{t}\left(u^{0}, u^{1}\right) \in D(\dot{A})$ be such that $z U-\dot{A} U=0$. This gives

$$
\begin{equation*}
z u^{0}+u^{1}=0, \quad-\mathrm{P}_{0} u^{0}+(z-\alpha) u^{1}=0 . \tag{A.2}
\end{equation*}
$$

First, if $z=0$ one has $u^{1}=0$, and then $\mathrm{P}_{0} u^{0}=0$. Thus, $u^{0} \in \operatorname{ker}\left(\mathrm{P}_{0}\right)$ given $U \in \mathcal{N}=\operatorname{ker}(A)$. From the definition of $\dot{\mathcal{H}}$ this gives $U=0$.

Second, if now $z \neq 0$, using (A.1) we obtain

$$
0=\operatorname{Re}\left(\left(z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}\right) U, U\right)_{\dot{\mathcal{H}}}=-\left(\alpha u^{1}, u^{1}\right)_{L^{2}(\Omega)} .
$$

As $\alpha \geq 0$, this implies that u^{0} vanishes a.e. on $\operatorname{supp}(\alpha)$. Observe that

$$
\mathrm{P}_{0} u^{0}=z u^{1}=-z^{2} u^{0} .
$$

The function u^{0} is thus an eigenfunction for P_{0} that vanishes on an open set. With the unique continuation property we obtain that u^{0} vanishes in Ω and u^{1} as well.

If we now prove that $z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}$ is surjective, the result then follows from the closed graph theorem as \dot{A} is a closed operator. We write $z \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}=T+\operatorname{Id}_{\dot{\mathcal{H}}}$ with $T=(z-1) \operatorname{Id}_{\dot{\mathcal{H}}}-\dot{A}$. By the first part of
the proof, T is invertible with a bounded inverse. The operator T is unbounded on $\dot{\mathcal{H}}$. We denote by \tilde{T} the restriction of T to $D(\dot{A})$ equipped with the graph-norm associated with \dot{A}. The operator \tilde{T} is bounded. It is also invertible. It is thus a bounded Fredholm operator of index ind $\tilde{T}=0$. Similarly, we denote by ι the injection of $D(\dot{A})$ into $\dot{\mathcal{H}}$ and \tilde{A} the restriction of \dot{A} on $D(\dot{A})$ viewed as a bounded operator. We have $z \iota-\tilde{A}=\tilde{T}+\iota$. Since ι is a compact operator, we obtain that $z \iota-\tilde{A}$ is also a bounded Fredholm operator of index 0 . Hence, $z \iota-\tilde{A}$ is surjective since $z \operatorname{Id}_{\mathcal{H}}-\dot{A}$ is injective as proven above. Consequently, $z \mathrm{Id}_{\mathcal{H}}-\dot{A}$ is surjective. This concludes the proof of Proposition 10.1.

References

[1] Alabau-Boussouira, F. Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation. J. Evol. Equ., 6(1):95-112, 2006.
[2] Alabau-Boussouira, F., and Ammari, K. Sharp energy estimates for nonlinearly locally damped PDEs via observability for the associated undamped system. J. Funct. Anal., 260(8):2424-2450, 2011.
[3] Alabau-Boussouira, F., Privat, Y., and Trélat, E. Nonlinear damped partial differential equations and their uniform discretizations. J. Funct. Anal., 273(1):352-403, 2017.
[4] Ammari, K., Tucsnak, M., and Tenenbaum, G. A sharp geometric condition for the boundary exponential stabilizability of a square plate by moment feedbacks only. In Control of coupled partial differential equations, volume 155 of Internat. Ser. Numer. Math., pages 1-11. Birkhäuser, Basel, 2007.
[5] Barbu V. Exact controllability of the superlinear heat equation. Appl. Math. Optim., 42:73-89, 2000.
[6] Bardos, C., Lebeau, G., and Rauch, J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992), 1024-1065.
[7] Batty, C. J. K., and Duyckaerts, T. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. (2008), 765-780.
[8] Bellassoued, M., and Le Rousseau, J. Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems. J. Math. Pures Appl. (9) 104 (2015), 657-728.
[9] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011.
[10] Buffe, R. Stabilization of the wave equation with Ventcel boundary condition. J. Math. Pures Appl. (9) 108 (2017), 207-259.
[11] Bukhgeim, A. L., and Klibanov, M. V. Global uniqueness of class of multidimensional inverse problems. Soviet Math. Dokl., 24:244-247, 1981.
[12] Calderón, A.-P. Uniqueness in the Cauchy problem for partial differential equations. Amer. J. Math., 80:16-36, 1958.
[13] Carleman, T. Sur une problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astr. Fys., 26B(17):1-9, 1939.
[14] Cornilleau, P., and Robbiano, L. Carleman estimates for the Zaremba boundary condition and stabilization of waves. Amer. J. Math., 136:393-444, 2014.
[15] Denk, R., and Schnaubelt, R. A structurally damped plate equation with Dirichlet-Neumann boundary conditions. J. Differential Equations, 259(4):1323-1353, 2015.
[16] Dos Santos Ferreira, D. Sharp L^{p} Carleman estimates and unique continuation. Duke Math. J., 129(3):503-550, 2005.
[17] Dos Santos Ferreira, D., Kenig, C. E., Salo, M., and Uhlmann, G. Limiting carleman weights and anisotropic inverse problems. Invent. Math., 178:119-171, 2009.
[18] Fernández-Cara, E., and Zuazua, E. Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Analyse non lin., 17:583-616, 2000.
[19] Fursikov, A., and Imanuvilov, O. Y. Controllability of evolution equations, volume 34. Seoul National University, Korea, 1996. Lecture notes.
[20] Hörmander, L. On the uniqueness of the Cauchy problem. Math. Scand., 6:213-225, 1958.
[21] Hörmander, L. Linear Partial Differential Operators Springer-Verlag, 1963.
[22] Hörmander, L. The Analysis of Linear Partial Differential Operators, vol. III. Springer-Verlag, 1985. Second printing 1994.
[23] Hörmander, L. The Analysis of Linear Partial Differential Operators, vol. IV. Springer-Verlag, 1985.
[24] Imanuvilov, O. Y., Isakov, V., and Yamamoto, M. An inverse problem for the dynamical Lamé system with two sets of boundary data. Comm. Pure Appl. Math., 56:1366-1382, 2003.
[25] Isakov, V. Inverse problems for partial differential equations. SpringerVerlag, Berlin, 1998.
[26] Jaffard, S. Contrôle interne exact des vibrations d'une plaque rectangulaire. Portugal. Math., 47(4):423-429, 1990.
[27] Jerison, D., and Kenig, C. E. Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. of Math. (2), 121(3):463-494, 1985. With an appendix by E. M. Stein.
[28] Kahane, J.-P. Pseudo-périodicité et séries de Fourier lacunaires. Ann. Sci. École Norm. Sup. (3), 79:93-150, 1962.
[29] Kenig, C. E., Sjöstrand, J., and Uhlmann, G. The Calderón problem with partial data. Ann. of Math., 165:567-591, 2007.
[30] Koch, H., and Tataru, D. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Comm. Pure Appl. Math., 54(3):339-360, 2001.
[31] Koch, H., and Tataru, D. Sharp counterexamples in unique continuation for second order elliptic equations. J. Reine Angew. Math., 542:133-146, 2002.
[32] Koch, H., and Tataru, D. Dispersive estimates for principally normal pseudodifferential operators. Comm. Pure Appl. Math., 58:217--284, 2005.
[33] Kubo, M. Uniqueness in inverse hyperbolic problems-Carleman estimate for boundary value problems. J. Math. Kyoto Univ., 40(3):451-473, 2000.
[34] Le Rousseau, J., Lebeau, G., and Robbiano, L. Elliptic Carleman Estimates and Applications to Stabilization and Controllability I: Dirichlet Boundary Condition on Euclidean Space, Birkhäuser, 2022.
[35] Le Rousseau, J., Lebeau, G., and Robbiano, L. Elliptic Carleman Estimates and Applications to Stabilization and Controllability II: General Boundary Conditons on Riemannian Manifold, Birkhäuser, 2022.
[36] Le Rousseau, J., and Robbiano, L. Spectral inequality and resolvent estimate for the bi-laplace operator. J. Eur. Math. Soc., 22:1003-1094, 2020.
[37] Lebeau, G. Contrôle de l'équation de Schrödinger. J. Math. Pures Appl., 71:267-291, 1992.
[38] Lebeau, G. Équation des ondes amorties. In Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), vol. 19 of Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht, 1996, pp. 73-109.
[39] Lebeau, G., and Robbiano, L. Contrôle exact de l'équation de la chaleur. Comm. Partial Differential Equations, 20:335-356, 1995.
[40] Lebeau, G., and Robbiano, L. Stabilisation de l'équation des ondes par le bord. Duke Math. J. 86 (1997), 465-491.
[41] Ramdani, K., Takahashi, T., and Tucsnak, M. Internal stabilization of the plate equation in a square: the continuous and the semi-discretized problems. J. Math. Pures Appl. (9), 85(1):17-37, 2006.
[42] Rauch, J., and Taylor, M. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24 (1974), 79-86.
[43] Robbiano, L. Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal. 10 (1995), 95-115.
[44] Sogge, C. D. Oscillatory integrals and unique continuation for second order elliptic differential equations. J. Amer. Math. Soc., 2(3):491-515, 1989.
[45] Tebou, L. Well-posedness and stability of a hinged plate equation with a localized nonlinear structural damping. Nonlinear Anal. Theory, Methods $\varepsilon \delta$ Applications., 71(12):e2288-e2297, 2009.
[46] Tebou, L. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the p-Laplacian. Discrete Contin. Dyn. Syst. Series A, 32(6):2315-2337, 2012.
[47] Zuily, C. Uniqueness and Non Uniqueness in the Cauchy Problem. Birkhauser, Progress in mathematics, 1983.

Université Sorbonne Paris Nord, Laboratoire Analyse, Géométrie et Applications, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse, France.

E-mail address: jlr@math.univ-paris13.fr
Dip. di Matematica, Via Saldini 50, 20133 Milano, Italy and Université Sorbonne Paris Nord, Laboratoire Analyse, Géométrie et Applications, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse, France.

E-mail address: wend.zongo@unimi.it

