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Abstract
Numerical studies are presented to assess error estimates for a separable
(Hartree) approximation for dynamically evolving composite quantum systems
which exhibit distinct scales defined by their mass and frequency ratios. The rel-
evant error estimates were formally described in our previous work Burghardt
et al (2021 J. Phys. A: Math. Theor. 54 414002). Specifically, we consider a
representative two-dimensional tunneling system where a double well and a har-
monic coordinate are cubically coupled. The time-dependent Hartree approx-
imation is compared with a fully correlated solution, for different parameter
regimes. The impact of the coupling and the resulting correlations are quan-
titatively assessed in terms of a time-dependent reaction probability along the
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tunneling coordinate. We show that the numerical error is correctly predicted
on moderate time scales by a theoretically derived error estimate.

Keywords: scale separation, composite quantum systems, quantum dynamics,
quantum tunneling, system-bath theory, dimension reduction

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

The time-dependent Hartree (TDH) approximation, also termed time-dependent self-consistent
field method [1–3], which represents the time propagation of composite quantum systems
within a separable (Hartree) approximation, is ubiquitous in quantum and classical statistical
physics. This approximation is based on a mean-field description and often works well if the
relevant subspaces are weakly coupled, and if a separation of scales is given due to disparities in
masses and/or frequencies. The TDH approximation is also a natural starting point for includ-
ing correlations in terms of sums of products, i.e., using a correlated multiconfigurational (MC)
ansatz that leads to a multiconfiguration time-dependent Hartree (MCTDH) [4, 5] form of the
wavefunction. Related tensor representations of multidimensional wavefunctions are cast in
the form of matrix product states [6, 7]. A variational setting [5, 8] is generally employed to
obtain generalized, MC mean-field equations for such correlated wavefunctions. The TDH and
MCTDH representations can be straightforwardly adapted to fermionic or bosonic systems. In
the present context, we refer to distinguishable particles for simplicity.

Despite the importance of the TDH ansatz, an explicit error analysis of this approach is not
often reported in the literature. In a recent formal paper [9], we therefore presented error esti-
mates for the time propagation of composite quantum systems within the TDH approximation.
We also compared different types of approximate product wavefunctions, i.e., based on Taylor
expansion (collocation) or else on the TDH mean-field approach, and we further considered a
semiclassical approximation within a quantum–classical type treatment. Such semiclassical, or
quantum–classical approximations are especially useful if the system is composite—or struc-
tured—in a physical sense such that the subsystems exhibit different time and/or energy scales.
In the present paper, we follow up on this previous work and carry out numerical simulations
to assess the previously derived error estimates for a realistic, anharmonically coupled system
exhibiting a separation of scales defined by the relevant mass and frequency ratios. As in the
formal paper mentioned above, the present study is meant to be a first step towards a general
analysis of scale separation in the context of MC, tensorized wavefunction representations.

Specifically, we consider numerical simulations for a two-dimensional tunneling system
where a double-well potential is anharmonically coupled to a harmonic coordinate. As in ref-
erence [9], a cubic coupling is considered (i.e., linear in the tunneling coordinate and quadratic
in the harmonic coordinate). Numerical TDH calculations for different parameter regimes are
compared with correlated MCTDH calculations that can be considered as numerically exact for
the present system. The impact of the coupling and the resulting correlations are quantitatively
assessed in terms of a time-dependent reaction probability along the tunneling coordinate.

A time-dependent error estimate is expressed quantitatively in terms of the relevant parame-
ters of the Hamiltonian, leading to insight into the ‘small’ parameters to be considered to gauge
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the validity of the TDH approximation. This leads us to question the conventional viewpoint
that mass ratios are decisive; indeed, within our present analysis, it is the frequency ratio that
is found to play a more important role.

The present study paves the way for a more general treatment including the effects of fluctu-
ations and dissipation, which are expected to have a non-trivial effect on the tunneling dynamics
[10, 11].

The paper is organized as follows. Section 2 presents the model Hamiltonian under con-
sideration and gives a detailed account of the relevant parameters and their scaling prop-
erties. Section 3 addresses the TDH approximation and section 4 details the formulation
of time-dependent error estimates. Section 5 presents the numerical results and section 6
concludes.

2. Model system

In line with our previous work [9], we consider a two-dimensional model system which is
of system-bath type and exhibits anharmonicities both within the system subspace and in the
system-bath coupling. Specifically, a double-well potential is chosen in the system subspace,
which is coupled to a harmonic bath coordinate via a cubic (quadratic times linear) coupling
term. As pointed out in our previous analysis [9], a cubic coupling is a non-trivial case which
is relevant for the description of vibrational dephasing [12, 13] and Fermi resonances [14] in
a molecular physics context.

Here and in the following, we adhere to a system-bath terminology despite the low-
dimensional nature of the model system, due to the fact that the low-frequency harmonic vibra-
tion coupled to the dominant tunneling coordinate essentially acts as a bath mode. From a more
rigorous viewpoint, the single bath coordinate under consideration carries non-Markovian
effects that emerge from a decomposition of memory effects in terms of effective-mode chains
[15, 16]. Following this description, we recently considered a related two-dimensional tunnel-
ing system where a single effective bath mode is augmented by a Markovian master equation
[17]. Likewise, the present treatment can be augmented such as to yield a full system-bath treat-
ment. However, the purpose of the present work is to investigate dynamical approximations for
the effective bath mode that is accounted for explicitly.

From a complementary viewpoint, the present system can be considered as a typical
example of multi-dimensional tunneling which is frequently encountered in polyatomic molec-
ular systems [18] and has been extensively investigated, both experimentally and theoretically
[19–22]. Multi-dimensional tunneling involves multiple time scales, resonance effects, vibra-
tional mode selectivity, and non-statistical energy redistribution. The present system, even
though comparatively simple, falls into a typical parameter regime of such molecular systems,
and will be shown to exhibit some of the features mentioned above, specifically the observa-
tion of multiple time scales and the interference of seemingly passive spectator modes with the
tunneling process.

2.1. Hamiltonian in physical scaling

In system-bath form, the Hamiltonian is written as follows,

H = HX + HY + W(X, Y), (1)

3
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with the subspace Hamiltonians

HX = − h̄2

2μ1
ΔX + V1(X), HY = − h̄2

2μ2
ΔY + V2(Y), (2)

where V1(X) corresponds to a double-well potential and V2(Y) is a harmonic form,

V1(X) =
1
2

k0
1X2

(
X
2L

− 1

)2

, V2(Y) =
1
2

k0
2Y2. (3)

The system potential V1(X) represents a symmetric double well with two equivalent minima at
X = 0 and X = 2L that can be taken to correspond to the ‘reactant’ vs ‘product’ in the context
of a reactive process [18]. The energy at the barrier X = L amounts to D1 = k0

1L2/8.
The coupling W(X, Y) is given as a cubic term, i.e., linear in X and quadratic in Y ,

W(X, Y) =
1
2
η0XY2. (4)

Viewed from a different angle, V2(Y) and W(X, Y) can be combined into an effective potential
for the Y coordinate,

Veff
2 = V2(Y) + W(X, Y) =

1
2

(
k0

2 + η0X
)

Y2 ≡ 1
2

k2(X)Y2,

whose curvature is X-dependent, i.e., the local force constant is given as k2(X) = k0
2 + η0X. We

denote the ratio of the curvature along Y, taken at the product versus reactant minima in X, by

α =
k2(X = 2L)
k2(X = 0)

= 1 + 2
η0

k0
2

L. (5)

The reduced parameter α gives a direct measure of the relative coupling strength upon charac-
terizing how much the local curvature for Y changes as X varies from 0 (reactant minimum) to
2L (product minimum).

Yet from a different perspective, an adiabatic regime can be considered whose ‘fast’ sub-
system (X) coordinate is coupled to a ‘slow’ bath (Y) coordinate. An effective subsystem
Hamiltonian can then be defined as follows,

Heff
1 = − h̄2

2μ1
ΔX + V(X, Y) V(X, Y) = V1(X) + V2(Y) + W(X, Y).

Which perspective is most appropriate depends on the physical time scales under study, as will
be detailed below.

Finally, we note that the extension of this model to multivariate coordinates X and Y is
straightforward, such that the present model is suitable to address general multidimensional
tunneling situations.

2.2. Parameter choice

In the present work, we exclusively consider negative values of the coupling parameter η0

such that the curvature ratio defined in equation (5) satisfies α < 1. This ensures that the
ground eigenstate of the full (X, Y)-system is localized around the product well (X = 2L > 0),
while nonstationary dynamics will start from an initial condition (or, in mathematical lan-
guage, an initial datum) localized around the reactant well (X = 0). In other words, we reverse
localization in order to create an initial nonstationary state.
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The cubic coupling potential W(X, Y) has to be handled with some care. It causes the poten-
tial energy to be unbounded from below beyond the controllable subquadratic regime. This is
likely to induce numerical issues and renders the Hamiltonian H only formally self-adjoint.
One might therefore either add a contribution to the potential energy that is quartically confin-
ing with respect to Y or multiply the coupling potential with a cut-off function in X. Here we
have chosen another simple approach: there exists a critical value X = Xc =

2L
1−α

> 0 where
k2(X = Xc) = 0, which is called a valley-ridge inflection point [23]. Despite its relevance in
terms of bifurcation aspects, this is not the situation that we want to address here. A simple
cure is to ensure that such a critical point occurs far enough from X = 2L that the poten-
tial energy at this point, V(X = Xc, Y = 0) = V1(Xc), is large enough compared to the barrier
height, D1 = k0

1L2/8. As will be shown below, we choose our reference model such that α = 1
3

and Xc = 3L, which implies that V1(Xc) is nine times larger than D1. The most ‘precarious’ case
we considered is α = 1

4 and Xc =
8L
3 , which implies that we have V1(Xc) = 256

81 D1 ≈ 3.2D1.
Such a range of values for the onset of unboundedness in the potential energy seems a priori
far enough that our low-energy wavepackets will be vanishing in critical regions, which is what
we also observed in practice.

2.3. Representation in scaled coordinates

In order to transform the Hamiltonian to a suitably scaled representation, we introduce the
(angular) frequencies and the corresponding natural length scales of the harmonic approxima-
tions for X and Y around the origin,

ω0
i =

√
k0

i /μi, a0
i =

√
h̄/(μiω0

i )

for i = 1, 2. The corresponding natural energy and time scales are

E0
i =

h̄2

μi(a0
i )2

= k0
i (a0

i )2 = h̄ω0
i , t0

i =
h̄

E0
i ,
.

Note that, e.g., {μ1, a0
1, t0

1} can serve as a consistent and complete set of mechanical units for
all quantities built on powers of [M][L][T], whereby h̄ is numerically equal to unity due to the
relationship between the energy unit E0

1 and the time unit t0
1 (much as when considering atomic

units). In the spirit of semiclassical scaling, we further introduce a typical parameter defined
as the square root of the mass ratios,

ε =

√
μ1

μ2
.

Scaling both coordinates with respect to the natural length scale of the system coordinate, while
the bath coordinate is additionally scaled by ε, we set

(x, y) =

(
1
a0

1

X,
1

a0
1ε

Y

)
, � =

L
a0

1

.

We thus obtain a scaled Hamiltonian

H = E0
1H,

where the dimensionless part reads

H = −1
2
Δx −

1
2
Δy + v(x, y),

5
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with potential energy

v(x, y) = v1(x) + v2(y) + w(x, y),

with contributions from the system (double well) and the harmonic bath mode

v1(x) =
1
2

x2
( x

2�
− 1

)2
, v2(y) =

1
2
�2y2,

where � = ω0
2/ω

0
1 denotes the frequency ratio of the bath versus the system. The coupling

potential w(x, y) = 1
2ηxy2 features the rescaled coupling constant

η =
(a0

1)3ε2

E0
1

η0.

Let us denote the physical time T and the rescaled time t, where

t =
T
t0
1

=
E0

1

h̄
T.

We can absorb both E0
1 and h̄ into t0

1 and recast the time-dependent Schrödinger equation,

ih̄∂TΨ(T, X, Y) = HΨ(T, X, Y),

into dimensionless form as

i∂tψ(t, x, y) = Hψ(t, x, y).

We observe that the curvature ratio defined in equation (5) is invariant under the performed
linear coordinate scaling. It is related to the coupling constant according to

α = 1 + 2
η

�2
� resp. η = �2 α− 1

2�
.

The parametrization in terms of the frequency ratio � and the curvature ratio α fully charac-
terizes the interaction of the system and bath via the potential energy. The parameter ε, which
represents the mass ratio, only appears indirectly, through the scaling of the Y coordinate and
of the η parameter.

2.4. Relevant parameter regime and initial data

In view of the numerical simulation results reported below, we now specify the parameter
regime which was considered in these simulations. First, a reference model was constructed
by the following choice of parameters,

ε∗ =
1
4

, �∗ =
1

100
, α∗ =

1
3
.

We note that the mass ratio ε∗ is moderate, but representative of chemically relevant sys-
tems. The frequency ratio �∗, however, takes a value that is significantly smaller, and will
be demonstrated to play an important role in the error estimates to be discussed below.

In the simulations reported below, we explore the dynamics of several variations of this
reference model (i.e., cases 0 to 8, while the reference model is denoted case ∗, see table 1).
Relevant ranges of values for α have been discussed above. As already pointed out, reducing

6
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Table 1. Parameter variations of the reference model, that is defined by the values
(ε∗,�∗,α∗) = ( 1

4 , 1
100 , 1

3 ). These parameters determine the square root of the mass ratio,
the frequency ratio, and the curvature ratio, respectively.

Case ε � α

∗ ε∗ �∗ α∗ Reference

0 ε∗ �∗ 1 No coupling

1 2ε∗ �∗ α∗
2 1

2ε∗ �∗ α∗

3 ε∗ 4�∗ α∗ Most sensitive
4 ε∗

1
4�∗ α∗

5 ε∗ �∗
3
4α∗

6 ε∗ �∗
3
2α∗

7 ε∗ �∗ 2α∗
8 ε∗ �∗

9
4α∗

α below values of about 1
4 could entail issues related to the unboundedness within the space

explored by the wavepacket. Note also that ‘case 3’ appeared in our simulations as the most sen-
sitive situation, bringing much larger errors between correlated and uncorrelated descriptions.
We suspect that this may reflect the fact that the corresponding time scale of the Y dynamics,
now shorter, enters the realm of the time scale of X motion (see section 5 for further discussion),
thus making system-bath separability less justified.

In all cases, we chose the initial data to be the approximate Gaussian quasi-coherent ground
state localized in the ‘reactant well’, as illustrated in figure 1,

ψ(t = 0, x, y) = χ0(x)φ0(y) = (2π)−1/2�−1/4 exp

(
−1

2
x2 − �

2
y2

)
. (6)

We note that both minima of the potential energy have equal energies, but the zero-point energy
is higher in the left reactant well because the curvature for y is higher there. The squeezing in
the y direction, due to the� factor in the coherent state width, reflects that this coordinate tends
to the classical limit.

3. Time-dependent Hartree approximation

We compare the numerical solution of the full Schrödinger equation with separable, normalized
initial datum {

i∂tψ(t, x, y) = Hψ(t, x, y),

ψ(t = 0, x, y) = χ0(x)φ0(y),

with the one of the TDH approximation subject to the same initial condition,

{
i∂tu(t, x, y) = Heff

u (t)u(t, x, y),

u(t = 0, x, y) = χ0(x)φ0(y).

7
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Figure 1. (Upper panel) Contour plot of the two-dimensional potential energy surface
(reference model ∗) and coherent-state initial condition according to equation (6). As
explained in the text, the initial condition corresponds to a non-stationary state local-
ized in the less stable left (‘reactant’) well. (Lower panel) One-dimensional cut at y = 0
through the potential and eigenenergies of the ground-state and first excited-state tunnel-
ing pairs. The energies are 972 and 976 cm−1 for the ground pair, 2726 and 2753 cm−1

for the excited pair. The splitting of the even and odd energy levels is barely visible on
the energy scale set by the potential.
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The effective TDH Hamiltonian

Heff
u (t) = 〈H〉(x)

φ (t) + 〈H〉(y)
χ (t) − 〈H〉u(t),

is additive with respect to the coordinates and thus preserves the product structure of the initial
datum, i.e., we have

u(t, x, y) = a(t)χ(t, x)φ(t, y),

where a(t) is a complex number of absolute value one, acting as a suitably chosen gauge factor.
The individual product wavefunctions satisfy the coupled equations of motion

i∂tχ(t, x) = 〈H〉φ(t)χ(t, x),

i∂tφ(t, y) = 〈H〉χ(t)φ(t, y),

while the gauge factor

a(t) = exp

(
i
∫ t

0
〈H〉u(s)ds

)

depends on the full energy expectation with respect to the Hartree product. Our system-bath
type Hamiltonian is of the form

H = Hx + Hy + w(x, y),

with Hx = − 1
2Δx + v1(x) and Hy = − 1

2Δy + v2(y). In this situation, the effective Hartree
Hamiltonian is of the form

Heff
u (t) = Hx + Hy + weff

u (t, x, y),

and differs from the true Hamiltonian only with respect to the effective coupling potential

weff
u (t, x, y) = 〈w〉φ(t, x) + 〈w〉χ(t, y) − 〈w〉u(t), (7)

so the above effective Hamiltonians can be rewritten as

〈H〉φ = Hx + 〈w〉φ(t, x), 〈H〉χ = Hy + 〈w〉χ(t, y).

4. Error estimates

For analyzing the approximation error

e(t, x, y) = ψ(t, x, y) − u(t, x, y),

we use a standard stability estimate, see lemma 2 in reference [9]. Differentiating the error with
respect to time we obtain a Schrödinger-type equation{

i∂te(t, x, y) = He(t, x, y) +Σu(t, x, y),

e(t = 0, x, y) = 0,

with source term

Σu(t, x, y) =
(
H − Heff

u (t)
)

u(t, x, y) =
(
w(x, y) − weff

u (t, x, y)
)

u(t, x, y).

9
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By the variation of constants formula (aka the Duhamel principle), we write the error as a
time-integral,

e(t, x, y) =
1
i

∫ t

0
exp(−iH(t − s))Σu(s, x, y)ds. (8)

Since the time-evolution associated with the Hamiltonian H is unitary, we now estimate

‖e(t)‖L2 �
∫ t

0
‖Σu(s)‖L2 ds

for the L2-norm of the error.

4.1. Formula for the source term

The cubic coupling potential of our system-bath type Hamiltonian is of product form

w(x, y) = w1(x)w2(y).

Therefore, the coupling potential of the Hartree approximation, see equation (7), takes the
special form

weff
u (t, x, y) = w1(x)〈w2〉φ(t) + 〈w1〉χ(t)w2(y) − 〈w1〉χ(t)〈w2〉φ(t).

This implies for the difference of the coupling potentials

δwu(t, x, y) = w(x, y) − weff
u (t, x, y)

=
(
w1(x) − 〈w1〉χ(t)

) (
w2(y) − 〈w2〉φ(t)

)
.

We provide a detailed computation of the local-in-time error given in example 3 of reference
[9]. We calculate the norm of the source term Σu(t) = δwu(t)u(t) according to

‖Σu(t)‖2
L2 = 〈δw2〉u(t)

=
〈[

w1(x) − 〈w1〉χ(t)
]2
〉
χ

〈[
w2(y) − 〈w2〉φ(t)

]2
〉
φ

=
(
〈w2

1〉χ(t) − 〈w1〉χ(t)2
) (

〈w2
2〉φ(t) − 〈w2〉φ(t)2

)
.

From a probabilistic point of view, we can interpret this formula as the product of the variances
of w1 and w2. Applying this formula to the cubic coupling model, we then obtain the error
estimate

‖ψ(t) − u(t)‖L2 � 1
2
|η|

∫ t

0

√(
〈x2〉χ(s) − 〈x〉2

χ(s)
)(

〈y4〉φ(s) − 〈y2〉2
φ(s)

)
ds.

4.2. Dimension analysis

This formula is given here in terms of dimensionless energy, space, and time variables; its proof
is not affected by scaling considerations, and it directly translates into physical units, (X, Y, T),
as

10
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‖Ψ(T) − U(T)‖L2 � 1
2
|η0|1

h̄

∫ T

0

×
√(

〈X2〉X(S) − 〈X〉2
X(S)

) (
〈Y4〉Y (S) − 〈Y2〉2

Y (S)
)
dS. (9)

From η0 =
E0

1
(a0

1)3ε2 η, recalling E0
1 = h̄

t01,
, and η = �2ς , where

ς =
α− 1

2�
,

the upper bound of the previous estimate can be recast in terms of dimensionless ratios as

�2|ς |
2t0

1

∫ T

0

√
〈X2〉X(S) − 〈X〉2

X(S)
(a0

1)2

〈Y4〉Y (S) − 〈Y2〉2
Y (S)

ε4(a0
1)4

dS

=
�2|ς |

2t0
1

∫ T

0

√
〈X2〉X(S) − 〈X〉2

X(S)
(a0

1)2

〈Y4〉Y (S) − 〈Y2〉2
Y(S)

�2(a0
2)4

dS

=
�|ς |
2t0

1

∫ T

0

√
〈X2〉X(S) − 〈X〉2

X(S)
(a0

1)2

〈Y4〉Y(S) − 〈Y2〉2
Y (S)

(a0
2)4

dS,

where we used

a0
2

a0
1

=
ε√
�

,

and eliminated the somewhat artificial dependence on ε (noting that different values of ε only
bring homothetic dynamics with respect to Y). As a crucial consequence, we removed one
power order of � regarding natural orders of magnitude and effective ‘smallness’.

4.3. Linearization of the upper bound

From an operational point of view, the purpose of rescaling essentially consists in determining
relevant orders of magnitude for the values of the various factors entering the relevant for-
mulae. Since we specifically chose initial data to be quasi-coherent states (within a harmonic
approximation around the origin), we know that the product of X and Y2 standard deviations
expressed in their respective natural units satisfy√

〈X2〉X(T = 0) − 〈X〉2
X(T = 0)

(a0
1)2

×

√
〈Y4〉Y(T = 0) − 〈Y2〉2

Y(T = 0)
(a0

2)4
=

1
2

,

and will not change dramatically over time, which is the incentive for considering a rescaling
based on natural units. We can thus further propose a sort of ‘rough’ linear estimate for short
times as follows,

‖Ψ(T) − U(T)‖L2 � 1
4
�|ς |T

t0
1

, (10)

where � here is to be understood as preceding an approximate upper bound. Such an approx-
imation is not aimed at being precise beyond very short times (although we shall see later on
that it works surprisingly well at later times) but it presents the great advantage of providing

11
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Figure 2. Fully correlated (MCTDH) propagation: time evolution of the reaction prob-
ability, R(T ), in the uncoupled model (case 0); (a) long times (ground-state tunneling);
(b) medium times (excited-state tunneling); (c) short times (quasiharmonic).
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an easy estimate of relevant orders of magnitude before performing any actual propagation. In
the present situation, the initial widths along X and Y were chosen to vary as little as possible
over time (quasi-coherent initial datum); however, it is not so difficult to make a rough predic-
tion of the time evolution of standard deviations in more general cases (especially oscillatory
breathing behaviors with harmonic half periods).

It is worth noticing that we have identified the prefactor �ς = (η/�) that appears in
equation (10) as an objective measure of the impact of the coupling on the rate of growth
of the error with respect to time. This was not evident at first sight when starting from η0 as in
equation (9) written with physical units. It required the dimension analysis presented above so
as to get rid of dimensioned quantities and identify what will take values close to unity. The
parameter ς only affects the coupling between the system and the bath but can only be varied
moderately. In contrast, � can span a large range; however, changing its value affects both the
coupling and the relative timescales between system and bath.

We also emphasize that the error in the norm of the difference between two normalized
wavefunctions is limited by a strict upper bound, a ‘maximum maximorum’, which is

√
2

(in the worst and undesired case of strict orthogonality between the solution and its approx-
imation). The intersection of our estimate with this value gives a maximal time of relevance
for the estimate, but also a predictive rough order of magnitude of the time beyond which an
uncorrelated approximation is definitely at risk.

5. Results and discussion

All simulations presented below were computed with the Quantics software [24]. Reference
simulations denoted as ‘fully correlated’ in the following refer to converged MCTDH calcula-
tions where correlated system-bath states are propagated under variational equations of motion
[4, 5, 8]. In the specific case of two degrees of freedom, the MCTDH wavefunction ansatz reads
as follows, as a generalization of the TDH ansatz,

ψ(t, x, y) =
n∑

j1=1

n∑
j2=1

A j1 j2 (t)ϕ j1 (t, x)χ j2 (t, y). (11)

The convergence of the MC expansion is measured in terms of the so-called natural weights
(natural orbital populations) [5]. Typically, expansions up to n = 3 single-particle functions
(orbitals) were necessary in order to achieve convergence for the present systems. We achieved
numerically converged situations over long times with natural weights of about 99%, 1%, and
less than 0.1% for both degrees of freedom. Further computational details and convergence
analysis are provided in the supplementary material (https://stacks.iop.org/JPA/55/224010/
mmedia). Related MCTDH calculations for two-dimensional tunneling situations are reported,
e.g., in reference [17].

5.1. Characteristic times of dynamical simulations

For reference, we first consider the uncoupled model (case 0; see table 1). The characteristics of
our model are such that we can distinguish three very different time scales, all separated by two
orders of magnitude, for the X subsystem dynamics: long, short, and medium times. The long
time scale ∼100 ps relates to ‘ground-state tunneling’ (induced by the energy splitting between
the ground-state tunneling pair); the medium time scale ∼1 ps is ‘excited-state tunneling’ (first
excited tunneling pair splitting); the short time ∼0.01 ps is due to ‘quasiharmonic’ motion
(vibration around the local minimum).
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Figure 3. Fully correlated (MCTDH) vs TDH propagation: time evolution of the reac-
tion probability, R(T ), in three coupled cases (blue: case ∗; orange: case 3; grey: case
4—see table 1); the two left panels show fully correlated (MCTDH), the two right panels
TDH propagation; (a) and (b) long times (ground-state tunneling); (c) and (d) medium
times (excited-state tunneling).

Our preferred observable for monitoring the dynamics will be the ‘reaction probability’,
R(T ) = 〈HL〉(T ). It is defined as the expectation value of the Heaviside step distribution cen-
tered at X = L, such that it provides a measure of the probability for the system to be in the
product region (X > L) at any given time.

In the uncoupled case, the time evolution of R(T ) shows a perfect tunneling quantum beat
between the ‘reactant’ (X = 0) and ‘product’ (X = 2L) wells. It oscillates between 0 and 1
with a long period of about 88 ps; see figure 2. There is a clear modulation (around 2%) with
a medium period of about 1.2 ps. One also notices an extra modulation (around 0.1%) with a
short pseudoperiod of about 30 fs and even shorter convoluted temporal structures.

These typical times can be rationalized in terms of the eigenstate decomposition of the ini-
tial datum, which corresponds almost perfectly (with 49%) to a one-to-one mixture of the even
vs odd members of the ground-state tunneling pair. As a result, the initial wavepacket is local-
ized on the ‘reactant’ side. The corresponding eigenenergies are 975.92 cm−1 and 976.30 cm−1

(wavenumbers will be used as customary energy equivalents within this vibrational context).
The tunneling energy splitting of 0.38 cm−1 corresponds to a ground-state tunneling period
of 88.0 ps, as indeed observed and reported above (long time scale). Note that the single-well
harmonic approximation of the zero-point energy around the origin is at 1010 cm−1 (the first
tunneling pair is redshifted by about 24 cm−1 due to the anharmonicity of the double well).
The initial wavepacket also contains to some extent a contribution of the next tunneling pair
with respect to X: i.e., a 1% component of both members of the excited-state tunneling pair,
at 2728 cm−1 and 2757 cm−1, split by 29 cm−1. This induces a medium time scale pertain-
ing to the excited tunneling period of 1.2 ps, as indeed observed. The shorter times are more
subtle to interpret. The harmonic approximation around the origin (with an energy quantum of
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Figure 4. Time evolution of the norm ‖Ψ(T) − U(T)‖L2 of the actual error and of the
error estimate—see equation (9)—in seven coupled cases (thick blue: case ∗; orange:
case 3; grey: case 4; yellow: case 5; light blue: case 6; green: case 7; dark blue: case
8—see table 1); the three left panels show the actual error, the three right ones the
estimate; (a) and (b) short times; (c) and (d) medium times; (e) and (f) long times.

2000 cm−1) would induce a harmonic period of 17 fs. The actual difference between the aver-
age eigenenergies of the first two tunneling pairs is a bit lower, at 1767 cm−1 with a time of
19 fs, on the same order of magnitude as what we identified as a short pseudoperiod of 30 fs,
which can be termed a ‘quasiharmonic’ time. The overall dynamics thus appears to be gov-
erned by a four-level eigensystem organized as a ‘pair of pairs’. Note that the harmonic period
for Y is 1.7 ps (with an energy quantum of 20 cm−1), hence, slightly larger than the medium
timescale.

Apart from the details of the interpretation, the present setting is ideal for our study, as we
are dealing with three typical timescales that are well separated from each other by about two
orders of magnitude.

We calculated the reaction probability for all cases given in table 1. Results for the reference
model (∗) and cases 3 and 4 are presented in figure 3, for long and medium times both with the
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Figure 5. Time evolution of the error estimate—see equation (9)—and the linear
approximation—see equation (10)—in seven coupled cases (thick blue: case ∗; orange:
case 3; grey: case 4; yellow: case 5; light blue: case 6; green: case 7; dark blue: case
8—see table 1); the three left panels show the error estimate, the three right ones the
linearization; (a) and (b) short times; (c) and (d) medium times; (e) and (f) long times.

fully correlated (MCTDH) and TDH methods. Short-time results are not shown, since these
are all virtually identical to the uncoupled case (the dynamics is still uncorrelated).

Upon comparing the left and right panels in figure 3, we observe significant differences
between fully correlated (MCTDH) and TDH results at long times: (i) the reaction probabil-
ities obtained with TDH do not experience any oscillation damping as opposed to the fully
correlated calculations; (ii) the TDH population transfer is slower (smaller rate); (iii) the net
transfer is bigger (larger yield).

From a local comparison in time, the error could be considered as very large. However,
from a global perspective, the dynamical behavior is qualitatively similar and the orders
of magnitude are correct. For example, taking case 4 (grey curves), the tunneling period
is 31 ps (fully correlated) vs 37 ps (TDH) and the rate is 14% (fully correlated) vs 19%
(TDH). Let us now turn to a more detailed analysis of the error in the time-dependent
wavefunction.
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5.2. Numerical assessment of error estimates

We calculated the actual norm of the error between fully correlated (MCTDH) and TDH
wavepackets at all times, ‖Ψ(T) − U(T)‖L2 , in the seven coupled cases given in table 1 (let
us remind that cases 1 and 2 are identical to case ∗ up to within homothetic dynamics in Y).
These are shown in the left panels of figure 4. We also calculated the error estimate given in
equation (9), as well as its linear approximation defined in equation (10), see figure 5.

The error estimate given in equation (9) appears to be almost exact over dimensionless times
∼100 t0

1 where t0
1 = 2.65 fs (natural time for X). It is still dominated by a linear growth with

time, as illustrated by its strong similarity with its linear approximation (equation (10)). The
latter stays quite identical to the former up to about 100 t0

1 (compare both panels (b) in figure 5).
This reflects small variations of the various moments, consistent with using a quasi-coherent
state as initial datum.

Both rigorous and approximate error estimates keep cases ordered over time (no crossing
between curves) according to the value of the linear prefactor, �ς , while the actual error starts
to become more complicated, showing various types of oscillations and some rough saturation
around 0.2 to 0.3.

Our estimates keep increasing and stop becoming relevant at ∼1000 t0
1; they still can

be viewed as upper bounds, though. Note that they finally lose any significance when they
reach the critical value

√
2, where orthogonality between the approximate and exact solutions

sets in.

6. Conclusions and outlook

Following up on the recently presented mathematical framework for error estimation in the
context of composite quantum systems [9], we presented here a first application to a non-trivial
two-dimensional system where tunneling motion (i.e., a ‘reactive subsystem’) is coupled to a
quasi-harmonic degree of freedom via a cubic coupling. The values of our system Hamiltonian
parameters (frequencies, masses, tunneling length and barrier; see supplementary material)
were chosen so as to correspond to realistic molecular situations. As it occurs, they allow for
significant quantum effects, in particular an interesting tunneling process that exhibits three
distinct characteristic time scales.

For reference, the reliability of a separable TDH ansatz for the time-evolving wavepacket
was assessed by comparison with converged MC (MCTDH) calculations that can be considered
as numerically exact. The relevant space of system parameters was explored with respect to
the coupling strength as well as the relative timescales of the subsystem and the bath.

In the parameter regimes we considered, the TDH approximation represents a good zeroth-
order approximation which requires corrections such as to account for correlations. In line
with this, tunneling rates and yields differ by no more than a factor of two from the exact
result. Yet, the quantitative error is non-negligible, such that the error estimates developed in
reference [9] are relevant. In the present study, this error is numerically computed and compared
with our rigorous mathematical estimates [9]. These estimates were shown to provide a good
approximation to the numerically exact error, and yield an almost exact result in the early
regime of near-linear growth of the error with time before saturation.

Against the background of a detailed scaling analysis, we further introduced a linearization
approach by which an expression for the short-time error estimate was derived, which is found
to depend on the frequency ratio of the subsystems. This emphasizes that from the vantage
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point of the TDH approximation, the frequency ratio rather than the mass ratio of the subsys-
tems is of crucial importance. Again, the linearization estimate was found to provide a valid
approximation, even beyond the shortest time scale.

The present work paves the way for extensions of error analysis to other types of wave-
function ansatz, such as MC forms of MCTDH type [5, 25], and especially Gaussian-based
hybrid wavefunctions such as employed in the G-MCTDH method [26, 27]. The model that
we used showed moderate failures of TDH that have observable consequences on, for example,
the reaction probability. It could thus be useful for benchmarking a hierarchy of methods of
various sophistication.

Finally, as mentioned in section 2, the present treatment can be generalized to a gen-
uine system-bath situation where the subsystems are subject to external fluctuations induc-
ing dissipation [28, 29]. In this context, the present perspective immediately connects to a
non-Markovian treatment of structured environments which can be decomposed in terms of
effective environmental modes [15, 16]. From this viewpoint, the system-bath boundary can
be shifted such as to include a set of environmental modes as additional subsystems in an
explicit treatment, while a residual bath is included by a Markovian approximation. This type
of approach has been recently employed in the context of two-dimensional molecular tunneling
dynamics [17], in a similar parameter range as specified in the present model. These mod-
els permit to further investigate fluctuation-induced enhancement or reduction of tunneling,
localization effects, and decoherence, which are ubiquitous effects far beyond the molecular
tunneling situation considered here. Including fluctuations and dissipation is obviously of gen-
eral importance in quantum metastable systems [10, 11, 30]. This direction provides a natural
extension to the treatment employed in the present work.
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