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DYNAMICAL APPROXIMATIONS FOR COMPOSITE

QUANTUM SYSTEMS: ASSESSMENT OF ERROR

ESTIMATES FOR A SEPARABLE ANSATZ

IRENE BURGHARDT, RÉMI CARLES, CLOTILDE FERMANIAN KAMMERER,
BENJAMIN LASORNE, AND CAROLINE LASSER

Abstract. Numerical studies are presented to assess error estimates for
a separable (Hartree) approximation for dynamically evolving composite
quantum systems which exhibit distinct scales defined by their mass and
frequency ratios. The relevant error estimates were formally described
in our previous work [I. Burghardt, R. Carles, C. Fermanian Kammerer,
B. Lasorne, C. Lasser, J. Phys. A. 54, 414002 (2021)]. Specifically,
we consider a representative two-dimensional tunneling system where a
double well and a harmonic coordinate are cubically coupled. The time-
dependent Hartree approximation is compared with a fully correlated
solution, for different parameter regimes. The impact of the coupling
and the resulting correlations are quantitatively assessed in terms of a
time-dependent reaction probability along the tunneling coordinate. We
show that the numerical error is correctly predicted on moderate time
scales by a theoretically derived error estimate.

1. Introduction

The time-dependent Hartree (TDH) approximation, also termed time-
dependent self-consistent field method [5, 7, 8], which represents the time
propagation of composite quantum systems within a separable (Hartree) ap-
proximation, is ubiquitous in quantum and classical-statistical physics. This
approximation is based on a mean-field description and often works well if
the relevant subspaces are weakly coupled, and if a separation of scales is
given due to disparities in mass and/or frequency. The TDH approximation
is also a natural starting point for including correlations in terms of sums of
products, i.e., using a correlated multiconfigurational (MC) ansatz that leads
to a Multiconfiguration Time-Dependent Hartree (MCTDH) [13, 1] form of
the wavefunction. Related tensor representations of multidimensional wave-
functions are cast in the form of matrix product states [17, 18]. A variational
setting [1, 12] is generally employed to obtain generalized, multiconfigura-
tional mean-field equations for such correlated wavefunctions. The TDH and
MCTDH representations can be straightforwardly adapted to fermionic or
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bosonic systems. In the present context, we refer to distinguishable particles
for simplicity.

Despite the importance of the TDH ansatz, an explicit error analysis of
this approach is not often reported in the literature. In a recent formal
paper [3], we therefore presented error estimates for the time propagation
of composite quantum systems within the TDH approximation. We also
compared different types of approximate product wavefunctions, i.e., based
on Taylor expansion (collocation) or else on the TDH mean-field approach,
and we further considered a semiclassical approximation within a quantum-
classical type treatment. In the present paper, we follow up on this previous
work and carry out numerical simulations to assess the previously derived
error estimates for a realistic, anharmonically coupled system exhibiting a
separation of scales defined by the relevant mass and frequency ratios. As
in the formal paper mentioned above, the present study is meant to be a
first step towards a general analysis of scale separation in the context of
multiconfigurational, tensorized wavefunction representations.

Specifically, we consider numerical simulations for a two-dimensional tun-
neling system where a double-well potential is anharmonically coupled to a
harmonic coordinate. As in Ref. [3], a cubic coupling is considered (i.e., lin-
ear in the tunneling coordinate and quadratic in the harmonic coordinate).
Numerical TDH calculations for different parameter regimes are compared
with correlated MCTDH calculations that can be considered as numerically
exact for the present system. The impact of the coupling and the result-
ing correlations are quantitatively assessed in terms of a time-dependent
reaction probability along the tunneling coordinate.

A time-dependent error estimate is expressed quantitatively in terms of
the relevant parameters of the Hamiltonian, leading to insight into the
“small” parameters to be considered to gauge the validity of the TDH ap-
proximation. This leads us to question the conventional viewpoint that mass
ratios are decisive; indeed, within our present analysis, it is the frequency
ratio that is found to play a more important role.

The paper is organized as follows. Section 2 presents the model Hamilton-
ian under consideration and gives a detailed account of the relevant param-
eters and their scaling properties. Section 3 addresses the TDH approxima-
tion and Section 4 details the formulation of time-dependent error estimates.
Section 5 presents the numerical results and Section 6 concludes.

2. Model system

In line with our previous work [3], we consider a two-dimensional model
system which is of system-bath type and exhibits anharmonicities both
within the system subspace and in the system-bath coupling. Specifically, a
double-well potential is chosen in the system subspace, which is coupled to a
harmonic bath coordinate via a cubic (quadratic times linear) coupling term.
As pointed out in our previous analysis [3], a cubic coupling is a non-trivial
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case which is relevant for the description of vibrational dephasing [11, 9] and
Fermi resonances [2] in a molecular physics context.

2.1. Hamiltonian in physical scaling. In system-bath form, the Hamil-
tonian is written as follows,

H = HX +HY +W (X,Y ),

with the subspace Hamiltonians

HX = − ~2

2µ1
∆X + V1(X), HY = − ~2

2µ2
∆Y + V2(Y ),

where V1(X) corresponds to a double-well potential and V2(Y ) is a harmonic
form,

V1(X) =
k0

1

2
X2

(
X

2L
− 1

)2

, V2(Y ) =
1

2
k0

2Y
2.

The system potential V1(X) represents a symmetric double well with two
equivalent minima at X = 0 and X = 2L that can be taken to correspond to
the “reactant” vs. “product” in the context of a reactive process [14]. The
energy at the barrier X = L amounts to D1 = k0

1L
2/8.

The coupling W (X,Y ) is given as a cubic term, i.e., linear in X and
quadratic in Y ,

W (X,Y ) =
1

2
η0XY 2.

Viewed from a different angle, V2(Y ) and W (X,Y ) can be combined into an
effective potential for the Y coordinate,

V eff
2 = V2(Y ) +W (X,Y ) =

1

2

(
k0

2 + η0X
)
Y 2 ≡ 1

2
k2(X)Y 2,

whose curvature is X-dependent, i.e., the local force constant is given as
k2(X) = k0

2 + η0X. We denote the ratio of the curvature along Y , taken at
the product versus reactant minima in X, by

(1) α =
k2(X = 2L)

k2(X = 0)
= 1 + 2

η0

k0
2

L.

The reduced parameter α gives a direct measure of the relative coupling
strength upon characterizing how much the local curvature for Y changes
as X varies from 0 (reactant minimum) to 2L (product minimum).

Yet from a different perspective, an adiabatic regime can be considered
whose “fast” subsystem (X) coordinate is coupled to a “slow” bath (Y )
coordinate. An effective subsystem Hamiltonian can then be defined as
follows,

Heff
1 = − ~2

2µ1
∆X + V (X,Y ) V (X,Y ) = V1(X) + V2(Y ) +W (X,Y ).

Which perspective is most appropriate depends on the physical time scales
under study, as will be detailed below.
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Finally, we note that the extension of this model to multivariate coordi-
nates X and Y is straightforward, such that the present model is suitable
to address general multidimensional tunneling situations.

2.2. Parameter choice. In the present work, we exclusively consider neg-
ative values of the coupling parameter η0 such that the curvature ratio
defined in Eq. (1) satisfies α < 1. This ensures that the ground eigenstate of
the full (X,Y )-system is localized around the product well (X = 2L > 0),
while nonstationary dynamics will start from an initial condition (or, in
mathematical language, an initial datum) localized around the reactant well
(X = 0). In other words, we reverse localization in order to create an initial
nonstationary state.

The cubic coupling potential W (X,Y ) has to be handled with some care.
It causes the potential energy to be unbounded from below beyond the con-
trollable subquadratic regime. This is likely to induce numerical issues and
renders the Hamiltonian H only formally self-adjoint. One might therefore
either add a contribution to the potential energy that is quartically con-
fining with respect to Y or multiply the coupling potential with a cut-off
function in X. Here we have chosen another simple approach: There exists
a critical value X = Xc = 2L

1−α > 0 where k2(X = Xc) = 0, which is called

a valley-ridge inflection point [10]. Despite its relevance in terms of bifurca-
tion aspects, this is not the situation that we want to address here. A simple
cure is to ensure that such a critical point occurs far enough from X = 2L
that the potential energy at this point, V (X = Xc, Y = 0) = V1(Xc), is
large enough compared to the barrier height, D1 = k0

1L
2/8. As will be

shown below, we choose our reference model such that α = 1
3 and Xc = 3L,

which implies that V1(Xc) is nine times larger than D1. The most “pre-
carious” case we considered is α = 1

4 and Xc = 8L
3 , which implies that we

have V1(Xc) = 256
81 D1 ≈ 3.2D1. Such a range of values for the onset of

unboundedness in the potential energy seems a priori far enough that our
low-energy wavepackets will be vanishing in critical regions, which is what
we also observed in practice.

2.3. Representation in scaled coordinates. In order to transform the
Hamiltonian to a suitably scaled representation, we introduce the (angular)
frequencies and the corresponding natural length scales of the harmonic
approximations for X and Y around the origin,

ω0
i =

√
k0
i /µi, a0

i =
√
~/(µiω0

i )

for i = 1, 2. The corresponding natural energy and time scales are

E0
i =

~2

µi(a0
i )

2
= k0

i (a
0
i )

2 = ~ω0
i , t0i =

~
E0
i ,
.

Note that, e.g., {µ1, a
0
1, t

0
1} can serve as a consistent and complete set of

mechanical units for all quantities built on powers of [M][L][T], whereby ~



DYNAMICAL APPROXIMATIONS FOR COMPOSITE QUANTUM SYSTEMS 5

is numerically equal to unity due to the relationship between the energy
unit E0

1 and the time unit t01 (much as when considering atomic units). In
the spirit of semiclassical scaling, we further introduce a typical parameter
defined as the square root of the mass ratios,

ε =

√
µ1

µ2
.

Scaling both coordinates with respect to the natural length scale of the
system coordinate, while the bath coordinate is additionally scaled by ε, we
set

(x, y) =

(
1

a0
1

X,
1

a0
1ε
Y

)
, ` =

L

a0
1

.

We thus obtain a scaled Hamiltonian

H = E0
1H,

where the dimensionless part reads

H = −1

2
∆x −

1

2
∆y + v(x, y),

with potential energy

v(x, y) = v1(x) + v2(y) + w(x, y),

with contributions from the system (double well) and the harmonic bath
mode

v1(x) =
1

2
x2
( x

2`
− 1
)2
, v2(y) =

1

2
$2y2,

where $ = ω0
2/ω

0
1 denotes the frequency ratio of the bath versus the sys-

tem. The coupling potential w(x, y) = 1
2ηxy

2 features the rescaled coupling
constant

η =
(a0

1)3ε2

E0
1

η0.

Let us denote the physical time T and the rescaled time t, where

t =
T

t01
=
E0

1

~
T.

We can absorb both E0
1 and ~ into t01 and recast the time-dependent Schrödinger

equation,

i~∂TΨ(T,X, Y ) = HΨ(T,X, Y ),

into dimensionless form as

i∂tψ(t, x, y) = Hψ(t, x, y).

We observe that the curvature ratio defined in Eq. (1) is invariant under the
performed linear coordinate scaling. It is related to the coupling constant
according to

α = 1 + 2
η

$2
` resp. η = $2α− 1

2`
.
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The parametrization in terms of the frequency ratio $ and the curvature
ratio α fully characterizes the interaction of the system and bath via the
potential energy. The parameter ε, which represents the mass ratio, only
appears indirectly, through the scaling of the Y coordinate and of the η
parameter.

2.4. Relevant parameter regime and initial data. In view of the nu-
merical simulation results reported below, we now specify the parameter
regime which was considered in these simulations. First, a reference model
was constructed by the following choice of parameters,

ε∗ =
1

4
, $∗ =

1

100
, α∗ =

1

3
.

We note that the mass ratio ε∗ is moderate, but representative of chemically
relevant systems. The frequency ratio $∗, however, takes a larger value, and
will be demonstrated to play an important role in the error estimates to be
discussed below.

In the simulations reported below, we explore the dynamics of several
variations of this reference model (i.e., cases 0 to 8, while the reference model
is denoted case *, see Table 1). Relevant ranges of values for α have been
discussed above. As already pointed out, reducing α below values of about
1
4 could entail issues related to the unboundedness within the space explored
by the wavepacket. Note also that “case 3” appeared in our simulations as
the most sensitive situation, bringing much larger errors between correlated
and uncorrelated descriptions. We suspect that this may reflect the fact
that the corresponding time scale of the Y dynamics, now shorter, enters
the realm of the time scale of X motion (see Sec. 5 for further discussion),
thus making system-bath separability less justified.

In all cases, we chose the initial data to be the approximate Gaussian
quasi-coherent ground state localized in the “reactant well”, as illustrated
in Fig. 1,

(2) ψ(t = 0, x, y) = χ0(x)φ0(y) = (2π)−1/2$−1/4 exp

(
−1

2
x2 − $

2
y2

)
.

The squeezing in the y direction, due to the $ factor in the coherent state
width, reflects that this coordinate tends towards the classical limit.

3. Time-dependent Hartree approximation

We compare the numerical solution of the full Schrödinger equation with
separable, normalized initial datum{

i∂tψ(t, x, y) = Hψ(t, x, y),
ψ(t = 0, x, y) = χ0(x)φ0(y),

with the one of the TDH approximation subject to the same initial condition,{
i∂tu(t, x, y) = Heff

u (t)u(t, x, y),
u(t = 0, x, y) = χ0(x)φ0(y).
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Case ε $ α
* ε∗ $∗ α∗ reference
0 ε∗ $∗ 1 no coupling
1 2ε∗ $∗ α∗
2 1

2ε∗ $∗ α∗
3 ε∗ 4$∗ α∗ most sensitive
4 ε∗

1
4$∗ α∗

5 ε∗ $∗
3
4α∗

6 ε∗ $∗
3
2α∗

7 ε∗ $∗ 2α∗
8 ε∗ $∗

9
4α∗

Table 1. Parameter variations of the reference model, that
is defined by the values (ε∗, $∗, α∗) = (1

4 ,
1

100 ,
1
3). These pa-

rameters determine the square root of the mass ratio, the
frequency ratio, and the curvature ratio, respectively.

Figure 1. Contour plot of the two-dimensional potential
energy surface and coherent-state initial condition according
to Eq. (2). As explained in the text, the initial condition
corresponds to a non-stationary state localized in the less
stable left (“reactant”) well.

The effective TDH Hamiltonian

Heff
u (t) = 〈H〉(x)

φ (t) + 〈H〉(y)
χ (t)− 〈H〉u(t),

is additive with respect to the coordinates and thus preserves the product
structure of the initial datum, i.e., we have

u(t, x, y) = a(t)χ(t, x)φ(t, y),
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where a(t) is a complex number of absolute value one, acting as a suit-
ably chosen gauge factor. The individual product wavefunctions satisfy the
coupled equations of motion

i∂tχ(t, x) = 〈H〉φ(t)χ(t, x),

i∂tφ(t, y) = 〈H〉χ(t)φ(t, y),

while the gauge factor

a(t) = exp

(
i

∫ t

0
〈H〉u(s )ds

)
depends on the full energy expectation with respect to the Hartree product.
Our system-bath type Hamiltonian is of the form

H = Hx +Hy + w(x, y),

with Hx = −1
2∆x + v1(x) and Hy = −1

2∆y + v2(y). In this situation, the
effective Hartree Hamiltonian is of the form

Heff
u (t) = Hx +Hy + weff

u (t, x, y),

and differs from the true Hamiltonian only with respect to the effective
coupling potential

(3) weff
u (t, x, y) = 〈w〉φ(t, x) + 〈w〉χ(t, y)− 〈w〉u(t),

so the above effective Hamiltonians can be rewritten as

〈H〉φ = Hx + 〈w〉φ(t, x), 〈H〉χ = Hy + 〈w〉χ(t, y).

4. Error estimates

For analyzing the approximation error

e(t, x, y) = ψ(t, x, y)− u(t, x, y),

we use a standard stability estimate, see Lemma 2 in Ref. [3] Differentiating
the error with respect to time we obtain a Schrödinger-type equation{

i∂te(t, x, y) = He(t, x, y) + Σu(t, x, y),
e(t = 0, x, y) = 0,

with source term

Σu(t, x, y) =
(
H −Heff

u (t)
)
u(t, x, y) =

(
w(x, y)− weff

u (t, x, y)
)
u(t, x, y).

By the variation of constants formula (aka the Duhamel principle), we write
the error as a time-integral,

(4) e(t, x, y) =
1

i

∫ t

0
exp(−iH(t− s))Σu(s, x, y) ds.

Since the time-evolution associated with the Hamiltonian H is unitary, we
now estimate

‖e(t)‖L2 6
∫ t

0
‖Σu(s)‖L2 ds

for the L2-norm of the error.
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4.1. Formula for the source term. The cubic coupling potential of our
system-bath type Hamiltonian is of product form

w(x, y) = w1(x)w2(y).

Therefore, the coupling potential of the Hartree approximation, see Eq. (3),
takes the special form

weff
u (t, x, y) = w1(x) 〈w2〉φ(t) + 〈w1〉χ(t)w2(y)− 〈w1〉χ(t) 〈w2〉φ(t).

This implies for the difference of the coupling potentials

δwu(t, x, y) = w(x, y)− weff
u (t, x, y)

= (w1(x)− 〈w1〉χ(t)) (w2(y)− 〈w2〉φ(t)) .

We provide a detailed computation of the local-in-time error given in Exam-
ple 3 of Ref. [3]. We calculate the norm of the source term Σu(t) = δwu(t)u(t)
according to

‖Σu(t)‖2L2 = 〈δw2〉u(t)

=
〈

[w1(x)− 〈w1〉χ(t)]2
〉
χ

〈
[w2(y)− 〈w2〉φ(t)]2

〉
φ

=
(
〈w2

1〉χ(t)− 〈w1〉χ(t)2
) (
〈w2

2〉φ(t)− 〈w2〉φ(t)2
)
.

From a probabilistic point of view, we can interpret this formula as the
product of the variances of w1 and w2. Applying this formula to the cubic
coupling model, we then obtain the error estimate

‖ψ(t)− u(t)‖L2 6
1

2
|η|
∫ t

0

√(
〈x2〉χ(s)− 〈x〉2χ(s)

) (
〈y4〉φ(s)− 〈y2〉2φ(s)

)
ds.

4.2. Dimension analysis. This formula is given here in terms of dimen-
sionless energy, space, and time variables; its proof is not affected by scaling
considerations, and it directly translates into physical units, (X,Y, T ), as

‖Ψ(T )− U(T )‖L2 6 1
2 |η

0| ×

1
~
∫ T

0

√(
〈X2〉X(S)− 〈X〉2X(S)

) (
〈Y 4〉Y (S)− 〈Y 2〉2Y (S)

)
dS.(5)

From η0 =
E0

1

(a01)3ε2
η, recalling E0

1 = ~
t01,

, and η = $2ς, where

ς =
α− 1

2`
,
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the upper bound of the previous estimate can be recast in terms of dimen-
sionless ratios as

$2|ς|
2t01

∫ T
0

√
〈X2〉X(S)−〈X〉2X(S)

(a01)2
〈Y 4〉Y (S)−〈Y 2〉2Y (S)

ε4(a01)4
dS

= $2|ς|
2t01

∫ T
0

√
〈X2〉X(S)−〈X〉2X(S)

(a01)2
〈Y 4〉Y (S)−〈Y 2〉2Y (S)

$2(a02)4
dS

= $|ς|
2t01

∫ T
0

√
〈X2〉X(S)−〈X〉2X(S)

(a01)2
〈Y 4〉Y (S)−〈Y 2〉2Y (S)

(a02)4
dS,

where we used
a0

2

a0
1

=
ε√
$
,

and eliminated the somewhat artificial dependence on ε (noting that differ-
ent values of ε only bring homothetic dynamics with respect to Y ). As a
crucial consequence, we removed one power order of $ regarding natural
orders of magnitude and effective “smallness”.

4.3. Linearization of the upper bound. From an operational point of
view, the purpose of rescaling essentially consists in determining relevant
orders of magnitude for the values of the various factors entering the rele-
vant formulae. Since we specifically chose initial data to be quasi-coherent
states (within a harmonic approximation around the origin), we know that
the product of X and Y 2 standard deviations expressed in their respective
natural units satisfy√
〈X2〉X(T = 0)− 〈X〉2X(T = 0)

(a0
1)2

×

√
〈Y 4〉Y (T = 0)− 〈Y 2〉2Y (T = 0)

(a0
2)4

=
1

2
,

and will not change dramatically over time, which is the incentive for con-
sidering a rescaling based on natural units. We can thus further propose a
sort of “rough” linear estimate for short times as follows,

(6) ‖Ψ(T )− U(T )‖L2 .
1

4
$|ς|T

t01
.

where . here is to be understood as preceeding an approximate upper
bound. Such an approximation is not aimed at being precise beyond very
short times (although we shall see later on that it works surprisingly well at
later times) but it presents the great advantage of providing an easy estimate
of relevant orders of magnitude before performing any actual propagation.
In the present situation, the initial widths along X and Y were chosen to
vary as little as possible over time (quasi-coherent initial datum); however,
it is not so difficult to make a rough prediction of the time evolution of
standard deviations in more general cases (especially oscillatory breathing
behaviors with harmonic half periods).
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It is worth noticing that we have identified the prefactor $ς = (η/$) that
appears in Eq. (6) as an objective measure of the impact of the coupling on
the rate of growth of the error with respect to time. This was not evident a
first sight when starting from η0 as in Eq. (5) written with physical units.
It required the dimension analysis presented above so as to get rid of di-
mensioned quantities and identify what will take values close to unity. The
parameter ς only affects the coupling between the system and the bath but
can only be varied moderately. In contrast, $ can span a large range; how-
ever, changing its value affects both the coupling and the relative timescales
between system and bath.

We also emphasize that the error in the norm of the difference between
two normalized wavefunctions is limited by a strict upper bound, a “maxi-
mum maximorum”, which is

√
2 (in the worst and undesired case of strict

orthogonality between the solution and its approximation). The intersection
of our estimate with this value gives a maximal time of relevance for the es-
timate, but also a predictive rough order of magnitude of the time beyond
which an uncorrelated approximation is definitely at risk.

5. Results and discussion

All simulations presented below were computed with the Quantics soft-
ware [19]. Reference simulations denoted as “fully correlated” in the follow-
ing refer to converged MCTDH calculations where correlated system-bath
states are propagated under variational equations of motion [13, 1, 12]. In
the specific case of two degrees of freedom, the MCTDH wavefunction ansatz
reads as follows, as a generalization of the TDH ansatz,

(7) ψ(t, x, y) =

n∑
j1=1

n∑
j2=1

Aj1j2(t)ϕj1(t, x)χj2(t, y)

The convergence of the multiconfigurational expansion is measured in terms
of the so-called natural orbital populations [1]. Typically, expansions up to
n = 3 were necessary in order to achieve convergence for the present systems.
Related MCTDH calculations for two-dimensional tunneling situations are
reported, e.g., in Ref. [15].

5.1. Characteristic times of dynamical simulations. For reference, we
first consider the uncoupled model (case 0; see Table 1). The characteris-
tics of our model are such that we can distinguish three very different time
scales, all separated by two orders of magnitude, for the X subsystem dy-
namics: long, short, and medium times. The long time scale ∼100 ps relates
to “ground-state tunneling” (induced by the energy splitting between the
ground-state tunneling pair); the medium time scale ∼ 1 ps is “excited-state
tunneling” (first excited tunneling pair splitting); the short time ∼ 0.01 ps
is due to “quasiharmonic” motion (vibration around the local minimum).

Our preferred observable for monitoring the dynamics will be the “reac-
tion probability”, R(T ) = 〈HL〉(T ). It is defined as the expectation value



12 I. BURGHARDT, R. CARLES, C. FERMANIAN, B. LASORNE, AND C. LASSER

Figure 2. Fully correlated (MCTDH) propagation: Time
evolution of the reaction probability, R(T ), in the uncoupled
case; (a) long times (ground-state tunneling); (b) medium
times (excited-state tunneling); (c) short times (quasihar-
monic).
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of the Heaviside step distribution centered at X = L, such that it provides
a measure of the probability for the system to be in the product region
(X > L) at any given time.

In the uncoupled case, the time evolution of R(T ) shows a perfect tunnel-
ing quantum beat between the “reactant” (X = 0) and “product” (X = 2L)
wells. It oscillates between about 0 and 1 with a long period of about 88 ps;
see Fig. 2. There is a clear modulation (around 2%) with a medium period
of about 1.2 ps. One also notices an extra modulation (around 0.1%) with
a short pseudoperiod of about 30 fs and even shorter convoluted temporal
structures.

These typical times can be rationalized in terms of the eigenstate decom-
position of the initial datum, which corresponds almost perfectly (with 49%)
to a one-to-one mixture of the even vs. odd members of the ground-state tun-
neling pair. As a result, the initial wavepacket is localized on the “reactant”
side. The corresponding eigenenergies are 975.92 cm−1 and 976.30 cm−1

(wavenumbers will be used as customary energy equivalents within this vi-
brational context). The tunneling energy splitting of 0.38 cm−1 corresponds
to a ground-state tunneling period of 88.0 ps, as indeed observed as reported
above (long time scale). Note that the single-well harmonic approximation of
the zero-point energy around the origin is at 1010 cm−1 (the first tunneling
pair is redshifted by about 24 cm−1 due to the anharmonicity of the double
well). The initial wavepacket also contains to some extent a contribution
of onto the next tunneling pair with respect to X: i.e., a 1% component of
both members of the excited-state tunneling pair, at 2728 cm−1 and 2757
cm−1, split by 29 cm−1. This induces a medium time scale pertaining to the
excited tunneling period of 1.2 ps, as indeed observed. The shorter times
are more subtle to interpret. The harmonic approximation around the origin
(with an energy quantum of 2000 cm−1) would induce a harmonic period
of 17 fs. The actual difference between the average eigenergies of the first
two tunneling pairs is a bit lower, at 1767 cm−1 with a time of 19 fs, on the
same order of magnitude as what we identified as a short pseudoperiod of
30 fs, which can be termed a ”quasiharmonic” time. The overall dynamics
thus appears to be governed by a four-level eigensystem organized as a “pair
of pairs”. Note that the harmonic period for Y is 1.7 ps (with an energy
quantum of 20 cm−1), hence, slightly larger than the medium timescale.

Apart from the details of the interpretation, the present setting is ideal
for our study, as we are dealing with three typical timescales that are well
separated from each other by about two orders of magnitude.

We calculated the reaction probability for all cases given in Table 1. Re-
sults for the reference model (∗) and cases 3 and 4 are presented in Fig. 3,
for long and medium times both with the fully correlated (MCTDH) and
TDH methods. Short-time results are not shown, since these are all virtually
identical to the uncoupled case (the dynamics is still uncorrelated).

Upon comparing the left and right panels in Fig. 3, we observe significant
differences between fully correlated (MCTDH) and TDH results at long
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Figure 3. Fully correlated (MCTDH) vs. TDH propaga-
tion: Time evolution of the reaction probability, R(T ), in
three coupled cases (blue: case 0; orange: case 3; grey: case
4 – see Table 1); the two left panels show fully correlated
(MCTDH), the two right panels TDH propagation; (a) long
times (ground-state tunneling); (b) medium times (excited-
state tunneling).

times: (i) the reaction probabilities obtained with TDH do not experience
any oscillation damping as opposed to the fully correlated calculations; (ii)
the TDH population transfer is slower (smaller rate); (iii) the net transfer
is bigger (larger yield).

From a local comparison in time, the error could be considered as very
large. However, from a global perspective, the dynamical behavior is qual-
itatively similar and the orders of magnitude are correct. For example,
taking case 4 (grey curves), the tunneling period is 31 fs (fully correlated)
vs. 37 fs (TDH) and the rate is 14% (fully correlated) vs. 19% (TDH). Let
us now turn to a more detailed analysis of the error in the time-dependent
wavefunction.

5.2. Numerical assessment of error estimates. We calculated the ac-
tual norm of the error between fully correlated (MCTDH) and TDH wavepack-
ets at all times, ‖Ψ(T )−U(T )‖L2 , in the seven coupled cases given in Table 1.
These are shown in the left panels of Fig. 4. We also calculated the error es-
timate given in Eq. (5), as well as its linear approximation defined in Eq. (6),
see Fig. 5.
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Figure 4. Time evolution of the norm ‖Ψ(T )−U(T )‖L2 of
the actual error and of the error estimate – see Eq. (5) –
in seven coupled cases (thick blue: case 0; orange: case 3;
grey: case 4; yellow: case 5; light blue: case 6; green: case 7;
dark blue: case 8 – see Table 1); the three left panels show
the actual error, the three right ones the estimate; (a) long
times; (b) medium times; (c) short times.

The error estimate given in Eq. (5) appears to be almost exact over di-
mensionless times ∼ 100 t01 where t01 = 2.65 fs (natural time for X). It is
still dominated by a linear growth with time, as illustrated by its strong
similarity with its linear approximation (Eq. (6)). The latter stays quite
identical to the former up to about 100 t01 (compare both panels (b) in Figs
5). This reflects small variations of the various moments, consistent with
using a quasi-coherent state as initial datum.
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Figure 5. Time evolution of the error estimate – see Eq. (5)
– and the linear approximation – see Eq. (6) – in seven cou-
pled cases (thick blue: case 0; orange: case 3; grey: case 4;
yellow: case 5; light blue: case 6; green: case 7; dark blue:
case 8 – see Table 1); the three left panels show the error es-
timate, the three right ones the linearization; (a) long times;
(b) medium times; (c) short times.

Both rigorous and approximate error estimates keep cases ordered over
time (no crossing between curves) according to the value of the linear prefac-
tor, $ς, while the actual error starts to become more complicated, showing
various types of oscillations and some rough saturation around 0.2 to 0.3.

Our estimates keep increasing and stop becoming relevant at ∼ 1000 t01;
they still can be viewed as upper bounds, though. Note that they finally lose
any significance when they reach the critical value

√
2, where orthogonality

between the approximate and exact solutions sets in.
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6. Conclusions and outlook

Following up on the recently presented mathematical framework for error
estimation in the context of composite quantum systems [3], we presented
here a first application to a non-trivial two-dimensional system where tun-
neling motion (i.e., a “reactive subsystem”) is coupled to a quasi-harmonic
degree of freedom via a cubic coupling. Parameters were chosen to corre-
spond to realistic molecular situations, while allowing for significant quan-
tum effects, within a tunneling process that exhibits three characteristic
time scales.

For reference, the reliability of a separable time-dependent Hartree ansatz
for the time-evolving wavepacket was assessed by comparison with converged
multiconfigurational (MCTDH) calculations that can be considered as nu-
merically exact. The relevant space of system parameters was explored with
respect to the coupling strength as well as the relative timescales of the
subsystem and the bath.

In the parameter regimes we considered, the TDH approximation repre-
sents a good approximation, i.e., the dynamical evolution is reproduced in
a qualitatively correct way, and tunneling rates and yields differ by no more
than a factor of two from the exact result. Yet, the quantitative error is
non-negligible, such that the error estimates developed in Ref. [3] are rele-
vant. In the present study, this error is numerically computed and compared
with our rigorous mathematical estimates [3]. These estimates were shown
to provide a good approximation to the numerically exact error, and yield
an almost exact result in the early regime of near-linear growth of the error
with time before saturation.

Against the background of a detailed scaling analysis, we further intro-
duced a linearization approach by which an expression for the short-time
error estimate was derived, which is found to depend on the frequency ratio
of the subsystems. This emphasizes that from the vantage point of the TDH
approximation, the frequency ratio rather than the mass ratio of the subsys-
tems is of crucial importance. Again, the linearization estimate was found
to provide a valid approximation, even beyond the shortest time scale.

The present work paves the way for extensions of error analysis to other
types of wavefunction ansatz, such as multiconfigurational forms of MCTDH
type [1, 6], and especially Gaussian-based hybrid wavefunctions such as em-
ployed in the G-MCTDH method [4, 16]. The model that we used showed
moderate failures of TDH that have observable consequences on, for exam-
ple, the reaction probability. It could thus be useful for benchmarking a
hierarchy of methods of various sophistication.
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