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Introduction

In this paper we consider global in time solutions of the following nonlinear parabolic system (S)

( @ t u = u + a|.| |v| p 1 v, @ t v = v + b|.| ⇢ |u| q 1 u, with initial data u(0, x) = ' 1 (x), v(0, x) = ' 2 (x), (1.1) 
where u = u(t, x) 2 R, v = v(t, x) 2 R, t > 0, x 2 R N , a, b 2 R, 0  < min(N, 2), 0 < ⇢ < min(N, 2), p, q > 1.

In what follows, we denote k.k L r (R N ) by k.k r . For f, g : I ! R, we denote when there exists sup t2I [f (t), g(t)] = max [sup t2I f (t), sup t2I g(t)]. For all t > 0, e t denotes the heat semi-group, that is

e t f (x) = Z R N G(t, x y)f (y)dy,
where

G(t, x) = (4⇡t) N 2 e |x| 2 4t , t > 0, x 2 R N ,
and f 2 L r (R N ), r 2 [1, 1) or f 2 C 0 (R N ). For f 2 S 0 (R N ), e t f is defined by duality.

A mild solution of the system (S)-(1.1) is a solution of the integral system 8 > > < > > :

u(t) = e t ' 1 + a Z t 0 e (t ) |.| |v( )| p 1 v( ) d , v(t) = e t ' 2 + b Z t 0 e (t ) |.| ⇢ |u( )| q 1 u( ) d .
(1.2)

We investigate the existence of global solutions, including self-similar solutions for the semilinear system (1.2). Moreover, we are concerned with estimating the decaying rate in time of some global solutions and their asymptotic behavior.

Using the key estimate established by Proposition 2.1 in [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF] we can adapt the method in Fujita and Kato [START_REF] Fujita | On the Navier-Stokes initial value problem[END_REF][START_REF] Kato | On the non stationary Navier-Stokes system[END_REF] and recently used in [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF][START_REF] Cannone | A generalization of a theorem by Kato on Navier-Stokes equations[END_REF][START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes, Séminaire[END_REF][START_REF] Cazenave | Asymptotically self-similar global solutions of the nonlinear Shrödinger and heat equations[END_REF][START_REF] Cazenave | An equation whose Fujita critical exponent is not given by scaling[END_REF][START_REF] Giga | Navier-Stokes flow in R 3 with measures as initial vorticity and Morrey spaces[END_REF][START_REF] Kato | Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions[END_REF][START_REF] Snoussi | Asymptotically self-similar global solutions of a semilinear parabolic equation with a nonlinear gradient term[END_REF][START_REF] Snoussi | Asymptotically self-similar global solutions of a general semilinear heat equation[END_REF][START_REF] Snoussi | Global existence, asymptotic behavior and self-similar solutions for a class of semilinear parabolic systems[END_REF].

This method is based on a contraction mapping argument on the associated integral system (1.2). Precisely we transform the problem of existence and uniqueness of global solutions into a problem of a fixed point for a function defined in a suitable Banach space equipped with a norm chosen so that we obtain directly the global character of the solution.

In this paper we seek conditions for the following parameters p, q, and ⇢ such that we have the global existence of some class of solutions, including self-similar solutions and the nonlinear asymptotic self-similar behavior of these solutions. For this we define k, ↵ 1 , ↵ 2 ,

1 and 2 by k = (2 )q + (2 ⇢) (2 ⇢)p + (2 ) , (1.3) 
↵ 1 = 1 2(pq 1) [(2 ⇢)p + (2 )], (1.4) 
↵ 2 = 1 2(pq 1) [(2 )q + (2 ⇢)] , (1.5 
)

1 = ↵ 1 N 2r 1 = 1 2(pq 1) [(2 ⇢)p + (2 )] N 2r 1 , r 1 > 1, (1.6) 2 = ↵ 2 N 2r 2 = 1 2(pq 1) [(2 )q + (2 ⇢)] N 2r 2 , r 2 > 1.
(1.7)

Note that ↵ 1 and ↵ 2 verify the following system

( 2 + 2↵ 1 = 2↵ 2 p, 2 ⇢ + 2↵ 2 = 2↵ 1 q, (1.8) 
and that kp > 1, q > k and

↵ 2 ↵ 1 = k.
Let us summarize the results of this paper. First of all if we suppose that the following conditions

2↵ 1 < min ✓ N, p q (N ⇢) (2 )q + (2 ⇢) [2 + (2 ⇢)p pq] + ◆ , (1.9) 
and

2↵ 2 < min ✓ N, q p (N ) ( 2 
⇢)p + (2 ) [2 + (2 )q ⇢pq] + ◆ , (1.10) 
are satisfied, then we prove the global existence of solutions for some initial data = (' 1 , ' 2 ) small with respect to the norm N defined by

N ( ) := sup t>0 h t 1 ke t ' 1 k r 1 , t 2 ke t ' 2 k r 2 i , (1.11) 
where 1 and 2 are given by (1.6) and (1.7), r 1 and r 2 are defined in Lemma 2.1 below. See Theorem 1 below. We also prove, for ' 1 homogeneous of degree 2↵ 1 and ' 2 homogeneous of degree 2↵ 2 , where ↵ 1 and ↵ 2 are given by (1.4) and (1.5), that the initial data = (' 1 , ' 2 ) gives rise to a global self-similar solution. See Theorem 2 below. Next we show as in [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF], that solutions with initial data which behaves asymptotically like in some appropriate sense as |x| ! 1, are asymptotically self-similar in the L 1 -norm. See Theorem 3 below. The norm N given in (1.11) is weak enough so that initial data = (' 1 , ' 2 ) with homogeneous components have finite norm. We prove finally stronger uniqueness results in Lebesgue spaces for initial values small with respect of some norm. See Theorem 4 below.

Yamauchi in [START_REF] Yamauchi | Blow-up results for a reaction-di↵usion system[END_REF] studied the parabolic system (S). In [24, Theorem 2.1, p. 339] it is shown that for some nonnegative initial values under the conditions < min(N, 2), ⇢ < min(N, 2),

pq 1 > 0 and max(↵ 1 , ↵ 2 ) N
2 , that no nonnegative nontrivial solutions exist. The case = ⇢ = 0 has been already covered in [START_REF] Snoussi | Global existence, asymptotic behavior and self-similar solutions for a class of semilinear parabolic systems[END_REF]. In the case where p = q and = ⇢ > 0, the parabolic system (S) behaves like a parabolic equation with singularity in the nonlinearity. For more reading about Hardy-Hénon equations see [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF][START_REF] Phan | Singularity and blow-up estimates via Liouville-type theorems for Hardy-Hénon parabolic equations[END_REF][START_REF] Phan | Liouville-type theorems and bounds of solutions of Hardy-Hénon equations[END_REF][START_REF] Wang | On the Cauchy problem for reaction-di↵usion equations[END_REF].

The rest of the paper is organized as follows. In Section 2, we state the main results. In Section 3, we give the proofs of the main theorems. Finally, in Section 4, we give stronger uniqueness results. Throughout this paper C will be a positive constant which may have di↵erent values at di↵erent places. We denote sometimes u(t) by u(t, .).

Main results

We now state the main results of the paper. Let e t be the linear heat semi-group defined by

(e t ')(x) = (G(t, .) ⇤ ')(x),
where G is the heat kernel

G(t, x) = (4⇡t) N 2 e |x| 2 4t , t > 0, x 2 R N .
We recall the smoothing e↵ect of the heat semi-group

ke t f k s 2  (4⇡t) N 2 ( 1 s 1 1 s 2 ) kf k s 1 , (2.1 
)

for 1  s 1  s 2  1, t > 0 and f 2 L s 1 (R N ).
We recall also the following key estimate from [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF] ke

t (|.| f )k q 2  C(N, , q 1 , q 2 )t N 2 ( 1 q 1 1 q 2 ) 2 kf k q 1 , (2.2) 
for 0  < N, q 1 and q 2 such that 0

 1 q 2 < N + 1 q 1 < 1, t > 0 and f 2 L q 1 (R N ). We note that if q 2 = 1, then e t (|.| f ) 2 C 0 (R N ).
We begin with the following technical lemma.

Lemma 2.1 (Technical lemma). Let N be a positive integer. Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let k be given by (1.3). Let ↵ 1 , ↵ 2 defined by (1.4) and

(1.5). Suppose that (1.9) and (1.10) are satisfied. Let 1 , 2 be given by (1.6) and (1.7).

Then there exist r 1 > 1 and r 2 > 1 satisfying

r 1 = kr 2 , (2.3 
)

such that (i) 1 > 0, 2 > 0 and 2 = k 1 , (ii) 1 r 1 < N + p r 2 < 1 and 1 r 2 < ⇢ N + q r 1 < 1, (iii) 2 p < 1 and 1 q < 1, (iv) N 2r 1 ⇣ 1 + r 1 r 2 p ⌘ < 2 2 and N 2r 2 ⇣ 1 + r 2 r 1 q ⌘ < 2 ⇢ 2 , (v) 1 r 1 < 2↵ 1 N < N + p r 2 and 1 r 2 < 2↵ 2 N < ⇢ N + q r 1 , (vi) N 2 ( p r 2 1 r 1 ) 2 2 p + 1 + 1 = 0 and N 2 ( q r 1 1 r 2 ) ⇢ 2 1 q + 1 + 2 = 0.
We prove this lemma in the appendix.

Theorem 1 (Global existence and continuous dependence). Let N be a positive integer.

Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let ↵ 1 , ↵ 2 defined by (1.4) and (1.5). Suppose that (1.9) and (1.10) are satisfied. Let 1 , 2 be given by (1.6) and (1.7). Let r 1 and r 2 be as in Lemma 2.1. Let M > 0 be such that

⌫ = max(M p 1 ⌫ 1 , M q 1 ⌫ 2 ) < 1, (2.4) 
where ⌫ 1 and ⌫ 2 are two positive constants given by (3.8) and (3.9) below. Choose R > 0 such that R + M⌫  M.

(2.5)

Let = (' 1 , ' 2 ) be an element of S 0 (R N ) ⇥ S 0 (R N ) such that N ( ) := sup t>0 h t 1 ke t ' 1 k r 1 , t 2 ke t ' 2 k r 2 i  R. (2.6)
Then there exists a unique global solution

U = (u, v) 2 C((0, 1); L r 1 (R N ) ⇥ L r 2 (R N )) of the integral system (1.2) such that sup t>0 h t 1 ku(t)k r 1 , t 2 kv(t)k r 2 i  M. (2.7) Furthermore, (a) lim t&0 u(t) = ' 1 and lim t&0 v(t) = ' 2 in the sense of tempered distributions, (b) u(t) e t ' 1 2 C [0, 1), L ⌧ 1 (R N ) for ⌧ 1 satisfying 2↵ 1 N < 1 ⌧ 1 < N + p r 2 , (c) v(t) e t ' 2 2 C [0, 1), L ⌧ 2 (R N ) for ⌧ 2 satisfying 2↵ 2 N < 1 ⌧ 2 < ⇢ N + q r 1 , (d) sup t>0 t ↵ 1 N 2r ku(t)k r < 1, 8r 2 [r 1 , 1], and u 2 C((0, 1), L r (R N ) \ C 0 (R N )), (e) sup t>0 t ↵ 2 N 2r kv(t)k r < 1, 8r 2 [r 2 , 1], and v 2 C((0, 1), L r (R N ) \ C 0 (R N )).
In addition, if = (' 1 , ' 2 ) and = ( 1 , 2 ) satisfy (2.6), and if U 1 = (u 1 , v 1 ) and

U 2 = (u 2 , v 2 )
respectively are the solutions of the system (1.2) with initial values and , then sup

t>0 h t 1 ku 1 (t) u 2 (t)k r 1 , t 2 kv 1 (t) v 2 (t)k r 2 i  (1 ⌫) 1 N ( ). (2.8)
Furthermore, if the initial data and are such that

N ( ) = sup t>0 h t 1 + ke t (' 1 1 )k r 1 , t 2 + ke t (' 2 2 )k r 2 i < 1, (2.9) 
for some 0 < < 0 , where

0 = min {1 1 q, 1 2 p} .
(2.10)

Then sup t>0 h t 1 + ku 1 (t) u 2 (t)k r 1 , t 2 + kv 1 (t) v 2 (t)k r 2 i  (1 ⌫ 0 ) 1 N ( ), (2.11) 
where the positive constant M is chosen small enough so that 0 < ⌫ 0 < 1, where ⌫ 0 is given by the relations (3.16)-(3.18) below.

Finally, if we suppose also that = ('

1 , ' 2 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ) such that N 0 ( ) := max  k' 1 k N 2↵ 1 , k' 2 k N 2↵ 2 < R, (2.12) 
then the solution U = (u, v) of the integral system (1.2) satisfies also

U 2 C ⇣ [0, 1), L N 2↵ 1 (R N ) ⌘ ⇥ C ⇣ [0, 1), L N 2↵ 2 (R N )
⌘ and

sup t 0  ku(t)k N 2↵ 1 , kv(t)k N 2↵ 2  M. (2.13)
Where M and R are su ciently small. Now we give the following result which proves the existence of self-similar solutions.

Theorem 2 (Self-similar solutions). Let N be a positive integer. Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let ↵ 1 , ↵ 2 defined by (1.4) and (1.5). Suppose that (1.9) and (1.10) are satisfied. Let '

1 (x) = ! 1 (x)|x| 2↵ 1 , ' 2 (x) = ! 2 (x)|x| 2↵ 2 , where ! 1 , ! 2 2 L 1 (R N ) are homogeneous of degree 0 and k! 1 k 1 , k! 2 k 1 are su ciently small. Denote = (' 1 , ' 2 )
, then there exists a global self-similar solution U S = (u S , v S ) of (1.2) with initial data . Moreover U S (t) ! in S 0 (R N ) as t ! 0.

We turn now to the asymptotic behavior.

Theorem 3 (Asymptotic behavior). Let N be a positive integer. Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let ↵ 1 , ↵ 2 defined by (1.4) and (1.5). Suppose that (1.9) and (1.10) are satisfied. Let 1 , 2 be given by (1.6) and (1.7). Let r 1 and r 2 be as in Lemma 2.1. Define 1 (q) and 2 (q) by

1 (q) = ↵ 1 N 2q , 2 (q) = ↵ 2 N 2q , q > 1. (2.14)
Let be given by

(x) = (' 1 (x), ' 2 (x)) := ! 1 (x)|x| 2↵ 1 , ! 2 (x)|x| 2↵ 2 with ! 1 , ! 2 homogeneous of degree 0, ! 1 , ! 2 2 L 1 (R N ) and k! 1 k 1 , k! 1 k 1 are su ciently small. Let U S (t, x) = ✓ t ↵ 1 u S (1, x p t ), t ↵ 2 v S (1, x p t )
◆ be the self-similar solution of (1.2) given by Theorem 2.

Let = ( 1 , 2 ) 2 C 0 (R N ) ⇥ C 0 (R N ) be such that | 1 (x)|  c (1 + |x| 2 ) ↵ 1 , 8 x 2 R N , 1 (x) = ! 1 (x)|x| 2↵ 1 , |x| A, | 2 (x)|  c (1 + |x| 2 ) ↵ 2 , 8 x 2 R N , 2 (x) = ! 2 (x)|x| 2↵ 2 , |x| A,
for some constant A > 0, where c is a small positive constant. (We take k! 1 k 1 , k! 2 k 1 and c su ciently small so that (2.6) is satisfied by and ).

Let U = (u, v) be the global solution of (1.2) with initial data constructed by Theorem 1. Then there exists > 0 su ciently small such that

ku(t) u S (t)k q 1  C t 1 (q 1 ) , 8 t > 0, (2.15) kv(t) v S (t)k q 2  C t 2 (q 2 ) , 8 t > 0, (2.16 
)

for all q 1 2 [r 1 , 1], q 2 2 [r 2 , 1]
. Also, we have

kt ↵ 1 u(t, . p t) u S (1, .)k q 1  C t , 8 t > 0, (2.17) kt ↵ 2 v(t, . p t) v S (1, .)k q 2  C t , 8 t > 0, (2.18 
)

for all q 1 2 [r 1 , 1], q 2 2 [r 2 , 1].
To close this section we give the conditions on p, q, , ⇢ which garantee that the relations (1.9) and (1.10) are satisfied. Proposition 2.2. Let N be a positive integer. Let the real numbers p, q > 1. Suppose that max[p, q] + 1 < N 2 (pq 1).

Then there exist 0 , ⇢ 0 > 0 such that for all 0  < 0 , 0 < ⇢ < ⇢ 0 , (1.9) and (1.10) are satisfied.

Proposition 2.3. Let N be a positive integer. Fix 0 < < min(2, N) and 0 < ⇢ < min(2, N). Let p, q > 1 such that

p max ✓ 2 N + 2 ⇢ N + 1, 2 ⇢ + 2 ⇢ ◆ , and q max ✓ 2 ⇢ N + 2 N + 1, 2 ⇢ + 2 ◆ .
Then (1.9) and (1.10) are satisfied.

The proof of those two propositions is given in the next section.

Proof of main results

We look for global solutions of the system (1.2) via a fixed point argument. Let us denote

U = (u, v), = (' 1 , ' 2 )
and

F (U ) = (F (U ), G (U )), (3.1) 
where

F (U )(t) = e t ' 1 + a Z t 0 e (t ) |.| |v( )| p 1 v( ) d , (3.2) 
G (U )(t) = e t ' 2 + b Z t 0 e (t ) |.| ⇢ |u( )| q 1 u( ) d , (3.3) 
with

' 1 and ' 2 being two tempered distributions, a, b 2 R, 0  < min(N, 2), 0 < ⇢ < min(N, 2), p, q > 1.
Proof of Theorem 1. Let X be the set of continuous functions

U : (0, 1) ! L r 1 (R N ) ⇥ L r 2 (R N ), t 7 ! (u(t), v(t)) such that kU k X := sup t>0 h t 1 ku(t)k r 1 , t 2 kv(t)k r 2 i < 1,
where r 1 , r 2 are two positive real numbers satisfying conditions in Lemma 2.1 and 1 , 2 are respectively given by (1.6) and (1.7).

Let M > 0 and define the closed ball in the Banach space X by

X M = {U 2 X, kU k X  M } . X M , endowed with the metric d(U 1 , U 2 ) = kU 1 U 2 k X , is a complete metric space.
Consider the mapping F defined by (3.1), where = ('

1 , ' 2 ) 2 S 0 (R n )⇥S 0 (R n ) satisfies (2.6). We will show that F = (F , G ) is a strict contraction mapping on X M . Let = (' 1 , ' 2 ) and = ( 1 , 2 ) belong to S 0 (R n ) ⇥ S 0 (R n ) satisfying (2.6). Let U 1 = (u 1 , v 1
) and U 2 = (u 2 , v 2 ) be two elements of X M . Then we have

t 1 kF (U 1 )(t) F (U 2 )(t)k r 1  t 1 ke t (' 1 1 )k r 1 +|a|t 1 Z t 0 ke (t ) |.| [|v 1 ( )| p 1 v 1 ( ) |v 2 ( )| p 1 v 2 ( )]k r 1 d .
It follows, by the key estimate (2.2) with (q 1 , q 2 ) = ( r 2 p , r 1 ) that

t 1 kF (U 1 )(t) F (U 2 )(t)k r 1  t 1 ke t (' 1 1 )k r 1 +|a|t 1 Z t 0 C(t ) N 2 ( p r 2 1 r 1 ) 2 |v 1 ( )| p 1 v 1 ( ) |v 2 ( )| p 1 v 2 ( ) r 2 p d . (3.4)
Using the fact that, for r > p > 1,

k|f | p 1 f |g| p 1 gk r/p  p(kf k p 1 r + kgk p 1 r
)kf gk r , we obtain by (3.4) and the fact that U 1 and U 2 belongs to X M , that

t 1 kF (U 1 )(t) F (U 2 )(t)k r 1  t 1 ke t (' 1 1 )k r 1 + 2p|a|Ct 1 ⇥  Z t 0 (t ) N 2r 1 ( 1+ r 1 r 2 p) 2 2 p M p 1 d kU U 2 k X .
It follows that

t 1 kF (U 1 )(t) F (U 2 )(t)k r 1  t 1 ke t (' 1 1 )k r 1 + 2|a|CpM p 1 t ⇥  Z t 0 (t ) N 2r 1 ( 1+ r 1 r 2 p) 2 2 p d kU 1 U 2 k X  t 1 ke t (' 1 1 )k r 1 +2|a|CpM p 1 t N 2 ( p r 2 1 r 1 ) 2 2 p+1+ 1 ⇥  Z 1 0 (1 ) 
N 2r 1 ( 1+ r 1 r 2 p) 2 2 p d kU 1 U 2 k X . (3.5) 
Similarly using estimate (2.2) with (q 1 , q 2 ) = ( r 1 q , r 2 ), we obtain an analogous estimate of

t 2 kG (U 1 )(t) G (U 2 )(t)k r 2 . Thus t 2 kG (U 1 )(t) G (U 2 )(t)k r 2  t 2 ke t (' 2 2 )k r 2 + 2|b|CqM q 1 t ⇥  Z t 0 (t ) N 2r 2 ( 1+ r 2 r 1 q) ⇢ 2 1 q d kU 1 U 2 k X  t 2 ke t (' 2 2 )k r 2 +2|b|CqM q 1 t N 2 ( q r 1 1 r 2 ) ⇢ 2 1 q+1+ 2 ⇥  Z 1 0 (1 ) 
N 2r 2 ( 1+ r 2 r 1 q) ⇢ 2 1 q d kU 1 U 2 k X . (3.6)
Now, due to Part (vi) of Lemma 2.1, inequalities (3.5) and (3.6) we obtain

kF (U 1 ) F (U 2 )k X  N ( ) + ⌫kU 1 U 2 k X , (3.7) 
where

⌫ = max(M p 1 ⌫ 1 , M q 1 ⌫ 2 ),
with

⌫ 1 = 2|a|Cp Z 1 0 (1 ) 
N 2r 1 ( 1+ r 1 r 2 p) 2 2 p d , (3.8) 
⌫ 2 = 2|b|Cq Z 1 0 (1 ) N 2r 2 ( 1+ r 2 r 1 q) ⇢ 2 1 q . (3.9)
Finally, from Parts (iii)-(iv) of Lemma 2.1, we see that both quantities ⌫ 1 and ⌫ 2 are finite. Setting = 0 and U 2 = 0, the inequality (3.7) becomes

kF (U 1 )k X  N ( ) + ⌫kU 1 k X . (3.10) 
If we choose M and R such that (2.5) and (2.6) are satisfied then by (3.10), F maps X M into itself. Letting = , we observe that (3.7) becomes

kF (U 1 ) F (U 2 )k X  ⌫kU 1 U 2 k X .
Hence inequality (2.4) gives that F is a strict contraction mapping from X M into itself. So F has a unique fixed point U = (u, v) in X M which is solution of (1.2). This achieves the proof of the existence of a unique global solution of (1.2) in X M . We now prove the statements (a)-(c). Let ⌧ 1 be a positive real number satisfying

2↵ 1 N < 1 ⌧ 1 < N + p r 2 , (3.11) 
then by (2.2) with (q 1 , q 2 ) = ( r 2 p , ⌧ 1 ), we have

ku(t) e t ' 1 k ⌧ 1  |a| Z t 0 ke (t ) |.| |v( )| p 1 v( ) k ⌧ 1 d  |a| Z t 0 C(t ) N 2 ( p r 2 1 ⌧ 1 ) 2 kv( )k p r 2 d  |a|CM p t N 2 ( p r 2 1 ⌧ 1 ) 2 p+1 2 Z 1 0 (1 ) N 2 ( p r 2 1 ⌧ 1 ) 2 2 p d .
Therefore

ku(t) e t ' 1 k ⌧ 1  C 1 t N 2 ( p r 2 1 ⌧ 1 ) 2 p+ 2 2 , (3.12) 
where

C 1 = |a|CM p Z 1 0 (1 ) N 2 ( p r 2 1 ⌧ 1 ) 2 2 p d ,
is a positive constant. Owing to (3.11) and Part (iii) of Lemma 2.1, the constant C 1 is finite. Similarly using (2.2) with (q 1 , q 2 ) = ( r 1 q , ⌧ 2 ), we obtain for

⌧ 2 satisfying 2↵ 2 N < 1 ⌧ 2 < ⇢ N + q r 1 , (3.13) 
the following inequality

kv(t) e t ' 2 k ⌧ 2  C 2 t N 2 ( q r 1 1 ⌧ 2 ) 1 q+ 2 ⇢ 2 , (3.14) 
where C 2 is a positive constant given by Now, if in addition and satisfy (2.9), then following the same steps as above but with the norm

C 2 = |b|CM q Z 1 0 (1 ) N 2 ( q r 1 1 ⌧ 2 ) ⇢ 2 1 q d ,
kU = (u, v)k X, = sup t>0 h t 1 + ku(t)k r 1 , t 2 + kv(t)k r 2 i ,
we obtain by the key estimate (2.2) with (q 1 , q 2 ) = ( r 2 p , r 1 ), the fact that U 1 and U 2 belongs to X M and the estimate kv

1 ( ) v 2 ( )k r 2  2 kU 1 U 2 k X, t 1 + kF (U 1 )(t) F (U 2 )(t)k r 1  t 1 + ke t (' 1 1 )k r 1 + |a|t 1 + ⇥ Z t 0 C(t ) N 2 ( p r 2 1 r 1 ) 2 |v 1 ( )| p 1 v 1 ( ) |v 2 ( )| p 1 v 2 ( ) r 2 p d  t 1 + ke t (' 1 1 )k r 1 + 2|a|CpM p 1 t 1 + ⇥  Z t 0 (t ) N 2r 1 ( 1+ r 1 r 2 p) 2 2 p d kU 1 U 2 k X,  t 1 + ke t (' 1 1 )k r 1 +2|a|CpM p 1 t N 2 ( p r 2 1 r 1 ) 2 2 p+1+ 1 ⇥  Z 1 0 (1 ) 
N 2r 1 ( 1+ r 1 r 2 p) 2 2 p d kU 1 U 2 k X, .
We obtain also

t 2 + kG (U 1 )(t) G (U 2 )(t)k r 2  t 2 + ke t (' 2 2 )k r 2 +2|b|CqM q 1 t N 2 ( q r 1 1 r 2 ) ⇢ 2 1 q+1+ 2 ⇥  Z 1 0 (1 ) N 2r 2 ( 1+ r 2 r 1 q) ⇢ 2 1 q d kU 1 U 2 k X, .
Then

kF (U 1 ) F (U 2 )k X,  N ( ) + ⌫ 0 kU 1 U 2 k X, , (3.15) 
where

⌫ 0 = max(M p 1 ⌫ 0 1 , M q 1 ⌫ 0 2 ), (3.16) 
with

⌫ 0 1 = 2|a|Cp Z 1 0 (1 ) 
N 2r 1 ( 1+ r 1 r 2 p) 2 2 p d , (3.17) 
⌫ 0 2 = 2|b|Cq Z 1 0 (1 ) 
N 2r 2 ( 1+ r 2 r 1 q) ⇢ 2 1 q . (3.18) Since F (U 1 ) = U 1 and F (U 2 ) = U 2 , then (3.15) becomes sup t>0 h t 1 + ku 1 (t) u 2 (t)k r 1 , t 2 + kv 1 (t) v 2 (t)k r 2 i  (1 ⌫ 0 ) 1 N ( ).
Now, since 0 < < 0 with 0 given by (2.10), ⌫ 0 1 and ⌫ 0 2 are finite. Thus, (2.11) holds by choosing ⌫ 0 < 1 (this choice is possible for M small enough), where ⌫ 0 is given by (3.16)- (3.18).

We now prove statements (d)-(e) of Theorem 1 for r = 1, we use some arguments of [START_REF] Snoussi | Asymptotically self-similar global solutions of a general semilinear heat equation[END_REF]. Let us consider two real numbers r and r 0 such that r = kr 0 and

1 < r 1 < r  1 1 < r 2 < r 0  1, 0 < N 2 ⇣ p r 2 1 r ⌘ < 2 2 , 0 < N 2 ⇣ q r 1 1 r 0 ⌘ < 2 ⇢ 2 . (3.19)
Remark that a such choice is possible owing to Lemma A.1. Write now,

u(t) = e t 2 u(t/2) + a Z t t 2 e (t ) |.| |v( )| p 1 v( ) d .
Then by using the smoothing properties of the heat semigroup (2.1), the estimate (2.2) with (q 1 , q 2 ) = ( r 2 p , r), (3.19) and the estimate (2.7), we obtain

t ↵ 1 N 2r ku(t)k r  C sup t>0 h t ↵ 1 N 2r 1 ku(t)k r 1 i +|a|t ↵ 1 N 2r Z t t 2 ke (t ) |.| |v( )| p 1 v( ) k r d  CM + Ct ↵ 1 N 2r Z t t 2 (t ) N 2 ( p r 2 1 r ) 2 kv( )k p r 2 d  CM + CM p t ↵ 1 N 2r Z t t 2 (t ) N 2 ( p r 2 1 r ) 2 2 p d  CM + CM p Z 1 1 2 (1 ) 
N

2 ( p r 2 1 r ) 2 2 p d , which leads to sup t>0 h t ↵ 1 N 2r ku(t)k r i  C(M ) < 1.
Analogously, we obtain the following estimate on the second component v:

sup t>0 h t ↵ 2 N 2r 0 kv(t)k r 0 i  C(M ) < 1.
We iterate this procedure, for the next step we replace in (3.19) r 1 by r, r 2 by r 0 and we consider two real numbers s 2 and s 0 2 such that s 2 = ks 0 2 and

1 < r < s 2  1 1 < r 0 < s 0 2  1, 0 < N 2 ⇣ p r 0 1 s 2 ⌘ < 2 2 , 0 < N 2 ⇣ q r 1 s 0 2 ⌘ < 2 ⇢ 2 .
We obtain

sup t>0  t ↵ 1 N 2s 2 ku(t)k s 2 , t ↵ 2 N 2s 0 2 kv(t)k s 0 2  C(M ) < 1.
We therefore construct two sequences (s i ) i and (s 0 i ) i with s 0 = r 1 , s 0 0 = r 2 , s 1 = r, s 0 1 = r 0 and such that s i = ks 0 i , 8i = 0, 1, 2, ... and

1 < s i < s i+1  1, 1 < s 0 i < s 0 i+1  1, 0 < N 2 ⇣ p s 0 i 1 s i+1 ⌘ < 2 2 , 0 < N 2 ⇣ q s i 1 s 0 i+1 ⌘ < 2 ⇢ 2 .
We prove that

sup t>0  t ↵ 1 N 2s i ku(t)k s i , t ↵ 2 N 2s 0 i kv(t)k s 0 i  C(M ) < 1, 8i = 0, 1, 2, ...

Now by Lemma

A.1, one can choose the sequences (s i ) i and (s 0 i ) i such that they reach 1 for some finite i. We finally obtain sup

t>0 [t ↵ 1 ku(t)k 1 , t ↵ 2 kv(t)k 1 ]  C(M ) < 1, with C(M ) & 0 as M & 0.
Finally, if in addition satisfies (2.12), the fact that the solution U = (u, v) of the integral system (1.2) with initial value belongs to C

⇣ [0, 1), L N 2↵ 1 (R N ) ⌘ ⇥ C ⇣ [0, 1), L N 2↵ 2 (R N )
⌘ and the proof of the a rmation (2.13) are based on a contraction mapping argument in the set

Y M = n U = (u, v) 2 C ⇣ [0, 1), L N 2↵ 1 (R N ) ⌘ ⇥C ⇣ [0, 1), L N 2↵ 2 (R N ) ⌘ \C (0, 1), L r 1 (R N ) ⇥C (0, 1), L r 2 (R N ) ; max ⇥ sup t 0 [ku(t)k N 2↵ 1 , kv(t)k N 2↵ 2 ], sup t>0 [t 1 ku(t)k r 1 , t 2 kv(t)k r 2 ] ⇤  M o .
Endowed with the metric

d(U 1 , U 2 ) := d ((u 1 , v 1 ), (u 2 , v 2 )) = max h sup t 0 [ku 1 (t) u 2 (t)k N 2↵ 1 , kv 1 (t) v 2 (t)k N 2↵ 2 ], sup t>0 [t 1 ku 1 (t) u 2 (t)k r 1 , t 2 kv 1 (t) v 2 (t)k r 2 ]
i , Y M is a nonempty complete metric space.

Consider the mapping F defined by (3.2)-(3.3), where

= (' 1 , ' 2 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N
) satisfies (2.12). We will show that

F = (F , G ) is a strict contraction mapping on Y M . Let = (' 1 , ' 2 ) and = ( 1 , 2 ) belong to L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ) satisfying (2.12). Let U 1 = (u 1 , v 1 ) and U 2 = (u 2 , v 2 ) be two elements of Y M . Then we have kF (U 1 )(t) F (U 2 )(t)k N 2↵ 1  ke t (' 1 1 )k N 2↵ 1 +|a| Z t 0 ke (t ) |.| [|v 1 ( )| p 1 v 1 ( ) |v 2 ( )| p 1 v 2 ( )]k N 2↵ 1 d .
It follows, by the key estimate (2.2) with (q 1 , q 2 ) = ( r 2 p , N 2↵ 1 ) that

kF (U 1 )(t) F (U 2 )(t)k N 2↵ 1  k' 1 1 k N 2↵ 1 +|a| Z t 0 C(t ) N 2 ( p r 2 2↵ 1 
N ) 2 |v 1 ( )| p 1 v 1 ( ) |v 2 ( )| p 1 v 2 ( ) r 2 p d , (3.20) 
we obtain by (3.20) and the fact that U 1 and U 2 belongs to Y M , that

kF (U 1 )(t) F (U 2 )(t)k N 2↵ 1  k' 1 1 k N 2↵ 1 + |a|C ⇥  Z t 0 (t ) N 2 ( p r 2 2↵ 1 N ) 2 2p 2 p M p 1 d d(U 1 , U 2 ), it follows that kF (U 1 )(t) F (U 2 )(t)k N 2↵ 1  k' 1 1 k N 2↵ 1 + 2|a|CpM p 1 ⇥  Z t 0 (t ) N 2 ( p r 2 2↵ 1 
N ) 2 2 p d d(U 1 , U 2 )  k' 1 1 k N 2↵ 1 +2|a|CpM p 1 t N 2 ( p r 2 2↵ 1 N ) 2 2 p+1 ⇥  Z 1 0 (1 ) N 2 ( p r 2 2↵ 1 N ) 2 2 p d d(U 1 , U 2 ).
Owing to (1.7), we get

kF (U 1 )(t) F (U 2 )(tk N 2↵ 1  k' 1 1 k N 2↵ 1 + 2|a|CpM p 1 t ↵ 1 p↵ 2 + 2 2 ⇥  Z 1 0 (1 ) N 2 ( p r 2 2↵ 1 
N ) 2 2 p d d(U 1 , U 2 ).
Since ↵ 1 , ↵ 2 satisfy (1.4) and (1.5), using the fact that r 1 > N 2↵ 1 and due to Part (iv) of Lemma 2.1, it follows that

↵ 1 p↵ 2 + 2 2 = 0, N 2 ( p r 2 2↵ 1 N ) + 2 < N 2 ( p r 2 1 r 1 ) + 2 < 1.
Using also the fact that 2 p < 1, we get

kF (U 1 )(t) F (U 2 )(tk N 2↵ 1  N 0 ( ) + M p 1 ⌫ 00 1 d(U 1 , U 2 ), (3.21) 
with ⌫ 00 1 is a finite positive constant defined by

⌫ 00 1 = 2|a|Cp ⇥  Z 1 0 (1 ) N 2 ( p r 2 2↵ 1 
N ) 2 2 p d .
Similarly, we get

kG (U 1 )(t) G (U 2 )(tk N 2↵ 2  N 0 ( ) + M q 1 ⌫ 00 2 d(U 1 , U 2 ), (3.22)
with ⌫ 00 2 is a finite positive constant defined by

⌫ 00 2 = 2|b|Cq ⇥  Z 1 0 (1 ) N 2 ( q r 1 2↵ 2 
N ) ⇢ 2 1 q d .
Owing to (3.21) and (3.22) we get

sup t 0  kF (U 1 )(t) F (U 2 )(tk N 2↵ 1 , kG (U 1 )(t) G (U 2 )(tk N 2↵ 2  N 0 ( ) + ⌫ 00 d(U 1 , U 2 ), (3.23) 
where

⌫ 00 = max(M p 1 ⌫ 00 1 , M q 1 ⌫ 00 2 ).
We can conclude now from (3.7) and (3.23) and from the estimate N ( )  N 0 ( ), that

d(F (U 1 ), F (U 2 ))  N 0 ( ) + max(⌫, ⌫ 00 )d(U 1 , U 2 ). (3.24) It is clear that if U 2 Y M , then F (U ) 2 C ⇣ [0, 1), L N 2↵ 1 (R N ) ⌘ ⇥ C ⇣ [0, 1), L N 2↵ 2 (R N ) ⌘ \ C (0, 1), L r 1 (R N ) ⇥ C (0, 1), L r 2 (R N ) .
Hence, by choosing M and R such that

R + M max(⌫, ⌫ 00 )  M, (3.25) it follows that F is a strict contraction from Y M into itself. So F ' has a unique fixed point in Y M which is solution of (1.2).
Remark finally when the initial data belongs to

L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N
) with respect to the norm N 0 , that the condition (2.6) is satisfied, since N ( )  N 0 ( ). We note also that by the previous calculations, precisely (3.24) we have the following continuous dependence

property: Let = (' 1 , ' 2 ), = ( 1 , 2 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ) and let U = (u , v )
and U = (u , v ) be the solutions of (1.2) with initial values and respectively , with

sup t 0  ku (t)k N 2↵ 1 , kv (t)k N 2↵ 2
 M and sup

t 0  ku (t)k N 2↵ 1 , kv (t)k N 2↵ 2  M . Then sup t 0  ku (t) u (t)k N 2↵ 1 , kv (t) v (t)k N 2↵ 2  (1 K) 1 ⇥ max  k' 1 1 k N 2↵ 1 , k' 2 2 k N 2↵ 2 , (3.26)
for some positive constant K = max(⌫, ⌫ 00 ). This finishes the proof of Theorem 1. ⇤

Let us define the scaling operator d by

[d '](x) = '( x).
It follows that

e t d = d e 2 t , 8 > 0.
Proof of Theorem 2. We now construct self-similar solution with initial data . We adapt the method used in [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF]. Let us define , for > 0, by

(x) := 2↵ 1 ' 1 ( x), 2↵ 2 ' 2 ( x) .
It is clear that satisfies (x) = (x), 8 > 0.

Let U be the solution of the integral system (1.2) with initial data constructed by Theorem 1 ( remark that N ( ) < 1, since r 1 satisfies Parts (i)-(ii) of Lemma A.1 below and by homogeneity, also N ( ) is su ciently small since k! 1 k 1 and k! 2 k 1 are su ciently small). That is U belong to X M . We want to prove that U = U , 8 > 0, where U (t, x) := (u (t, x), v (t, x)), 8 > 0, with

u (t, x) = 2↵ 1 u( 2 t, x), and 
v (t, x) = 2↵ 2 v( 2 t, x).
To do this it su ce to prove that U is also a solution of (1.2) with the same initial data = and that U belong to X M . On one hand due the homogeneity properties of the system (1.2), if U = (u, v) solves this system, then the scaled function solve it also. In fact

d u( 2 t) = d e 2 t ' 1 + a Z 2 t 0 d e ( 2 t ) |.| |v( )| p 1 v( ) d = e t d ' 1 + a Z 2 t 0 e (t 2 ) d (|.| |v( )| p 1 v( )) d = e t d ' 1 + a Z 2 t 0 e (t 2 ) |.| |d v( )| p 1 d v( ) d = e t d ' 1 + a Z t 0 2 e (t ) |.| |d v( 2 )| p 1 d v( 2 ) d .
Hence by (1.8), we get

2↵ 1 d u( 2 t) = e t d ( 2↵ 1 ' 1 ) + a Z t 0 e (t ) |.| 2 +2↵ 1 |d v( 2 )| p 1 d v( 2 ) d = e t d ( 2↵ 1 ' 1 ) + a Z t 0 e (t ) |.| | 2↵ 2 d v( 2 )| p 1 2↵ 2 d v( 2 ) d ,
we conclude finally that

u (t) = e t ' 1 + a Z t 0 e (t ) |.| |v ( )| p 1 v ( ) d . (3.27) 
Similarly we obtain

v (t) = e t ' 2 + b Z t 0 e (t ) |.| ⇢ |u ( )| p 1 u ( ) d . (3.28) 
The a rmation follows from (3.27)-(3.28). On the other hand we have

ku (t)k r 1 = 2↵ 1 kd u( 2 t)k r 1 = 2↵ 1 N r 1 ku( 2 t)k r 1 = ( 2 ) 1 ku( 2 t)k r 1 . Hence sup t>0 t 1 ku (t)k r 1 = sup 2 t>0 ( 2 t) 1 ku( 2 t)k r 1 = sup t>0 t 1 ku(t)k r 1 , similarly sup t>0 t 2 kv (t)k r 2 = sup t>0 t 2 kv(t)k r 2 . It follows so that kU k X = kU k X .
Then by uniqueness in X M U = U and thus U is self-similar. Let us denote it by U S . The fact that U S (t) ! in S 0 (R N ) as t ! 0 follows by statement (c) in Theorem 1. ⇤

Proof of Theorem 3. The proof is similar to the one of Theorem 5.1 in [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF], we simply indicate that (i) sup

t>0 t 1 + ke t (' 1 1 )k r 1 < 1, for 0 < < N 2 ↵ 1 . (ii) sup t>0 t 2 + ke t (' 2 2 )k r 2 < 1, for 0 < < N 2 ↵ 2 .
By the formula (2.11), we have that

sup t>0 h t 1 + ku(t) u S (t)k r 1 , t 2 + kv(t) v S (t)k r 2 i  CN ( ).
That is

sup t>0 h t 1 + ku(t) u S (t)k r 1 , t 2 + kv(t) v S (t)k r 2 i  C,
for > 0 su ciently small and C a finite positive constant. This gives (2.15)-(2.16) directly for q 1 = r 1 and q 2 = r 2 .

We now turn to prove the asymptotic result in the L 1 -norm. Write

u(t) u S (t) = e t 2 u(t/2) u S (t/2) + a Z t t 2 e (t ) ⇥ |.| |v( )| p 1 v( ) |v S ( )| p 1 v S ( ) ⇤ d , v(t) v S (t) = e t 2 v(t/2) v S (t/2) + b Z t t 2 e (t ) ⇥ |.| |u( )| q 1 u( ) |u S ( )| q 1 u S ( ) ⇤ d .
Let T > 0 be an arbitrary real number. By using the smoothing properties of the heat semi-group with (s 1 , s 2 ) = (r 1 , 1) and the estimate (2.2) with (q 1 , q 2 ) = (1, 1), it follows that

t ↵ 1 + ku(t) u S (t)k 1  t ↵ 1 + ke t 2 u(t/2) u S (t/2) k 1 + |a|t ↵ 1 + ⇥ Z t t 2 ke (t ) ⇥ |.| |v( )| p 1 v( ) |v S ( )| p 1 v S ( ) ⇤ k 1 d  Ct 1 + ku(t/2) u S (t/2)k r 1 + |a|Ct ↵ 1 + ⇥ Z t t 2 (t ) 2 kv( )k p 1 1 + kv S ( )k p 1 1 kv( ) v S ( )k 1 d .
Using (2.11) to estimate the first term and the fact that kv

S (t)k 1  Ct ↵ 2 , kv(t)k 1 
Ct ↵ 2 to estimate the last term, we get

t ↵ 1 + ku(t) u S (t)k 1  C( ) + |a|C ⇥ " Z 1 1 2 (1 ) 2 ↵ 2 p d # sup t2(0,T ] ⇣ t ↵ 2 + kv(t) v S (t)k 1 ⌘ .
Which leads to

t ↵ 1 + ku(t) u S (t)k 1  C( ) + C sup t2(0,T ] h t ↵ 1 + ku(t) u S (t)k 1 , t ↵ 2 + kv(t) v S (t)k 1 i .
(3.29) Similarly we have 

t ↵ 2 + kv(t) v S (t)k 1  C( ) + C sup t2(0,T ] h t ↵ 1 + ku(t) u S (t)k 1 , t ↵ 2 + kv(t) v S (t)k 1 i . ( 3 
h t ↵ 1 + ku(t) u S (t)k 1 , t ↵ 2 + kv(t) v S (t)k 1 i  C 0 ( ).
Since the constant C 0 ( ) does not depend on T > 0, one can take the supremum over (0, 1). This prove (2.15)-(2.16) for r 1 = 1 and r 2 = 1. Using the interpolation inequality

ku(t) u S (t)k q 1  ku(t) u S (t)k µ 1 r 1 ku(t) u S (t)k 1 µ 1 1
,

where 1 q 1 = µ 1 r 1 + 1 µ 1 1 = µ 1 r 1 .
We get

ku(t) u S (t)k q 1  ku(t) u S (t)k µ 1 r 1 ku(t) u S (t)k 1 µ 1 1  Ct µ 1 [ 1 (r 1 ) ]+(1 µ 1 )[ 1 (1) ]
= Ct 1 (q 1 ) .

We have also

kv(t) v S (t)k q 2  Ct 2 (q 2 ) .
Hence the general results (2.15)-(2.16). The estimate (2.17)-(2.18) follows by a simple dilation argument. We prove just the first estimate (2.17), the proof of the second estimate is similar. We have

ku(t) u S (t)k q 1 = ku(t, .) t ↵ 1 u S (1, . p t )k q 1 = kd 1 p t u(t, . p t) t ↵ 1 d 1 p t u S (1, .)k q 1 = kd 1 p t [u(t, . p t) t ↵ 1 u S (1, .)]k q 1 = ( 1 p t ) N q 1 ku(t, . p t) t ↵ 1 u S (1, .)k q 1 .
Then by using inequality (2.15) and relation (2.14), we get (2.17). ⇤

Proof of Proposition 2.2. If = 0 and ⇢ = 0, then (1.9) and (1.10) are verified. Since these are strict inequalities, they must hold for small 0 and ⇢ > 0. This finishes the proof of the proposition. ⇤

Proof of Proposition 2.3. Let ↵ 1 and ↵ 2 defined by (1.4) and (1.5) respectively. Under the conditions

q 2 ⇢ + 2 ,
and

p 2 ⇢ + 2 ⇢ ,
we have that conditions (1.9) and (1.10) are equivalent to the conditions 2↵ 1 < N and 2↵ 2 < N. Now, since q 2 ⇢ N + 2 N + 1, we see that 2↵ 1 < N and since p 2 N + 2 ⇢ N + 1, we obtain that 2↵ 2 < N. This finishes the proof of the proposition. ⇤

Stronger uniqueness results

It has been proved in Theorem 1 that for small initial data = ('

1 , ' 2 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N
) with respect of the norm N 0 , there exists a solution U = (u , v ) of the integral system (1.2) and uniqueness is guaranteed only among continuous functions U :

[0, 1) ! L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ) which also verify sup t>0 h t 1 ku(t)k r 1 , t 2 kv(t)k r 2
i is suciently small. Our aim in this section is to prove that uniqueness is guaranteed for solu-

tions which belong to C ⇣ [0, 1), L N 2↵ 1 (R N ) ⌘ ⇥C ⇣ [0, 1), L N 2↵ 2 (R N ) ⌘ \C (0, 1), L r 1 (R N ) ⇥ C (0, 1), L r 2 (R N )
, which improves the result of uniqueness in Lebesgue spaces given in Theorem 1. We will use arguments of type Brezis Cazenave [START_REF] Brezis | A nonlinear heat equation with singular initial data[END_REF]. We have obtained the following result.

Theorem 4. Let N be a positive integer. Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let ↵ 1 , ↵ 2 defined by (1.4) and (1.5). Suppose that (1.9) and (1.10) are satisfied. Let 1 , 2 be given by (1.6) and (1.7). Let r 1 and r 2 be as in Lemma 2.1.

Let M , R > 0 be such that (3.25) 

is satisfied. Let = (' 1 , ' 2 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N )
satisfying (2.12). Let U = (u , v ) 2 Y M be the solution of the integral system (1.2) with initial data constructed by Theorem 1. Let

V = (v 1 , v 2 ) 2 C ⇣ [0, 1), L N 2↵ 1 (R N ) ⌘ ⇥ C ⇣ [0, 1), L N 2↵ 2 (R N ) ⌘ \ C (0, 1), L r 1 (R N ) ⇥ C (0, 1), L r 2 (R N ) be a solution of (1.2)
with the same initial data . Then

V (t) = U (t), 8t 2 [0, 1).
The proof of this theorem relies on the following two lemmas.

Lemma 4.1. Let N be a positive integer. Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let ↵ 1 , ↵ 2 defined by (1.4) and (1.5). Suppose that (1.9) and (1.10) are satisfied. Let 1 , 2 be given by (1.6) and (1.7). Let r 1 and r 2 be as in Lemma 2.1.

Let M , R > 0 be such that (3.25) is satisfied. Let = (' 1 , ' 2 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N )
satisfying (2.12). Let U = (u , v ) be the solution of the integral system (1.2) with initial data constructed by Theorem 1. Then for all T > 0, there exists a unique solution U ,T = U 2 Y M,T of (1.2) with initial data , where

Y M,T = n U = (u, v) 2 C ⇣ [0, T ), L N 2↵ 1 (R N ) ⌘ ⇥ C ⇣ [0, T ), L N 2↵ 2 (R N ) ⌘ \ C (0, T ), L r 1 (R N ) ⇥ C (0, T ), L r 2 (R N ) ; max ⇥ sup t2[0,T ) [ku(t)k N 2↵ 1 , kv(t)k N 2↵ 2 ], sup t2(0,T ) [t 1 ku(t)k r 1 , t 2 kv(t)k r 2 ] ⇤  M o .
Proof. The existence of the unique solution U ,T of (1.2) with initial data follows by a fixed point argument in Y M,T . Let U 2 Y M the solution of (1.2) with initial data . Owing to the fact that U 2 Y M ⇢ Y M,T and by uniqueness in Y M,T , we obtain U ,T = U . ⇤ Lemma 4.2. Let N be a positive integer. Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let ↵ 1 , ↵ 2 defined by (1.4) and (1.5). Suppose that (1.9) and (1.10) (2.12). Let U = (u , v ) be the solution of the integral system (1.2) with initial data constructed by Theorem 1. Let ( ⌧ ) = ((' 1,⌧ , ' 2,⌧ )) be a family of functions satisfying (2.12) such that

are satisfied. Let M , R > 0 be such that (3.25) is satisfied. Let = (' 1 , ' 2 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ) satisfying
⌧ ! ⌧ !0 , in L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ).
Then the family of solutions (U ⌧ ) = ((u ⌧ , v ⌧ )) of the integral system (1.2) verify

U ⌧ (t) ! ⌧ !0 U (t), in L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ), 8t 2 [0, 1). Proof. By continuous dependance (3.26) in Y M , it follows that max  ku ⌧ (t) u (t)k N 2↵ 1 , kv ⌧ (t) v (t)k N 2↵ 2  (1 K) 1 ⇥ max  k' 1,⌧ ' 1 k N 2↵ 1 , k' 2,⌧ ' 2 k N 2↵ 2 , 8t 2 [0, 1).
By letting ⌧ ! 0, we obtain the result.

⇤ Proof of Theorem 4. Since V = (v 1 , v 2 ) 2 C ⇣ [0, 1), L N 2↵ 1 (R N ) ⌘ ⇥ C ⇣ [0, 1), L N 2↵ 2 (R N ) ⌘ , then there exists " 1 > 0 such that N 0 (V (s)) = max  kv 1 (s)k N 2↵ 1 , kv 2 (s)k N 2↵ 2 < R, 8s 2 [0, " 1 ]. (4.1) Let us define V ⌧ = (v 1,⌧ , v 2,⌧ ) by V ⌧ (t) = V (t + ⌧ ), 8⌧ 2 (0, " 1 2 ], 8t 2 [0, " 1 2 ] 
. We have from (4.1) and since t

1 kv 1,⌧ (t)k r 1 , t 2 kv 2,⌧ (t)k r 2 ! (0, 0) as t ! 0, 8⌧ 2 (0, " 1 2 ] (a) max  kv 1,⌧ (0)k N 2↵ 1 , kv 2,⌧ (0)k N 2↵ 2 = max  kv 1 (⌧ )k N 2↵ 1 , kv 2 (⌧ )k N 2↵ 2 < R, 8⌧ 2 0, " 1 2 ⇤ , (b) sup t2[0, " 1 2 ] 
 kv , using now Lemma 4.1 we deduce that V ⌧ (t) = U V⌧ (0) (t), 8⌧ 2 (0, " 1 2 ], 8t 2 [0, T⌧ 2 ], where U V⌧ (0) is the solution of the integral system (1.2) with initial data V ⌧ (0) constructed by Theorem 1. Hence V ⌧ (t) = U V⌧ (0) (t), 8⌧ 2 (0, " 1 2 ], 8t 2 [0, 1). By Lemma 4.2, we obtain V ⌧ (t) ! ⌧ !0 and the equivalence q c > 1 , (A.1), it follows that there exists r > q c satisfying 1

U (t), in L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N , ) 8t 2 [0, 1). On the other hand V ⌧ (t) = V (t + ⌧ ) ! ⌧ !0 V (t), in L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ), 8t 2 [0, 1), (since V is continuous in [0, 1)).
q c 2 Np < 1 r < N Np (4.5)
Corollary 4.3. Let N be a positive integer. Suppose that p > 1. Let 0 < < min(N, 2).

let q c defined by (4.3). suppose that (4.4) is satisfied. Let r > q c satisfying (4.5). Let ' 2 L qc (R N ) su ciently small. Then there exists a global solution of the integral equation (4.2), which is unique in the class of functions u 2 C [0, 1), L qc (R N ) \C (0, 1), L r (R N ) .

Proof. Let N be a positive integer. Suppose that p = q > 1. Suppose that = ⇢ with 0 < < min(N, 2). Let ↵ 1 = ↵ 2 defined by (1.4). Suppose that (A.1) is satisfied. Let 1 , 2 be given by (1.6) and (1.7). Let r 1 = r 2 be as in Lemma 2. Remark 4.5. Using the same steps as above we prove that for initial data = (' 1 , ' 2 ) 2

L q 1 (R N ) ⇥ L q 2 (R N ) such that N 2↵ 1 < q 1 < r 1 and N 2↵ 2 < q 2 < r 2 , there exists a local solution U = (u , v ) of the integral system (1.2) and uniqueness is guaranteed in the class of solutions which belong to C [0, T ], L q 1 (R N ) ⇥ C [0, T ], L q 2 (R N ) \ C (0, T ], L r 1 (R N ) ⇥ C (0, T ], L r 2 (R N ) , for any fixed 0 < T < T max , where T max is the maximal existence time.

This improves the result of uniqueness in Lebesgue spaces given by Theorem 1.1 (iii)-(a) in [START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF].

  which is finite by(3.13) and Part (iii) of Lemma 2.1. Owing to the conditions (3.11) and (3.13), the right hand sides of (3.12) and (3.14) converges to zero as t & 0. This proves statements (a)-(c) of Theorem 1.Finally, the continuous dependance relation (2.8) of Theorem 1 follows by considering F (U 1 ) = U 1 and F (U 2 ) = U 2 in the inequality (3.7).

0 e

 0 Finally, we conclude by uniqueness of the limit that V (t) = U (t), 8t 2 [0, 1). ⇤Consider now the integral equationu(t) = e t ' + a Z t (t s) |.| |u(s)| p 1 u(s) ds,(4.2)where u = u(t, x) 2 R, t > 0, x 2 R N , a 2 R, 0 < < min(N, 2) and p > 1. Set p = q and r 1 = r in Lemma A.1, using the fact that 1

4 VRemark 4 . 4 .

 444 1. Let M , R > 0 be such that (3.25) is satisfied. Let = (' 1 , ' 1 ) 2 L N 2↵ 1 (R N ) ⇥ L N 2↵ 2 (R N ) satisfying(2.12). Let U = (u , u ) 2 Y M be the solution of the integral system (1.2) with initial data constructed by Theorem1. Let V = (v 1 , v 1 ) 1), L r 1 (R N ) ⇥ C (0, 1), L r 2 (R N) be a solution of (1.2) with the same initial data . Then by Theorem (t) = U (t), 8t 2 [0, 1). This finishes the proof.⇤ The previous corollary improves the class of uniqueness for the scalar Hardy-Hénon parabolic equations given by Theorem 1.1 (iii)-(b) in[START_REF] Ben Slimene | Well-posedness, global existence and large time behavior for Hardy-Hénon parabolic equations[END_REF].

  1,⌧ (t)k N kv 1,⌧ (t)k r 1 , t 2 kv 2,⌧ (t)k r 2 It follows then that V ⌧ 2 Y M, T⌧

	2↵ 1 (c) There exists 0 < T ⌧  " 1 such that sup , kv 2,⌧ (t)k N 2↵ 2 <R  M , 8⌧ 2 0, " 1 2 t2(0, T⌧ h t 1 i ⇤ , 2 ] 8⌧ 2 (0, " 1 2 ].	 M,
	2	
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Appendix A. Auxiliary lemmas

Let us state the following result which will be needed in the proof of the technical lemma.

Lemma A.1. Let N be a positive integer. Let p, q > 1. Let 0  < min(N, 2) and 0 < ⇢ < min(N, 2). Let k given by (1.3). Suppose that (1.9) and (1.10) are satisfied. Then there exists a real number r 1 satisfying the conditions

Proof. We will treat the cases where 2 + (2 ⇢)p pq > 0 and 2 + (2 )q ⇢pq > 0, the other cases are simple. One can easily see that r 1 exists if and only if the left-hand sides of inequalities (i)-(vi) are less than the right-hand sides of inequalities (vii) and (viii). Since 2+(2 ⇢)p pq , (iv) N 2 ⇢ (q k) < Nk p(pq 1)

2+(2 ⇢)p pq implies that N N ⇢ q < Nk p(pq 1) 2+(2 ⇢)p pq , condition 2↵ 2 < N implies that N N ⇢ q < N q(pq 1) 2+(2 )q ⇢pq and finally condition 2↵ 2 < q p (N ) (2 ⇢)p+( 2) 2+(2 )q ⇢pq implies that N N kp < N q(pq 1) 2+(2 )q ⇢pq . This finishes the proof of the lemma. ⇤ Proof of Lemma 2.1. Owing to relation (2.3) and Lemma A.1, the proof of Lemma 2.1 is simple and can be omitted. ⇤ Remark A.2. In the case where = ⇢ and p = q it su ce to change the hypothesis (1.9)

and (1.10) by the hypothese