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Approximation schemes for McKean-Vlasov and Boltzmann
type equations (error analysis in total variation distance)

Yifeng Qin"

“Université Gustave Eiffel, LAMA (UMR CNRS, UPEMLV, UPEC), MathRisk INRIA,
F-77454 Marne-la-Vallée, France. Email address: gzevonqin@gmail.com

Jan. 2023

Abstract We deal with Mckean-Vlasov and Boltzmann type jump equations. This means that the co-
efficients of the stochastic equation depend on the law of the solution, and the equation is driven by a
Poisson point measure with intensity measure which depends on the law of the solution as well. In [3],
Alfonsi and Bally have proved that under some suitable conditions, the solution X; of such equation exists
and is unique. One also proves that X, is the probabilistic interpretation of an analytical weak equation.
Moreover, the Euler scheme X/ of this equation converges to X; in Wasserstein distance. In this paper,
under more restricted assumptions, we show that the Euler scheme X/ converges to X; in total variation
distance and X; has a smooth density (which is a function solution of the analytical weak equation). On
the other hand, in view of simulation, we use a truncated Euler scheme X" which has a finite numbers
of jumps in any compact interval. We prove that X, ** also converges to X, in total variation distance.
Finally, we give an algorithm based on a particle system associated to X, ** in order to approximate the
density of the law of X;. Complete estimates of the error are obtained.

Key words: Mckean-Vlasov equation, Boltzmann equation, Malliavin calculus, Total variation distance,
Wasserstein distance, Particle system
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5 Appendix 43

1 Introduction

In this paper, we consider a d—dimensional Mckean-Vlasov and Boltzmann type jump equation as fol-
lows.

¢ ¢
X, = X0+/ b(T,X7-7p7-)d7“+// c(r,v, 2, X, pr—)N,,_(dv,dz,dr), (D
0 0 JRIxRE

where p;(dv) = P(X; € dv) is the law of Xy, ¢ € [0,T7], N,, is a Poisson point measure on the state space
R? x R? with intensity measure p;(dv)u(dz)dr, u is a positive o-finite measure on R¢, X, is the initial
random variable independent of the Poisson point measure N,,, and b, c are functions which verify some
regularity and ellipticity conditions (see Hypotheses 2.1~2.4 in Section 2.2 for precise statements). In
particular, we assume that for every multi-indices 3;, 32, there exists a non-negative function ¢ : R — R,
such that

le(r, v, 2,2, p)| + 07205 ¢(r, v, 2, x, p)| < &(2),

with [5.]é(2)[Pu(dz) < co, ¥p > 1. We also assume that there exists a non-negative function ¢ : R* — R,
such that for every ¢ € Rd,

d
S0, e, v, 2,3,0), ) = el2)[C[2.
Jj=1

We remark that we use the notations from [25] and we refer to [6], [16], [25], [34], [35], [43] and [44] for
the basic theory of the classical jump equations. We stress that our equation is a more general kind of
jump equation (than the classical one) in the following sense. The coefficients b and ¢ depend on the law
of the solution, so our equation is of Mckean-Vlasov type. One can see for example [23] for a mathematical
approach to this kind of equation and see [5], [12], [22], [24], [39], [40] and [47] for the approximation
schemes of a Mckean-Vlasov equation. Moreover, the intensity of the Poisson point measure N,, depends
on the law of the solution as well, so our equation is also of Boltzmann type. The probabilistic approach to
the Boltzmann equation is initiated by Tanaka in [48], [49], and followed by many others in [9], [17], [18],
[19], [36], [38] and [46] for example. One can also see [2] and [50] for the analytical Boltzmann equation
and [15] for the physical background. Recently, there is also some work on inhomogeneous Boltzmann
equations (see for instance [1], [20] and [21]). We have to mention however that our equation (1) does not
cover the general physical Boltzmann equation for the following reason. In that equation, the intensity of
the jumps p(dz) is replaced by ~(r, v, z, x, p)u(dz) which depends on the position 2z = X,._ of the solution
of the equation. At least at this time, we are not able to include this case in our study. The simplified model
that we treat in our paper corresponds to Maxwell molecules (see [18] for example).

Now we construct the Euler scheme. For any partition P = {0 =ro <71 < -+ < rp_1 < 1, = T} of the
time interval [0, T'], we define 7(r) = r;, when r € [rg, rix+1), and we consider the equation

t
Xt = XO+/ b(7(r), XJ s Ty )dr

A/Rdxﬂ{{d ,v,z,XTW ,pT(T) )N 7:(74)_(dv,dz,d7’)7 2

where p[ is the law of X7, and N, 7 (dv,dz, dr) is a Poisson point measure with intensity p, P (dv)p(dz)dr,
independent of X,. We remark that for the classu:al jump equations (the coefficients and the Poisson point
measures do not depend on the law of the solution), there is a huge amount of work on the convergence of
the Euler scheme. One can see for example [4], [27], [28], [29], [30], [31], [42] and the references therein.
For the equation (1), [3] has proved recently that under some regularity conditions on the coefficients b
and c, the solution of the equation (1) exists and is unique, and X, is the probabilistic interpretation of



the following analytical weak equation.

Vo € CL(RY)(the space of dif ferentiable and bounded functions with bounded derivatives),

/Rd ¢(x)pe(dx) = /Rd () po(dx) + /Ot /Rda’(?"aJfapr),vqﬁ(a:»p,«(dx)dr

+/0 /]Rded Pr(dx)/’r(dv)/ (d(x + c(ryv, 2,2, pr)) — O(x)) p(dz)dr. (3)

R4

Moreover, [3] has proved that the Euler scheme X/ converges to X; in Wasserstein distance (of order 1)
W;. In our paper, under supplementary hypotheses, we prove a stronger result. We prove (see Theorem
2.1) that the Euler scheme X/ converges to X; in total variation distance: for any ¢ > 0, there exists a
constant C such that

drv(X], X;) < C[P|'== = 0, 4)

as |[P| — 0, with |P| := i {Omax 1}(rk+1 —11). We also show that the law of X, has a smooth density
€{0,--- ,n—

p¢(x), which is a function solution of the analytical weak equation (3).

Since we have infinite numbers of jumps (due to Hypothesis 2.4 in Section 2.2), we have ;(R¢) = oo. In
view of simulation, we need to work with a truncated Poisson point measure, which has a finite number of
jumps in any compact time interval. For M € N, we denote By = {z € R? : |z| < M}, epr(r,v, 2,2, p) i=

c(r,v, z,2,p)1p,,(2) and ad := \/T f{|Z|>M} c(z)p(dz). Now we cancel the jumps of size |z| > M and we

replace them by a Gaussian random variable.

t
xPM = X0+a¥A+/O b(r(r), XN ol dr
t
/ / em(7(r),v XP( ];/[ ,pT(T) )N 7D M (dv dz,dr), (5
0 JRIxR4

where pf’M is the law of XZ) M, N p.m (dv,dz,dr) is a Poisson point measure independent of X, with
t

intensity p| "™ (dv)u(dz)dr, A is a d—dimensional standard Gaussian random variable independent of X,

and of NPP,IW. We prove (see Theorem 2.2) that ti M converges to X; in total variation distance: for
t

any ¢ > 0, there exists a constant C such that

dry (XM, X) < C(yEwm + [P 5 =0, (6)

as [P| — 0and M — oo, with e == [(|, o5y 16(2)[1(d2) + | [{|. 15 0y €(2)1(d2)[*. Moreover, the law of

X7*™ has a smooth density.

In order to construct an approximation scheme which is appropriate for simulation, we need to com-
pute p7** as well, so we use the following particle system. We take an initial vector (X, , X¥) with
components which are independent and identically distributed with common law py (which is the law of
Xo), and (Al,--- AN) which is a N x d—dimensional standard Gaussian random variable independent

of (X¢},---, X{). Then we construct the particle system }f’M = (XML L x PN,

. . i ¢
XPMi X3+a¥N+/O b(r(r), Xf(g“f?fvh)j

t
+ / / C]\J(T( 7U,Z,)(p1\417’\}’7) i}PM (dU,dZ,d’l”), izla"'aNa (7)
Rd xRd (r) (r)— a( (r)— )

where

}P M (dv)

XP Mz d?]

HMz



is the empirical measure of ? P.M- (with 6, (dv) the Dirac measure), N’ SRPM (dv,dz,dr), i =1,--- N

are Poisson point measures that are independent each other condltlonally to } P-M and independent of

(Xg,-- X, AL .- ) AN) with intensity p( 5(}7) M) (dv)p(dz)dr. It is clear that 5(}7) M may be simulated
in an explicit way (see (31D).
We denote

Vi i=1g=1 N7 + 1g—oN "7 log(1+ N) + 145N~ 7,
and we consider the following d—dimensional regularization kernels

1 _ 1|2 1 =z
p(x) = W‘f 2, ps(x) = 6750(5), 0<d6<1.

We have proved in Theorem 2.1 that the law of X, has a density function p;(z). Now we obtain in
Theorem 2.3 the following results concerning the approximation of the density p;(x). We take

= (|P| + \/e21) ™3, and take N such that Vy < |P|+ /a1

Then we have
N 2
Z s(XTMT ) + O((|P| + eur) 73), 8)

where O(e) is the big O notation (i.e. for a strictly positive function ¢ defined on R;, 3C > 0, s.t.
[O(g(y))| < Cg(y)). If we take

= (|P| + /ea1) ™5, and take N such that Vy < |P| + v,

then we get moreover by Romberg method that

N N
2 i 1 1.4 4
(@) = = 3 By s (X7 —2) = S B (XM — 1)+ O(P] + VEm) 7). ©
=1

i=1

Itis clear that the approximation scheme based on Romberg method gives a better accuracy: we have the
power = ﬂ > 75 + 3. So we are able to simulate the density function of X; in an explicit way, with error

O((|P|++/em) s ). We notice however, that the speed of convergence of the error depends on the dimen-
sion d, so it converges slowly when d is large. In Theorem 2.4, we prove an alternative approximation
result. We give up the approximation of the density, and we focus on the approximation in total variation
distance. We take supplementally A a d—dimensional standard Gaussian random variable independent of

}P M For any € > 0, we take

= (|P| +ea)*?=)  and take N such that Vy < (|P|+en) > =<7,

with ¢/ = and £’ = mis(% For every measurable and bounded function f, we prove that
N
1 i x —&
[ f@p)dr = 5 SEFEDY 4 0) + e x OP]+ VEw)' ). 10)

=1

We notice that the speed of convergence in (10) no longer depends on the dimension d, so it still behaves
well for large dimension. We also stress that the speed of convergence in (10) is the same as in (6) for the
truncated Euler scheme. Moreover, for any € > 0, we take

= (IP| + )7 7%)  and take N such that Vy < (|P|+ ) e



8e+(d—3)e?

= ICEE Then for every measurable and bounded function f, we get by

. 2
with e, = F#— and ¢, =

Romberg method that

9
V2
We remark that (11) is even a better simulation scheme than (10) in the sense that the numbers of particles
N is smaller than the one in (10) and ¢ is larger than the one in (10).

N
| s@ntds) = ;;EM”MH

We give now a general view on the strategy used in the paper. Notice that the Poisson process which
appears in the equation (1) has intensity u(dz) which is an infinite measure. As we mentioned before,
it is convenient, both from the point of view of Malliavin calculus and for simulation, to introduce an
intermediary equation driven by a Poison point measure with intensity 1y.|<asy4(dz) which is a finite
measure. We denote by XM the solution of this equation (which is a truncated version of (1), see (38) for
precise expression). Since X depends only on a finite number of jumps in any compact time interval,
this will be a "simple functional" in the Malliavin calculus with respect to the amplitudes of the jumps. We
also replace the jumps larger then M (which have been canceled) by a Gaussian noise - this is necessary
in order to obtain the non degeneracy for X!. Moreover, in order to be able to establish integration
by parts formulas, we assume (see Hypothesis 2.4 b)) that the measure y is absolutely continuous with
respect to the Lebesgue measure: u(dz) = h(z)dz, where h is infinitely differentiable and In & has bounded
derivatives of any order. Using the convergence X — X, we are able to prove that X; is smooth in the
sense of Malliavin calculus for jump processes. We use this calculus in order to prove that the law of X, is
absolutely continuous with respect to the Lebesgue measure, with smooth density p;(dx).

Moreover, we construct an explicit algorithm which allows us to use Monte Carlo simulation in order
to approximate X; and p;. To do it, we consider the Euler scheme X} and the truncated Euler scheme
X7M (see (2) and (5)). Now we focus on three equations with solutions X;, X}¥ and X" There is a
supplementary difficulty which appears here: the Poisson point measures which govern these equations
have an intensity which depends on the law of the solution of each of these equations. It is convenient to
use similar equations driven by the same Poisson point measure. This is obtained by a coupling procedure:
we construct z, M and z] " which have the same law as X;, X and X" but are defined on the same
probability space and verify equations driven by the same Poisson point measure (this is done in Section
2.7). This allows us to compare them by using an L! calculus. This is why all our computations will
concern these last equations.

In [3], one obtains estimates of the Wasserstein distance between these processes. In order to estimate
the total variation distance between them, we will use Malliavin integration by parts techniques (which
are presented in Section 3) together with some results from [7] which allows us to pass from estimates
in Wassestein distance to estimates in total variation distance. Consequently a large part of the technical
effort in the paper will concern estimates of the Malliavin-Sobolev norms of z, 2™ and z"* as well as
the proof of the non-degeneracy of these random variables (see Section 4).

Our paper is organized in the following way. In Section 2, we state our problems and give the hypotheses.
We define the main equation X;, the Euler scheme X/, the truncated Euler scheme X ZD M and the particle
system XZ) M ’i, i =1,---,N. Then we state our main results: Theorem 2.1, 2.2 (see (4) and (6)) and
Theorem 2.3, 2.4 (see (8), (9), (10) and (11)). We also give some typical examples to apply our main
results. At the end of this section, we make a coupling argument to construct =, 27 ™ and ;. In Section
3, we give an abstract integration by parts framework (of Malliavin type) and then apply these abstract
results to the solutions of our equations. There are two types of results that we have to prove in order
to make the integration by parts machinery works. First, we prove that the Malliavin-Sobolev norms of
aM | 7™ and z, are bounded, uniformly with respect to P and M (see Lemma 3.7). Moreover we have
to check the non-degeneracy condition for the Malliavin covariance matrix. This is done in Lemma 3.8.
Both these two lemmas are rather technical so we leave the proofs for Section 4. Once these lemmas are
proved, Proposition 3.6.1 allows us to conclude that X”* — X, in total variation distance. We also
prove that the Euler scheme X7 — X, in total variation distance in a similar way. Furthermore, we obtain
an algorithm based on the particle system X, ", i = 1,... | N in order to compute the density function
pt(x) of the law of X;, and we estimate the error.

N
By~ 5 SSEATM 4 468) 4| flloo x O(IP] +vE) )11
i=1



2 Main results

2.1 Basic notations and the main equation

We give a time horizon 7' > 0 and let 0 < ¢ < T. To begin, we introduce some notations which will
be used through our paper. For a multi-index 3, we denote |3] to be the length of 3. We denote C}(R?)
the space of [—times differential and bounded functions on R? with bounded derivatives up to order ,
and || f[|, o := > [|07 |, for a function f € C{(R?). We also denote P;(R?) the space of all probability

|BI<i

measures on R? with finite [—~moment. For py, p» € P;(R?), we define the Wasserstein distance W; by

Wil = sw | [ f@ortdo) = [ rwpala). (a2

Lip(f)<1 Jre

with Lip(f) := sup W the Lipschitz constant of f, and we define the total variation distance dry
TAY
by

drv(prpa) = s | [ f@ntdn) = [ rla)patis)] (13)
[flle<1 JRY R4
For F,G € L'(Q), we also denote W1 (F,G) = W1 (L(F), L(G)) and dry (F,G) = dry (L(F), L(G)), with
L(F)(respectively £(G)) the law of the random variable F'(respectively ). In addition, along the paper,
C will be a constant which may change from a line to another. It may depend on some parameters and
sometimes the dependence is precised in the notation (ex. C; is a constant depending on ).
In this paper, we consider the d—dimensional stochastic differential equation with jumps

t t
Xy = X0+/ b(r,Xr,pT)err// e(r,v, 2, Xp—, pr—)N,,_(dv,dz,dr), (14
0 0 JRIxRE

where p;(dv) = P(X; € dv) is the law of X;, N, is a Poisson point measure on the state space R? x R?
with intensity measure N,, (dv,dz,dr) = pi(dv)u(dz)dr, Xy is the initial random variable with law pg
independent of the Poisson point measure N,,, j is a positive o-finite measure on R¢, and b : [0, 7] x R x
P1(R?) — R, ¢:[0,T] x R x R? x R? x Py (RY) — R4,

Remark. We remark that we will assume in the following that fRd sup sup sup |c(r,v,z,x,p)|u(dz) <

re[0,T] v,x€R peP; (RY)

00, so we are in the finite variation case. The integral with respect to the Poisson point measure is not
compensated.

2.2 Hypotheses

Here we give our hypotheses.

Hypothesis 2.1 (Regularity) We assume that the function  — b(r,z, p) is infinitely differentiable
with bounded derivatives of any orders, and that p, € ﬂ;ozl P,(R?). We also assume that the function
(z,2) — c(r,v,z,x,p) is infinitely differentiable and for every multi-indices f1, 32, there exists a non-
negative function ¢ : R? — R, depending on 3, 3, such that we have

sup sup  sup (|e(r,v, 2,z p)| 4+ |0720% ¢(r, v, 2,2, p)|) < &(2), VzeRY,

r€[0,T) v,ze€R? pePy (R%)

with / |e(z)|Pu(dz) :==¢, < 00, Vp>1. (15)
Rd

Moreover, there exists a constant L; > 0 such that for any 71,7 € [0, T],v1,v2,2 € R%, 2 € R? py, py €
P1(RY),

[b(r1, 2, p1) — b(ra, 2, p2)| < Li(|r1 — ra| + Wilp1, p2)),



and |C(7’1,1}1,Z,$,p1) *C(TQ,’UQ,Z,JC,pQN
+|sz(T1,U1,Z,$,p1) - VZC(TQ,UQ,Z,JT,[)QH + |va(T1,’U1,Z,$,pl) - V$C(T2,U27Z,$,p2)‘
< e(z)(|r1 = rof + |vr — va| + Wi(p1, p2))-

Remark. We will use several times the following consequence of (15) and of Burkholder inequality (see for
example the Theorem 2.11 in [34], see also in [35]): Let ®(r, v, z,w, p) : [0, T] x R x R% x Q x Py (RY) — R,
and ¢(r,v,w, p) : [0,T] x R? x Q x P;(R?) — R, be two functions such that

|@(r, 0, 2,w, p)| < [e(2)]|p(r; v,w, p)|.

Then for any p > 2, p € P1(R9),

t t
E‘/ / <I>(r7v7z,w,p)Np(dv,dz,dr)‘p < CIE/ / lo(r, v, w, p)|Pp(dv)dr, (16)
0 R4 xRd 0 Rd

where C is a constant depending on p, ¢, €2, ¢, and 7.

Proof. By compensating N, and using Burkholder inequality and (15), we have

t
]E|/ / &(r,v, z,w, p)N,(dv, dz, dr)[P
Re x R4

< C[E // ®(r, v, z,w, p)2p(dv)u(dz)dr)® + // D(r,v, z,w, p)|’p(dv)u(dz)dr
]Rded Rded

+E| / / 1B(r,v, 2w, p)|p(dv)u(dz)dr[?] (17)
0 R4 xR

t
<cs [ [ ot ol pd)dr
0 R4

O

For the sake of simplicity of notations, in the following, for a constant C, we do not precise the depen-
dence on the regularity constants of the function b and ¢ (such as ||V ,b||, Ly and ¢,).

Hypothesis 2.2 We assume that there exists a non-negative function ¢ : R — R, such that [o, [¢(2)[Pp(dz) :=
ép < 00, Vp > 1, and

vaC(T’, v,2,, p)(Id + Vfc(r’ v, 2,1, p))il || < é(z)v Vr e [07 T]v v, T € Rda z e Rda pE Pl(Rd)?
with I, the d—dimensional identity matrix. To avoid overburdening notation, since both hypotheses 2.1
and 2.2 apply, we take ¢(z) = &(z) and ¢, = &,.

Remark. We need this hypothesis to prove the regularity of the inverse tangent flow (see Section 4.2
(130)).

Hypothesis 2.3 (Ellipticity) There exists a non-negative function ¢ : R — R, such that for every
r€10,T),v,x € R z € R% p € Py (RY), ¢ € RY, we have

d
Z(asz(T,v,z,x,p) > ZQ( )|C|2
j=1
Remark. We notice that together with Hypothesis 2.1, we have ¢(z) < |¢(2)|?, Vz € R%.

Hypothesis 2.4

We give some supplementary hypotheses concerning the function ¢ and the measure p.
a) We assume that there exists a > 0 such that

1 1
hmu_H_Ool v{c>—-}:=60>0, (18)
u



with -
v(dz) = 3 L s oo s (1ZDn(d2).
k=1

This means that ¢ could not be too small so that we could have enough noises to deduce the non-degeneracy
of the Malliavin covariance matrix (see Section 4.2 (137)).

Remark. If u(R?) < oo, then § = 0. So (18) implies that u(R?) = oo.

b) We assume that p is absolutely continuous with respect to the Lebesgue measure: pu(dz) = h(z)dz,
where h is infinitely differentiable and In ~ has bounded derivatives of any order.

Remark. We need this hypothesis to construct the integration by parts framework for the jump equations.

2.3 The Euler scheme

Now we construct the Euler scheme. For any partition P = {0 =ro <71 < -+ < rp_1 < 1, = T} of the
interval [0, T, we define 7(r) = ry, when r € [ry, 7t+1), and we consider the equation

t
XZD = XO +/ b(T(T’),XZ_j(T),pZ_)(T))dT

0
t
+ // C(T(’I‘),’U,Z,Xf(r)_,pf(r)_)NpP (dv,dz,dr), (19)
0 JRIxRd ()=

where p/ is the law of X/ and NV, o7 (dv, dz, dr) is a Poisson point measure with intensity measure of (dv)p(dz)dr,
independent of Xj.

In [3](Theorem 3.5, 3.7, 3.8, Proposition 3.9), Alfonsi and Bally have proved that under some suitable
regularity conditions on the coefficients b and ¢ (which are some conditions weaker than the Hypothe-
sis 2.1 in this paper), the strong solution of the equation (14) exists and is unique, and the following
statements are true.

a) There exists a constant C' depending on 7' such that for every 0 < ¢t < T and every partition P of
[07 T]>

Wi(XP, X)) <CIP|, with |Pl:= max  (rpe1—7)- (20)
ke{0,--- ,n—1}

b) The solution of the following weak equation exists.
t
weG®), [ swntn) = [ s@midn+ [ [ b0, V@) daar
‘ 0

[ eetanedan [ (0at etz ) - s @D

And the solution of the equation (14) is the probabilistic interpretation of (21) in the sense that p;, = £(X})
(the law of X;) solves (21).
We recall the notation § in Hypothesis 2.4. One aim of this paper is to prove the following error estimate.

Theorem 2.1. Under the Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4, we have
a) Forany 0 <t <T, whent > %jd), the law of X, has a [—times differentiable density p;:

P(X; € dx) = pi(dz) = pi(x)de, (22)

and the density p; is a function solution of the equation (21).
b) For any € > 0, there exists a constant C' depending on ¢, d and T such that for every partition P of [0, T]
with [P| < 1, when t > 8(8 + 1),

drv(XF, X,) < C|P|*=. (23)



Remark. In the case 6 = oo, the results in Theorem 2.1 hold for every 0 < ¢ < T.

The proof of this theorem will be given in Section 3.3. The main methods we will use in the proofs are
the Malliavin calculus techniques introduced in [7]. We will discuss them in Section 3.

2.4 The truncated Euler scheme

Since we have ;(R?) = oo (which is a consequence of (18)), we have infinitely many jumps. We use a
truncation argument in order to have finite numbers of jumps and obtain a representation by means of a
compound Poisson process. This is necessary in order to obtain a scheme which may be simulated. For
M € N, we denote By = {z € R%: 2| < M}, ep(r,v, 2,7, p) := c(r,v, 2,2, p)1p,,(2), and

ay = \// w(dz). 24)
{I= \>M}

This is a deterministic sequence such that a?/ — 0 as M — oco. We also denote A = (Aq,---,A,) to be
a d—dimensional standard Gaussian random variable independent of X, and N,. Now we cancel the "big
jumps" (the jumps of size |z| > M) and replace them by a Gaussian random variable a}/ A.

XPM — Xy taMA 4 / b(r(r), XT3 pT 2
t
/ / en(r(r),0,2, XEN, pLN N e (dv, dz, dr), (25)
R? x R4 Pr(r—

where p!" is the law of X", and N 7. (dv, dz, dr) is a Poisson point measure with intensity measure
t

M (dv)u(dz)dr, independent of X, and of A. We remark that A is necessary in order to obtain the
non-degeneracy of the Malliavin covariance matrix, which will be discussed in detail in Section 4.2.

The advantage of considering X, ** is that we may represent it by means of compound Poisson pro-
cesses. For k € N, we denote I, = By, Iy, = Bi\Bi—1 for k > 2 and take (J; )te[o 77 @ Poisson process of
intensity (). We denote by (T});cy the jump times of (JF),c(o.7] and we consider some sequences

(dv), k,i € N. Moreover,

of independent random variables ZF ~ 1, (z )ZE‘Z;, and V,Z’DZ.M pT(Tk)—

(JE) e 17, (ZF)kien, (V,f{M)k,ieN?Xo, A) are taken to be independent. Then in order to do the sim-
keN
ulation, we represent the jump’s parts of the equation (25) by compound Poisson processes:

M Jf

¢
XPM = Xo+a)f A+ /0 b(r(r), XN pEe M ydr + ;Zl VM ZE XTIk el ).
(26)
Notice that the solution of the equation (26) may be constructed in an explicit way (except for pf(% and
pf(’:%)_ which will be discussed in detail in Section 2.5).
We denote
fwim [ () Pa(dz) + ez nldz) P, 27)
{lz1>} {lz|>M}

and recall the notation ¢ in Hypothesis 2.4. We obtain the following error estimate for X, /.

Theorem 2.2. Under the Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4, we have
a) For any 0 < t < T, the law of Xf’M has a smooth density pf’A
b) For any € > 0, there exists a constant C' depending on €, d and T such that for every partition P of [0, T)]
with |P| <1, every M € Nwith ey < 1 and |¢(2)[*1(.j>my < 1, when t > %d(g +1),

dry (XM X)) < C(Ver + [P (28)



Remark. In the case 6 = oo, the results in Theorem 2.2 hold for every 0 < ¢ < T.

The proof of this theorem will be given in Section 3.3 by using some Malliavin integration by parts
techniques.

2.5 The particle system

We notice that we still cannot compute pp( g[ and pf(’%%
ticle system as follows in order to obtain an explicit scheme of simulation. For a random vector X =
(Xt X)), Xt €RY i =1,---,N with a fixed dimension N, we associate the (random) empirical

measure

directly in (26), so we construct the par-

1 N
PX)(dv) = Z Sxi(dv), (29)

where 6, (dv) is the Dirac measure. Now we consider an initial vector (X{,---, X{) with components
which are independent and identically distributed with common law pg (we recall that pg is the law of X
in (14)), and we consider (A!,--- , AN) which isa N x d—dimensional standard Gaussian random variable

independent of (X},---, X). Then we construct the particle system } PM _(x P x AN,

//R g 0,2 XP(A)“ A?f(f)f ) ﬁ() (dv.dz,dr), i =1,--- N, (30)
"X T(r

where N SR (dv,dz,dr),i=1,--- , N are Poisson point measures that are independent each other con-

dltlonally to }7) M and independent of (X},--- , XN Al ... AN) with intensity p(}P MY (dv)p(dz)dr.
We give now the representation of the above equation in terms of compound Poisson processes. This is nec-
essary in order to obtain an explicit simulation algorithm. We recall that we denote Iy = By, I, = Bi\Bik_1
for k > 2. Now fori =1,--- ,N, k € N, we take (Jf’i)te[o,T] a Poisson process of intensity u(Ix). We de-
note by (le’i) len the jump times of (J/* ’i)te[o,T] and we consider some sequences of independent random
variables Z"" ~ 17, (2 )“(dz) and U} uniformly distributed on {1,--- , N}, foralli = 1,--- , N, k,l € N.

, #(Ik) .
Moreover, (J;")  tepor]  »(Z7 )it Ny (U )izt vy (AL, JAN) (XP, -+, X{V)) are taken to be
i=1,-,N, k€N k,lEN k,IEN

independent. Then we represent the jump’s parts of the equation (30) by compound Poisson processes to
give an explicit scheme of simulation.

t
XPME XA+ / br(r), X PR
0
1 ’P M, U ki P,M,i P,M
+ ZZ ), X T’”) Z X T’” } ()"~ (BD
k=11=1
So now the solution of the equation (31) is constructed in an explicit way.
We denote
Viv i= 1ot N 7% + Lga N~ 2 log(1+ N) + Lgz3N 74, (32)
and we consider the d—dimensional regularization kernels
(@) = — (1) = ~ (%), 0<o<1 (33)
¥ - (271_)(1/2 ) Ps - 6d80 5 I —

We recall the notations ¢;; in (27) and 6 in Hypothesis 2.4. In Theorem 2.1, we proved that under
appropriate hypotheses, £(X;)(dx) = p:(z)dx. We give now some approximation results for p;(x).
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Theorem 2.3. Under the Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4, for every
partition P of [0,T] and every M € N with |P| + \/a < 1, we have the following:
i) We take
d=(P|+ \/@)ﬁ, and take N such that Vy < |P|+ v/eum.

When t > 31(2 + d),

1 . 2
pe(@) = 5 D Bes (XM — ) + O((IP| + vEa) ™), (34)

i=1
where O(e) is the big O notation (i.e. for a strictly positive function g defined on Ry, 3C > 0, s.t. |O(g(y))| <

Cy(y)).
i) (Romberg) We take

5 = (|P| + vea)75, and take N such that Vi < |P| + vzur.
When t > (4 + d),

N N
2 7 1 i _4_
(@) = = 3 By s (XTM —2) = =S Bes(XTM —2) + O((PI + vEm) ™). (39)
=1 =1

Theorem 2.4. We suppose Hypothesis 2.1, Hypothesis 2.2, Hypothesis 2.3 and Hypothesis 2.4 hold true.
We take supplementally A to be a d—dimensional standard Gaussian random variable independent of X [
Let P be a partition of [0, T] with |P| < 1, and let M € N with e); < 1 and |&(2)[*1(,>ay < 1. For any
e > 0, for every measurable and bounded function f, when t > %(16—6 + 1), we have the followings.

i) We take

5= (Pl +ex)2%)  and take N such that V; <(|P|+e =)
(IP[+em) N <] M) ;
withe' = 55 and ¢ = %. Then
1 I
/ S@p@)de = LS TEFXTM 4 68) + || flloe x O((P]+ vEM)' ™). (36)
R i=1

i1) (Romberg) We take

5= (Pl +ea)i%) and take N such that Vy < (|P|+en) s A=),

with e, = g and g, = %. Then
9 XN s~ 1 & . ~
/ f@)pu(de) = S Ef(X]M 4+ EA) - % S CEAX]MT 4 46A) + [ flloe x O((P]+ vEm)' ™)-(37)
R4 i=1 i=1

Remark. In the case 6 = oo, the results in Theorem 2.3 and Theorem 2.4 hold for every 0 < ¢ < T.

Remark. We remark that we have determined ¢, N, and we obtain an explicit formula to simulate the
density function p,(x), which is a function solution of the analytical equation (21). We also give the error
of this simulation scheme explicitly. We notice that (35), the scheme based on Romberg method, gives a
faster speed of convergence than (34): we have the power ﬁ > %.

Remark. We mention that we obtain the results of Theorem 2.3 directly without using the previous es-
timates (Theorem 2.2), but the speed of convergence depends on the dimension d. So when d is large,
the speed of convergence is very slow. However for Theorem 2.4, we need to use the previous estimates
Theorem 2.2 to obtain (36). The advantage of considering (36) is that the speed of convergence no longer
depends on the dimension d. So we keep the speed of convergence even for large dimension. Finally, (37)
is a better simulation scheme in the sense that the numbers of particles NV we need is smaller than the one
in (36) and ¢ is larger than the one in (36). We also stress that the speed of convergence in (36) and (37)
is (|P| 4+ /2a)' ¢, the same as in Theorem 2.2 (28) for the truncated Euler scheme.

11



The proof of this theorem will be given in Section 3.3 by using Malliavin integration by parts techniques.

2.6 Some examples

We give some typical examples to illustrate our main results.

Example 1 We take h = 1 so the measure 1 is the Lebesgue measure. We consider two types of behaviour
for c.

i) Exponential decay We assume that |¢(z)|? = e~®/?l” and ¢(z) = e~2/*I" with some constants 0 <
a1 < ag, p > 0. We only check Hypothesis 2.4 here. We have

lnu)%} > ri(ln(u— 1)

an 2 ag

ol

)?,

vle> 2} =wflel <

with r4 the volume of the unit ball in R¢, so that

1 1
— 1>
lnuy{g - u} -

rq (In(u— 1))% .

2(as)® Inu

We notice that # = 0 when p > d; § = co when 0 < p < d; and 0 = 2% when p = d. Therefore, when
p > d, we can say nothing in Theorem 2.1 and Theorem 2.2; when 0 < p < d, all the results in Theorem

2.1 and Theorem 2.2 are true for every 0 < ¢ < T'; and when p = d, (22) holds true for ¢ > Sd(‘n’lr%m,
(23) and (28) hold true for ¢ > %(% +1).

ii) Polynomial decay We assume that |¢(z)|? =
and p > d. Then

and ¢(z) = for some constants 0 < as < ag

a1 _as
=7 TH=17

1 1
v{e> =} = v{le] < (azu— )7} = F(az(u—1) ~ 1)7,
so that

ra (az(u—1) = 1)7
2 Inu ’

1 1
— 1>
lnuy{g - u} -

We notice that in this case, § = oo. Thus, all the results in Theorem 2.1 and Theorem 2.2 holds for every
0<t<T.

Example 2 We consider the (1—dimensional) truncated a—stable process: X; = Xy + fg o(X,-)dU,.
Here (Uy):>0 is a (pure jump) Lévy process with intensity measure

~ 1
/J(dZ) = 1{|Z|§1}Wdz’ 0<ax<l.

We assume that 0 € C{°(R), 0 < ¢ < o(z) < g and -1 < g < ¢/(z) < 7, Vz € R, for some universal
constants 7,0, a, where ¢’ is the differential of ¢ in x. Then by a change of variable z é, we come

back to the setting of this paper with ¢(r, v, z,z, p) = o(z) x 1 and u(dz) = 1,51 |Zl%dz. In this case,
¢(2) = ¢ X , then

1 (c> 1}>
—v{c> -} > — =
Inu =" u T Ilnu 2|1 alnu ’

1 /(o(u1>)4 1 p (c(u—1))% —1
1

so that 6 = oo. Thus, all the results in Theorem 2.1 and Theorem 2.2 hold for every 0 < ¢ < 7.

12



2.7 Preliminaries: coupling

Before moving on to the next section, we make some preliminary computations here. For some technical
reasons, besides the truncated Euler scheme (25), we also consider the truncation of the original equation
(14) as follows (with aé‘ff , A and ¢, defined in Section 2.4).

t
XM = X0+a¥A+/ b(r, XM, p,)dr
0
t
L[ eutroa X o )N, (do.dzar). (38)
0 JRIxRA

We notice that we keep p,. (the law of X,.) instead of taking p (the law of X ) to simplify the calculation
below, so the equation (38) is just an intermediate equation (which is not used for simulation).

We notice that the jump’s parts of XZD M and XM solutions of (25), (38) are defined with respect to
different Poisson point measures (on different probability spaces), so it is not possible to estimate the L?
distance between them directly (we need to estimate the L? distance later in the proof of Lemma 3.9).
To overcome this difficulty, we use similar equations driven by the same Poisson point measure This is
done by a coupling procedure. In this section, we make a coupling argument to construct z, 27 and ! "
which have the same law as X;, X and XZD M but are defined on the same probability space and verify
equations driven by the same Poisson point measure.

We remark that the basic distance which appears in our framework is W; (see (12)). However for
technical reasons, we need to estimate the distance W5, ., (defined immediately below) for some small
e, > 0. This is because we need L? estimate in Lemma 3.9 and we have to use the Hélder inequality with
conjugates 1 + < and 2+5* . So now we take £, > 0 which is small enough. For p1, ps € Payc, (R?), we
denote the Wasserstem dlstance of order 2 + ¢, by

Woee.(propa) = inf {( / & — g n(de, dy) = ),
w€ll(p1,p2) Ré xRd

where TI(py, p2) is the set of probability measures on R? x R? with marginals p; and p,. Some basic
properties of W,,p > 1 can be found in [37] and [51] for example, and we mention that Wi (p1, p2) <
Waie, (p1, p2)-

Now we make the optimal coupling in W5, ., distance between X 7)( tz)w and X;_. We recall that pf(’t]y_
is the law of X P ])\ and p;_ is the law of X;_. For every partition P, M € N and time 0 < ¢ < T, one can
easily check that P 34_ and p;_ both belong to P, .. (R%). This is a consequence of Hypothesis 2.1 and
of (16) with

P.M  PM
O(r, v, z,w,p) = ep(7(r),v, 2, X0 pr ()

and with
D(r,v,z,w, p) = c(r,v, 2, Xr—, pr_).

Then we take 1'[73 M (dvy, dvs) to be the optimal Wy, ., —coupling of pp M _(dvy) and p;—(dvs). So we have

(W2+a*(Pf(£4_aPt—))2+€* = /d ) vy — U2|2+€*Hf’M(dU1,dU2)-
R4 xR

We will need the representation of 117" (dv;, dv,) by means of the Lebesgue measure dw on [0, 1]. This
will be done by using the following lemma.

Lemma 2.5. There exists a measurable map ® : [0,1) x P;(RY) — R? such that for any p € P1(R%), any
bounded and measurable function ¢ : R — R, we have

1
| o pnav = [ ot

Rd

13



This result is stated in [14] and is useful when we estimate the L? distance. We construct (n; (w), n?(w))

which represents 117" in the sense of Lemma 2.5, this means

[ st inde = [ pon e o),
R4 xR4
In particular, this gives for any measurable and bounded function f : R¢ — R,

fo (nt (w))dw = [ga f( T(t) M (dvy), fo (nf(w))dw = [ga f(v2)pi—(dva),
fol ‘ntl (w) — un (w)\2+5*dw = fRded |Ul - 1}2|2+5*Hf’M(d1}17dv2) (W2+s*( ( ) y Pt)— ))2+E*~ (39)

Now we construct a Poisson point measure A (dw,dz,dr) on the state space [0,1] x R? with intensity
measure dwu(dz)dr. Then we consider the equations

t t
v = Xot [Wronpdrs [ [ )z N (o dedr), @0)
0 [0,1]xRd
t t
o = Xorald [oalpdrs [ cutrdw) sl g )N (duds,dr), (4D
0 [0,1]x R4
t
xf’M = X0+aTA+/ b(7(r),z P(];47pf(rj§[)d
01]x1Rd

One can check by It6 formula that 2] " has the same law as X" (solution of (25)), M has the same
law as XM (solution of (38)) and z; has the same law as X; (solution of (19)). Then

(Wape. (0T 00 )24 = (Wore (EXEN0) LX) = (Wape (LZi00), L))o

Bl ) —a [P (43)

IN

Remark. We also have the following consequence of Burkholder inequality (as a variant of (16) and (17)):
Let ®(r,w, z,w, p) : [0, T]x[0, 1]x RIxQx Py (R?) — Ry and ¢(r, w,w, p) : [0,T]x[0,1]xQ2xP; (R?) — Ry
be two non-negative functions.

a) Then for any p > 2,

t
E‘// @(r,w,z,w,p)N(dw,dz,dr)’p
0 J[0,1]xRe
t 1 - t 1 B
SC[E// \q)(r,w,z,w,p)\pu(dz)dwdr—|—IE//\ |P(r, w, z,w, p)|p(dz)|Pdwdr
0 JO R4 o Jo Rd
t el
A8 [ 1 [ 1800w 500 dud, (44)
0o Jo Jra

where C'is a constant depending on p, T'.
b) If we have

|®(r, w, z,w, p)| < |&(2)||@(r, w,w, p),
then for any p > 2,

t t el
E’/ / é(r,w,z,w,p)./\/'(dw,dz,dr)‘p < CIE/ / |&(r, w,w, p)|Pdwdr. (45)
[0,1] xRd o Jo
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Then we obtain the following consequence. We recall by (27) that epy = | (21> M} le(2) Pu(dz) +
| {250y €(2)p(d2) ).

Lemma 2.6. Assume that the Hypothesis 2.1 holds true. Then there exists a constant C' dependent on T and
e, for every M such that ey < 1 and [¢(2)|* 12> m < 1, we have

i) ElzM — x?5 < Cepr — 0.
And for every partition P with |P| < 1, we have
i) Elz{M —a)' T < C(|IP| +em),
iii) Elal ™M — z?re < O(P| +enm),
i) Wae, (oM @) < O(IP] + ear) 75

Proof. We only prove ) and i7), since i) is a direct consequence of 7) and ¢ii), and 4v) is an immediate
consequence of 7).
Proof of i): We write E|zM — 2,25+ < Ey + E; + Ea, where Ey = |a}! |?+=-E|A]2*5+ < Ceyy, and

t
By —E| / (b(r, 2™, pr) — b, 2y, pr))dr P,
0

t
E2 = E| / / (CJVI(Ta n?(w)azaxv{%ﬂpr—) - C(Ta nz(w)wzvxr—apr—))N(dwvdzadr)‘%rs*
0,1]xRd
Firstly, by Hypothesis 2.1,
E, < c/ E|zM — M |>Te gy, (46)

Then by Hypothesis 2.1, (44) with
B(r,w, 2,w, p) = lear (r,n2(w), 2,2, pr—) — e(r, 2 (w), 2, 20—, pr_)|
and by (45) with
®(r,w, z,w, p) = lear (r 17 (W), 2,202 pro) = enr (2 (W), 2, @0, i),

we have

Ey

IN

t
E| / / (ear(r, m2(w), 2, T o) — clry (W), 2, 20—, po_ ) )N (duo, dz, dr) 2+
[0,1]xR4

L E / / (ear(r, 2 w), 2, 2™ o) — ext (r 2 (w), 2, 2o pr_ )N (du, dz, dr) P
[0,1] xR

e (dz () uldz)2 e (2 u(ds 2
off  EOREsaE [ o sl [ e )

t
+ /E\xr—xM\%E*dr]
0

IN

t
< Clew + / Elz, — oM [+ dr). (47)
0
Combining (46) and (47), we have

t
Elap! —a?* < C[EM-i-/ ElzM — 2, >t dr].
0
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So we conclude by Gronwall lemma.

Proof of iii) We write E|z] " — 2,2t < C[K, + K, + K], with K, = |a! |2t-E|A[*t¢+ < Ceypy, and

Ki = / P2 P bl v, p )|
Ky~ E| / / om0 )2 T ) = el ). . )N ()
><

Using Hypothesis 2.1,

t

t
K; < C[|’P|2+E* +/ E|xf(,7f\)/[*$r|2+€*d7’+/ (Wl(,ﬂf(’r]\)/[,pr))2+€*d7"}
0 0

t
< CO[|P|*e +/ Elal; — >t dr]. (48)
0

By Hypothesis 2.1, (45) with
B(r,w, 2,w, p) = le(r(r), m} (w), z, 22N pTN ) = elrm?(w), 2,00, o)
and by (44) with
B(r,w, z,w, p) = lear(r(r), m} (w), z, 2L N pT ) = el (), m(w), 2,270 p TN,

we have

Ky

IN

/ / 1 )2 TN T el 20), 2 pr DN )
X

+ E| / / (err(rr) mt(w), 2, T, pFaM )
0 J[0,1]xRd ()= Fr(r)

— clr () w), 72T PN )N (dw, d,dr) 2]

t 1
< ClPPre +/ / |77i(w)—773(w)|2+5*dwd7"+/ Ela7y —fﬂr\2+5*dr+/ (Wapliy s pe)) > = dr
0 JO
= €x - - _ 2+4ex
+ / |e(2) [P+ u(dz) + | &(z)u(dz)[Pe + | le(2)u(dz)] 2]
{lzI>0} {lz|>M} {lz|>M}
< O[\PI2+€*+/ Bl — 2, 2o dr + eu, (49)

where the last inequality is obtained by (39), (43), and the fact that W, distance is upper bounded by
Wo, ., distance, and so upper bounded by the L?*¢- distance.
We notice that by (45) with

B(r,w, z,w,p) = enr(7(r),my (w), 22N pZen ),

we have

Elz2 M — o M2 < C|p). (50)

7(t)

Combining (48), (49) and (50),
t
Elal M — 2,275 < C[Ko + K1 + K3] < C[|P| + / ElazPM — 2,2t dr + e ).
0

So finally, we conclude by Gronwall lemma. O
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We remark that we may represent the jump’s parts of the equations (41) and (42) by means of compound
Poisson processes. With all the random variables ((J; )te[o 77, (ZF) k,ien, Xo, A) constructed in Section 2.4,
eN

we take moreover (W});. ;e a sequence of independent random variables which are uniformly distributed
on [0, 1] and independent of ((JF):c(0,7], (ZF)k,ien, Xo,A). Then we have

keN
M J
M = Xo+aMA+/ b, py)dr + 303 e(TE iR (WE), ZE, 3t o), )
k=11=1
k:
t 't
oM = Xo+a¥A+/O b(r(r), 22y Pry ) dr+ZZ () s WE), 252 iy o7 gy -
k=11i=1

(52)

We recall that the laws of z; and X; coincide, xt P.M has the same law as X, and 2™ has the same
law as XM . The advantage of considering z;, = and 27 is that the jump’s parts of them are all defined
with respect to the same Poisson point measure, which means that we are able to overcome the problems
caused by the "Boltzmann term" (the Poisson point measure depends on the law of the solution). So in
the following, instead of dealing with X;, X and X" solutions of (14), (38) and (25), we deal with
xy, M and ;vp M solutions of (40), (51) and (52).

3 Malliavin calculus

3.1 Abstract integration by parts framework

Here we recall the abstract integration by parts framework in [7].
We denote C° to be the space of smooth functions which, together with all the derivatives, have poly-
nomial growth. We also denote C}! to be the space of ¢g—times differentiable functions which, together

with all the derivatives, have polynomial growth.
We consider a probability space (2,F,P), and a subset S C (] LP(€2;R) such that for every ¢ € Cp° (R%)
p=1
and every F' € 8%, we have ¢(F) € S. A typical example of S is the space of simple functionals, as in the
standard Malliavin calculus. Another example is the space of "Malliavin smooth functionals".

Given a separable Hilbert space H, we assume that we have a derivative operator D : S — (| LP(Q;H)

p=1
which is a linear application which satisfies
a)
DpF :=(DF,h)y €S, foranyh e H, (53)
b) Chain Rule: For every ¢ € C}(R?) and F = (F},--- , F;) € 8%, we have
d
F)=> 0:¢(F)DF, (54)

Since D, F € S, we may define by iteration the derivative operator of higher order D9 : S — (| LP(£2; H®)
p=1
which verifies (DYF, ®@{_, hi)3;¢a = Dy, Dp,_, - - - Dp, F'. We also denote D/ZI,--» = (DF, @1 hi)y0a,

forany hy,--- ,hy € H. Then, D}, F =Dy, D", F(g>?2).
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We notice that since 7 is separable, there exists a countable orthonormal base (e;);cn. We denote

DiF = De,iF = <DF, ei>7~l~

Then -
DF =) D;Fxe; and D'F= Y Dj . ;Fxe_e.
i=1 i1, g
For F = (F,--- ,F;) € 8% we associate the Malliavin covariance matrix
or = (03)ij=1...a, With o% = (DF;, DF})3. (55)
And we denote
Y, (F)=E(1/detop)P. (56)

We say that F' is non-degenerated if ¥,(F) < oo, Vp > 1.

We also assume that we have an Ornstein-Uhlenbeck (divergence) operator L : S — S which is a linear
operator satisfying

a) Duality: For every F,G € S,

E(DF,DG)y = E(FLG) = E(GLF), (57)

b) Chain Rule: For every ¢ € C2(R%) and F = (F},--- , Fy) € 8%, we have

d d d
Lo(F) =Y 0;¢(F)LF; =Y " 0;0;¢(F){DF;, DF;)y.
i=1 i=1 j=1

As an immediate consequence of the duality formula, we know that L : S ¢ L?(Q2) — L?(9Q) is closable.

Definition 3.1. If D : S C L*(Q) — L?(Q; H®9), Vq > 1, are closable, then the triplet (S, D, L) is called
an IbP (Integration by Parts) framework.

Now, we introduce the Sobolev norms. For any ! > 1, F € S,

l
|F|1,l = Z|DqF|H®q, ||, = ||+ ‘F‘l,ﬂ (58)

q=1

We put |F|o = |F|, |F|; =0forl <0, and |F|;; =0 for [ <0. For F = (Fy,--- ,F,) € 8%, we set

d d
|F|1,z = Z|Fi|1,17 ‘F‘z:Z|Fi|17
i=1 i=1

Moreover, we associate the following norms. For any [ > 0,p > 1,

£l
1E L1

With these notations, we have the following lemma from [8] (lemma 8 and lemma 10), which is a
consequence of the chain rule.

EIFID)YP, |IFl, = EIFP)Y?,
1E M+ IEF g - (59)
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Lemma 3.1. Let F € 8% Foreveryl € N, if ¢ : R — R is a C'(R?) function (I—times differentiable
function), then there is a constant C; dependent on [ such that

a) |¢(F)1s < [VO(F)||Flri+Cr sup [0°¢(F)||Fl5 ;.
2<|<!

If ¢ € C'T2(R?), then

b) |L(F) < |Vo(F)||LF|,+Cr sup  [9°¢(F)|(1+ |F|IF2)(1 + |LF|1—1).
2<|BI<i+2

For | = 0, we have
¢) |Lé(F)| < |Vo(F)||LF| + sup. 0% S(F)[|FI3 1

We denote by D;,, the closure of S with respect to the norm |[of| ,

Dy, = EHOHL,Z,p’ (60)

and o -
Doo = () () Pip» Hi=Dipo. (61)

I=1p=1

For an IbP framework (S, D, L), we now extend the operators from S to D.. For F' € D, p > 2, there

exists a sequence F,, € Ssuchthat|[F — F,|, — 0, ||[F, — F||,,, — 0and || LF,, — LF,|,_, , — 0. Since
DY and L are closable, we can define

DF = lim D'F, in LP(QH®%), LF= lim LF, in L"(Q). (62)
We still associate the same norms and covariance matrix introduced above for F' € D..
Lemma 3.2. The triplet (Do, D, L) is an IbP framework.
Proof. The proof is standard and we refer to the lemma 3.1 in [10] for details. O

The following lemma is useful in order to control the Sobolev norms and covariance matrices when
passing to the limit.

Lemma 3.3. (A) Wefixp > 2,01 >2. Let F € L*(Q) and let F,, € 8%, n € N such that

i) E|F,—F| — o0,
i1) sup||Fn||L7l’p < Ky < oo.

Then for every 1 < p < p, we have F' € de and ||F|| 1, , < K, . Moreover, there exists a convex combination

angwxmesd,

i=n

My,
with 4" > 0,4 =n,....,my and > v =1, such that

i=n

1Gn = Fllg 2 —0.

(B) For F € D, we denote
AF) = inf (or(, ()
I¢l=1
the lowest eigenvalue of the covariance matrix op. We consider some F' and F,, which verify i), ii) in (A). We

also suppose that
iii) (DF,)nen is a Cauchy sequence in L ($; H),
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and for every p > 1,

iv) supE(A(F,)) P <Qp < oco. (63)

n

Then we have
ENF))™P<Qp, <o, Vp>1.

(C) We suppose that we have (F, F) and (F,, F,,) which verify the hypotheses of (A). If we also have

v) sup||DF, — DFnHLZ(Q;’H) < g, (64)

then B
|DF — DF|r2m) < €

Proof. Proof of (A) For the sake of the simplicity of notations, we only prove for the one dimensional case.
The Hilbert space H; = D; 2 equipped with the scalar product

l
U V)p1o = > E(DW,DWV)yes +EUV)
qg=1
-2
+ Y E(DILU, DLV )ysq + E(LU x LV)

g=1

is the space of the functionals which are {—times differentiable in L? sense. By ii), for p > 2, ||[F,||} ;5 <

| Fully, ., < Kip- Then, applying Banach Alaoglu theorem, there exists G € H, and a subsequence (we
still denote it by n), such that F;, — G weakly in the Hilbert space H;. This means that for every Q € H,,
(Fr, Q)12 = (G, Q)p1,2. Therefore, by Mazur theorem, we can construct some convex combination

My,

Gn=)Y WxFeS

1=n

My
with v > 0,i =n,....,m, and > 4" = 1, such that

i=n
1Gn =Gl 12— 0.

In particular we have
E|Gn, — G| <Gy =Gl 2 — 0.

Also, we notice that by i),

Mn
E|Gn—F| <> 4" xE|F; - F| = 0.

So we conclude that F' = G € H,. Thus, we have
2 2 2
E(|Gn — F|;) + E(|LGyn — LF|_5) < [|Gn = Fl|7, ;0 — 0.

By passing to a subsequence, we have |G, — F|, + |LG, — LF|,_, — 0 almost surely. Now, for every
p € [1,p), we denote Y,, := |G|} + |LG,|}_, and Y := |F|¢ + |LF|/_,. Then, Y,, — Y almost surely, and
for any g € [p, ],

Moy q My
ElGull +BILGall, < |Gall] q= D 2 xEl < QA x|IFill,0)?
i=n L, i=n
Moy B B
< (sup||Fllp,0x Y AN =sup||Fi||], ; < K.
3 3

i1=n
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So (Y, )nen is uniformly integrable, and we have

IFI7,0,5 = E(FIT) + E(LF|]_,) = E(Y) = lim E(Y,) < K}

n—soo L,p’

Proof of (B) We consider for a moment some general F, G € D¢ . Notice that

(o(F)¢,¢) = (DF,¢) I3,

SO

MF) = inf [(DF.Of3

Now we check that

[VAE) = VAG)| < ID(F — Gl (65)

Indeed, |(DF,()|n < (DG, )|n + |D(F — G)|x|(|, so that by taking the infimum, we get \/A(F) <
VA(G) 4+ |D(F — G)|%. And in a similar way, we have the inverse inequality, so (65) is proved. We now

Mn
come back to our framework. Recalling that G,, = > 4 x F;, we observe that

i=n

DG, — DFnHLz(Q;H) < Z'Y:LHDFl - DFn||L2(Q;H) — 0.

i=n

Here we use the fact that (DF},),cy is a Cauchy sequence in L?(£2;H). Meanwhile, we know from (A)
that
||DGn — DFHL2(Q;’H) — 0.

So we conclude that |[DF — DF,| r2;u) — 0. Thus, by (65), E[\/A(F) — \/A(F,)| — 0. This gives
that there exists a subsequence (also denote by n) such that \/\(F;,) converges to \/A(F') almost surely,
and consequently |A(F},)|~P converges to |A(F')|~? almost surely. Since we have (63), (|A(F,.)|™P)nen is
uniformly integrable. It follows that

E(AE)™?) = Tim E([A(F)|7P) < Qp.

n—oo

Proof of (C) Since the couples (F, F') and (F,,, F},) verify the hypotheses of (A), we know by the results
of (A) that we may find a convex combination such that

iy ool Y 4" (DF;, DF;) — (DF, DF)| 2(00) = 0.

i=n

Then it follows by (64) that

HDF—DF||L2(Q;H) < mn—ﬂx”Z’Y?(DFi _DFi)||L2(Q;H)
< limg oo Z’Y?HDE' — DE || L2(m)
< &
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3.1.1 Main consequences

We will use the abstract framework presented above for the IbP framework (D%, D, L), with D and L
defined in (62). We recall the notations || F||.,,, in (59), ¥,(F) in (56) and o in (55). For any n > 0,
we take Y, (x) : (0,00) — R to be a smooth function such that

]]-[goo) < Tn < IL[7],00)~

We remark that o is invertible on the set {Y, (detop) > 0}. We first establish an integration by parts
formula.

Lemma 3.4. (A) Let ' = (Fy,--- ,Fy) € DL. We suppose that the Malliavin covariance matrix o is
invertible. We denote N
Tp=%)ji=1,a=0p"

We also assume that det o is almost surely invertible and (det o)~ € Dy. Then for every f € C(R?) and
G € Dy,
E(9:f(F)G) = E(f(F)H(F, G)),

with

d d
ZG (T4'LF; — (DT%' DF}) ZF (DG, DF})
Jj=1 j=1

Moreover, iterating this relation, for every multi-index 8 and every f € C]lfi | (R%), we get
E(9sf(F)G) = E(f(F)Hp(F,G)), (66)

where Hg(F,G) is obtained by iterations: for 3 = (B1, -+ ,Bm) € {1,--- ,d}™ and B = (B1,"* Bm—1), we
define Hg(F,G) = Hpg,, (F, H3(f,G)).
(B) Let F = (Fy,--- ,F;) € DL. For any j,i=1,--- ,d we define

T3 = (05" Ty (det op).
Then for every f € C}(R%) and G € D,
E(0:f(F)GYy(detop)) = E(f(F)Hyi(F,G)),
with
H,i(F,G) =Y GI%'LF; — (DI}, DF;)y) — > T4 (DG, DF;)y
j=1 j=1

Moreover, iterating this relation, for every multi-index 8 and every f € Cy | (R%), we get
E(9sf(F)GTy(detor)) = E(f(F)Hy 3(F,G)), (67)

where H, 5(F, Q) is obtained by iterations: for 8 = (81, ,Bm) € {1,--+ ,d}™and B = (B1," - Bm—1), we
deﬁne HV] B(F G) TI Bm (F Hn ﬁ(fv ))

Remark. In (A), we assume the non-degeneracy condition for F, so we have the standard integration by
parts formula. However in (B), we do not assume any non-degeneracy condition of F', and we obtain a
localized form of integration by parts formula.

Proof. The proof of this lemma is standard, and we refer to [7]. O

As a consequence of the integration by parts formula, we obtain the following proposition based on
some estimations of the weights E|Hg(F,1)| and E|H,, 5(F,1)|.

22



Proposition 3.4.1. Let F = (Fy,--- ,Fy) € D4.. We fix q € N.
(A) Suppose that there exists a constant C,; (dependent on g) such that || F||1, g+2,8dg + X4q(F) < Cq. Then
for any multi-index 8 with |3| = q and any function f € C(R?),

(By) [E@”F(F))] < Cyllflloss  VIBl =g
(B) Suppose that there exists a constant Cj, (dependent on q) such that ||F||1 412, (4a+1)q < C4- Then for
any n > 0, any multi-index 8 with |3| = q and any function f € C} (R9),

1

(By) [E(Q7f(F)Yy(detop))| < Cgll flloo x 7t MEI

Remark. In (A), we assume the non-degeneracy condition for F, so we can control the weight Hgz in the
standard integration by parts formula (66). In (B), we no longer suppose non-degeneracy condition for
F, so we apply (67) and obtain a localized form of estimate.

As an immediate application of Proposition 3.4.1, we have the regularity of the density.

Corollary 3.4.1. We fix p € N. Let F = (Fy,--- ,F;) € DL. We assume that ||F||f, ptat2,sd(p+d) +
Yu(p+d)(F) < oo. Then, the law of random variable F is absolutely continuous with respect to the Lebesgue
measure and has a density pr(x) which is p—times differentiable. And one has

d
pF(x) :E(aBH]]'[OOO)(F] 71’]‘))7 /3: (la 7d)a (68)
j=1

with x = (21, ,24) € R%

Proof. Proposition 3.4.1 is proved in [7] and Corollary 3.4.1 follows by standard regularization argu-
ments. -

We consider the d—dimensional regularization kernels

1 _lzl? 1 =z
Pa) = Gy T @)= gaely). 0<O<T,

and we denote
fila) = Fxosta) = [ F)esta =
Then we have the following regularization lemma.

Lemma 3.5. (A) i) For a multi index 3, we suppose that F satisfies (Bag|). Then for any function f €
02+|/H| Rd
b ( ),
[E(0° f(F)) = E(0” f5(F))| < dCays |1 fl x 6. (69)

ii) (Romberg) For a multi-index /3, we suppose that I satisfies (B, ||). Then for any function f C;l Al (R%),
\E(aﬁf(FD +E° f5(F)) — QE(aﬂfa/\/i(F))‘ < 6d°Casp 1 fll o x 6*. (70)

(B) iii) We suppose that F satisfies (BS). We fix p > 0 and we take some G € D% such that for any p € N,
I1Fllip + 1Gllip + X,(G) < oo. For any gy > 0, we denote g = 2/(1 + ). Then there exists a constant C
depending on p, q, p and d such that for any n > 0 and § > 0, for any function f € CZ(R%),

2
E(F(F)) — E(f5(F)| < C | fll ¥ (% ("M IDF — DGl + 1), 71)

iv) (Romberg) We suppose that F satisfies (B}). Under the same hypotheses as iii), for any function f €
C(R?), we have

4
E(f(F) + E(fs(F)) = 2E(f5,2(F))| < Cllfll * (% + (07 HIDF = DGl r2@m)? +07). (72)
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Remark. We remark that in (A), we assume the non-degeneracy condition for F', and we have the standard
regularization lemma (69). While in (B), we do not assume the non-degeneracy condition for F', but we
need to assume that we have another random variable G which is non-degenerated (such that DG is
close to DF). Then we obtain a variant form of regularization lemma (71). Moreover, applying Romberg
method, we have (70) and (72). We also remark that the regularization lemma here is slightly different
from the one in [7]. The kernel considered in [7] is the super kernel, but we are not able to simulate the
super kernel. So in our paper, we consider the Gaussian kernel s which allows us to do the simulation.

Proof. Through all this proof we use the notation g = 9 f.
Proof of (A) i) : We denote

Ryo.) == 3 [ axa=n7 [ auesuynrorote+ )

la|=¢

with y® =[], Yo, for a = (a1, ..., o). Notice that if F satisfies (B,) then (recall that 9%g = 929" f)

IE(Ry(8, F))| < Coti 1 fll o /Rd dyes(y) ly|* = Cq+|/3|/ e(y) [yl dy ||l 07 (73)

Rd

We use a development in Taylor series of order two in order to get
O 1a) =0 fs(0) = [ dyeste =)@ 1(e) = 0" 1)
= /Rd dyps(z —y)(9(x) — 9(y))
= Rg(d, x)
Here we use the fact that [, y;¢5(y)dy = 0. This, together with (73) yields (69).

Proof of (A) i) : Using a development in Taylor series of order 4

2
97 () ~ 9 fo(w) = 5V 2g(a) + Ra(6, )

Here we have used the fact that the third moments of the normal distribution are null and fRd yJ2 ws(y)dy =
§2. We fix a € (0,1) and we use the above equality for ad :

L g5 L .5 R 1

ga f(x) — ;8 Jas(x) = EV g(x) + ;R4(a5, x).
Subtracting the equality for § and for ad, we obtain

1 1 1
(=5 - 9P f(x) — (gaﬂfm;(x) — 9P fs(z)) = —3Ra(ad, z) = Ry(9,2).
Taking a = 1/+/2 we get
0° f(w) = 20° f5, 5(x) — 0° f5(x) + 2Ra(5/V2, ) — Ra(6, ).

And using (73) we get (70) (we have also used fRd o(y) |y|4 dy < 3d?).

Proof of (B) iii) : We take | 3] = 0. Notice that if F' satisfies (B,), then

5(1
B(R,(5, P)Yyfdetor))] < L [ ayostlul® = €5 [ e ol ay Sl 5o 09
n Rd Rd n
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We use a development in Taylor series of order two in order to get

E(f(F)Yy(detop)) —E(fs(F)Y,(detop)) = /dy%F Y (F) = f(y)Ty(detor))
= E(Ru(5, F)Y,(det op)).

Here we use the fact that [, y;¢5(y)dy = 0. Using (74) for ¢ = 2, we have
/ 2 6
[B(Ra(5. )Yy detar)) < G [ oo ol dul e S
So
52
[E(f(F)Ty(detor)) — E(fs(F)Yy(detop))| < Ol fll g (75)
On the other hand, we make a small computational trick as follows which is originally from [11] p14. This
trick allows us to obtain a better result. We denote

R— detap — detag
- det og

This is well-defined since G is non-degenerated. For an arbitrary ), we write
1 1
P(detor < n) < P(detor < n,|R| < ) +P(|R| > ) (76)

When |R| < 1, |detop — detog| < 1detog. This implies that detop > 1 detog. Recalling that G is

non-degenerated and using Markov inequality, for every p € N, it follows that
1
P(detop < n,|R| < 1) < P(detog < 2n) < 2°9°E|det og|™” < Cn”. 77)

For any n > 0, p € N, with ¢ = 2/(1 + &), we write

1 1
P(|R| > 1) = P(|detop —detog| > Zdet o)
1
< P(detog <n)+P(|detor — detog| > 177)
< C(? +n"9E|detor — det og|9)
< CO"+ (' |IDF = DGl @), (78)

where in the last two steps, we have used the fact that G is non-degenerated, and ||F||1, + ||G|l1, <
00, Vp > 1, and Hélder inequality with conjugates 1 + ¢, and 1:% Putting together (76), (77) and (78),
we obtain
P(detop <n) < C(n”+ (n '|DF — DG| 12(0:3))%)- (79)
Then we have
[E((1 = T (det o)) ()] < || flocP(det or < 1) < Cllfloc(n” + (| DF = DGll12(090)%)-  (80)
Similarly, we also have
[E((1 = T, (det 02)) f5(F)] < Ol floc(n” + (™| DF = DGl|12(00))). (81)

We conclude by combining (75), (80) and (81).
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Proof of (B) iv) : The proof is analogous to the proof of i:). Using a development in Taylor series of
order 4

52
(@) = fs(@) = 5V f () + Ra(6, ).
We use the above equality for § and %, then by subtracting them, we get
f(@) =2f5,5(x) — fs(z) + 2R4(0/V2, ) — Ry(5, ).
So by (74),
E(f(F)Ty(detor)) + E(fs(F)Y,(det o)) — 2E(f5,,5(F)Ty(det or))
< 2E(R4(6/V2, )Y, (det o)) — B(R4(8, )T, (det o))

64
SCHJCHOCE (82)

We conclude together with (80) and (81).
O

The regularization lemma (Lemma 3.5) implies the following result concerning the approximation of
the density function.

Corollary 3.5.1. i) Suppose that F satisfies (B2tq). Then, for every x,
Ipr(x) — E(ps(F — 2))| < dCayq x 62 (83)
i1) (Romberg) Suppose that F satisfies (B44.q4). Then
pr(x) +E(ps(F — 2)) — 2B, 5(F — x))‘ < 6d2Clypq X 0. (84)

Proof. We take a multi-index 8 = (1,--- ,d) and

d
fly) = H H(y;), (85)

where H(y) = 1jp,)(y) is the Heaviside function. So by (68),

pr(z) =E(0°f(F - 1)).

Notice that

d
0% f5(F — x) = [ [ H5(F) — 25)) = @s(F — ),
j=1

<

so that (69) gives

pr(z) = E(ps(F —2)] = [E(0°f(F —x)) = E(0" f5(F — )|
d02+d x 82,

IN

In a similar way (70) gives (84). O

In the following, we define the distances between random variables F, G : Q — R%:
d,(F,G) = sup{[E(f(F)) —E(f(@)] : Y |9°f] . <1}
|8|=r

For r = 1, this is the Wasserstein distance W, while for r = 0, this is the total variation distance dry .
Using the Malliavin integration by parts formula (Lemma 3.4), one proves in [7] (lemma 3.9) the fol-
lowing results.
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Lemma 3.6. We fix some index I, some r € N and some e > 0. We define py = 2(r(1 — 1) +2), p; =
max{4(l + d),2(" —r+2)}, ¢t > r(2 — 1) +4, ¢ > max{l +d + 2,2 —r + 4}. Let F,G € DL One

€

may find p € N, C € R, (depending on r,l and ¢) such that
i) drv(F,G) < C(1+ 5y, (F) + 5, (G) + IFllp g, , + Gl g, ) % dr(F,G)' 75, (86)

and

oo < COU+ S0 (F) + 5 (G) + [Pl gy + Gl ) X (FG)5 (87)

i) |pr —pc
where pr(z) and pg(x) denote the density functions of F' and G respectively.

Remark. We explain about the significance of this lemma. If we have already obtained an estimate of a
"smooth" distance d,. between two random vectors I’ and G but we would like to control the total variation
distance between them, then we employ some integration by parts techniques which are developed in
[BCP] and conclude the following. If both £’ and G are "smooth" in the sense that || ||, , , + Gl ,, <o
for sufficiently large ¢, p; and both F and G are non-degenerated in the sense that ¥,(F) + £,(G) < oo,
with p large enough, then (86) asserts that one may control dry by d,., and the control is quasi optimal:
we loose just a power £ > 0 which we may take as small as we want. And (87) says that we may also
control the distance between the derivatives of density functions by d,..

If we only assume the non-degeneracy condition on F' but no non-degeneracy condition for G, then we
have a variant of the previous lemma (see [7] proposition 3.11 and remark 3.14).

Proposition 3.6.1. We fix some r € Nand some e > 0. We define p; = 2(82+2), q; > 8- +4. Let F, G € DL
One may find p € N, C € R, (depending on r and ¢) such that

dry (F,G) < C(L+ 3y, (F) + 1Fll 14,  + Gl 1.4, ) ¥ (dr(F.G) + [DF = DG|[72(90)) = (88)

»41,P
Remark. The result in Proposition 3.6.1 is better than proposition 3.11 and remark 3.14 in [7]. We get
|DF — DG||2L2(Q.H) instead of |[DF — DG/ 2(q.x)- This is because rather than the estimate (3.29) with

p’ = 1in [7], we use a sharper estimate (79) with ¢ = 5 +250 and ey = 5. The idea of (79) comes from

the paper [11] p14. We benefit a lot from this improvement in the paper. It guarantees that we are able to
keep the speed of convergence 1 — ¢ (instead of 1 — ¢) in the final results Theorem 2.1~2.4.

3.2 Malliavin calculus for the jump equations

In this section, we present the integration by parts framework which will be used when we deal with
the jump equations (51), (52) and (40). There are several approaches given in [13], [26], [32], [33], [41],
[45] and [52] for example. Here we give a framework analogous to [8].

To begin we define a regularization function.

1
= 1- — 11
a(y) 1_(4y_1)2 fO’I" ye [4’2)’ (89)
Y = Ly + Lgamene (90)
We notice that 1) € C3°(R) and that its support is included in [—1, 3]. We denote
Ui(y) = o(lyl = (k= 3)), ¥k €N, (o1)

Then for any [ € N, there exists a constant C; such that

sup ||V l1,00 < C1 < 00. (92)
keN

We focus on xf’M and zM (solutions of the equations (52) and (51)) which are functions of random

variables T, W}, Z¥, A and X, (see Section 2.7). Now we introduce the space of simple functionals S. We
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take G = o(TF, WP, X, : k,i € N) to be the o—algebra associated to the noises which will not be involved
in our calculus. In the following, we will do the calculus based on Z} = (Zf,,---,ZF,),k,i € N and
A= (Ay,---,Ay). We denote by Cg., the space of the functions f : Q x R™>*™ *d+d _, R sych that for
each w, the function (2} ;,..., 27 4, 81, ,8a) = f(w, 211, .., 2 4,01, -+, ) belongs to C5 (Rmxm'xd+d)
(the space of smooth functions which, together with all the derlvatlves have polynomial growth), and for
each (27 1,..., 2. m o 81,---,04), the function w flw, 2t 1,20 4,01, ,04) is G-measurable. And we
consider the weights

amda

& = Vi(Zf).
Then we define the space of simple functionals

S={F=f(w(Z )1<k<m’7A) f€Cgp,mm €N}
1<z<m
Remark. The simple functional F is actually a function of (T¥)x ien, (WF)k.ien, (ZF)k.ien, A and Xg. By
taking m = Jt and m’ = M, we notice that forany 0 < ¢t < T, $Z) and .Z‘t[ (solutions of the equations
(52) and (51)) both belong to S¢.

On the space S we define the derivative operator DF' = (D? F, DAF), where

B .
D(ZEE&)F = gk f ( 7(sz)1§kf7n’7 A)7 k,l € N7j € {17 U ’d}’ (93)
<i<m
0 ~
DEAF - &i (w7(sz)1§kSm,’7A)a J € {17 ’d}
: i<i<m

We regard D? F as an element of the Hilbert space I, (the space of the sequences h = (hy;;)k,ieN,je{1, - d}
with \h|122 =) e Doieg Z‘;:l |h; j|> < 00) and DF as an element of I x R%, so we have
d co oo d
(DF,DG),, ps = > D{F x DG + ZZ i x Dh G- (94)
j=1 k=1 =1 j=1
We also denote D'F = DF, and we define the derivatives of order ¢ € N recursively: DIF := DD 'F.

And we denote D% (respectively D*9) as the derivative DZ (respectively D*) of order q.
We also define the Ornstein-Uhlenbeck operator LF = L?F + L~ F with

m' m d
LZF = ZZZ 8 k 5 D(kZJ)F)+D(k2])FXD(kzg) hl[h(Z )])’ (95)
k=11i=1 j=1
d d
LAF = Y DfFxA;—Y DEDRF.
Jj=1 j=1

One can check that the triplet (S, D, L) is consistent with the IbP framework given in Section 3.1. In
particular the duality formula (57) holds true. We refer to [10](Appendix 5.3). We say that F'is a "Malliavin
smooth functional" if F' € D, (with the definition given in (61)).

We will use the IbP framework defined here for z;, 2/ and mf’M (solutions of equations (40),(41) and
(42)). We recall that they are obtained in Section 2.7 by optimal coupling in W5, ., distance between
X 73(1)” and X;_. Here we give two lemmas, concerning the Sobolev norms and the covariance matrices of
zy, oM and 7M.

Lemma 3.7. Assuming Hypothesis 2.1 and Hypothesis 2.4 b), for all p > 1,1 > 0, there exists a constant
C.p depending on [, p,d and T, such that forany 0 <t < T,

, 7p) < Clm-

i) supsup(f|aM | £
P M

Moreover, x; belongs to D and
ip < Clp.

i)
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Lemma 3.8. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true. Then for every p > 1, 0 < t < T such
that t > % (with 6 defined in (18)), we have (recalling by (55) that o denotes the covariance matrix of F)

i) supE(l/deto,nm)? < Cp, (96)
by ,
it) E(1/detoy,)? < Cp, 97

with C), a constant depending on p,d,T.

Remark. In the case 6 = oo, the results in Lemma 3.8 hold for every 0 < ¢t < T.

The proofs of these two lemmas are rather technical and are postponed to Section 4.1 and 4.2.
Before we end this section, we establish an auxiliary result. We recall by (27) thatey, = |, (I=]>M} le(2) [P u(dz)+

| Jjps 0y €(2)1aldz2)?).

Lemma 3.9. We assume that Hypothesis 2.1 and Hypothesis 2.4 b) hold true. Then for any ¢, > 0,
there exists a constant C dependent on T,d, e, such that for every |P| < 1, every M with ¢y < 1 and

le(2) P>y < 1,
. _1
i) |I1Df M = DaM| 2y, xray < Clen + P75,

i) HDCU?I — Dzt r2 (051, xre) < Clenr) e,
iii) ||D~’L"f’M — Dt L2, xra) < Clen + |P|)2Fex .

The proof is also technical and we put it in the Appendix.

3.3 Proofs of Theorem 2.1~2.4

Before the proofs of Theorem 2.1~2.4, we first give the following lemma. We recall X;*" in (25) and
X in (14).

Lemma 3.10. Assume that the Hypothesis 2.1 holds true. Then there exists a constant C' dependent on T'
such that for every partition P and M € N we have

wi(x, M, X;) < C(IP| + Vem).
Proof. We make a coupling argument similar to Section 2.7. We will do optimal coupling between Xf(’t])w_

and X,_ in W; distance. This is the same strategy as the optimal coupling between X ( t) and X;_ in

Wo. e, distance in Section 2.7. We take Hf M(dvg), dvg) to be the optimal W; —coupling of pT( = (dv5) and
¢+ (dvg), that is

WeT o) = [ s = el 7 (s, du).
R4 xR
Then we construct (n? (w), n¢(w)) which represents II** in the sense of Lemma 2.5. So we have
[ ot = [ g7 s )
R4 x R4

We consider the equations (with NV (dw, dz,dr) the Poisson point measure on the state space [0,1] x R?
with intensity measure dwpu(dz)dr defined in Section 2.7):

¢ t
Ty = X0—|—/ b(r, ir,p,.)dr—l—/ / c(r,nb(w), 2, Zr_, pr— )N (dw,dz, dr), (98)
0 [0,1] x R4
t
gt = X()+GTA+/ b(r(r), z p(]\)/lvpf(i\f)d
/ / e (T(r),m2(w), 2 xf(f;{ ,pT(r) W (dw, dz, dr), (99)
0,1] xR
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with pf’M the law of XZD’M (see (25)) and p; the law of X; (see (14)). One can check that 7, and %f’M
have the same law as z; and XZD M respectively. We remark that 7;, and %f’M are different from z;, and
2™ (see (40) and (42)) since we take different couplings and 7! (w) # n?(w), n?(w) # né(w). Then we
have

Wi XM X) = W@ 7)) <EE0Y - @) < O(P+ vew),

where the last inequality is obtained in a standard way (see the proof of Lemma 2.6). O

Proofs of Theorem 2.1 and Theorem 2.2:

Proof. We first prove (28). We recall that by the discussion in Section 2.7, 27" has the same law as X"
and z; has the same law as X;. Thanks to Lemma 3.7 and Lemma 3.8, using Proposition 3.6.1, for any
partition P of the interval [0, 7] with [P| < 1, every M € N with e); < 1 and |¢(2)]*1q,>a < 1, for
e >0,whent > %d(g + 1) (with 6 defined in (18)),

drv (XM X)) = dpy (DM 1)
PM PM _
< CWhle, ™ ae) + [|1D2y ™ = Dael|72 gy xmay)

So 52-(1 —¢) = 1 — &. Then by Lemma

For any & > 0, we take ¢,¢, > O such thate, = =z and ¢ = DEEe

3.9 and Lemma 3.10, when ¢ > 8¢(2 + 1), we have

=
5

drv (XM, Xy)

P,M P,M —
C[Wl(Xt aXt) + HDxt - DxtH%z(Q;lzx]Rd)]l c

ClIP| + vear + (ens + |P|) 7o )L e

<
< Clyem +|P) 2 =0,

with C a constant depending on £,d and T So (28) is proved.

On the other hand, by Lemma 3.8 and Corollary 3.4.1, when ¢ > w, the law of X, has a [—times
differentiable density p; and the density p; is a function solution of the equation (21). So (22) is proved.
We notice that (S, D?, L) is also an IbP framework. If we only make Malliavin integration by parts on the

Gaussian random variable A, then standard arguments give that the law of XZ) M has a smooth density
PM
by -

Now only (23) is left to be proved. The proof is analogous to the proof of (28). The main strategy is
as follows (this is similar to Section 2.7 and Section 3.2). We define an intermediate equation XZD M (see
(100) in the following). There is a difficulty appears here: the equations (14) and (19); (38) and (100) are
defined with respect to different Poisson point measures (on different probability spaces). To overcome
this difficulty, it is convenient to use similar equations driven by the same Poisson point measure. We
make a coupling argument to construct zM, z7, 7™ and 7, (see (103), (102), (104) and (101) below)
which have the same law as XM, X7, XM and X, (see (38), (19), (100) and (14)) respectively but are
defined on the same probability space and verify equations driven by the same Poisson point measure. So
to estimate the total variation distance between X} and Xj, it is equivalent to estimate the total variation
distance between z!” and z,. We will see that M and z] " are simple functionals (belong to %) in the
sense of Section 3.2. We prove below in Lemma 3.12 that the Malliavin-Sobolev norms of z}/ and z, ** are
bounded (uniformly in M, P) and that the Malliavin covariance matrix of 2} is non-degenerate (uniformly
in M). Passing to the limit M — oo, we give below in Lemma 3.11 that z, " — z7 and zM — &, in L'
distance. Then by using Lemma 3.3, z; and z} are "Malliavin smooth functionals" (belong to D% ), and
we prove below in Lemma 3.13 that the Malliavin-Sobolev norms of z; and z] are bounded (uniformly
in P) and that the Malliavin covariance matrix of z; is non-degenerate. So applying Proposition 3.6.1,
the Euler scheme X[ converges to X; in total variation distance.
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Now we give the proof of (23). We first introduce an intermediate equation.

tivM — XO + CLT A + / b 77_)(701;4, pf(,,,))d

ey (7(r),v, 2, XM . pF )Np (dv,dz,dr). (100)
R xR (=2 )= P -

We notice that we take p”, () (the law of X~ P )) instead of pp( TJX[ (the law of X~ P " ) in the above equation,

so (100) a variant of (25).
Now we make a coupling argument similar to Section 2.7. We will do optimal coupling between Xf( -

and X,;_ in Wy, ., distance. This is the same strategy as the optimal coupling between X P( t])v[ and X;_ in

Wo. ., distance in Section 2.7. For a small ¢, > 0, we take I} (dvs, dv4) to be the optimal W5, ., —coupling
of ¥, (dvs) and p;—(dva), that is

Ware. (B pi )25 = [ foa = oI (v, dov).
Rd xR4
Then we construct (1} (w), n#(w)) which represents II7 in the sense of Lemma 2.5. So we have

/ $(n8 (w), it (w))dw = / &(vs, va) TP (dus, duy).
0 R4 xR

We consider some auxiliary equations (with A/ (dw, dz, dr) the Poisson point measure on the state space
[0,1] x R? with intensity measure dwu(dz)dr defined in Section 2.7):

t t
= X —|—/ b(r, Ty, pr)dr + / / c(r,nt(w), 2, Zr_, pr— )N (dw, dz, dr), (101)
0 [0,1] xR4

t
P = Xo+/b< (1), 5y P10y )

/ / e (w), z,i:f(T,)_,pf(T.)_)N(dw,dz,dr). (102)
0, 1]><]Rd
t t
.f?iV[ = Xo+ aTMA +/ b(r, 53£47pr)d7" —|—/ /[ . ear(rynt(w), z,aﬁﬁ,prf)N(dw,dz, dr){(103)
0 0,1]xR

t
M = Xo+ay AJF/ b(r(r), z ZAI’PT(T))d

/ / 777'( ) f(r) 7p‘r(r) )N(dwa dz, d’l”) (104)
0, 1]><]R'i

One can check that z;, zF, 2, and z, "™ have the same law as X;, X, X, and X" (solutions of the
equations (14), (19), (38) and (100)) respectively. We stress that z;, 7/, and Ef’M are different from x;,
M and 27M (see (40), (41) and (42)). This is because we take different couplings so 7} (w) # n?(w)
and n?(w) # n*(w). We also remark that we take p, instead of p in (103) and take p! instead of pf M
in (104), so that we can obtain the following lemma.

Lemma 3.11. Assume that the Hypothesis 2.1 holds true. Then

i) supElz, M —zF| =0,
P

i) K|z —Z — 0,

as M — oo.
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Proof. These results are obtained in a standard way (see the proof of Lemma 2.6). O

We notice that jf’M and zM are simple functionals (belong to S 4y in the sense of Section 3.2. Then we
have

Lemma 3.12. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true.
a) Forany p > 1,1 > 0, there exists a constant C; , depending on [, p, d and T such that for every 0 <t < T,

supsup ([ 27|21 + 12| 2.1,5) < Crp-
P M

b) For any p > 1,0 < t < T such that t > %, there exists a constant C,, depending on p,d, T such that
sup(E(1/ det o70:)P) < Cp.
M t

c) For any e, > 0, there exists a constant C,, depending on €., d, T such that for every |P| < 1, we have
: _P.M - L
i) 1Dz ™ — DEM|| 129, xray < C|P|7Fe
Zl) ||Dfiw — Di’tH[ﬁ(Q;ngR‘ﬂ — 0, as M — oo.

Proof. We get a) by an analogous argument to the proof of Lemma 3.7 i). We have b) in a similar way to
the proof of Lemma 3.8 ¢). we obtain ¢) i) and i7) by some analogous arguments to the proofs of Lemma
3.9 i) and i) respectively. O

Then applying Lemma 3.3, by passing to the limit M/ — oo, we obtain the following consequence.

Lemma 3.13. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true.
a) z} and #, both belong to DL.. For any p > 1,1 > 0, there exists a constant C,, depending on , p,d and
T such that for every 0 <t < T,

S;ip(ijHL,l:p + ||ft||L,l,p) < Cip.

b) For any p > 1,0 < t < T such that t > %, there exists a constant C,, depending on p,d, T such that
E(1/detoz, )P < C).
c) For any ¢, > 0, there exists a constant C,, depending on ¢,.,d, T such that for every |P| < 1, we have
_1
| Dz} — Dzt p2 (01, xre) < C|P|ZFex .

Proof. Proof of a): We apply Lemma 3.3 (A) with Fy; = (z/ ™, zM) and F = (z7, 7). By Lemma 3.11
i), i4) and Lemma 3.12 a), we obtain our results.

Proof of b): We apply Lemma 3.3 (B) with F; = zM and F = z;. By Lemma 3.12 b) and Lemma
3.12 c ii), it follows that E(1/det 0z,)P < C,.

Proof of ¢): We apply Lemma 3.3 (C) with (Fy, Fyy) = (), zM) and (F, F) = (z7, %;). By Lemma

3.12 ¢) i), we have || Dz} — D || 12(0, xre) < C|P| 75 . O
Finally, we can give the proof of (23). We recall that z; and z] have the same law as X; and X/
respectively. For any & > 0, we take ¢,e, > O such thate, = =z ande = 5. So z2-(1—¢) = 1 — &

Thanks to Lemma 3.13 a), b), using Proposition 3.6.1, there exists a constant C' dependent on &,d,T
such that for any partition P of the interval [0, 7] with |P| < 1, when ¢ > 8(& + 1), we have

dTV(XtPaXt) = dTV(fZ),i‘t)

< CWA(E], %) + | DE] — D470, xray]'
= COWi(X],X:) +||Dz] - D72y xray)]'
< OfP|+|P|==]*
< C|P|I'"" ¢ =0,
where the second last inequality is obtained by Lemma 3.13 ¢) and (20). So (23) is proved. O
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Proofs of Theorem 2.3 and Theorem 2.4:

Proof. Proof of Theorem 2.3 i): We recall in Section 2.7 that z; (solution of (40)) has the same law as
X, (solution of (14)) and by Theorem 2.1 a), L(z;)(dz) = L(X;)(dz) = pi(z)dz. When t > 3(2 + d),
Lemma 3.7 ii) and Lemma 3.8 i7) give that ||2¢(| 1 444,8d(2+d) +Xa(244)(z¢) < oo (with the notation ¥, (F)
given in (56)). Then we apply Corollary 3.5.1 i) and obtain that

Ipe(2) — E(ps (Xt — 2))| = |pe(2) — E(ps(ze — 2))| < Cé?, (105)

where C is a constant dependent on d.
We recall by (12) the definition of the Wasserstein distance of order 1. Noticing ||Vs|leo < 5&%, we

get
1

[E(ps(X; — 2)) = E(ps(XPM = 2))] < Wi (X7, X))

So together with Lemma 3.10, there exists a constant C' dependent on d and 7" such that
1
[E(05(X; — @) = E(os (X7 = 2))| < O(IP| + VEM) Sar- (106)

Finally, applying the estimate (4.6) in Theorem 4.1 of [3] with X} = x/" 0., (p)(dr) = pr M (dz)
and f(z) = s(x), we get

N
1 . 1
E(ps (XM — 2)) — N ZE(%(XZD’M" —z))| < CVNW- (107)
1=1
Combining (105), (106) and (107),
1 & : 1 1
pe () — N Z]E(W(XZD’M’l —z)| < ClIP|+ M)W tWsar 8%,
i=1

Then we optimize over § and N. We choose

§ = (|P| + ear) ™3
such that .
(|P| + \/EM)W = 62.
So
1 N : 2 d+1
Ipe(2) — = > E(ps (XM —2))| < CI(IP| + vEm) T + Va ([Pl + Veur) ™ 73],
i=1
And we choose N such that
Vv <|P|+ Ve,
SO 2 d+1
(IP| + Vermr) @3 > VN (P + Venmr) ™ 3.

Hence, eventually we have (34).
Proof of Theorem 2.3 ii): (35) is obtained in a similar way by using Corollary 3.5.1 ).

Proof of Theorem 2.4 i): We take f € C°(RY).

Step 1: We recall in Section 2.7 that xf’M (solution of (42)) has the same law as XZ) M (solution of
(25)) and «; (solution of (40)) has the same law as X; (solution of (14)). We notice by Theorem 2.2 that
for any ¢ > 0, there exists a constant C' dependent on ¢, d, T such that when ¢ > %(g +1),

| [ s@pan) = [ @)l )| < ol x (P + vEm)' (108)
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with p; the law of z; (also of X;) and pf’M the law of xf’M (also of XZD’M).
Step 2: We apply the regularization lemma Lemma 3.5 (B) iii) with F' = a:f’M and G = x;. For any
€ > 0, we take ¢, e,,e9 > 0 such that

5 g
€o = 52 and ¢, = T €=
So 5
2+6*<1_€) =1-¢
Recalling in Lemma 3.5 (B) iii) that ¢ = - = 4(21:58) , we have

2

, ] q
| [ 1@ ) = [ @ )] < Ol x G+ 7 (Pl )7 49, 109)

Here we have used the non-degenerated condition of z, and the fact that the Sobolev norms of =] " and
x¢ are bounded (uniformly in P, M). We have also taken advantage of Lemma 3.9 iii).

Then we optimize over §,7 and p. In order to keep the notations clear, we denote temporary that

£=(P|+em) 7o

We take
n=Ei and §=VE

such that

62 —qeol l1—¢

E =N 162 =¢&
We take moreover

41 —¢)
p =
€
such that
nt =EE.

So (109) becomes
| [ 1@ ) = [ @ @] < Ol x €7 = Clfll x (Pl +2)' ™5, (110
with C a constant depending on &, d, T and

5= (IP|+eam)=F = (|P| +ear) 3079 111)

Step 3: We apply the estimate (4.6) in Theorem 4.1 of [3]. We notice that ||V fs|oc < C||floc X 557-
Then we obtain

1 : 1
| [ ol ") = 5 SBUSCT M| < Vi % 57 (112)
i=1

Now we optimize over N. We take N such that

—& —& 3 (d+5)e— &2
Vy < (|’P| + 5M) = >24(fg3 : = (|’P‘ + 5M>%( —4(;:55)((14?3)*)7 (113)
SO
VN X W S (‘73| +€M)17€.
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Then we have

N

1 [ _
| [ s@of " (dn) = 55 SBUCT M) < Clflle x (1P +00)' (114)

i=1
Combining (108), (110) and (114), for all f € Cg°(R?), with § and N given in (111) and (113), when
t> 84(18 4 1), we have

N
oS @pldz) = 5 DB 4 [ flle x OP]+ vEwn) ' —)
i=1

N
= %ZE/W FXTM 1 y)os()dy + || flloo ¥ OUP| + VEar)t o)
i=1

N
1 i, sK L
= 5 2 ESCTM 4 8R) + [ fllee x O(IP|+ vERD)' ), (115)
i=1
where A is a d—dimensional standard Gaussian random variable independent of XZD M —1,... N,

and O(e) is the Big O notation.
Since Cf°(R?) is dense in C,(R?), (115) holds for f € Cy(R?). Finally, by Lusin theorem, (115) also
holds for any measurable and bounded function f.

Proof of Theorem 2.4 ii): (37) is obtained in the same way as Theorem 2.4 i) by using Lemma 3.5
(B) iv) in Step 2.
O

4 Proofs

4.1 Sobolev norms

In this section, we give the proof of Lemma 3.7. We explain our strategy of the proof. We will first
prove that sup sup ||z} | L1p < C1p, then by an analogous argument, we also have sup ||z, < Ci .
P M M

Afterwards, recalling E|z — z;| — 0 in Lemma 2.6 i), and applying Lemma 3.3 with F); = 2} and
F = z;, we get that z; belongs to DL and ||z¢||1,1 < Cip-
So now we only need to prove the following lemma.

Lemma 4.1. Under the Hypothesis 2.1 and Hypothesis 2.4 b), for all p > 2,1 > 0, there exists a constant
C,p depending on I, p,d and T, such that

a) supsupE sup |z, M[P < Cpyp, (116)
P M 0<t<T

and

b) supsupE sup |Lz] M[P < O, 117)
P M 0<t<T

Before we prove this lemma, we give some pre-estimations concerning the Sobolev norms of ZF.
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Lemma 4.2. Under the Hypothesis 2.1, Hypothesis 2.4 b), for every | > 0, there exists a constant C,
dependent on [, d such that

i) sup |Zfl1 < Cy, (118)
kyieN

i)  sup \Lth < (. (119)
kyieN

Proof. i) We notice by the definition (93) that D% Gesid) ” = ¢k, D(Zk, 0 VA =0, for k' # k, i’ # i or

§' # 4, DAZF =0. We recall that ¥ = ¥, (ZF) in Section 3.2. We observe that using Lemma 3.1 a), for
any k,i € N we have

|ZF 10 < 16 le1 = 19e(ZF) iy < 1+ Gl ZF |1, 1ZF )

Since |ZF|11 = |€F| < 1, there is a constant C; such that |ZF|,; < C.
i1) We notice by the definition (95) that

LZj; = =0.0 (&) = & D) Ih(Z])].

constant (see (92)). These lead to

We observe that |¢F| < 1, and we have |0,» (¢8)2| = 29.(ZF)0,x ¥y (ZF) is bounded by a universal

ILZEe < Ci(1+ DG 5 5y In[A(Z)]]).-

We recall by Hypothesis 2.4 b) that 4 is infinitely differentiable and In & has bounded derivatives of any
order. Applying Lemma 3.1 «) and using (118),

DGy ml(Z)le < [IlA(ZE)]li
< G+ |IVInh(Z)|ZF i+ Cr sup |07 nh(Z))]| 27|
2<|BI<i+1
< (.
Then for any k,i € N, we obtain that |LZF|, < C;. O

Now we give the proof of Lemma 4.1.

Proof. Proof of a): We first prove (116). We will prove by recurrence on [. One can easily check by (45)
with
B(r,w, z,w, p) = ear(r(r) m} (w), 2 XT3 o7 )

and by Hypothesis 2.1 that for [ = 0, E sup |x |p < Cy,p- Then we assume that (116) holds for
<t<T

[ —1with! > 1 and for every p > 2. We will show that (116) also holds for / and for every p > 2.
We notice by the definitions (93) that DJ-AA = e;, where e; = (0,---,0,1,0,---,0) with value 1 at
the j—th component, DA9A = 0 with ¢ > 2 and DA = 0. Recalling the equation (52), we write

E sup |z] M[P, < Crp(1+ Ay + Ay), with
0<t<T '

T
A =E / b(r(r) 2B PO .
M JE

ZZ|C Tk nTk Wk) Zk ap ( )‘Ll)p'

k=1 1i=1
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Using Lemma 3.1 a), Hypothesis 2.1 and the recurrence hypothesis,
7(r)

T
A< CulE [ IV T TP
0

T
+ B[ sw 00r(r). T om T )

2<|8|<l

T

< cl,p[/ BN, dr+/ Bl M1, _ydr]
0
< cl,,,[1+/ ElzZ [} dr). (120)
0

Next, we estimate A,. By Lemma 3.1 a), Hypothesis 2.1 and Lemma 4.2, for any k,7 € N,

‘C(T(Ek)an'ik(wzk) Zk P(QJY{) 7p (Tk) )|1l
S(‘VZC(T(T]C) n%“k(Wk) Zk ’P(%c) ap T’“ )‘+|VLC( (Tik)anjl“lk(wk) Zk Z.)(éyi) ,PP(TMk) )|)

x(1Zf |l + |$T(Tk)_|1 1)
y P,M P.M P,M
+Cl Sup (Iag 652 ( (Tk) nTk(Wk) xT(T’C) 7P.,.(Tk) )l) (‘Zk 1,l— 1+‘$T(Tk) ll,lfl)
2<| 81+ 82| <!
< Cue(ZE) (1 + T L+ T ).
Hence, using (45) with

= _ PM P.M
(I)(T7w7 Zaw’p) = C(Z)(l + |x7—(7«)_|1,l + ‘xT(r)_|l1,l—1)7

Hypothesis 2.1 and the recurrence hypothesis, it follows that

M Ik
Ay < csz|k21§; e(ZF) (L + [2lipiy I+ el -0l
< Cz,pEl/ /[01de A+ |2l + 220 5N (dw, dz, dr)|?
T
< Cpll+ / Elzlh [ dr + / Elz 2|1y dr]
OT 0
< Cl,p[1+/0 Elz7 [} dr]. (121)

Combining (120) and (121), one has

E sup |z] Mp < Clp[lJr/ E\xPTMp dr].
0<t<T

So we conclude by Gronwall lemma that

sup E sup |aczJ “ < Clp. (122)
PM  0<t<T

Proof of b): Now we pass to the proof of (117). We also prove it by recurrence on !.
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Step 1: We take first | = 0. We notice by the definition (95) that LA = A. So having in mind

that A has finite moments of any order, and recalling the equation (52), we write E sup |L3c73 M|p <
0<t<T
Cop(1+ S1 + S2), with
T
Si=E / (Lh(r(r), 2l T P,
0
M JE
k k k; P,M
ZZ|LC T 'r}T]c(W ) Z ( ) 7p7-(Tik),)|)p'
k=11:=1
Using Lemma 3.1 ¢), Hypothesis 2.1 and (116),
T
Si < B[Vl oI par
0
T
+ IE/ sup |0°b(7(r), x P(A)/[,Pf(g{)mxpf)/l %pld
0 [B|=2
< C(),p[l +/ E|L$ ‘Pdr] (123)

For S5, we observe that using Lemma 3.1 ¢), Lemma 4.2, and Hypothesis 2.1, for any k,i € N,

| Le(r(TF), nge (W), ZF 7’(M) ey

< (Ve (TE), s (WE), ZE, 3700 oM )|+ [Vl (T), by (WE), ZE, 0P80 o2 )
<(LZE +|LaP )

+|61i1/1312)|72(|851852C(T(Tik)7n%ik(Wk) VA P(M) ’PP(M) ) x (1281, +\~'U |1 1)

< Ce(zh) (1 +|La M [+ 7M.
Therefore, using (45) with
(i)(raw,zava) = E(Z)(]- + |L$73 A | + ‘ ( |%,1)7

T(r)—

using Hypothesis 2.1 and (116), it follows that

M I
So < CopBQY Y e Z) (A + | Lal ey |+ 1ol [F1))
k=1 i=1
= Co,E| / / 21+ |Lal N+ 22013 DN (dw, dz, dr) P
[0, 1]><]Rd
< Copli + / E|L2%Y odr]. (124)

Combining (123) and (124), one has

E sup |fo7M|pgco,p[1+/ E|Lzl |Pdr].
0<t<T

Applying Gronwall lemma, we obtain

sup E sup |LzlM|P < Cp,p.
P,.M 0<t<T
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Step 2: Now we assume that (117) holds for [ — 1 with [ > 1 and for every p > 2. We will show that (117)
also holds for [ and for every p > 2. We recall the equation (52) and that LA = A, DjAA = e;, where

e; = (0,---,0,1,0,---,0) with value 1 at the j—th component, D?4A = 0 with ¢ > 2 and DA = 0.
Having in mind that A has finite moments of any order, we write E sup |fo’M|f < Cip(1+ By + Ba),

0<t<T
with
T
B, =E /0 \Lb(T(r),xf(’g[ PP [Edr,
M J
E(Y D 1Le(r(TE)mpy (WE), ZE,aTgh ot D)
k=1 1=1

Using Lemma 3.1 b), Hypothesis 2.1, (116) and the recurrence hypothesis,

B

IN

T
i lE /O Va7 (1), 27, P AP\ LT

T
+ E / sup OFb(r(r), 2L p NP+ LN PP (U (Ll 1 )
0 2<|BI<I+2

IA

Cipll + / E|Laly N Pdr]. (125)

Next, we estimate B,. We observe that using Lemma 3.1 ), Lemma 4.2, and Hypothesis 2.1, for any
k,i €N,

Le(r(TE), nhy (WF), 28, P(M) ,pm I
< (Vae(r (T, (WE), 26,07 P )| 4 [V ae(r (T8, m (WE), ZE, 2T 7 )

(|LZk‘l + ‘LxT(Tk) |l)

+C sup (0202 c(m(TF), np (WF), ZF, Pﬁ ,ppﬁ )
2< |61+ B2 | <I+2 i Frr) = Pr(rt) -
P.M
x (1412714 + |$T(Tk I +|LZE -+ | Lal r(rry-i=1)

P, M ‘z+2

< Cie(Z )(1 + |Laj (TF)— i+ (1+ |x l+1)( + ‘LI (TF)— li-1))-

Hence, using (45) with
B, w,2,0,p) = o) (L 1L N o+ (L4 T + Ll o)),

using Hypothesis 2.1, (116), and the recurrence hypothesis, it follows that

M IR
B, < Ci,E kzlz &2+ LTyt o+ (U alim DA+ 1Ll i-1)”
< cl,pE|/ /[01 LT+ (T D+ LT )N (. dr)
><
< O+ / E|LaT M Pr]. (126)
0

Combining (125) and (126), one has

E sup |La, ™M §Clyp[1+/ E\Lx \pdr]
0<t<T
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Then we conclude by Gronwall lemma that

sup E sup |La:f"M|f < Cip. (127)
PM  0<t<T

O

So now Lemma 4.1 is proved. Then by an analogous argument, we also have sup Nzl pip < Cip.

Finally, recalling that E|z™ — z;| — 0 in Lemma 2.6 7), and applying Lemma 3.3 Wlth Fy = 2M and
F = z,;, we get that z; belongs to DL and ||z||1.1, < Cip-

4.2 Covariance matrices

In this section, we give the proof of Lemma 3.8.

Proof of ;): We proceed in 4 steps.

Step 1 We notice by the definitions (93) and the equation (51) that for any M € N, any kg,7g € N,j €
{1,---,d},

t
Dlasagtt! = [, b0 Dt

{0<Tk0 <t}]]-{1<k0<M}€ az] C(Tkoa 77Tko (W’fﬂ) quoo’ (E;&[ ’ pTif:'jU,)

+Z Yo Vel T WE), ZE, 2 pre ) Dl iy s (128)

k=1 —pk k
T, 0 <TF<t

M Jf
DAEM = aMe; / Vab(r,aM, p)DRaMdr + 373 V.1 P (W), ZF affi, pre_) D (129)
k=11i=1
where e; = (0,---,0,1,0,---,0) with value 1 at the j—th component.

Now we 1ntroduce (Y™ )tE o,7) (this is a variant of the tangent flow and for simplicity of the expression,
we still call it the tangent ﬂow) Wthh is the matrix solution of the linear equation

M Jf
yM = / Vob(r @) p )Y dr +3 N Ve TE ng (W), ZE el pre ) YH
k=11i=1

And using Ité’s formula, the inverse matrix Y; = (Y,*)~! verifies the equation

M Jf
yM=1, - / YMV b(r, M, p, dr—zz Vaec(Ig+ Vo) H(TF T]Tk(Wk) x%cf,pT;cf).
¢ k=11i=1 ' '

Applying Hypothesis 2.1 and Hypothesis 2.2, with C,, a constant not dependent on )M, one also has

B swp (VM7 + 7] < ¢ < 0. (130)
0<t<T

Then using the uniqueness of solution to the equation (128) and (129), one obtains

D(k”)xt ]]-{O<Tk<t}]]-{1<k<M}€ Y ]t;{az.fc(ﬂk,ﬂ%k(wf)vZf7x%u’pT{“f)’ (131D
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and D2z = a}fYMe;
In the followmg, we denote the lowest eigenvalue of the Malliavin covariance matrix o, by AM_ Then
we have (recalling the definitions (55) and (94))

M JP
MM = inf (o ) > inf D x 24 1nf DA,T 2,
! \<\=1< oG C) Cl=1 ;;; (k,5.9) <l Z o)
By (131),
M Jf
MM > ‘1‘nf ZZZ|§k |%(0-, c( -,nTk(Wk) zk x% ,PTE_), (YtMY 24 mf Z|aM (e, (YM)*¢)?,
T k=11i=1 j=1

where Y* denotes the transposition of a matrix Y.
We recall the ellipticity hypothesis (Hypothesis 2.3): there exists a non-negative function ¢(z) such that

d
> (0sye(r 0,22, 0),0)° = e(2)[C1%

j=1
So we deduce that
M JE
ANz b YN P Z0I (YRR + ad P inf ()¢
Cl=1 4= ¢I=1
M Jf
> ZZIEfIQQ(Zf)HYtMH*QIIY%‘%_fII*Z+|6L1M\2||YtMII*2
k=1 1i=1
M I
2 (,inf HYMII 2IVMIEHO D 1P ZE) + lag' ).
k=11i=1
We denote
M ],’”
=33 (e Pe(zh). (132)
k=1 1i=1

By (130), (E sup ||Y;||*%?|Y;|[*%)'/2 < C,,, < oo, so that using Schwartz inequality, we have
0<t<T

1
det O,M

E| P <E(AM|~P) < CE(XM + [ad! [2|72%))=. (133)

Step 2 Since it is not easy to compute E(|xM + |aT 12|~ 2dp)) directly, we make the following argument

where the idea comes originally from [13]. Let T'(p) = [, s*~'e~*ds be the Gamma function. By a change
of variables, we have the numerical equality
1 1 & 2dp—1_—s(xM+]aM|?)
= s e WX Tler M) dg,
X!+ lag/ P[P T'(2dp) /0

which, by taking expectation, gives

1 1 /00 i wpe
E = 2= 1R (=50 o' %)) g, (134)
T 1 ER®) ~ Tdp) Jo (e )
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Step 3 Now we compute E(e —s(x¢"+la7'?) )) for any s > 0. We recall that I, = By, I, = By — Bj_1,k > 2
(given in Section 2.4), and & = W, (ZF) (given in Section 3.2). We take A (dz,dr) to be a Poisson point

measure with intensity R
Ap(dz,dr) .= 1y, (z)p(dz)dr.

Since for different k € N, I}, are disjoint, the Poisson point measures Ay, k € N are independent. And we

M
put Oy (dz,dr) = > Ap(dz,dr). Then
k=1

Z/ [0 (2)|%c(2)Ax(dz, dr) / /BM 2)Or(dz, dr),

with U(z) = > |Wi(2)[*1y, (2). Using It formula,
k=1
t
E(e—sxiw) = 1+IE/ / eSOl +U(2)e(2)) _ p=sxpl )@M(dz dr)
BM
t
- 1_/ E(e*sxf’)dr/ (1—e % Z]llk
0 By

Solving the above equation we obtain

E(efsxivf) _ exp(ft/ (1 7s\IJ(zcz Z]]‘Ik
Bm
M 2
_ exp(_tz/ (1= e~ (42
k=1"1k
M 1
exp(~tY [ (1= et b))
k=1 1k

M
= et [ =Ny (n(a:)
k=1""k

IN

— exp(—t /B (1 - e (dz)),

with

oo

v(dz) =Y Ly oy (|12 n(d2).

k=1

M / /F O(dz,dr),

where B, denote the complementary set of By, and © is a Poisson point measure with intensity u(dz)dr.
Then in the same way,

On the other hand, we denote

e ) Seplt [ (1= wtas)

We recall by (24) that ¥ = \/T Jopepoary €(2)uldz) =/ ExM. Notice that using Jensen inequality for

the convex function f(z) = e™5%, s, > 0, we have

eslar' P < o=sEx" < ]E(e_s’ziw) < exp(—t/ (1 — e=*p(dz)).
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So for every M € N, we deduce that

E(e— (' +1a2'1)y = E(e=x") x ¢~ slox’l”

< exp(—t /B (1 — e p(dz)) x exp(—t / (1 — e *u(dz))

c

M

= exp(—t / (1 — e *Nu(dz)), (135)
R4
and the last term does not depend on M.

Step 4 Now we use the Lemma 14 from [8], which states the following.

Lemma 4.3. We consider an abstract measurable space B, a o-finite measure M on this space and a non-
negative measurable function f : B — Ry such that [, fdM < co. For t > 0 and p > 1, we note

Br(s) = /B(l — e fEYM(dx) and IP(f) = /OOO P~ Le—tBr(s) gg.

We suppose that for some t > 0 and p > 1,

lim L/\/l(f >

TUTP®nu -

gl

) > % (136)

then I?(f) < .

We will use the above lemma for M(dz) = v(dz), f(z) = ¢(z) and B = R¢. Thanks to (18) in Hypothesis
2.4,

lim, . pe> 1) =0 0. (137)

YOy T T

Then for every p > 1,0 < t < T, when 6 > % (.e. t > %), we deduce from (133),(134),(135) and
Lemma 4.3 that

|I7

IN

sup E|

a sup E(IAM|~") < Csup(E(x} + |a}! | 7>7))?
M et o, m M M

1 o0 M M2 1
C / dep—lE e—s(xt +laz %) ds)z
1 i 1
C / s2P—1 ox —t/ 1 — e <))y (dz)ds)z < oo. (138)
(am ), (-t [ u(dz)ds)

Proof of ii): We recall in Lemma 2.6 i) that E|z}/ — z;| — 0, and in Lemma 3.7 that ||z} |1, , < O} p.
Moreover, by Lemma 3.9 i), we know that (DxM)/ey is a Cauchy sequence in L?(;1? x R?). Then
applying Lemma 3.3 (B) with F}; = xé‘/f and F' = x4, by (96), we obtain (97).

O

5 Appendix

In the Appendix, we give the proof of Lemma 3.9.

43



Proof. Proof of i): We notice by the definitions (93) and the equations (52), (51) that for any partition
P={0=rg<r < - <rp1<r,=T} MeN,any kg,ip € N,j € {1,---,d},

t
Z P,M P.M P.M A P.M
Dy o)t 7/0 Vab(r(r),z T ey Py VD lkosio ) Tr () AT

+1{0<T§L"§t}l{lﬁkoswf}ﬁﬁ)‘j@zﬁ(T(T °). 0y, ko(WkO) zl?’“”f]yko) mﬁﬂéko) )
M Jf
P.M PM
2D Vaclr (1) W), ZE 27300y 0720 Dk )%y (139)
k=11:=1

t
DjA.’L‘Z)’M =aMe; —|—/ V. b(7(r), f(rj\;,pp(A)/I)DA PM gy
0

Lo (r)
M JIf
D> V(T npe (W), Z ,xf%k) , pﬁ,ﬂ(gk) ) DRz 7’(%) , (140)
k=11i=1
where e; = (0,---,0,1,0,---,0) with value 1 at the j—th component. And

t
D(kaioyj)x?/[:/o Vrb(r’SC%PT)D(ka,j)Iyd"

k k k k
+]]‘{0<TL_’;0St}]‘{lﬁkOSM}Eiooazjc(T< OvnTk() (W 0) Z7,OD7:CTM 7/01";;0_)

M Jf
+ZZV ¢ 4’77T" Wk) Zl "TT" ) Pk — )D(koﬂod)x% ’ (141)

k=11=1

M Jf
DAzM = ale; + / Vob(raM pr) DR dr + 3 Ve T ngn (WE), ZE, @ pre_ ) D ajl . (142)
k=1 i=1
oo oo d
For h € Iy, we will use the notation |h|7, = |h(e,00)l7, = 2 Z Z "k i g 7. We write E[DF, | O)xf M_

DZ

(¢,0,0)

aM|? < C[Hy + Ha + Hs), with

t
Hy = IE|/ Vb(1(r) P(Tf\)/l,pf(%)D(Z. oo)xp(igldr—/ Vb(r, z; ,p,)D(.O<> aMdrl7,
0

Hy, = ]E|]1{0<T;§t}1{15-§M}(3ZOC(T(TO°)’U%;(WJ%Z; fp](V[T.) 7/)7)7»%.))
azoC(To.vn%o‘(Wo.)aZc?vxjj\{‘fvac‘*))hiv
M Jf
PM PM
3 = E|ZZV o(r(T}) TIT’“(Wk) zt,al. 7’(Tk) 2 PP () — )D(-oo) (TF)—
k=11=1
M I
ZZV C ‘777Tk Wk) l‘é\{]‘"—’pTik )D(.oo)x |l2
k=11i=1
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We take a small e, > 0. We recall ¢;, in (27). Firstly, using Hypothesis 2.1, we get
t

H < C[E/ [Vb(7(r), 77_>(7{\)/[,p77_>(71v[) Vab(r, z, apr)l |D(oo<> M|
0

t
+ E/ |vmb(T(T7 f(i\fapp M)‘ ‘D(ooo)xf(r) D(ooo M| ]

IN

CIE / [P+ 27 — a2 4 (Wa(oT, 0)?IIDE o oya [ dr

" /OE|D<.M DM DZ a2 dr).

Then by Lemma 3.7, using Holder inequality with conjugates 1 + 5 and 2? , by Lemma 2.6 and (50),
we have

t t
Hi < PP+ [ @l - alPreymmars [ (Ware (0 o) Par
0 0
t
+ /0 IE|Doo<>)‘ﬁ’c7)(]\)/[ D(Zooo)xrj’w‘lgzdr]
t
2
< ClPI+ew) ™= + [ BIDE ool = Df el ) (143)

Secondly, using Hypothesis 2.1 and the isometry of the Poisson point measure A, we get

H2 = EZZZ|627 Tk nT’“(Wk) sz7 fp%“k) 7/0?7?12/'[1%) )78ch(nk7n’§‘iﬁ(wik)7sz7x{1]\'§v,ap’1";“—)|2

k=11=1 j=1
M Jf

< (ﬂEE:EZEQﬁNﬂhPGT)*TTF*M%JWT) UTMWMN+WIpuw) %LP+WG@Z%Q%JAW_HQ
k=1 i=1

< el / P77 ) = o2 + (o) — )P

01]de
+ \J;Tp(r) | +(W1( TP(r) e )N (dw, dz, dr)

- CE// Rl () — ol + Inw) — 2 (w)P
o Jpo 1]de
+ \xT,,(T — M +(Wl(pz;]{?{)_,pr,))2]dw,u(dz)dr.

Then by (39), (43), Lemma 2.6, (50), and Hélder inequality with conjugates 1 + - and 2‘6“5 , we have

t
Hy < ClPP2+ / (ElaP — a, [2re) e dr + / (Bla? M — 2 o) w2 dr + / (Ware. (072 pr))%dr]
0

C(IP| + epr) 7= . (144)

IN

Thirdly, we write H3 < C[Hs 1 + Hs 3], where

M JF
k k k 77 M P,M
H3,1 = kzlz;|vmc T nTk(W ) Z P (T k) ’p'rp(Tk) )
_ VIc(Ti’ﬂ,n%,ﬁ([/l/f)yZf,JC%L,,oTik,_)||D(Z.,o,<>)gc%t|l2)27
M Jf
P.M PM L PM
Hs :E(ZZWJJC(T(Tf)ﬂ?}f (Wk) szv TP(Tk) 5p7-P(Tk )||D(o,o,<> (TF)— D(Zo,o,o)x%c_hz)z-
k=11:=1
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Using Hypothesis 2.1 and (45) with

B(r,w, 2,0, p) = [Vaelr(r), niw), 2P P ) = Voelr2w), 2.2 e )1D o oy

we get
t
iy < B([ [ [Vaetr)abto) el T )
[0,1] xRd
- V CT 777"( ) Z,l‘r ’pT )||D(o,o,<> ]M|l2 (dw dZ d’l"))
< CE// 177 ) = 12 + I ) — )P
[0,1]
+ |$T7’(r) | +(W1( TP(T) ) Pr— )) ]|D oo)xr—|lzd7Ud7"

Then using (39), (43), Lemma 3.7, and Holder inequality with conjugates 1 + < and 2? , we have

t
Hyy < 0[|7D|2+/ BlaZ =y 2oy dr

+

t
2
/ (ElP N — o) 2oy e dr + / (Wi, (P20 pr))dr]
0
< C(P|+em)7,

where the last inequality is a consequence of Lemma 2.6 and (50).
Using Hypothesis 2.1, (45) with

= PM P,M P,M '
(I)(T7 w, z,w, p) = |V$C(T(r)7 7771(71))7 2, xTP(T)fﬁ p‘,—P(r)f)HD(Zo,o,o)xq—(r)— - D(Zo,o,o)xf£|lz7

we have
t
M < B([ / 1 0,2 0T TR DI 2T DN )
X
P.M
S / II.:.:|1) (,0 O)x ( )— D(o o Q)IT—‘lgdr
Therefore,

t
H3 < C[Hs, + Hzo) < C[(|P] +en) = +/ EID{, o oyrii = Dfa o oyri!fdr].  (145)
0
Combining (143), (144) and (145),
2
E‘Dooo ;PM_D(Zo,o,o)x?/[ﬁg gC[(|Ip|+€M)2+E’“ / IE:lD(ooO T(r) D(ooo M| ]

In a similar way, we notice by (116), the isometry of the Poisson point measure N, and (45) with

B(r, w, 2,0, p) = Vac(r(r), nh(w), 2,2 20 Lo VDG i T Hin
that
IE|D(o o o)mp(];/[ DZ. ,0 o)xt | < C‘,P‘v (146)
SO
f
BIDZ, oy = Doyt < CUIPI+2a0) 757 + [ BIDE, e = D,y ]
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We conclude by Gronwall lemma that E|D{, , O)xp M - D(, o) o, < C(IP| + en) e . Finally, by a

similar argument, ]E\DA . D(Ao)xt 2. < C(|P|+em) e 7%=, and we obtain what we need.

Proof of ii): We only need to prove that for any M, M, € Nwith e, ang, < 1and [6(2) 2Lz an ann) <
1, we have

1
| D™ — D™ | 2 (a2 xray < (e, +as,) 70 - (147)

In fact, if (DxzM)yen is a Cauchy sequence in L2(Q;1? x R9), then it has a limit Y in L2(Q;/? x R9).
But when we apply Lemma 3.3 (A) with Fy = XM and F = X, we know that there exists a convex

ma
combination 5. ~M, x FM' with v}, >0, M’ = M, ....,my; and Z M, = 1, such that

M'=M =M
mag
7
> it x D — Day -0,
M'=M L2(Q;12 xR4)
as M — oo. Meanwhile, we have
mm mwm
’ ’
Y M xDFM -y < S a4 ’Dxt —Y’
L2(9;12 xR4)
M'=M L2(Q;12 xR4) M'=M

So Y = Dz, and we conclude by passing to the limit My — oo in (147).
Now we prove (147). We recall the equation (141) and we write ]E\D AL e D(Z. 0,0)%1 i, <
C[Ol + Oy + 03} with

01 El/ V b T Ty 7/07“)D(oo<>)']j 1d’l“—/ v b T, 7p7‘)D(oo<>) Iwzdrllg’

O = E|]]'{O<T'<t}(]]'{l<o<M1}8Zo ( 0777T’(W.) x]]\‘/?—’pTg—)

- ]1{1<0<M2}82<> ( oanT'(W.> x’é\:{?f’pT' >)|l22’

My JE
03 = E|ZZV$C ‘,77Tk Wk) 1; T’“ 7pTi’“ )D(ooo) Ml
k=11:1=1
My JY
Ry gk oMo z M
— ZZV c ‘,77Tk W ) Zix TF— 7pTik7)D(o,o,<>) 3 ‘12
k=11i=1

Firstly, using Hypothesis 2.1, we have
t
0, < C[E/ Vab(r, 2™, pr) = Vab(r, 232, p0) 21D, o o)z 27, dr
+ / ‘V b T, Ly 7PT)‘ |D(o,o,<> AII_D(Zo,o,o)xf'wz‘lzgdr]

< / @ — M2 DZ M2 gy / EIDZ, . o a — D7, a2 dr).

Then by Lemma 3.7, Holder inequality with conjugates 1 + 5 and Qjﬂ, and Lemma 2.6, we obtain

O1

IN

t
C[/O (E|aM — xiwz|2+e*)ﬁdr +/ ]E|D(. R O)x D(. R <>)a: |lzdr]

IN

t
Cllen, + eas) 7o + / E|DY, , oMt — DY, , a2 [3 dr]. (148)
0
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Secondly, using Hypothesis 2.1, the isometry of the Poisson point measure N, we have

gk
Ezzz‘azjc ‘777Tk Wk) ’ T’“ 7pT’v ) azjc( ‘anTk(Wk) Tk ,ka )|2

0Oy <
k=1 i=1 j=1
MV Mo tﬂ
+ E ) ZZI@JC o (W), ZE, agie pre )]
k=M;AM; i=1 j=1
MoJTF MiVMy  Jf
< CEN Y RZPlly —ade PHE Y S jezh
k=1 i=1 ’ k=M AMp i=1
t
< [IE/ / E(2) P — M2 PN (duw, dz, dr) +E/ / / &(2) [N (dw, dz, dr)
0 J{0,1)xrd 0,1] J{= |>M1/\M2}

t
- CE / / 1E(2) Pl — 22 2dwp(dz)dr + E / / / 16(2) 2dwp(d=)dr].
0 J[0,1]xRd 0 J[0,1] J{|z|> M AM:}

Then by Holder inequality with conjugates 1 + 5 and 2;“%, Hypothesis 2.1 and Lemma 2.6,

Oy < C[/Ot(IEx,{V[l — M2 T e ey ]
< Clem, +em,)7=. (149)
Thirdly, we write O3 < C[O31 + O3 2 + O3 3], where
MV Moy t

03,1 - Z Z |V C nTk (Wk) i ’x%c1VM27pTik )||D (e,0 o)le\/M2|lz)2a
k=MiAMz i=1

M1A1v12 Iy
03,2 = Z Z|V c i?ﬂTk Wk) > % 7ka )
-V C(TzkanTk(Wk) 17 gjk ) PTk — )‘|D(Zo,o,<>)x%3_|lz)2a
MiAMs Jf
033—E Z Z'vmc Tk) nTk(Wk) ) jj\jlkl ’pT’€ )Hl)ooo)xjw1 _D(Zo,o,o)xjj\{’f_llz)Q'
k=1 =1

Using Hypothesis 2.1, Lemma 3.7, (44) with

i)(r’w’szvp):‘vxc( (1), 77r( )s 2, %VMZ )||D(.OO)IM1VM2 Iy
we get
Or = / /[01/{|| wionany | VT ), 202 DG gy M N (dh, dz, )
>MiANMso
< ) + [ &(2) Pa(d2)
{lz|>M1AM>} {|z|>M1iAM>}

= Cemams-

Using Hypothesis 2.1, Lemma 3.7, (45) with

é(r,w,z ) |V C(T Tlr( )7 7:E7]~\/£7p7’ ) Vmc(r,nf(w),z,xi\{z,pr )”Dooo)xr—‘lw
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, we have

. . . . . « 2 £y
by Lemma 2.6, and Holder inequality with conjugates 1 + 5 and j

t
Os5 < E(/ /[01] Va2 w), 2,208 o) = Vol (), 20072 pr 1D o 002 1N (dw, d, dr))?
X a
t
< C]E// |9:,{V£1— ||D(.Oo)xMz|l2dwdr
o Jjo,]
t
I
0
< C(aMl—i—EMz)ﬁ-

Using Hypothesis 2.1, (45) with

(I)(Taw7zaw7p) = |V$C(T7n£(w)azvxi\/£17p7“ )||D(-oo)x D(ooo)x |127

we have
t
0373 < E(/ / | xRd |VIC(T’ n?(w)a Z7x71~v£1’pr )”D ,0 <>)$7]’\{1 D(o,o,o %'lzN(dwvd'z’ dr))Q
0,1] xR
< C/ E|D(oo<> oo)xr— |l2dr
Therefore,

t
O3 < ClO31+ 032+ 033] < Cl(ens, +ear,) 7 + / E|D{, o oy dr — D{, , oy |7, dr]. (150)
Combining (148), (149) and (150),
t
EID(ooo o _D(Zo,o,o)xivb‘li < C[(EMI +EJV12)2+26* / ]E|D ooo)‘r D(oo<> inthdT].

DZ

So we conclude by Gronwall lemma that E|DZ, (0.0.0)F

(OOO) A{2|l <C(€M1+€M)2+E*.
Finally, We recall by (24) that a}! = \/T f{|2|>M} 7( )u(dz) and by Hypothesis 2.3 that ¢(z) < |¢(2)]?.

We notice that

Elaj e, — ajeolpa < CElag —aj” < C c(2)p(dz) < enrnan,.
{|z|>M1AMz2}

Then by a similar argument as above, ]E|DA My D(Ao)gciw2 24 < Clen, —s—gMz)ﬁ, and we obtain (147).

Proof of iii): iii) is an immediate consequence of 7) and 7).
O
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