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We analyze a quantum measurement designed to improve the accuracy for the free-fall acceleration
of anti-hydrogen in the GBAR experiment. Including the effect of photo-detachment recoil in the
analysis and developing a full quantum analysis of anti-matter wave propagation, we show that
the accuracy is improved by approximately three orders of magnitude with respect to the classical
timing technique planned for the current experiment.

I. INTRODUCTION

One of the most important questions of fundamental
physics is the asymmetry between matter and antimat-
ter observed in the Universe [1–4]. In this context, it is
extremely important to compare the gravitational prop-
erties of antimatter with those of matter [5–11]. The aim
of measuring the free fall acceleration g of anti-hydrogen
H in Earth’s gravitational field has been approached in
the last decades [12] and indirect indications of the same
sign as for matter obtained recently [13].

Improving the accuracy of the measurement of g will
remain a crucial objective for advanced tests of the
Equivalence Principle involving antimatter besides mat-
ter test masses [14–17]. Ambitious projects are currently
developed at new CERN facilities to produce low energy
anti-hydrogen atoms [18] and to improve the accuracy
of g-measurement [19–21]. Among these projects, the
experiment Gravitational Behaviour of Anti-hydrogen at
Rest (GBAR) aims at timing the free fall of ultra-cold H
atoms, with a precision goal of 1% [22].

The principle of GBAR experiment is based upon an

original idea of Walz and Hänsch [23]. Positive ions H
+

are cooled in an ion trap to a low temperature [24, 25]
and the excess positron is photo-detached by a laser pulse
[26–28]. This pulse marks the start of the free fall of
the H neutral atom. The free fall on a given height is
timed with a stop signal associated with the annihila-
tion of anti-hydrogen reaching the surface of the detec-
tor. The positions in time and space of the annihilation
event are reconstructed from the analysis of the impact
of secondary particles on Micromegas and scintillation
detectors surrounding the experiment chamber [29].

The precision goal in this timing measurement of clas-
sical free fall is mainly limited by the low temperature of

the H
+

ions in the ion trap. Recent studies have been
devoted to the analysis of accuracy to be expected in
this experiment when taking into account the atomic re-
coil associated to the photo-detachment process [30, 31].
These studies have confirmed that the precision goal of
1% was attainable.

The current design of the GBAR experiment relies on a
classical free fall timing but it has also been proven that
free fall acceleration can be measured by matter-wave
interferometry [32–35]. In this article, we study a quan-

tum interference experiment proposed to improve the ac-
curacy of the GBAR measurement by approximately 3
orders of magnitude with respect to the classical timing
measurement [36]. The idea is to use quantum techniques
such to those utilized on Whispering Gallery Modes [37]
and Gravitational Quantum States (GQS) of ultra-cold
neutrons [38–40]. GQS are expected to exist for anti-
hydrogen atoms, thanks to quantum reflection on the
Casimir-Polder potential arising in the vicinity of a ma-
terial surface [41, 42].

Atoms with a low vertical velocity above a quantum
reflecting mirror placed at a small distance below the H
source will be trapped by the combined action of quan-
tum reflection and gravity [43, 44]. The quantum paths
corresponding to different quantum states above this mir-
ror produce an interference pattern at the end of the mir-
ror. This pattern is revealed by a free fall period, from
the end of the mirror to the detection plate placed at a
macroscopic distance below the quantum reflection mir-
ror. The aims of the present paper are to account for the
atomic recoil induced by the photo-detachment process
and also to give a full quantum analysis of anti-matter
wave propagation, which was treated in [36] by a far-field
diffraction approximation.

We first remind in the next section (§II) some results
which will be needed for our analysis, namely the de-
scription of the initial distribution of atomic velocities ac-
counting for the recoil due to the photo-detachment pro-
cess and the quantum design proposed for the GBAR ex-
periment to improve the accuracy of the classical experi-
ment. We study the pattern appearing at the end of the
quantum mirror as a consequence of interference between
the different quantum states (§III) and show that these
interferences are still present with photo-detachment re-
coil. We then deduce the interference pattern seen in the
distribution of annihilation events on the detection plate
(§IV) by using the full quantum propagator rather than a
far-field approximation. We present the estimation of the
uncertainty obtained with numerical and analytical sta-
tistical methods (§V). We finally compare the results of
the present paper to those of the classical analysis [30] as
well as those of the approximate quantum analysis [36].
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II. REMINDERS

We first present in this section a few reminders which
will be used in the subsequent analysis, namely the de-
scription of the initial distribution of atomic velocities
and the quantum design for the GBAR experiment.

A. Description of the initial state

The description of the initial state requires a careful
attention as it mixes a coherent preparation of ions in
the ion trap and an incoherent sum over the recoil due to
the momentum brought by the photo-detached positron
which is not detected in the experiment. This incoherent
part of the preparation of the H atoms could blur the
interference pattern predicted without photo-detachment
and thus lead to a degradation of the accuracy expected
for the quantum measurement.

The initial state of H atoms has to be described by
a density matrix corresponding to a statistical mixture
of different recoils of the coherent state in the ion trap
affected by photo-detachment recoil

ρ0 =

∫
$(q̂) dΩ |Ψq,0〉 〈Ψq,0| , (1)

where |Ψq,0〉 represents the atomic state after the photo-
detachment process and the recoil q, while $ is the dis-
tribution of this recoil. Both elements are now explained.

The wave function |Ψq,0〉 is written in the position rep-

resentation as a Gaussian centered at rh = (0, 0, h) as H
atoms are supposed to be released from the trap at height
h = 10 µm above the mirror (δr0 ≡ r0 − rh)

Ψq,0(r0) =

(
1

2πζ2

)3/4

exp

(
− δr

2
0

4ζ2
+
ı

~
q · δr0

)
. (2)

We denote ζ =
√

~
2mω the position dispersion in the ion

trap with ω = 2πf and f the trap frequency.
If there were no dispersion of the recoil q, the density

matrix (1) would represent a perfectly coherent quantum
state. Here in contrast, there exists a dispersion of recoil,
characterized by the distribution $ in (1). Details of
the photo-detachment process are presented in [30]. The
recoil q transferred to the atom in the photo-detachment
process has a fixed magnitude q determined by the excess
energy δE above the photo-detachment threshold

q = |q| =
√

2mδE , (3)

where we used the fact that the mass of the positron
is much smaller than that of the atom. The photo-
detachment cross-section scales as the power δE3/2 of the
excess energy [26–28] which implies that this parameter
has to be large enough.

The recoil is fixed as q = q q̂ with the magnitude q
fixed by Eq.(3) and the unit vector aligned on the velocity
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FIG. 1. Density plot of the velocity distribution Π0 in the
(vy, vz) plane for δE = 10 µeV and f = 20 kHz.

of the photo-detached positron. The angular distribution
of recoil obeys a dipolar distribution centered around the
direction n̂ of the photo-detachment laser polarization
(with Ω the solid angle)

$(q̂) dΩ = 3 (q̂.n̂)
2 dΩ

4π
. (4)

The photo-detachment is considered as a very short
process affecting the position of the atom in a negligible
way. The momentum distribution is obtained as the con-
volution product of the Gaussian distribution in the ion
trap and of the distribution of photo-detachment recoil.
This momentum distribution in studied in details in [30]
where an analytical expression is given. From now on,

we discuss this distribution in terms of velocity v0 =
p0

m
instead of momentum.

In the following, we use trap frequency f = 20 kHz,
which corresponds to position dispersion ζ ' 0.5 µm, to
conjugated momentum dispersion ∆p = ~

2ζ and to ve-

locity dispersion ∆v = ∆p
m ' 6.3 cm/s. We also take

δE = 10 µeV which corresponds to a recoil velocity
vr = q

m = 1.02 m/s. The velocity distribution Π0 (v0)
is shown as a density plot in Fig.1. It is a shell with a
small width ∆v = 6.3 cm/s around the sphere of radius
vr = 1.02 m/s. Though vr is much larger than ∆v, we
will see in the following that the recoil does not degrade
too much the precision expected for the measurement of
g. We have assumed the laser polarisation to be along
the y−direction. in order to maximize the proportion
of atoms going out of the trap with a nearly horizontal
velocity (see discussions in §II.B).
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B. Quantum interference design

The quantum design [36] has been chosen to add min-
imal modifications to the GBAR classical design [22]. A
circular reflecting mirror of diameter d = 5 cm is added
at distance h below the center of the ion trap. The ex-
perimental setup is then decomposed into two zones: the
interference zone above the mirror on which GQS inter-
fere, and the free fall zone with height H = 30 cm, which
transforms the interference pattern at the end of the mir-
ror into an interference pattern read on positions at the
detector.

The quantum design was already studied without ac-
counting for the photo-detachment recoil [36]. The over-
all movement over the quantum mirror was produced by
an initial horizontal kick v0. Here, the photo-detachment
recoil vr ' 1 m/s is sufficient to produce the overall move-
ment so that we don’t need to consider a further initial
kick. For simplicity, we will disregard the kick produced
by the photon absorption vγ = 0.24 m/s which is small
with respect to vr.

The quantum design is schematized as a 2D view
in Fig.2, with lowercase letters representing quantities
relative to first stages of preparation and interference
above the mirror, while uppercase letters represent quan-
tities associated with free-fall and detection stages. The
parabolas in purple represent classical motions with
bounces above the mirror while the horizontal dashed
lines represent the paths through different GQS. The 2D
figure is drawn in the y, z-plane which corresponds to the
most probable plane in the distribution of velocities.

The quantum mirror in the plane z = 0 produces
bounces which constrain the wave function to remain in
the half space z > 0 until it reaches the end of the mirror.
This strongly affects the vertical evolution which will be
conveniently described by a decomposition on the basis
of the eigen-solutions of the Schrödinger equation above
the quantum reflecting mirror [45]

χn(z) =
Θ(z)√
`g

Ai
(
z
`g
− λn

)
Ai′ (−λn)

. (5)

Properties of the Airy functions Ai are discussed for
example in the NIST Handbook of Mathematical Func-
tions [46] or in the book by Vallée and Soares [47]. Θ(z) is
the Heaviside function expressing perfect quantum reflec-
tion; `g ' 5.87 µm is the typical length scale associated
with the quantum effect in the Earth gravity field (nu-
merical values calculated for g = g0 with g0 = 9.81 m/s2

the standard Earth’s gravity field)

`g =

(
~2

2m2g

)1/3

, εg = mg`g . (6)

εg ' 0.602 peV is the energy scale which determines the
energy of the n−th state En = λnεg with λn the opposite
of the n−th zero of the Airy function. We also introduce
typical scales for time (tg = ~

εg
≈ 1 ms) and velocity

FIG. 2. Schematic representation of the design. The quantum
mirror of radius d is the blue horizontal line. The atoms are
released at a mean height h above the mirror with a dispersion
ζ in all space directions. An absorber (orange line) is placed
above the mirror allowing nmax Gravitational Quantum States
to pass through the device. H is the free-fall height, Y and
T the positions in space and time of the detection events on
the detector plate in red.

(vg = gtg ≈ 1 cm/s). With a radius of 5 cm for the
disk, the time spent above it is approximately 50 ms,
corresponding to a large number of bounces above the
mirror. Atoms with a low vertical velocity above the
surface are trapped by the combined action of quantum
reflection and gravity.

Atoms having a large enough vertical velocity are ab-
sorbed by a rough plate placed at some height zmax above
the quantum reflecting mirror. Precisely, the absorber se-
lects the states with n < nmax such that the eigen-state
χn can pass through the slit [48–50]. This important
point is taken into account in the following by restricting
the number of GQS to the range n ∈ [1, nmax], which of
course limits the number of atoms useful for the measure-
ment. We stress again here that we consider an horizon-
tal polarisation of the photo-detachment laser in order to
maximize the number of atoms which pass through the
slit formed by the quantum mirror and the absorber.

After the end of the disk, the atomic wave packet
evolves through a free fall down to its annihilation on
the detection plate. The free fall acceleration g is de-
duced from a statistical analysis of annihilated events.
The key reason for the improvement of accuracy of the
quantum experiment with respect to the classical one is
the fact that the quantum interference pattern on the de-
tector contains much more information on the value of g
than the classical pattern.

We will neglect the effect of initial position dispersion
∆x = ∆y ' 0.5 µm with respect to the macroscopic di-
mensions of the whole setup. The situation is completely
different for the dispersion ∆z which has the same value
but will be taken into account carefully in the following,
as ∆z is not small in comparison for the parameters `g
and h of interest for vertical evolution. We will also use
the fact that horizontal velocities are preserved during
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the whole experiment to relate them to the measured po-
sitions (X,Y, Z, T ) in space and time of the annihilation
event.

To write the associated relations, we introduce nota-
tions for projections of vectors in the horizontal plane

v = (vx, vy) =
R

T
, R = (X,Y ) . (7)

We also deduce the positions of the atom at the end of
the quantum mirror, just before the free fall

t =
d

v
=
Td

R
, v = |v| , R = |R| . (8)

III. INTERFERENCES ABOVE THE
QUANTUM MIRROR

We now detail the evolution of the density matrix
above the quantum mirror. We suppose that most atoms
survive their flight above the reflecting surface, thus ne-
glecting the annihilation on the disk due to nearly perfect
quantum reflection for atoms having a small orthogonal
velocity above the quantum reflecting mirror.

A. Evolution above the quantum mirror

The pure state |Ψq,0〉 corresponding to a well-defined
recoil in Eq.(1) and taken at time 0, before evolution
above the quantum mirror, can be written with factorized
horizontal and vertical evolutions (the former written in
terms of horizontal projections (7), the latter in terms of
δz0 = z0 − h)

Ψq,0(r0) = φ0(r0) ψ0(z0) ,

φ0(r0) =
1√
2πζ

exp

(
− r

2
0

4ζ2
+
ıq.r0

~

)
,

ψ0(z0) =

√
1√
2πζ

exp

(
−δz

2
0

4ζ2
+
ı qzδz0

~

)
.

(9)

In the configuration described in §II, the evolution over
the mirror is conveniently represented in the momentum
representation for the horizontal variables as horizontal
momenta are conserved quantities

φ̃0(p) =
1√

2π∆p
exp

(
− (p− q)2

4∆p2

)
. (10)

We will write below the expression of the wave packet
after an evolution for a time t spent above the quantum
reflecting mirror with t related to horizontal velocities by
Eq.(8). In other words, the horizontal evolution is trivial
when written in the momentum representation.

In contrast, the vertical evolution is strongly affected
by quantum reflection and is conveniently represented by

a decomposition over the GQS (with energy λnεg)

ψq,t(z) =
∑
n

cn(qz)χn(z) exp

(
− ıλnεgt

~

)
. (11)

The amplitudes cn depend on the vertical recoil qz and
can be calculated as overlap integrals (the lower bound
in the integral is set at 0 because the functions χn(z)
contain an Heaviside function Θ(z))

cn(qz) =

∫ +∞

0

ψ0(z0)χn(z0)∗dz0 . (12)

The integral (12) has a good analytical approximation
when the dispersion ζ is small with respect to h so that
the lower bound in the integral (12) can be changed to
−∞. In the following we use the exact integral (12).

Among the N = 1000 initial H atoms, some of them
are lost in the absorber which reduces the number of
detected atoms Nc to a value which can be deduced from
the quadratic sum of the coefficient cn

Nc = N

∫
dΩ $(q̂)

∑
n

|cn(qz)|2 . (13)

With the numbers used here (f = 20 kHz, δE = 10 µeV
and nmax = 1000), we deduce that 26% of the initial
atoms pass through the slit and are detected (Nc = 260
when N = 1000).

We can now write a density matrix having the same
form as in (1) evaluated at time t at the end of the disk

ρt =

∫
$(q̂) dΩ |Ψq,t〉 〈Ψq,t| , (14)

This density matrix contains all the information which
will be needed in the following to evaluate precisely the
extent to which the incoherent part may affect the inter-
ference fringes with respect to the case without photo-
detachment. It will be used as the basis of the study of
free fall in the next section §IV.

B. Momentum distribution at the end of the disk

Before embarking in this complete study, we want to
confirm that the interferences are still present when tak-
ing the recoil into account.

To this aim, we calculate the momentum distribution
at the end of the mirror which was shown in [36] to con-
tain interferences

Πt(p) =

∫
$(q̂)dΩ

exp
(
− (p−q)2

2∆p2

)
2π∆p2

∣∣∣ψ̃q,t(pz)
∣∣∣2 ,

ψ̃q,t(pz) =
∑
n

cn(qz)χ̃n(pz) exp
−ıλnt
tg

,

(15)

where the symbols ψ̃q,t and χ̃n represent the Fourier
transforms of the functions ψq,t and χn respectively.
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FIG. 3. Momentum distribution Πt represented as a function
of velocity vz = pz/m and time t spent above the mirror, for
the parameters f = 20 kHz, δE = 10 µeV and nmax = 1000.

The distribution (15) is represented in Fig.3 as a func-
tion of velocity vz and time t spent above the mirror. The
pattern clearly reveals interference fringes due to interfer-
ence between the paths corresponding to different GQS
above the quantum mirror. Using a far-field approxima-
tion for describing the free fall after the end of the mirror,
one would deduce the interference pattern on the detec-
tor directly from this velocity distribution as was done
in [36]. However, this approximation is no longer valid
for the parameters of the present paper and we use be-
low a more rigorous way based on the full information
contained in the density matrix (14).

IV. INTERFERENCE PATTERN ON THE
DETECTION PLATES

The interference pattern produced at the end of the
quantum mirror is translated by the free fall period into
another one which is read out from the positions in space
and time of annihilation events of H at the detection
plates. For simplicity, we assume that H are annihilated
with 100% probability at the detector, thus disregarding
quantum reflection there as the kinetic energy of atoms
is large after a macroscopic free fall height.

A. Derivation of the annihilation current

The free fall time τ is the difference between the full
evolution time T and the time t spent above the disk

τ = T − t . (16)

For a pure wave function |Ψq,t〉 at time t, the pure wave
function |Ψq,T 〉 at time T after the free fall time τ is

conveniently described by a quantum propagator. The
propagator is represented as follows in the position rep-
resentation with position z at time t and Z at time T

Ψq,T (Z) =

∫
dzKg

τ (z, Z)Ψq,t(z) ,

Kg
τ (z, Z) =

√
m

2ıπ~τ
exp

(
ım sgτ (z, Z)

~

)
,

sgτ (z, Z) =
(Z − z)2

2τ
− gτ (Z + z)

2
− g2τ3

24
.

(17)

This expression has a nice interpretation as msgτ (z, Z) is
simply the action on the classical trajectory from z to Z
on a time τ [51].

The quantum propagator Kg
τ in presence of the gravity

field can easily be rewritten in terms of the same quantity
K0
τ evaluated in the absence of gravity and of a change

of final altitude accounting for the mean free fall height

Kg
τ (z, Z) = exp (−ıΦτ (Z))K0

τ (z, Z ′) ,

Φτ (Z) =
mgτ

~

(
Z +

gτ2

6

)
, Z ′ = Z +

gτ2

2
.

(18)

This formula is interesting as it dissociates the descrip-
tion of gravity by the mean free fall height 1

2gτ
2 and

that of diffraction by the propagator K0
τ containing only

the first term s0
τ (z, Z ′) =

(Z′−z)
2

2τ in the full action in
the third line of (17). The treatment of gravity is thus
compatible with the equivalence principle while that of
diffraction depends on the value of m/~.

The global phase factor Φτ (Z) does not depend on
z and thus goes out of the propagation integral in the
first line of (17). It would be irrelevant for calculating
the probability density at the detector, but we calculate
here the annihilation probability current J at the detec-
tor. J is a number of particle per unit of time and per
unit of surface and a function of the space-time positions
X,Y, Z, T of the annihilation event with Z = −H fixed
on the detection plane. In the configuration sketched in
Fig.2 where the atoms have a negative vertical velocity
at the detector, J has to be defined as the opposite of the
z−component of the current vector, with the expression

J =
m2

τ2

∫
$(q̂)dΩ

exp
(
− (p−q)2

2∆p2

)
2π∆p2

jq ,

jq = −Re

(
ψ∗q(Z)

~
ım

∂Zψq(Z)

)
.

(19)

The parameter T has been omitted for readability and
the relations written above between variables at the end
of the disk and positions X,Y, Z, T of the annihilation
event have also been left implicit.

An explicit expression of the current is then obtained
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by rewriting the wave function |Ψq,T 〉

Ψq,T (Z) = exp (−ıΦτ (Z))

√
m

2ıπ~τ
×∫

dz exp

(
ım (Z ′ − z)2

2~τ

)
Ψq,t(z) ,

(20)

as well as its gradient versus Z

~
ım

∂ZΨq,T (Z) = exp (−ıΦτ (Z))

√
m

2ıπ~τ
×∫

dzV (z, Z) exp

(
ım (Z ′ − z)2

2~τ

)
Ψq,t(z) ,

V (z, Z) =
Z − z
τ
− gτ

2
.

(21)

Here, V is the (negative) vertical velocity at the detector
calculated for the classical motion from the altitude z at
time t to Z at time T . Note that it depends on z and
cannot be taken out of the integral in (21).

Equation (20) describes quantum diffraction with the
effect of gravity accounted for by the altitude change
Z → Z ′. It allows to discuss easily the approximation
of far-field diffraction, as the integrals in (20) and (21)
are restricted to the interval z ∈ [0, zmax]. The far-field
limit can be used and the current expressed in terms of
the momentum distribution at the end of the disk when
τ is longer than a time of the order of

mz2max

h (that is also

when the distance vτ is longer than
z2max

λdB
with λdB = h

mv
the associated de Broglie wavelength). With the numbers
used in [36], this approximation gave a fairly good result.
With the numbers in the present paper in contrast, the
approximation can no longer be used, and we have to pro-
ceed with the more demanding numerical evaluation of
the formula (19), with the wave function and its gradient
given by (20) and (21) respectively.

B. Discussion of the annihilation current

We represent in the Fig.4 the current (19) versus Y and
T for X = 0 and Z = −H. The center of the figure is at
the classical position corresponding to a null vertical ve-
locity at the end of the disk (Y, T ) = (d+vrτ, d/vr +τ) '
(302 mm, 296 ms). The figure clearly shows interference
fringes along mainly horizontal lines, which means that
the interference is now essentially encoded on the time of
arrival. The pattern is organized around a most probable
line corresponding to the diagonal Y = vrT .

Details of the interference pattern are emphasized by
cutting the 2D distribution in Fig.4 along the most prob-
able line Y = vrT . For the reasons just explained, we
plot it as a function of time T around the classical center
296 ms in Fig.5. A zoom of Fig.5 is represented in the
inset with the aim of showing that the pattern is indeed
an interference signal, with however a complex structure
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290

292
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296

298

300
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J (m 2s 1)

FIG. 4. Probability current density J(Y, T ) on the detection
plate, for Z = −H and X = 0. Parameters: f = 20 kHz,
δE = 10 µeV, nmax = 1000.

due to the large number of frequencies involved in its
expression.

V. ESTIMATION OF THE UNCERTAINTY

We now have all the necessary ingredients to estimate
the precision of the experiment and compare it with the
purely classical design. We use two statistical methods
to estimate the parameter g and deduce a variance for
this estimation, the Monte-Carlo numerical method and
the Cramer-Rao analytical method. Atoms annihilate on
an horizontal detector plate at Z = −H with the event
characterized by space positions Xi, Yi and time Ti.

A. Monte-Carlo simulation

In the Monte-Carlo simulation, detection events are
generated directly from the expression (19) of the current
J at detection. We choose randomly Nc detection events
in the probability distribution J corresponding to the
value g0 = 9.81 m/s2. We consider that the random draw
D of Nc detection events (Xi, Yi, Ti) simulates the output
of one experiment.

The atomic evolution from the source to the detector
doesn’t depend on the azimuth angle Φ though the initial
momentum distribution depends on Φ. We may take
benefit of this symmetry by using cylindrical coordinates,

each event corresponding to a horizontal radius Ri and
an azimuth angle Φi. We can even produce an equivalent
2D analysis gathering all information by summing over
angles Φ folded on the value π

2 .
The Fig.6 shows samples of likelihoods defined in [30],

corresponding to 10 independent random draws. The col-
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FIG. 5. Probability current density J in m−2s−1 on the detection plate, by fixing Z = −H, X = 0 and Y = vrT .

ors have no meaning, they only allow one to distinguish
the different likelihood functions. The horizontal axis
scales as g−g0

g0
, in the interval

[
−3 · 10−5; 3 · 10−5

]
. The

likelihoods have Gaussian shapes with nearly equal vari-
ances, the main difference from one to the other being
the position of the maximum. We use here the max like-
lihood method to get an estimator ĝ of the parameter g
as would be done in the data analysis of the experiment.
In order to give a robust estimation of the variance, we
repeat the full procedure for M different random draws
of the Nc points. The histogram shown in Fig.7 corre-
sponds to M = 100000 such draws of Nc points.

This histogram has a Gaussian shape, with a dispersion
corresponding approximately to the average dispersion of
the likelihood functions. From this histogram, we extract
the average µg and the dispersion σMC

g of the estimator

3 2 1 0 1 2 3
(g g0)/g0 1e 5

0

1

2

3

4

L

1e3

FIG. 6. Likelihood functions L calculated for 10 random
draws of Nc = 260 atoms.

ĝ, from which we calculate the relative uncertainty

σMC
g

g0
' 1.0 · 10−5 . (22)

In the case without photo-detachment, with the same
design parameters and an initial horizontal kick v0 = 1.02
m/s, about 995 atoms would be detected since the dis-
persion of initial vertical velocity is much smaller and a
relative uncertainty σMC

g /g0 ≈ 5.8 · 10−6 would be ob-
tained. Taking into account the fact that the number of
detected atoms is reduced by a factor 0.26 by the spread
of photo-detachment recoil, we see that the latter only
slightly decreases the precision per detected atom. In
other words, the photo-detachment degrades the preci-
sion not so much as a result of blurring of the interference
figure, but rather because about 74% of the initial atoms
are absorbed in the slit above the quantum mirror.
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FIG. 7. Normalized histogram of the relative variation (ĝ −
g0)/g0 of the estimator ĝ obtained by repeating 100000 times
the Monte-Carlo simulation on Nc = 260 atoms.
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B. Cramer-Rao method and statistical efficiency

We now compare this result with the Cramer-Rao
bound σCR

g deduced from the Fisher information Ig for
g-dependence of the event distribution [52–54]

σCR
g =

1√
N Ig

,

Ig =

∫
dXdY dT

(∂gJg(X,Y, T ))
2

Jg(X,Y, T )
,

(23)

where Jg is the current (19) calculated for a running value
g of the free fall acceleration. We note thatN is the initial
number of atoms and that Jg accounts for the absorption
of atoms in the slit above the mirror. In other words,
Ig is the Fisher information per incident atom, with (23)
accounting for the loss of around 74% of the atoms which
do not bring any information on the value of g.

The Cramer-Rao dispersion (23) corresponds to an op-
timal estimation of the parameter [53, 54]. In the present
problem, the relative uncertainty obtained from (23) is
slightly smaller than the one (22) calculated by the Monte
Carlo simulation

σCR
g

g0
' 0.98 · 10−5 . (24)

This means that the statistical efficiency [53], defined as
the ratio between the variances (σMC

g )2 and (σCR
g )2, is

good (e ≈ 0.96 close to 1). From an experimental point
of view, a good efficiency means that the unique random
draw to be obtained from one experiment is expected to
be representative of the variety of results obtained from
different random draws in the numerical simulations.

VI. CONCLUSION

In this article, we have studied in details the quantum
design of the GBAR experiment, by taking into account
the photo-detachment recoil. The idea was suggested in
[36], without accounting for the photo-detachment. Fur-
thermore, a far-field approximation was used there for
calculating the free fall propagation, while a more accu-
rate quantum propagator method was used here.

We have described precisely the quantum evolution of
the matter wave in this new experimental setup by first
studying the H atoms bouncing on a material mirror,
due to high quantum reflection upon the Casimir-Polder
potential appearing in the vicinity of the surface. This
led to the building of quantum interferences between the
paths corresponding to the different Gravitational Quan-
tum States above the mirror.

This interference pattern at the end of the mirror was
then revealed by a free fall down to a detection plate
placed at a fixed macroscopic altitude below the quan-
tum mirror. Information on the value of g is encoded
there in the distribution of time and space positions of

the annihilation events. The calculations were done here
by using the information contained in the full density
matrix, without the simplifications based on the far-field
diffraction approximation.

The calculations were done for a superposition of thou-
sand states, which corresponds to about 26% of atoms
detected with the parameters used for the simulations.
A good agreement was reached between the two statisti-
cal analysis performed with Monte Carlo simulation and
Cramer-Rao estimation. This means that the statistical
efficiency is good, a nice result regarding the complexity
of the interference pattern and the relatively low number
of atoms probing this pattern.

The main conclusion of this paper is that the photo-
detachment process degrades the precision mainly be-
cause the spreading of the vertical velocity leads to a loss
of atoms absorbed in the slit above the quantum mir-
ror. Meanwhile, the blurring of the interference pattern
which could have affected the precision of the quantum
experiment is not significant. In the end, the relative
uncertainty is spectacularly improved when going from
the classical timing measurement to the quantum one.
With the set of parameters considered here, we get a rel-
ative accuracy of 3.3 · 10−2 for the classical design and
about 10−5 for the quantum one, thus improving the un-
certainty by more than 3 orders of magnitude. The main
reason for this improvement is that the quantum inter-
ference pattern contains much more information on the
value of g than the Gaussian-like classical pattern. Fine
details act as thin graduations that make it easier to ob-
serve small changes of the probability current distribu-
tion when the estimated parameter varies.

Further advances would be necessary for a fully realis-
tic estimation of the uncertainty. In particular, the quan-
tum reflection on the mirror and on the detection plate
should be accounted for [42] and the effect of position res-
olution at the detection plate [29] should be included in
the analysis as it can blur the finest fringes. It would also
be necessary to treat the effect of the shifts of Gravita-
tional Quantum States on the Casimir-Polder potential,
an effect which has already been calculated with the re-
quired accuracy [55, 56]. These advances will be needed
for a precise analysis of the quantum experiment when
it will be performed but they will not change the main
result obtained in this paper, namely that the quantum
design leads to a better accuracy than the classical one.
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