
HAL Id: hal-03868403
https://hal.science/hal-03868403

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sign-changing stationary solutions and blowup for the
two power nonlinear heat equation in a ball

Byrame Ben Slimene

To cite this version:
Byrame Ben Slimene. Sign-changing stationary solutions and blowup for the two power nonlinear heat
equation in a ball. Journal of Mathematical Analysis and Applications, 2017, 454 (2), pp.1067-1084.
�10.1016/j.jmaa.2017.05.009�. �hal-03868403�

https://hal.science/hal-03868403
https://hal.archives-ouvertes.fr


SIGN-CHANGING STATIONARY SOLUTIONS AND BLOWUP FOR
THE TWO POWER NONLINEAR HEAT EQUATION IN A BALL

BYRAME BEN SLIMENE
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Abstract. Consider the nonlinear heat equation

ut = �u+ |u|p�1u� |u|q�1u, (0.1)

where t � 0 and x 2 ⌦, the unit ball of RN , N � 3, with Dirichlet boundary conditions.

Let h be a radially symmetric, sign-changing stationary solution of (0.1). We prove that

the solution of (0.1) with initial value �h blows up in finite time if |��1| > 0 is su�ciently

small and if 1 < q < p < pS = N+2
N�2 and p su�ciently close to pS . This proves that the set

of initial data for which the solution is global is not star-shaped around 0.

1. Introduction

This paper studies finite-time blowup of sign-changing, regular solutions of the initial

value problem
(

ut = �u+ |u|p�1
u� |u|q�1

u,

u|@⌦ = 0.
(1.1)

Here, u = u(t, x) 2 R, t � 0, x 2 ⌦, and

⌦ = B1, (1.2)
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2 B. BEN SLIMENE

is the (open) unit ball of RN ,

N � 3. (1.3)

Furthermore, we consider

1 < q < p < pS , (1.4)

where

pS =
N + 2

N � 2
. (1.5)

It is well known that the initial value problem (1.1) is locally well-posed in C0(⌦), where

C0(⌦) is the Banach space of continuous functions on ⌦ that vanish on @⌦, with the sup

norm. More precisely, given u0 2 C0(⌦), there exists a maximal time 0 < Tu0  1
and a unique function u 2 C ([0, Tu0), C0(⌦)) \ C

�
(0, Tu0), C

2(⌦)
�
\ C

1 ((0, Tu0), C0(⌦))

which is a classical solution of (1.1) on (0, Tu0) and such that u(0) = u0. Furthermore if

Tu0 < 1, then lim
t"Tu0

ku(t)k1 = 1, and we say that u blows up in finite time. In addition,

if v 2 C ([0, T ), C0(⌦)) \ C
�
(0, T ), C2(⌦)

�
\ C

1 ((0, T ), C0(⌦)) is a supersolution of (1.1),

i.e vt ��v � |v|p�1
v � |v|q�1

v, v|@⌦ � 0 and v(0) � u0, then v(t) � u(t) as long as both u

and v are defined. The notion of subsolution is defined with reversed inequalities, yielding

the analogous conclusion. See, for example Proposition 52.6 in [17].

We define the set G by

G = {u0 2 C0(⌦), Tu0 = 1} .

It is interesting to study the geometrical properties of the set G. First of all we note that

every solution h of (
��h = |h|p�1

h� |h|q�1
h,

h|@⌦ = 0,
(1.6)

is a stationary, hence global, solution of (1.1), whose initial value is of course u0 = h, and

so is in G. Since the nonlinearity |s|p�1
s � |s|q�1

s satisfies the properties of [3, Theorem

1.1, p. 15], it follows that the set G is not convex. As u(t) = 0 is a solution of (1.1) one can

ask if G has the weaker property of being star-shaped around 0. The aim of this paper is

to prove that G is not star-shaped.

This result is already well-known in the case of a single power nonlinearity
(

ut = �u+ |u|p�1
u,

u|@⌦ = 0.
(1.7)

In particular, it is proved in [2] that if h is a radially symmetric, sign-changing stationary

solution of the problem (1.7), with ⌦ = B1, then the solution of (1.7) with initial value �h

blows up in finite time if |��1| > 0 is su�ciently small and if p is subcritical and su�ciently

close to pS = N+2
N�2 . More precisely, there exists 1 < p < pS = N+2

N�2 such that if p < p < pS
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and if h 2 C0(⌦) is a radially symmetric, sign-changing stationary solution of (1.7), then

there exists " > 0 such that if 0 < |� � 1| < ✏, then the classical solution of (1.7) with the

initial condition u(0) = �h blows up in finite time. In particular, G, for the problem (1.7),

is not star-shaped.

The fact that h changes sign is fundamental in this a�rmation. In fact in the case where

h > 0 it follows from the comparison principle of the heat equation that if 0 < �  1, then

the solution is global and if � > 1, then u blows up in finite time. For an elementary proof

of the case � > 1, see Theorem 17.8 in [17]. We remark, as was done in [2], that if h changes

sign, then h and �h are not comparable if � 6= 1.

In addition to the result in [2], it is known that G for the problem (1.7) is not star-shaped

in several other circumstances :

• N = 3, ⌦ = B1 and p > 1 su�ciently near to 1, see [4] ;

• N � 3, ⌦ is a general domain and p < pS su�ciently near to pS or p = pS , see

[14, 15] ;

• N = 2, ⌦ = B1 or ⌦ is a general domain and p su�ciently large, see [8, 9].

See [5, 6, 7, 10, 11, 12, 16] for other properties of the set G for the problem (1.7).

We now turn to problem (1.1), and we recall the following explosion criterion, see [2,

Proposition B.1, p. 447].

Proposition 1.1 ( [2, Proposition B.1, p. 447]). Let ⌦ ⇢ RN be a smooth bounded domain.

Let g 2 C
1(R,R) satisfy g(0) = 0,

s
2
g
0(s) � (1 + ✏)sg(s), (1.8)

and

|g(s)|  C(1 + |s|�), (1.9)

for all s 2 R, where ✏ > 0 and 1  � <
N+2
N�2 . Let  2 C0(⌦) be a solution of the equation

(
�� = g( ),

 |@⌦ = 0.
(1.10)

Let u0 2 C0(⌦) and let u 2 C ([0, Tu0);C0(⌦)) be the maximal solution of
(

ut = �u+ g(u),

u|@⌦ = 0,
(1.11)

with the initial condition u(0) = u0. If  + 6= 0 and u0 �  , u0 6=  , then u blows up in

finite time. Similarly if  � 6= 0 and u0   , u0 6=  , then u blows up in finite time.
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Remark 1.2. Note that if 1 < q < p < pS, then g(s) = |s|p�1
s� |s|q�1

s satisfies (1.8) with

✏ = q � 1 and (1.9) with C su�ciently large and � = p.

It is immediate that if h is a positive solution of (1.6) with 1 < q < p < pS , and if u is

the solution of (1.1) with initial value u(0) = �h, then for 0 < �  1, u is global (by the

comparison principle) and if � > 1, then u blows up in finite time (by Proposition 1.1).

The question remains as to whether or not the result in [2], cited above, concerning

sign-changing solutions to (1.7) also carries over to sign-changing solutions of (1.1).

The point of view in this paper is to fix a value of q with

1 < q < pS , (1.12)

and then consider all p with

q < p < pS . (1.13)

In fact we will ultimately consider what happens as p ! pS . The main purpose of this paper

is to establish the following result.

Theorem 1. Assume (1.2)-(1.3). Given 1 < q < pS = N+2
N�2 . It follows that there exists

1 < q < p < pS with the following property. If p < p < pS and if hp 2 C0(⌦) is a radially

symmetric stationary solution of (1.1) which takes both positive and negative values, then

there exist 0 < � < 1 < � such that if � < � < � and � 6= 1, then the classical solution of

(1.1) with the initial condition u(0) = �h blows up in finite time.

The first observation is that there does exists a radially symmetric, sign-changing sta-

tionary solution of (1.1), since the nonlinearity |s|p�1
s � |s|q�1

s satisfies the hypothesis of

[13, Theorem 2 , p. 376]. More precisely, if we consider the problem:
(

h
00 + N�1

r
h
0 + |h|p�1

h� |h|q�1
h = 0,

h(0) = a > 0, h
0(0) = 0.

(1.14)

It is well-known by [13] that (1.14) admits a unique solution h 2 C
2 ([0,1),R) , which we

denote sometimes by hp(r, a) to emphasize the dependence on a. Recall that we are fixing a

value of q satisfying (1.12) and letting p vary in the interval (1.13). Under these conditions,

by Theorem 2 in [13] for all integer m � 0, there exists ap,m such that

a) hp(1, ap,m) = 0,

b) hp(r, ap,m) has precisely m zeros in (0, 1).

In particular, hp(·, ap,m), considered as a function on ⌦ = B1, is a radially symmetric

solution of (1.6) which changes sign precisely m times.
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Now, let hp be any nontrivial solution of (1.6) and consider the linearized operator Fp on

L
2(⌦) defined by

(
D(Fp) = H

2(⌦) \H
1
0 (⌦),

Fpu = ��u�
�
p|hp|p�1 � q|hp|q�1

�
u, u 2 D(Fp).

(1.15)

We recall the following result from [3].

Theorem 2 ([3, Corollary 2.5, p. 18]). Let hp 2 C0(⌦) be a sign-changing solution of (1.6).

Let 'p be a positive eigenvector of the self-adjoint operator Fp given by (1.15), corresponding

to the first eigenvalue. Suppose that
Z

⌦
hp'p 6= 0.

It follows that there exists ✏ > 0 such that if 0 < |1� �| < ✏, then the solution of (1.1) with

the initial value u0 = �hp blows up in finite time.

To prove Theorem 1, it thus su�ces to establish the following.

Theorem 3. Assume (1.2)-(1.3). Given 1 < q < pS = N+2
N�2 . It follows that there exists

1 < q < p < pS with the following property. If p < p < pS and if hp 2 C0(⌦) is a radially

symmetric stationary solution of (1.1) which takes both positive and negative values, then
Z

⌦
hp'p 6= 0.

Where 'p is a positive eigenvector of the self-adjoint operator Fp given by (1.15), corre-

sponding to the first eigenvalue.

The proof of Theorem 3 is based on rescaling argument. Contrary to the case of single

power nonlinearity, a rescaled function vp defined by (2.4) below in terms of hp, where

hp is a radially symmetric stationary solution of (1.1) doesn’t satisfy the same di↵erential

equation satisfied by hp, which make the situation more di�cult. Also, unlike the case of

the single power nonlinearity, there exist some solutions vp(r) of the problem (2.5) below

which do not tend to zero as r ! 1.

The rest of the paper is devoted to proving Theorem 3, which as already noted, implies

Theorem 1 when combined with Theorem 2. Our basic approach follows that in [2]. However

because of the di↵erences just noted between the single power and the two power cases, many

of the arguments in [2] do not immediately apply for the current situation.

Remark 1.3. The results in this paper are equally valid for

ut = �u+ |u|p�1
u� c|u|q�1

u,
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for any c > 0. The case where c < 0 is not as clear, since in that case, the proof of

Proposition 2.1 below is no longer valid.

2. Stationary solutions

The proof of Theorem 3 exploits strongly the radial symmetry of the stationary solutions.

By abuse of notation we will use the same letter, for example h, to denote a radially

symmetric function h : RN ! R, and the corresponding function h : [0,1) ! R such that,

h(x) = h(|x|), 8x 2 RN . Throughout this paper, we will use this convention without further

comment.

Any radially symmetric solution hp 2 C0(⌦) of (1.6) satisfies the ODE
(

h
00
p +

N�1
r

h
0
p + |hp|p�1

hp � |hp|q�1
hp = 0,

h
0
p(0) = hp(1) = 0.

(2.1)

Since hp 6= 0, it follows by uniqueness for the ODE (2.1) that hp(0) 6= 0. Therefore, since

if u satisfies (1.1) then �u satisfies the same problem, it su�ce to prove Theorem 3 under

the additional assumption

hp(0) > 0. (2.2)

In the rest of this paper we set

hp(0) = ap > 0.

Clearly hp(r) = hp(r, ap), where hp(., ap) is the solution of (1.14) with a = ap. We let �p > 0

be such that

�

2
p�1
p = ap, (2.3)

also we define

vp(r) = �
� 2

p�1
p hp

✓
r

�p
,�

2
p�1
p

◆
. (2.4)

A simple calculation shows that vp satisfies
(

v
00 + N�1

r
v
0 + |v|p�1

v � �
� 2

p�1 (p�q)
p |v|q�1

v = 0,

v(0) = 1, v
0(0) = 0.

(2.5)

As such, vp may be considered as a function [0,1) ! R. It is known by [13, Lemma 1, p.

371] that ap � 1. In fact, if 0 < ap 
⇣
p+1
q+1

⌘ 1
p�q

then hp(r, ap) > 0 for all r > 0. Thus,

�p � 1. (2.6)

We have also

vp(�p) = 0. (2.7)
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Proposition 2.1. Let �p defined in (2.3), then

�p �!
p!pS

1. (2.8)

Proof. Suppose to the contrary that �p 9 1 as p ! pS . It follows that there exists a

subsequence (pk) such that pk �!
k!1

pS and

�pk �!
k!1

�, (2.9)

where 1  � < 1, by (2.6). By continuous dependence it follows that

vpk �!
k!1

v, (2.10)

uniformly on all compact intervals [0,M ] ⇢ [0,1), where v satisfies

(
v
00 + N�1

r
v
0 + |v|pS�1

v � �
� 2

pS�1 (pS�q)|v|q�1
v = 0,

v(0) = 1, v
0(0) = 0.

(2.11)

It follows from (2.7), (2.9) and (2.10) that

v(�) = 0. (2.12)

And so v satisfies the equation

(
��v = |v|pS�1

v � �
� 2

pS�1 (pS�q)|v|q�1
v,

v|@B(0,�) = 0.
(2.13)

If we apply the Pohozaev identity as was done in [1, Remark 1.2, p. 442], and if we set

g(u) = |u|pS�1
u� �

� 2
pS�1 (pS�q)|u|q�1

u and G(u) = |u|pS+1

pS+1 � �
� 2

pS�1 (pS�q) |u|q+1

q+1 , we obtain

2�N

2

Z

B(0,�)
g(v)v +N

Z

B(0,�)
G(v) = �

� 2
pS�1 (pS�q)


N � 2

2
� N

q + 1

� Z

B(0,�)
|v|q+1

=
1

2

Z

@B(0,�)
(x.⌫)

✓
@v

@⌫

◆2

� 0. (2.14)

From (2.14), one can conclude that

0 
✓
N � 2

2
� N

q + 1

◆
�
� 2

pS�1 (pS�q)kvkq+1

Lq+1(B(0,�))
. (2.15)

Since q < pS inequality (2.15) is possible only if v = 0, which contradicts v(0) = 1. ⇤
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Let now wp be the solution of
(

w
00 + N�1

r
w

0 + |w|p�1
w = 0,

w(0) = 1, w
0(0) = 0.

(2.16)

It is well-known and easy to verify that wpS given by

wpS (r) =

✓
1 +

1

N(N � 2)
r
2

◆�N�2
2

(2.17)

is the solution of (2.16) with p = pS .

Proposition 2.2. Let vp defined by (2.4) and wpS by (2.17), then

vp �!
p!pS

wpS , (2.18)

uniformly on bounded sets of [0,1).

Proof. By Proposition 2.1 �p ! 1 as p ! pS , and so by continuous dependence we can

conclude that

vp �!
p!pS

wpS ,

uniformly on bounded sets of [0,1). ⇤

Proposition 2.3. Given 1 < q < pS and 0 < ⌘ < pS � q. There exist M,C > 0 such that

for all p 2 [q + ⌘, pS) and r � 0,

|vp(r)|  M and |v0p(r)|  C. (2.19)

Proof. Let 1 < q < pS and 0 < ⌘ < pS � q. Note first that by (2.5)

1

2
v
0
p(r)

2 +
1

p+ 1
|vp(r)|p+1 � 1

q + 1
�
� 2

p�1 (p�q)
p |vp(r)|q+1

�0
= �N � 1

r
|v0p(r)|2, (2.20)

so that

1

2
v
0
p(r)

2 +
1

p+ 1
|vp(r)|p+1 � 1

q + 1
�
� 2

p�1 (p�q)
p |vp(r)|q+1  1

p+ 1
� 1

q + 1
�
� 2

p�1 (p�q)
p

 1

p+ 1
. (2.21)

Now since �p satisfies (2.6), it follows from (2.21) that

1

p+ 1
|vp(r)|p+1 � 1

q + 1
|vp(r)|q+1  1

p+ 1
. (2.22)

Suppose by contradiction that, there exist (pn) ⇢ [q + ⌘, pS) and (rn) ⇢ [0,1) such that

|vpn(rn)| �!
n!1

1.
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Since (pn) is bounded we can suppose that pn ! p⇤ 2 [q + ⌘, pS ], we apply now inequality

(2.22), which we note as

|vp(r)|p+1

✓
1

p+ 1
� 1

q + 1
|vp(r)|q�p

◆
 1

p+ 1
,

with p = pn, r = rn. By letting n ! 1, it follows that

1  1

p⇤ + 1
,

which is absurd. It follows so that there exists M > 0, such that for all p 2 [q + ⌘, pS) and

r � 0,

|vp(r)|  M. (2.23)

We turn now to prove the second assertion. It follows from (2.21), �p � 1, (2.23) and p > q

that

1

2
v
0
p(r)

2  1

p+ 1
+

1

q + 1
|vp(r)|q+1

 1

q + 1
+

1

q + 1
M

q+1
, 8p 2 [q + ⌘, pS), 8r � 0,

so that

|v0p(r)| 
r

2

q + 1

p
1 +M q+1, 8p 2 [q + ⌘, pS), 8r � 0.

⇤

The following lemma is one of the key points which di↵er from the calculations in [2].

Compare Lemma 3.3 in [2]. Indeed, Lemma 3.3 in [2] cannot be true in the present context

since not all solutions vp of (2.5) tend to 0 as r ! 1. We do obtain, however, a similar

estimate, valid only for r  �p.

Lemma 2.4. Given 1 < q < pS and 0 < ⌘ < pS � q. There exists a constant � = �(N, q)

such that
1

2
|v0p(r)|2 +

1

p+ 1
|vp(r)|p+1  �

"
1

r + 1
+

1

(r + 1)
2

pS�1⌘

#
, (2.24)

for all p 2 [q + ⌘, pS) and for all 0  r  �p.

Proof. Fix 1 < q < pS and 0 < ⌘ < pS � q. Let r such that 1  r  �p and p 2 [q + ⌘, pS).

Define now

F (r) =
1

2
v
0
p(r)

2 +
1

p+ 1
|vp(r)|p+1 � 1

q + 1
�
� 2

p�1 (p�q)
p |vp(r)|q+1 +

1

r
vp(r)v

0
p(r). (2.25)
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It follows from (2.20) and (2.5) that

F
0(r) = �N � 1

r
v
0
p(r)

2 � 1

r2
vp(r)v

0
p(r) +

1

r
v
0
p(r)

2 +
1

r
vp(r)v

00
p(r)

= �N � 2

r
v
0
p(r)

2 � 1

r2
vp(r)v

0
p(r) +

1

r
vp(r)v

00
p(r)

= �N � 2

r
v
0
p(r)

2 � 1

r2
vp(r)v

0
p(r) +

1

r
vp(r)


�N � 1

r
v
0
p(r)� |vp(r)|p�1

vp(r) + �
� 2

p�1 (p�q)
p |vp(r)|q�1

vp(r)

�
.

From (2.19), (1.3), the fact that 1  r  �p, 1 < q < p, Young’s inequality (applied twice)

and denoting ↵ := p�q

p+1 + 2
p�1(p� q), one can find the estimate

F
0(r) +

1

r
F (r) = �2N � 5

2r
v
0
p(r)

2 � p

(p+ 1)r
|vp(r)|p+1 � N � 1

r2
vp(r)v

0
p(r)

+�
� 2

p�1 (p�q)
p

q

(q + 1)r
|vp(r)|q+1

 �2N � 5

2r
v
0
p(r)

2 � p

(p+ 1)r
|vp(r)|p+1 +

1

2


(N � 1)2

r3
vp(r)

2 +
1

r
v
0
p(r)

2

�

+
q

q + 1
|vp(r)|q+1

r
� q+1

p+1 r
�↵

 (N � 1)2

2r3
vp(r)

2 � p

(p+ 1)r
|vp(r)|p+1

+
q

(p+ 1)r
|vp(r)|p+1 +

q(p� q)

(q + 1)(p+ 1)
r
�↵

p+1
p�q

 (N � 1)2

2r3
M

2 +
q(pS � q)

(q + 1)2
r
�↵

p+1
p�q .

Now since ↵p+1
p�q

= 1 + 2p+1
p�1 � 3, we obtain that for 1  r  �p

F
0(r) +

1

r
F (r)  Ar

�3
.

One can conclude now for all s 2 [1,�p], for all p 2 [q + ⌘, pS) that

d

ds
(sF (s)) = sF

0(s) + F (s)  As
�2

. (2.26)

Integration of (2.26) on [1, r] gives

rF (r)� F (1)  A

✓
�1

r
+ 1

◆
.

We can a�rm for r 2 [1,�p] that

F (r)  B
1

r
. (2.27)



BLOWUP FOR THE TWO POWER NONLINEAR HEAT EQUATION 11

Using also (2.25), (2.27), (2.19), p 2 [q+ ⌘, pS) and the fact that 1  r  �p, it follows that

1

2
v
0
p(r)

2 +
1

p+ 1
|vp(r)|p+1  1

q + 1
�
� 2

p�1 (p�q)
p |vp(r)|q+1 � 1

r
vp(r)v

0
p(r) +B

1

r

 1

q + 1

1

r

2
pS�1⌘

M
q+1 +

M.C

r
+B

1

r
.

Finally, using (2.19) one can conclude that there exists � > 0 such that

1

2
v
0
p(r)

2 +
1

p+ 1
|vp(r)|p+1  �

"
1

r + 1
+

1

(r + 1)
2

pS�1⌘

#
,

for all 0  r  �p. ⇤

We set

evp(r) =
(

vp(r) if 0  r  �p,

0 if r > �p.
(2.28)

Corollary 2.5. Given 1 < q < pS and 0 < ⌘ < pS � q. There exists a decreasing function

j : [0,1) ! [0,1) satisfying j(r) �!
r!1

0 such that

|evp(r)|  j(r), 8r � 0, 8p 2 [q + ⌘, pS). (2.29)

Proposition 2.6. kevp � wpSkL1(RN ) ! 0, as p ! pS.

Proof. Fix 1 < q < pS , 0 < ⌘ < pS � q and R � 0. Let p 2 [q + ⌘, pS), on the one hand it

follows from (2.29) and (2.17) that

|evp(r)� wpS (r)|  |evp(r)|+ wpS (r)

 j(r) + wpS (r)

 j(R) + wpS (R), 8r � R.

It follows that

sup
r�R

|evp(r)� wpS (r)|  j(R) + wpS (R) �!
R!1

0.

Thus, there exists R0 � 0 such that

sup
r�R0

|evp(r)� wpS (r)| 
"

2
. (2.30)

On the other hand, since �p �!
p!pS

1, by choosing p0 su�ciently close to pS , we can

assume that R0  �p for p0  p < pS . It follows from (2.18 ) that there exists p0  p < pS

such that if p < p < pS then

sup
r2[0,R0]

|evp(r)� wpS (r)| = sup
r2[0,R0]

|vp(r)� wpS (r)| 
"

2
. (2.31)
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One can conclude from (2.30) and(2.31). ⇤

3. The linearized operator

We consider now the self-adjoint operator Fp defined on L
2(⌦) by

(
D(Fp) = H

2(⌦) \H
1
0 (⌦),

Fpu = ��u�
�
p|hp|p�1 � q|hp|q�1

�
u, 8u 2 D(Hp).

(3.1)

We denote by

✓p = ✓p (Fp) , (3.2)

its first eigenvalue and by 'p the corresponding eigenvector, i.e.

Fp'p = ��'p � (p|hp|p�1 � q|hp|q�1)'p = ✓p'p, (3.3)

where we require

'p > 0, k'pkL2(⌦) = 1. (3.4)

Since 'p is radially symmetric, it satisfies the ODE

'
00
p +

N � 1

r
'
0
p +

�
p|hp|p�1 � q|hp|q�1

�
'p + ✓p'p = 0. (3.5)

In order to transform the operator Fp into another operator we introduce lp 2 R and  p, a

positive, spherically symmetric function on ⌦p defined by

✓p = �
2
plp, 'p(x) = �

N
2
p  p(�px), (3.6)

where

⌦p = B(0,�p). (3.7)

It follows from (3.5), (2.4) and (3.6) that  p satisfies the equation
8
<

:
�� p �


p|vp|p�1 � q�

� 2
p�1 (p�q)

p |vp|q�1

�
 p = lp p in ⌦p,

 p = 0 on @⌦p,

(3.8)

and that Z

⌦
hp'p = �

2
p�1�

N
2

p

Z

⌦p

vp p, (3.9)

and

 p > 0, k pkL2(⌦p) = 1. (3.10)
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We have also that lp is the first eigenvalue associated to the eigenvector  p of the self-adjoint

operator Lp defined on L
2(⌦p) by

8
<

:

D(Lp) = H
2(⌦p) \H

1
0 (⌦p),

Lpu = ��u�

p|vp|p�1 � q�

� 2
p�1 (p�q)

p |vp|q�1

�
u, 8u 2 D(Lp).

(3.11)

Given 0 < p < pS , we set

Jp(w) =

Z

⌦p

|rw|2 �
Z

⌦p


p|vp|p�1 � q�

� 2
p�1 (p�q)

p |vp|q�1

�
w

2
, (3.12)

for all w 2 H
1
0 (⌦p), so that

lp = inf
�
Jp(u), u 2 H

1
0 (⌦p), kukL2(⌦p) = 1

 
. (3.13)

Also we define the self-adjoint operator L⇤ on L
2(RN ) by

(
D(L⇤) = H

2(RN ),

L⇤u = ��u� pSw
pS�1
pS u, 8u 2 D(L⇤),

(3.14)

where wpS is given by (2.17). We set

�⇤ = inf
n
J⇤(u), u 2 H

1(RN ), kukL2(RN ) = 1
o
, (3.15)

where

J⇤(w) =

Z

RN
|rw|2 � pS

Z

RN
w

pS�1
pS

w
2
, (3.16)

for all w 2 H
1(RN ). We recall now the following proposition from [2].

Proposition 3.1 ( [2, Proposition 3.4, p. 439]). If L⇤ is defined by (3.14) and �⇤ is defined

by (3.15), then the following properties hold.

(i) �⇤ < 0 and �⇤ is an eigenvalue of L⇤.

(ii) There exists a unique eigenvector  ⇤ of L⇤ corresponding to the eigenvalue �⇤ which

is positive, radially decreasing with k ⇤kL2(RN ) = 1.

(iii) If (un)n�1 ⇢ H
1(RN ) is a minimizing sequence of (3.15) and un � 0, then un !  ⇤

in L
2(RN ) as n ! 1.

We set

e p(x) =

(
 p(x) if 0  |x| < �p,

0 if |x| � �p,
(3.17)

for all 1 < p < pS , so that

e p 2 H
1(RN ), k e pkL2(RN ) = 1, e p � 0. (3.18)
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Lemma 3.2. Let  2 H
1(RN ) such that k kL2(RN ) = 1. Consider a smooth radial cut-o↵

function ⌘ : RN ! [0, 1] such that ⌘(r) = 1 for r  1
2 and ⌘(r) = 0 for r � 1. Set

k�(r) = ⌘

⇣
r

�

⌘
 (r), (3.19)

and

u� =
k�

kk�kL2(RN )
. (3.20)

Then u� 2 H
1
0 (⌦�) and

ku� �  kH1(RN ) �!
�!1

0. (3.21)

Where ⌦� = B(0,�).

Proof. This follows by standard arguments, using the observation that kk�kL2(RN ) �!
�!1

1.

⇤

Lemma 3.3. Let lp defined by (3.6), then

lp ! �⇤ as p ! pS .

Proof. We first use e p as a test function in (3.15). It follows from (3.18) that

�⇤  J⇤( e p) = Jp( e p) +

Z

RN


p|evp|p�1 � q�

� 2
p�1 (p�q)

p |evp|q�1 � pSw
pS�1
pS

�
e 2
p

= lp +

Z

RN


p|evp|p�1 � q�

� 2
p�1 (p�q)

p |evp|q�1 � pSw
pS�1
pS

�
e 2
p

= lp +

Z

RN

⇥
p|evp|p�1 � pSw

pS�1
pS

⇤ e 2
p � q�

� 2
p�1 (p�q)

p

Z

RN
|evp|q�1 e 2

p. (3.22)

It follows from (3.22), Proposition 2.3 and (3.18) that

�⇤ � lp 
��p|evp|p�1 � pSw

pS�1
pS

��
L1(RN )

+ qM
q�1

�
� 2

p�1 (p�q)
p , 8p 2 [q + ⌘, pS). (3.23)

One can conclude now by applying Proposition 2.6 and Proposition 2.1 that

lim sup
p!pS

(�⇤ � lp)  0. (3.24)

Next, we would like to use  ⇤ as a test function in (3.13), but  ⇤ /2 H
1
0 (⌦p). Thus, we need

to approximate  ⇤ by a sequence in H
1
0 (⌦p). Consider a smooth radial cut-o↵ function

⌘ : RN ! [0, 1] such that ⌘(r) = 1 for r  1
2 and ⌘(r) = 0 for r � 1. Setting

kp(r) = ⌘

✓
r

�p

◆
 ⇤(r), (3.25)
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and

up =
kp

kkpkL2(RN )
. (3.26)

it follows from Lemma 3.2 (since �p ! 1 as p ! pS) that

kup �  ⇤kH1(RN ) �!
p!pS

0. (3.27)

Moreover up 2 H
1
0 (⌦p), so that

lp  Jp(up) = �⇤ � J⇤( ⇤) + J⇤(up)� J⇤(up) + Jp(up). (3.28)

On the one hand we have by Proposition 2.6 and Proposition 2.1 that

|J⇤(up)� Jp(up)| =

����
Z

RN


p|evp|p�1 � q�

� 2
p�1 (p�q)

p |evp|q�1 � pSw
pS�1
pS

�
up

2

����


Z

RN

��p|evp|p�1 � pSw
pS�1
pS

��up2 + q�
� 2

p�1 (p�q)
p

Z

RN
|evp|q�1

up
2


��p|evp|p�1 � pSw

pS�1
pS

��
L1(RN )

+ qM
q�1

�
� 2

p�1 (p�q)
p �!

p!pS
0. (3.29)

On the other hand, using the fact that |J⇤( ⇤)�J⇤(up)| 
���krupk2L2(RN ) � kr ⇤k2L2(RN )

���+

pS

Z

RN

��u2p �  
2
⇤
��, it easily follows from (3.27) and the dominated convergence theorem that

|J⇤( ⇤)� J⇤(up)| �!
p!pS

0. (3.30)

We deduce from (3.29) and (3.30) that

� lim inf
p!pS

(�⇤ � lp) = lim sup
p!pS

(lp � �⇤)  0. (3.31)

We can confirm so by (3.24) and (3.31) that

lim inf
p!pS

(�⇤ � lp) = lim sup
p!pS

(�⇤ � lp) = lim
p!pS

(�⇤ � lp) = 0.

The result follows now. ⇤

Lemma 3.4. Given q 2 (1, pS) and ⌘ 2 (0, pS � q). There exists C > 0 such that

| e p(r)|+ | ⇤(r)|  C
1

r
N�1

2

 C, (3.32)

for all r � 1 and q + ⌘  p < pS.
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Proof. Fix q 2 (1, pS) and ⌘ 2 (0, pS � q). We a�rm first that

lp < 0 for all p 2 (q, pS). (3.33)

In fact, since lp satisfies (3.6), it su�ce to prove that ✓p < 0. We have on the one hand

since p > q

 Z

⌦p

h
2
p

!
✓p 

Z

⌦p

|rhp|2 �
Z

⌦p

(p|hp|p�1 � q|hp|q�1)h2p


Z

⌦p

|rhp|2 � q

Z

⌦p

(|hp|p+1 � |hp|q+1). (3.34)

On the other hand since hp satisfies (2.1) it follows that
Z

⌦p

|rhp|2 =
Z

⌦p

�
|hp|p+1 � |hp|q+1

�
. (3.35)

It follows from (3.34) and (3.35) since q > 1 that ✓p < 0.

We complete now our proof. Since lp < 0, we deduce from (3.13) and Proposition 2.3

that

kr e pk2L2(RN )  pS(M
q�1 +M

pS�1), 8p 2 [q + ⌘, pS). (3.36)

By (3.18), (3.36) and Strauss’ radial lemma [18] that

| e p(r)|  c

p
1 + pS (M q�1 +MpS�1)

1

r
N�1

2

, (3.37)

for all r � 1.

A similar argument applies to  ⇤ which completes the proof. ⇤

Lemma 3.5. Given q 2 (1, pS) and ⌘ 2 (0, pS � q). There exist R, C > 0, ✓ > 0 and

q + ⌘  p0 < pS such that

| e p(r)|+ | ⇤(r)|  Ce
�✓r

, (3.38)

for all r � R and p0  p < pS.

Proof. Fix q 2 (1, pS) and ⌘ 2 (0, pS � q). We start first by showing that there exists R,

C > 0, ✓ > 0 and q + ⌘  p0 < pS such that

| p(r)|  Ce
�✓r

, (3.39)

for all r � R (with r  �p) and p0  p < pS . It follows from (3.8) that  p satisfies

� 00
p(r)�

N � 1

r
 
0
p(r)�

⇢
p|evp(r)|p�1 � q�

� 2
p�1 (p�q)

p |evp(r)|q�1

�
+ lp

�
 p(r) = 0, (3.40)
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for all 0  r < �p. We would like to use a method of energy in equation (3.40), but the

term �
h
p|evp(r)|p�1 � q�

� 2
p�1 (p�q)

p |evp(r)|q�1
i
� lp is di�cult to handle so we may estimate

it. On the one hand, since |p|evp(r)|p�1 � q�
� 2

p�1 (p�q)
p |evp(r)|q�1|  L(r) �!

r!1
0 by Corollary

2.5 and the fact that p 2 [q + ⌘, pS), it follows that there exists R > 0, such that for all

r � R

�

p|evp(r)|p�1 � q�

� 2
p�1 (p�q)

p |evp(r)|q�1

�
� �⇤

4
. (3.41)

On the other hand, since �lp ! ��⇤ as p ! pS by Lemma 3.3, it follows that there exists

p0 2 [q + ⌘, pS) such that for all p0  p < pS

�lp � �3

4
�⇤. (3.42)

Finally one can conclude from (3.41) and (3.42) that there exist R > 0 and q+ ⌘  p0 < pS

such that

�

p|evp(r)|p�1 � q�

� 2
p�1 (p�q)

p |evp(r)|q�1

�
� lp � ��⇤

2
> 0, (3.43)

for all p0  p < pS and all r � R. By choosing p0 possibly larger, we also may assume that

�p > R for p0  p < pS . Since  p � 0, we deduce from (3.40) and (3.43) that

 
00
p +

N � 1

r
 
0
p � ��⇤

2
 p, (3.44)

for all R  r  �p. We now claim that

 
0
p(r) < 0, (3.45)

for all p0  p < pS and all R < r < �p. We argue by contradiction and suppose that

 
0
p(rp) � 0 for some p0  p < pS and some R < rp < �p. Since  p(�p) = 0, there exists

rp  r
0
p < �p such that  0

p(r
0
p) = 0 and  

00
p(r

0
p)  0. This is impossible by (3.44) since

�⇤ < 0. Multiplying (3.44) by  0
p < 0, see that

 
00
p 

0
p +

N � 1

r
 
0
p 

0
p  ��⇤

2
 p 

0
p,

which implies
✓
 
02
p +

�⇤
2
 
2
p

◆0
 0, (3.46)

for R  r  �p. It follows from (3.46) that

 
02
p +

�⇤
2
 
2
p

�
(r) �  

0
p(�p)

2 � 0,
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for R < r < �p. Since  p > 0 and  0
p < 0, we obtain that  0

p+
q

��⇤
2  p  0 for R < r < �p,

so that

 p(r)   p(R)e

q
��⇤

2 R
e
�
q

��⇤
2 r

,

for R < r < �p. By choosing R � 1 we have  p(R)  C by Lemma 3.4 . The exponential

decay follows. As remarked in [2], the proof for  ⇤ is similar. This completes the proof. ⇤

Lemma 3.6. e p and  ⇤ 2 L
1(RN ). Moreover, k e p �  ⇤kL1(RN ) ! 0 as p ! pS.

Proof. The proof is similar to the proof of Lemma 3.7 in [2]. ⇤

Proof of Theorem 3 . Fix q 2 (1, pS) and 0 < ⌘ < pS � q. Let hp 2 C0(⌦) be a radially

symmetric, sign-changing stationary solution of (1.1). Let 'p be the positive eigenvector

normalized in L
2(⌦) of the self-adjoint operator Fp given by (3.1), corresponding to the first

eigenvalue. We have from Proposition 2.3
�����

Z

⌦p

vp p �
Z

RN
wpS ⇤

����� =

����
Z

RN
evp e p �

Z

RN
wpS ⇤

����


����
Z

RN
evp
⇣
e p �  ⇤

⌘����+
����
Z

RN
(evp � wpS ) ⇤

����

 M

��� e p �  ⇤

���
L1(RN )

+ k ⇤kL1(RN ) kevp � wpSkL1(RN ) ,

8p 2 [q + ⌘, pS). It follows so by Lemma 3.6, Proposition 2.6 that
Z

⌦
vp'p �!

p!pS

Z

RN
wpS ⇤ > 0.

We can now conclude from (3.9)that there exists 1 < q < p < pS such that if p < p < pS ,

then Z

⌦
hp'p > 0.

This finishes the proof. ⇤
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