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Consider the nonlinear heat equation

where t 0 and x 2 ⌦, the unit ball of R N , N 3, with Dirichlet boundary conditions.

Let h be a radially symmetric, sign-changing stationary solution of (0.1). We prove that the solution of (0.1) with initial value h blows up in finite time if | 1| > 0 is su ciently small and if 1 < q < p < pS = N +2 N 2 and p su ciently close to pS. This proves that the set of initial data for which the solution is global is not star-shaped around 0.

Introduction

This paper studies finite-time blowup of sign-changing, regular solutions of the initial value problem ( u t = u + |u| p 1 u |u| q 1 u, u |@⌦ = 0.

(1.1)

Here, u = u(t, x) 2 R, t 0, x 2 ⌦, and

⌦ = B 1 , (1.2) 
is the (open) unit ball of R N , N 3.

(1.3) Furthermore, we consider

1 < q < p < p S , (1.4) 
where

p S = N + 2 N 2
.

(1.5)

It is well known that the initial value problem (1.1) is locally well-posed in C 0 (⌦), where C 0 (⌦) is the Banach space of continuous functions on ⌦ that vanish on @⌦, with the sup norm. More precisely, given u 0 2 C 0 (⌦), there exists a maximal time 0 < T u 0  1 and a unique function u 2 C ([0, T u 0 ), C 0 (⌦)) \ C (0, T u 0 ), C 2 (⌦) \ C 1 ((0, T u 0 ), C 0 (⌦)) which is a classical solution of (1.1) on (0, T u 0 ) and such that u(0) = u 0 . Furthermore if

T u 0 < 1, then lim
t"Tu 0 ku(t)k 1 = 1, and we say that u blows up in finite time. In addition,

if v 2 C ([0, T ), C 0 (⌦)) \ C (0, T ), C 2 (⌦) \ C 1 ((0, T ), C 0 (⌦)
) is a supersolution of (1.1), i.e v t v |v| p 1 v |v| q 1 v, v |@⌦ 0 and v(0) u 0 , then v(t) u(t) as long as both u and v are defined. The notion of subsolution is defined with reversed inequalities, yielding the analogous conclusion. See, for example Proposition 52.6 in [START_REF] Quittner | Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States[END_REF].

We define the set G by

G = {u 0 2 C 0 (⌦), T u 0 = 1} .
It is interesting to study the geometrical properties of the set G. First of all we note that every solution h of ( h = |h| p 1 h |h| q 1 h, h |@⌦ = 0, (1.6) is a stationary, hence global, solution of (1.1), whose initial value is of course u 0 = h, and so is in G. Since the nonlinearity |s| p 1 s |s| q 1 s satisfies the properties of [3, Theorem 1.1, p. 15], it follows that the set G is not convex. As u(t) = 0 is a solution of (1.1) one can ask if G has the weaker property of being star-shaped around 0. The aim of this paper is to prove that G is not star-shaped.

This result is already well-known in the case of a single power nonlinearity

( u t = u + |u| p 1 u, u |@⌦ = 0. (1.7)
In particular, it is proved in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF] that if h is a radially symmetric, sign-changing stationary solution of the problem (1.7), with ⌦ = B 1 , then the solution of (1.7) with initial value h blows up in finite time if | 1| > 0 is su ciently small and if p is subcritical and su ciently close to p S = N +2 N 2 . More precisely, there exists 1 < p < p S = N +2 N 2 such that if p < p < p S and if h 2 C 0 (⌦) is a radially symmetric, sign-changing stationary solution of (1.7), then there exists " > 0 such that if 0 < | 1| < ✏, then the classical solution of (1.7) with the initial condition u(0) = h blows up in finite time. In particular, G, for the problem (1.7), is not star-shaped.

The fact that h changes sign is fundamental in this a rmation. In fact in the case where h > 0 it follows from the comparison principle of the heat equation that if 0 <  1, then the solution is global and if > 1, then u blows up in finite time. For an elementary proof of the case > 1, see Theorem 17.8 in [START_REF] Quittner | Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States[END_REF]. We remark, as was done in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF], that if h changes sign, then h and h are not comparable if 6 = 1.

In addition to the result in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF], it is known that G for the problem (1.7) is not star-shaped in several other circumstances :

• N = 3, ⌦ = B 1 and p > 1 su ciently near to 1, see [4] ; • N
3, ⌦ is a general domain and p < p S su ciently near to p S or p = p S , see [START_REF] Ianni | Blow-up for sign-changing solutions of the critical heat equation in domains with a small hole[END_REF][START_REF] Marino | Blow up of solutions of semilinear heat equations in general domains[END_REF] ;

• N = 2, ⌦ = B 1
or ⌦ is a general domain and p su ciently large, see [START_REF] De Marchis | Blow up of solutions of semilinear heat equations in non radial domains of R 2[END_REF][START_REF] Dickstein | Sign-changing stationary solutions and blowup for a nonlinear heat equation in dimension two[END_REF].

See [START_REF] Cazenave | On the structure of global solutions of the nonlinear heat equation in a ball[END_REF][START_REF] Cazenave | An Introduction to Semilinear Evolution Equations[END_REF][START_REF] Cazenave | Solutions globales d'équations de la chaleur semi linéaires[END_REF][START_REF] Gazzola | Finite-time blow-up and global solutions for semilinear parabolic equations with initial data at high energy levels[END_REF][START_REF] Giga | A bound for global solutions of semilinear heat equations[END_REF][START_REF] Lions | Asymptotic behavior of some nonlinear heat equations[END_REF][START_REF] Quittner | A priori bounds for global solutions of a semilinear parabolic problem[END_REF] for other properties of the set G for the problem (1.7).

We now turn to problem (1.1), and we recall the following explosion criterion, see [2, Proposition B.1, p. 447].

Proposition 1.1 ( [2, Proposition B.1, p. 447]). Let ⌦ ⇢ R N be a smooth bounded domain. Let g 2 C 1 (R, R) satisfy g(0) = 0, s 2 g 0 (s) (1 + ✏)sg(s), (1.8) 
and

|g(s)|  C(1 + |s| ), (1.9) 
for all s 2 R, where ✏ > 0 and 1  < N +2 N 2 . Let 2 C 0 (⌦) be a solution of the equation ( = g( ),

|@⌦ = 0.

(1.10)

Let u 0 2 C 0 (⌦) and let u 2 C ([0, T u 0 ); C 0 (⌦)) be the maximal solution of ( u t = u + g(u), u |@⌦ = 0, (1.11) 
with the initial condition u(0) = u 0 . If + 6 = 0 and u 0 , u 0 6 = , then u blows up in finite time. Similarly if 6 = 0 and u 0  , u 0 6 = , then u blows up in finite time.

Remark 1.2. Note that if 1 < q < p < p S , then g(s) = |s| p 1 s |s| q 1 s satisfies (1.8) with ✏ = q 1 and (1.9) with C su ciently large and = p.

It is immediate that if h is a positive solution of (1.6) with 1 < q < p < p S , and if u is the solution of (1.1) with initial value u(0) = h, then for 0 <  1, u is global (by the comparison principle) and if > 1, then u blows up in finite time (by Proposition 1.1).

The question remains as to whether or not the result in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF], cited above, concerning sign-changing solutions to (1.7) also carries over to sign-changing solutions of (1.1).

The point of view in this paper is to fix a value of q with 1 < q < p S , (1.12)

and then consider all p with q < p < p S .

(1.13)

In fact we will ultimately consider what happens as p ! p S . The main purpose of this paper is to establish the following result.

Theorem 1. Assume (1.2)-(1.3). Given 1 < q < p S = N +2 N 2 .
It follows that there exists 1 < q < p < p S with the following property. If p < p < p S and if h p 2 C 0 (⌦) is a radially symmetric stationary solution of (1.1) which takes both positive and negative values, then there exist 0 < < 1 < such that if < < and 6 = 1, then the classical solution of (1.1) with the initial condition u(0) = h blows up in finite time.

The first observation is that there does exists a radially symmetric, sign-changing stationary solution of (1.1), since the nonlinearity |s| p 1 s |s| q 1 s satisfies the hypothesis of [START_REF] Mcleod | Radial solutions of u + f (u) = 0 with prescribed numbers of zeros[END_REF]Theorem 2 ,p. 376]. More precisely, if we consider the problem:

( h 00 + N 1 r h 0 + |h| p 1 h |h| q 1 h = 0, h(0) = a > 0, h 0 (0) = 0. (1.14)
It is well-known by [START_REF] Mcleod | Radial solutions of u + f (u) = 0 with prescribed numbers of zeros[END_REF] that (1.14) admits a unique solution h 2 C 2 ([0, 1), R) , which we denote sometimes by h p (r, a) to emphasize the dependence on a. Recall that we are fixing a value of q satisfying (1.12) and letting p vary in the interval (1.13). Under these conditions, by Theorem 2 in [START_REF] Mcleod | Radial solutions of u + f (u) = 0 with prescribed numbers of zeros[END_REF] for all integer m 0, there exists a p,m such that a) h p (1, a p,m ) = 0, b) h p (r, a p,m ) has precisely m zeros in (0, 1).

In particular, h p (•, a p,m ), considered as a function on ⌦ = B 1 , is a radially symmetric solution of (1.6) which changes sign precisely m times. Now, let h p be any nontrivial solution of (1.6) and consider the linearized operator F p on

L 2 (⌦) defined by ( D(F p ) = H 2 (⌦) \ H 1 0 (⌦), F p u = u p|h p | p 1 q|h p | q 1 u, u 2 D(F p ).
(1.15)

We recall the following result from [START_REF] Cazenave | Structural properties of the set of global solutions of the nonlinear heat equation[END_REF].

Theorem 2 ([3, Corollary 2.5, p. 18]). Let h p 2 C 0 (⌦) be a sign-changing solution of (1.6).

Let ' p be a positive eigenvector of the self-adjoint operator F p given by (1.15), corresponding to the first eigenvalue. Suppose that

Z ⌦ h p ' p 6 = 0.
It follows that there exists ✏ > 0 such that if 0 < |1 | < ✏, then the solution of (1.1) with the initial value u 0 = h p blows up in finite time.

To prove Theorem 1, it thus su ces to establish the following.

Theorem 3. Assume (1.2)-(1.3). Given 1 < q < p S = N +2 N 2 .
It follows that there exists 1 < q < p < p S with the following property. If p < p < p S and if h p 2 C 0 (⌦) is a radially symmetric stationary solution of (1.1) which takes both positive and negative values, then

Z ⌦ h p ' p 6 = 0.
Where ' p is a positive eigenvector of the self-adjoint operator F p given by (1.15), corresponding to the first eigenvalue.

The proof of Theorem 3 is based on rescaling argument. Contrary to the case of single power nonlinearity, a rescaled function v p defined by (2.4) below in terms of h p , where h p is a radially symmetric stationary solution of (1.1) doesn't satisfy the same di↵erential equation satisfied by h p , which make the situation more di cult. Also, unlike the case of the single power nonlinearity, there exist some solutions v p (r) of the problem (2.5) below which do not tend to zero as r ! 1.

The rest of the paper is devoted to proving Theorem 3, which as already noted, implies Theorem 1 when combined with Theorem 2. Our basic approach follows that in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF]. However because of the di↵erences just noted between the single power and the two power cases, many of the arguments in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF] do not immediately apply for the current situation.

Remark 1.3. The results in this paper are equally valid for

u t = u + |u| p 1 u c|u| q 1 u,
for any c > 0. The case where c < 0 is not as clear, since in that case, the proof of Proposition 2.1 below is no longer valid.

Stationary solutions

The proof of Theorem 3 exploits strongly the radial symmetry of the stationary solutions. By abuse of notation we will use the same letter, for example h, to denote a radially symmetric function h : R N ! R, and the corresponding function h : [0, 1) ! R such that,

h(x) = h(|x|), 8x 2 R N .
Throughout this paper, we will use this convention without further comment.

Any radially symmetric solution h p 2 C 0 (⌦) of (1.6) satisfies the ODE (

h 00 p + N 1 r h 0 p + |h p | p 1 h p |h p | q 1 h p = 0, h 0 p (0) = h p (1) = 0. (2.1)
Since h p 6 = 0, it follows by uniqueness for the ODE (2.1) that h p (0) 6 = 0. Therefore, since if u satisfies (1.1) then u satisfies the same problem, it su ce to prove Theorem 3 under the additional assumption

h p (0) > 0. (2.2)
In the rest of this paper we set

h p (0) = a p > 0.
Clearly h p (r) = h p (r, a p ), where h p (., a p ) is the solution of (1.14) with a = a p . We let p > 0 be such that

2 p 1 p = a p , (2.3) 
also we define

v p (r) = 2 p 1 p h p ✓ r p , 2 p 1 p ◆ .
(2.4)

A simple calculation shows that v p satisfies (

v 00 + N 1 r v 0 + |v| p 1 v 2 p 1 (p q) p |v| q 1 v = 0, v(0) = 1, v 0 (0) = 0. (2.5)
As such, v p may be considered as a function [0, 1) ! R. It is known by [

13, Lemma 1, p. 371] that a p 1. In fact, if 0 < a p  ⇣ p+1 q+1 ⌘ 1
p q then h p (r, a p ) > 0 for all r > 0. Thus,

p 1. (2.6)
We have also 

v p ( p ) = 0. ( 2 
p k ! k!1 , (2.9) 
where 1  < 1, by (2.6). By continuous dependence it follows that

v p k ! k!1 v, (2.10) 
uniformly on all compact intervals [0, M] ⇢ [0, 1), where v satisfies

( v 00 + N 1 r v 0 + |v| p S 1 v 2 p S 1 (p S q) |v| q 1 v = 0, v(0) = 1, v 0 (0) = 0. (2.11)
It follows from (2.7), (2.9) and (2.10) that v( ) = 0.

(2.12)

And so v satisfies the equation

( v = |v| p S 1 v 2 p S 1 (p S q) |v| q 1 v, v |@B(0, ) = 0. (2.13)
If we apply the Pohozaev identity as was done in [1, Remark 1.2, p. 442], and if we set

g(u) = |u| p S 1 u 2 p S 1 (p S q) |u| q 1 u and G(u) = |u| p S +1 p S +1 2 p S 1 (p S q) |u| q+1 q+1 , we obtain 2 N 2 Z B(0, ) g(v)v + N Z B(0, ) G(v) = 2 p S 1 (p S q)  N 2 2 N q + 1 Z B(0, ) |v| q+1 = 1 2 Z @B(0, ) (x.⌫) ✓ @v @⌫ ◆ 2 0. (2.14) From (2.14), one can conclude that 0  ✓ N 2 2 N q + 1 ◆ 2 p S 1 (p S q) kvk q+1 L q+1 (B(0, )) . (2.15) Since q < p S inequality (2.15) is possible only if v = 0, which contradicts v(0) = 1. ⇤
Let now w p be the solution of (

w 00 + N 1 r w 0 + |w| p 1 w = 0, w(0) = 1, w 0 (0) = 0. (2.16)
It is well-known and easy to verify that w p S given by

w p S (r) = ✓ 1 + 1 N (N 2) r 2 ◆ N 2 2 (2.17)
is the solution of (2.16) with p = p S .

Proposition 2.2. Let v p defined by (2.4) and w p S by (2.17), then

v p ! p!p S w p S , (2.18) 
uniformly on bounded sets of [0, 1).

Proof. By Proposition 2.1 p ! 1 as p ! p S , and so by continuous dependence we can conclude that

v p ! p!p S w p S ,
uniformly on bounded sets of [0, 1). ⇤ Proposition 2.3. Given 1 < q < p S and 0 < ⌘ < p S q. There exist M, C > 0 such that for all p 2 [q + ⌘, p S ) and r 0,

|v p (r)|  M and |v 0 p (r)|  C. ( 2 

.19)

Proof. Let 1 < q < p S and 0 < ⌘ < p S q. Note first that by (2.5)

 1 2 v 0 p (r) 2 + 1 p + 1 |v p (r)| p+1 1 q + 1 2 p 1 (p q) p |v p (r)| q+1 0 = N 1 r |v 0 p (r)| 2 , (2.20) so that 1 2 v 0 p (r) 2 + 1 p + 1 |v p (r)| p+1 1 q + 1 2 p 1 (p q) p |v p (r)| q+1  1 p + 1 1 q + 1 2 p 1 (p q) p  1 p + 1 . ( 2 

.21)

Now since p satisfies (2.6), it follows from (2.21) that

1 p + 1 |v p (r)| p+1 1 q + 1 |v p (r)| q+1  1 p + 1 . (2.22)
Suppose by contradiction that, there exist (p n ) ⇢ [q + ⌘, p S ) and (r n ) ⇢ [0, 1) such that

|v pn (r n )| ! n!1 1.
Since (p n ) is bounded we can suppose that p n ! p ⇤ 2 [q + ⌘, p S ], we apply now inequality (2.22), which we note as

|v p (r)| p+1 ✓ 1 p + 1 1 q + 1 |v p (r)| q p ◆  1 p + 1
, with p = p n , r = r n . By letting n ! 1, it follows that

1  1 p ⇤ + 1
, which is absurd. It follows so that there exists M > 0, such that for all p 2 [q + ⌘, p S ) and r 0,

|v p (r)|  M. ( 2 

.23)

We turn now to prove the second assertion. It follows from (2.21), p 1, (2.23) and p > q that 1 2

v 0 p (r) 2  1 p + 1 + 1 q + 1 |v p (r)| q+1  1 q + 1 + 1 q + 1 M q+1 , 8p 2 [q + ⌘, p S ), 8r 0, so that |v 0 p (r)|  r 2 q + 1 p 1 + M q+1 , 8p 2 [q + ⌘, p S ), 8r 0.

⇤

The following lemma is one of the key points which di↵er from the calculations in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF]. Compare Lemma 3.3 in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF]. Indeed, Lemma 3.3 in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF] cannot be true in the present context since not all solutions v p of (2.5) tend to 0 as r ! 1. We do obtain, however, a similar estimate, valid only for r  p . Lemma 2.4. Given 1 < q < p S and 0 < ⌘ < p S q. There exists a constant = (N, q)

such that 1 2 |v 0 p (r)| 2 + 1 p + 1 |v p (r)| p+1  " 1 r + 1 + 1 (r + 1) 2 p S 1 ⌘ # , (2.24) 
for all p 2 [q + ⌘, p S ) and for all 0  r  p .

Proof. Fix 1 < q < p S and 0 < ⌘ < p S q. Let r such that 1  r  p and p 2 [q + ⌘, p S ). Define now

F (r) = 1 2 v 0 p (r) 2 + 1 p + 1 |v p (r)| p+1 1 q + 1 2 p 1 (p q) p |v p (r)| q+1 + 1 r v p (r)v 0 p (r). (2.25)
It follows from (2.20) and (2.5) that

F 0 (r) = N 1 r v 0 p (r) 2 1 r 2 v p (r)v 0 p (r) + 1 r v 0 p (r) 2 + 1 r v p (r)v 00 p (r) = N 2 r v 0 p (r) 2 1 r 2 v p (r)v 0 p (r) + 1 r v p (r)v 00 p (r) = N 2 r v 0 p (r) 2 1 r 2 v p (r)v 0 p (r) + 1 r v p (r)  N 1 r v 0 p (r) |v p (r)| p 1 v p (r) + 2 p 1 (p q) p |v p (r)| q 1 v p (r) .
From (2.19), (1.3), the fact that 1  r  p , 1 < q < p, Young's inequality (applied twice) and denoting ↵ := p q p+1 + 2 p 1 (p q), one can find the estimate

F 0 (r) + 1 r F (r) = 2N 5 2r v 0 p (r) 2 p (p + 1)r |v p (r)| p+1 N 1 r 2 v p (r)v 0 p (r) + 2 p 1 (p q) p q (q + 1)r |v p (r)| q+1  2N 5 2r v 0 p (r) 2 p (p + 1)r |v p (r)| p+1 + 1 2  (N 1) 2 r 3 v p (r) 2 + 1 r v 0 p (r) 2 + q q + 1 |v p (r)| q+1 r q+1 p+1 r ↵  (N 1) 2 2r 3 v p (r) 2 p (p + 1)r |v p (r)| p+1 + q (p + 1)r
|v p (r)| p+1 + q(p q) (q + 1)(p + 1) r

↵ p+1 p q  (N 1) 2 2r 3 M 2 +
q(p S q) (q + 1) 2 r ↵ p+1 p q . Now since ↵ p+1 p q = 1 + 2 p+1 p 1

3, we obtain that for 1  r  p

F 0 (r) + 1 r F (r)  Ar 3 .
One can conclude now for all s 2 [1, p ], for all p 2 [q + ⌘, p S ) that

d ds (sF (s)) = sF 0 (s) + F (s)  As 2 . (2.26)
Integration of (2.26) on [1, r] gives

rF (r) F (1)  A ✓ 1 r + 1 ◆ .
We can a rm for r 2 [1, p ] that

F (r)  B 1 r . (2.27)
Using also (2.25), (2.27), (2.19), p 2 [q + ⌘, p S ) and the fact that 1  r  p , it follows that

1 2 v 0 p (r) 2 + 1 p + 1 |v p (r)| p+1  1 q + 1 2 p 1 (p q) p |v p (r)| q+1 1 r v p (r)v 0 p (r) + B 1 r  1 q + 1 1 r 2 p S 1 ⌘ M q+1 + M.C r + B 1 r .
Finally, using (2.19) one can conclude that there exists > 0 such that

1 2 v 0 p (r) 2 + 1 p + 1 |v p (r)| p+1  " 1 r + 1 + 1 (r + 1) 2 p S 1 ⌘ # , for all 0  r  p . ⇤ We set e v p (r) = ( v p (r) if 0  r  p , 0 if r > p .
(2.28)

Corollary 2.5. Given 1 < q < p S and 0 < ⌘ < p S q. There exists a decreasing function

j : [0, 1) ! [0, 1) satisfying j(r) ! r!1 0 such that |e v p (r)|  j(r), 8r 0, 8p 2 [q + ⌘, p S ).
(2.29) Proposition 2.6. ke v p w p S k L 1 (R N ) ! 0, as p ! p S . Proof. Fix 1 < q < p S , 0 < ⌘ < p S q and R 0. Let p 2 [q + ⌘, p S ), on the one hand it follows from (2.29) and (2.17) that

|e v p (r) w p S (r)|  |e v p (r)| + w p S (r)  j(r) + w p S (r)  j(R) + w p S (R), 8r R. It follows that sup r R |e v p (r) w p S (r)|  j(R) + w p S (R) ! R!1 0.
Thus, there exists R 0 0 such that 

sup r R 0 |e v p (r) w p S (r)|  " 2 . ( 2 
|e v p (r) w p S (r)| = sup r2[0,R 0 ] |v p (r) w p S (r)|  " 2 .
(2.31)

One can conclude from (2.30) and(2.31). ⇤

The linearized operator

We consider now the self-adjoint operator F p defined on L 2 (⌦) by

( D(F p ) = H 2 (⌦) \ H 1 0 (⌦), F p u = u p|h p | p 1 q|h p | q 1 u, 8u 2 D(H p ). (3.1)
We denote by

✓ p = ✓ p (F p ) , (3.2) 
its first eigenvalue and by ' p the corresponding eigenvector, i.e.

F p ' p = ' p (p|h p | p 1 q|h p | q 1 )' p = ✓ p ' p , (3.3) 
where we require

' p > 0, k' p k L 2 (⌦) = 1. (3.4)
Since ' p is radially symmetric, it satisfies the ODE

' 00 p + N 1 r ' 0 p + p|h p | p 1 q|h p | q 1 ' p + ✓ p ' p = 0. (3.5)
In order to transform the operator F p into another operator we introduce l p 2 R and p , a positive, spherically symmetric function on ⌦ p defined by

✓ p = 2 p l p , ' p (x) = N 2 p p ( p x), (3.6) 
where

⌦ p = B(0, p ). (3.7)
It follows from (3.5), (2.4) and (3.6) that p satisfies the equation 8 <

:

p  p|v p | p 1 q 2 p 1 (p q) p |v p | q 1 p = l p p in ⌦ p , p = 0 on @⌦ p , (3.8) 
and that

Z ⌦ h p ' p = 2 p 1 N 2 p Z ⌦p v p p , (3.9) 
and

p > 0, k p k L 2 (⌦p) = 1. (3.10)
We have also that l p is the first eigenvalue associated to the eigenvector p of the self-adjoint operator L p defined on L 2 (⌦ p ) by 8 < :

D(L p ) = H 2 (⌦ p ) \ H 1 0 (⌦ p ), L p u = u  p|v p | p 1 q 2 p 1 (p q) p |v p | q 1 u, 8u 2 D(L p ). (3.11) 
Given 0 < p < p S , we set

J p (w) = Z ⌦p |rw| 2 Z ⌦p  p|v p | p 1 q 2 p 1 (p q) p |v p | q 1 w 2 , (3.12) 
for all w 2 H 1 0 (⌦ p ), so that

l p = inf J p (u), u 2 H 1 0 (⌦ p ), kuk L 2 (⌦p) = 1 . (3.13) 
Also we define the self-adjoint operator

L ⇤ on L 2 (R N ) by ( D(L ⇤ ) = H 2 (R N ), L ⇤ u = u p S w p S 1 p S u, 8u 2 D(L ⇤ ), (3.14) 
where w p S is given by (2.17). We set

⇤ = inf n J ⇤ (u), u 2 H 1 (R N ), kuk L 2 (R N ) = 1 o , (3.15) 
where

J ⇤ (w) = Z R N |rw| 2 p S Z R N w p S 1 p S w 2 , (3.16) 
for all w 2 H 1 (R N ). We recall now the following proposition from [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF]. (i) ⇤ < 0 and ⇤ is an eigenvalue of L ⇤ .

(ii) There exists a unique eigenvector ⇤ of L ⇤ corresponding to the eigenvalue ⇤ which is positive, radially decreasing with

k ⇤ k L 2 (R N ) = 1. (iii) If (u n ) n 1 ⇢ H 1 (R N ) is a minimizing sequence of (3.15) and u n 0, then u n ! ⇤ in L 2 (R N ) as n ! 1.
We set

e p (x) = ( p (x) if 0  |x| < p , 0 if |x| p , (3.17) 
for all 1 < p < p S , so that

e p 2 H 1 (R N ), k e p k L 2 (R N ) = 1, e p 0. (3.18) Lemma 3.2. Let 2 H 1 (R N ) such that k k L 2 (R N ) = 1. Consider a smooth radial cut-o↵ function ⌘ : R N ! [0, 1] such that ⌘(r) = 1 for r  1 2 and ⌘(r) = 0 for r 1. Set k (r) = ⌘ ⇣ r ⌘ (r), (3.19) 
and

u = k kk k L 2 (R N )
.

(3.20)

Then u 2 H 1 0 (⌦ ) and ku k H 1 (R N ) ! !1 0. ( 3.21) 
Where ⌦ = B(0, ).

Proof. This follows by standard arguments, using the observation that kk k

L 2 (R N ) ! !1 1. ⇤ Lemma 3.3. Let l p defined by (3.6), then l p ! ⇤ as p ! p S .
Proof. We first use e p as a test function in (3.15). It follows from (3.18) that ). Thus, we need to approximate ⇤ by a sequence in H 1 0 (⌦ p ). Consider a smooth radial cut-o↵ function ⌘ : R N ! [0, 1] such that ⌘(r) = 1 for r  1 2 and ⌘(r) = 0 for r 1. Setting

⇤  J ⇤ ( e p ) = J p ( e p ) + Z R N  p|e v p | p 1 q 2 p 1 (p q) p |e v p | q 1 p S w p S 1 p S e 2 p = l p + Z R N  p|e v p | p 1 q 2 p 1 (p q) p |e v p | q 1 p S w p S 1 p S e 2 p = l p + Z R N ⇥ p|e v p | p 1 p S w p S 1 p S ⇤ e 2 p q 2 p 1 (p q) p Z R N |e v p | q 1 e 2 p . ( 
k p (r) = ⌘ ✓ r p ◆ ⇤ (r), (3.25) 
and 

u p = k p kk p k L 2 (R N ) . ( 3 
l p  J p (u p ) = ⇤ J ⇤ ( ⇤ ) + J ⇤ (u p ) J ⇤ (u p ) + J p (u p ). (3.28)
On the one hand we have by Proposition 2.6 and Proposition 2.1 that

|J ⇤ (u p ) J p (u p )| = Z R N  p|e v p | p 1 q 2 p 1 (p q) p |e v p | q 1 p S w p S 1 p S u p 2  Z R N p|e v p | p 1 p S w p S 1 p S u p 2 + q 2 p 1 (p q) p Z R N |e v p | q 1 u p 2  p|e v p | p 1 p S w p S 1 p S L 1 (R N ) + qM q 1 2 p 1 (p q) p ! p!p S 0. (3.29)
On the other hand, using the fact that The result follows now. ⇤ Lemma 3.4. Given q 2 (1, p S ) and ⌘ 2 (0, p S q). There exists C > 0 such that

|J ⇤ ( ⇤ ) J ⇤ (u p )|  kru p k 2 L 2 (R N ) kr ⇤ k 2 L 2 (R N ) + p S Z R N
| e p (r)| + | ⇤ (r)|  C 1 r N 1 2  C, (3.32) 
for all r 1 and q + ⌘  p < p S .

Proof. Fix q 2 (1, p S ) and ⌘ 2 (0, p S q). We a rm first that l p < 0 for all p 2 (q, p S ).

(3.33)

In fact, since l p satisfies (3.6), it su ce to prove that ✓ p < 0. We have on the one hand since p > q We complete now our proof. Since l p < 0, we deduce from (3.13) and Proposition 2.3 that

Z ⌦p h 2 p ! ✓ p  Z ⌦p |rh p | 2 Z ⌦p (p|h p | p 1 q|h p | q 1 )h 2 p  Z ⌦p |rh p | 2 q Z ⌦p (|h p | p+1 |h p | q+1 ). ( 3 
kr e p k 2 L 2 (R N )  p S (M q 1 + M p S 1 ), 8p 2 [q + ⌘, p S ). (3.36) 
By (3.18), (3.36) and Strauss' radial lemma [START_REF] Strauss | Existence of solitary waves in higher dimensions[END_REF] that

| e p (r)|  c p 1 + p S (M q 1 + M p S 1 ) 1 r N 1 2 , (3.37) 
for all r 1. A similar argument applies to ⇤ which completes the proof. ⇤ Lemma 3.5. Given q 2 (1, p S ) and ⌘ 2 (0, p S q). There exist R, C > 0, ✓ > 0 and

q + ⌘  p 0 < p S such that | e p (r)| + | ⇤ (r)|  Ce ✓r , (3.38) 
for all r R and p 0  p < p S .

Proof. Fix q 2 (1, p S ) and ⌘ 2 (0, p S q). We start first by showing that there exists R, C > 0, ✓ > 0 and q + ⌘  p 0 < p S such that

| p (r)|  Ce ✓r , (3.39) 
for all r R (with r  p ) and p 0  p < p S . It follows from (3.8) that p satisfies 00 p (r)

N 1 r 0 p (r) ⇢ p|e v p (r)| p 1 q 2 p 1 (p q) p |e v p (r)| q 1 + l p p (r) = 0, (3.40)
for all 0  r < p . We would like to use a method of energy in equation (3.40), but the term

h p|e v p (r)| p 1 q 2 p 1 (p q) p |e v p (r)| q 1 i
l p is di cult to handle so we may estimate it. On the one hand, since |p|e v p (r)| p 1 q

2 p 1 (p q) p |e v p (r)| q 1 |  L(r) ! r!1
0 by Corollary 2.5 and the fact that p 2 [q + ⌘, p S ), it follows that there exists R > 0, such that for all r R  

p|e v p (r)| p 1 q 2 p 1 (p q) p |e v p (r)| q 1 ⇤ 4 . ( 3 
+ ⌘  p 0 < p S such that  p|e v p (r)| p 1 q 2 p 1 (p q) p |e v p (r)| q 1 l p ⇤ 2 > 0, (3.43) 
for all p 0  p < p S and all r R. By choosing p 0 possibly larger, we also may assume that p > R for p 0  p < p S . Since p 0, we deduce from (3.40) and (3.43) that

00 p + N 1 r 0 p ⇤ 2 p , (3.44) 
for all R  r  p . We now claim that 0 p (r) < 0, (3.45) for all p 0  p < p S and all R < r < p . We argue by contradiction and suppose that 0 p (r p ) 0 for some p 0  p < p S and some R < r p < p . Since p ( p ) = 0, there exists r p  r 0 p < p such that 0 p (r 0 p ) = 0 and 00 p (r 0 p )  0. This is impossible by (3.44) since ⇤ < 0. Multiplying (3.44) by 0 p < 0, see that Proof. The proof is similar to the proof of Lemma 3.7 in [START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF]. ⇤

Proof of Theorem 3 . Fix q 2 (1, p S ) and 0 < ⌘ < p S q. Let h p 2 C 0 (⌦) be a radially symmetric, sign-changing stationary solution of (1.1). Let ' p be the positive eigenvector normalized in L 2 (⌦) of the self-adjoint operator F p given by (3.1), corresponding to the first eigenvalue. We have from Proposition We can now conclude from (3.9)that there exists 1 < q < p < p S such that if p < p < p S , then Z ⌦ h p ' p > 0.

This finishes the proof. ⇤
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Proposition 3 . 1 ( [ 2 ,

 312 Proposition 3.4, p. 439]). If L ⇤ is defined by(3.14) and ⇤ is defined by(3.15), then the following properties hold.

u 2 p 2 ⇤(

 2 , it easily follows from (3.27) and the dominated convergence theorem that|J ⇤ ( ⇤ ) J ⇤ (u p )| ! ⇤ l p ) = lim sup p!p S (l p ⇤ )  0. (3.31) We can confirm so by (3.24) and (3.31) that lim inf p!p S ( ⇤ l p ) = lim sup p!p S ( ⇤ l p ) = lim p!p S ( ⇤ l p ) = 0.

p⇤ 2 p,

 2 ( p ) 2 0, for R < r < p . Since p > 0 and 0 p < 0, we obtain that 0 p + q  0 for R < r < p , so that p (r)  p (R)e for R < r < p . By choosing R 1 we have p (R)  C by Lemma 3.4 . The exponential decay follows. As remarked in[START_REF] Cazenave | Sign-changing stationary solutions and blow up for the nonlinear heat equation in a ball[END_REF], the proof for ⇤ is similar. This completes the proof. ⇤ Lemma 3.6. e p and ⇤ 2 L 1 (R N ). Moreover, k e p ⇤ k L 1 (R N ) ! 0 as p ! p S .

  p w p S ) ⇤  M e p ⇤ L 1 (R N ) + k ⇤ k L 1 (R N ) ke v p w p S k L 1 (R N ) ,8p 2 [q + ⌘, p S ). It follows so by Lemma 3.6, Proposition 2.6 thatZ ⌦ v p ' p ! p!p S Z R Nw p S ⇤ > 0.

  Proof. Suppose to the contrary that p 9 1 as p ! p S . It follows that there exists a subsequence (p k ) such that p k !

	Proposition 2.1. Let p defined in (2.3), then		
	p	! p!p S	1.	(2.8)
	p S and		
	k!1			
				.7)

  by choosing p 0 su ciently close to p S , we can assume that R 0  p for p 0  p < p S . It follows from (2.18 ) that there exists p 0  p < p S

	.30)
	On the other hand, since p ! p!p S 1, such that if p < p < p S then
	sup
	r2[0,R 0 ]

  .41) On the other hand, since l p ! ⇤ as p ! p S by Lemma 3.3, it follows that there exists p 0 2 [q + ⌘, p S ) such that for all p 0  p < p S

	l p	3 4	⇤ .	(3.42)
	Finally one can conclude from (3.41) and (3.42) that there exist R > 0 and q