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Abstract

Given numerical data about objects defined by descriptive and target

attributes, we investigate the discovery of interesting conjunctions of de-

scriptive attribute range of values that are associated to optimized target

values. This can be useful across many application domains where one

wants to perform Multi-Objective Optimization: the goal is to find the

best compromise between the competing objectives that correspond to

the di↵erent targets and one expects to learn about the optimal values of

the descriptive attributes. For this purpose, we design Exceptional Model

Mining instances: we look for subsets of objects – subgroups – whose

models deviate significantly from the same models fitted on the whole

dataset. A first method, called Exceptional Pareto Front Deviation Min-

ing (EPFDM), characterizes the di↵erences between the Pareto front com-

puted on the original data and the Pareto front computed after removing

a subgroup of objects. We discuss in detail the design of a generic quality

measure for EPFDM and we provide comprehensive empirical results. We

also develop an approach called Exceptional Pareto Front Approximation

Mining (EPFAM), whose goal is the discovery of models that approxi-

mate exceptionally well the true Pareto front. Beside empirical studies

that consider both the qualitative and quantitative aspects of EPFDM

and EPFAM, we present a use-case on plant growth recipe optimization

in controlled environments, a timely challenge for a smarter agriculture.

Exceptional Model Mining Multi-objective Optimization Pareto Subgroup

Discovery Pattern Mining Plant Growth Optimization

1 Introduction

When studying a given process, it is common to collect data about some of its
important parameters, say descriptive attribute values, but also to have target
attributes that quantify, e.g., a quality or a cost measure. When all the at-
tributes are numerical, we can support the discovery of interesting conjunctions
of descriptive attribute range of values that are associated to optimized target
values like, e.g., a good trade-o↵ between quality and cost. This can be useful
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across many application domains where one wants to perform Multi-Objective
Optimization (MOO).

For example, the application scenario at the heart of this research is the
design of better plant growth recipes in controlled environments. Nowadays,
conventional farming methods have to face many tough challenges like, e.g., soil
erosion and groundwater depletion. Furthermore, crucial problems related to
the climate crisis also stimulate the need for new production systems. The con-
cept of vertical urban farms (see, e.g., AeroFarms, Infarm, Bowery Farming1)
can be part of a solution. In such farms, plants grow in controlled environments
according to recipes that specify the di↵erent growth stages and instructions re-
garding many parameters (e.g., temperature, humidity, CO2, light). Through-
out the whole process, automated systems keep track of such parameters and,
at the end, values can be assigned to di↵erent objective variables (e.g., yield,
taste, energy cost) for each recipe. We can exploit recipe data to optimize the
growth process and it is intrinsically a MOO problem. This growth recipe op-
timization case is an example of a di�cult task. The underlying model of the
objective functions is unknown and new experiments can not easily be generated
due to time and cost constraints. In other terms, typical MOO algorithms –
that require a model of the objective functions and generating a large number of
points at each iteration – cannot be used. There is therefore a need for methods
that can a data-driven discovery of relevant and exploitable information in such
MOO problems.

To support our data mining approaches to MOO, we decided to investi-
gate Exceptional Model Mining (EMM) instances. Hereafter, the descriptive
attributes are numerical or categorical ones and we have numerical target at-
tributes. EMM has been introduced over 10 years ago (Leman et al., 2008). It
is a generalization of subgroup discovery (Klösgen, 1996; Herrera et al., 2011).
In subgroup discovery, given labeled data, we look for subsets of objects – sub-
groups – defined by interesting descriptions or patterns according to a quality
measure computed on a unique target variable. The measure has to capture
discrepancies between the target variable distribution in the subgroup and its
distribution in the overall dataset. The greater and more significant the dif-
ference, the more interesting the subgroup is deemed. Within a typical EMM
setting for a given class of models, we look for subgroups whose models deviate
significantly from the same models fitted on the entire dataset. Once a type
of data and a language of patterns have been chosen, each new EMM instance
and thus type of targeted model requires (1) suitable quality measures to as-
sess the subgroup interestingness but also, (2) algorithms that can explore the
search space to identify good models. Where subgroup discovery is inherently
limited to a unique target concept, EMM is able to handle data where two or
more targets exist, enabling the discovery of more complex interactions between
variables.

MOO is a sub-field of Multi-criteria Decision Making that is focused on find-

1https://aerofarms.com/, https://infarm.com/, https://boweryfarming.com/. Ac-
cessed on 13/09/2021.
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ing globally optimal solutions for real-life problems that involve a set of usually
conflicting objectives. For simple problems, we can use methods that trans-
form the multi-objective optimization problems into single-objective ones and
discover a single globally optimal solution. When dealing with more complex
scenarios – such as plant growth optimization – scalarization techniques lead to
sub-optimal results and using proper MOO methods that yield not one, but a
set of optimal solutions is needed. Pareto optimization (Deb, 2014; Zhou et al.,
2011) relies on the dominance between solutions of the objective space. A so-
lution is said to be non-dominated – or Pareto optimal – if it is impossible to
improve an objective without degrading another. The set of Pareto optimal
solutions is known as the Pareto front. The result of a MOO algorithm then
involves not one, but a set of solutions – the Pareto front.

In our previous work (Millot et al., 2021), we introduced a first approach
to EMM in a MOO context called Exceptional Pareto Front Mining (EPFM).
It is based on the discovery of exceptional Pareto front deviations – now called
Exceptional Pareto Front Deviation Mining (EPFDM). EPFDM identifies and
characterizes the di↵erences between the Pareto front computed on the original
dataset and the Pareto front computed after removing a subgroup of objects.
It can be used as an exploratory analysis tool to discover interesting pieces
of knowledge about MOO problems such as (i) subspaces of the current Pareto
front where data might be missing, (ii) subsets of better or worse solutions of the
Pareto front with an explicit and concise description in the attribute description
space, (iii) anomalous parts of the Pareto front. Suitable measures to estimate
the deviations and a first generic quality measure designed for EPFM have been
proposed. However, considering only distance-based Pareto front deviations
limits the actionability of discovered subgroups.

We build on this previous work and significantly extend it, by further inves-
tigating the cross-fertilization between EMM and MOO. We design a generic
model class for EPFM. Beside distance-based measures, we also discuss the
added value of a new volume-based measure for EPFDM that enables the dis-
covery of interesting deviation models. We also detail the conceptual basis of
our generic quality measure, and introduce di↵erent ways to make it more ro-
bust. While EPFDM can be used as an exploratory tool to discover interesting
knowledge regarding MOO problems, it cannot be consistently exploited to gen-
erate new, improved solutions. Therefore, we design an original method called
Exceptional Pareto Front Approximation Mining (EPFAM). It supports the dis-
covery of subgroups whose Pareto front approximates exceptionally well the true
Pareto front, and whose descriptions can be exploited to generate Pareto opti-
mal solutions with higher probability. Although some important changes have
to be made to move from Exceptional Deviation Mining towards Exceptional
Approximation Mining, most concepts related to pattern relevancy for EPFDM
can be easily reused or adapted for EPFAM.

The added value of both EPFDM and EPFAM is investigated by means of
quantitative and qualitative empirical studies. Most of the qualitative empiri-
cal evaluations with EPFDM are novel, significantly extending the analysis in
(Millot et al., 2021). We also describe in detail a promising EPFM application
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scenario for the optimization of plant growth recipes in controlled environments.
We introduce a realistic growth recipe simulator and show how (i) EPFDM can
be used as an exploratory data analysis tool to discover interesting pieces of
knowledge, such as a subspace of the objective space where the yield/cost trade-
o↵ is worse than in its complement, (ii) EPFAM provides actionable information
through its subgroup descriptions and enables the design of new, better growth
recipes. Our data and code are made available at https://bit.ly/3EwnWUi.

The remaining of the paper is organized as follows. Section 2 formalizes
our mining task. We review the literature in Section 3. In Section 4, we detail
our contributions to EPFDM. We then introduce our contribution to EPFAM
in Section 5. Section 6 introduces a generic quality measure for EPFM. In
Section 7, we present an in-depth empirical evaluation of both EPFDM and
EPFAM. Section 8 introduces our application scenario for EPFM in the field of
smart agriculture. In Section 9, we discuss the limitations of our work. Finally,
Section 10 concludes.

2 Preliminaries

2.1 Multi-Objective Optimization

The process to be optimized is known thanks to a collected dataset.
A dataset (G,M, T ) is a set of objects G, a set of attributes M and a set of

targets T . In a given dataset, M contains real-valued and categorical attributes
– the domain of any attribute m 2 M is denoted by Dom(m) – while the domain
of each target t 2 T is a finite ordered set. Indeed, the targets can represent
continuous or discrete variables, but the finiteness of the data restricts their
domain to a finite ordered set. In this work, when numerical attributes are
present in a dataset, we consider that a discretization method has to be applied
on them as a pre-processing step.

A multi-objective optimization problem can be defined as follows:

Minimize F (x) = (f1(x), ..., fn(x))
T
, x 2 M

where M is the attribute space and x is an attribute vector. F (x) consists of n
objective functions fi : M ! R, i 2 {1, . . . , n}, where Rn is the objective space.
Given a dataset (G,M, T ), the vectors of objective function values correspond
to the targets in T .

The objectives usually conflict with each other and the improvement of one
objective might lead to a degradation for others. For this reason, we lack a
single solution that optimizes all objectives simultaneously. When no order or
relevance can be defined a priori on the di↵erent objectives, a Pareto optimiza-
tion method is required. It is based on the dominance between solutions of the
objective space.

A vector a = (a1, . . . , an)T is said to dominate a vector b = (b1, . . . , bn)T ,
denoted a � b if and only if 8i 2 {1, . . . , n}, ui  vi and u 6= v. For example, in
Figure 1, A � B (i.e., object A dominates object B) since f1(A) < f1(B) and
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f2(A) < f2(B).
A non-dominated solution is called Pareto optimal.

A solution x is called Pareto optimal if and only if @y 2 M such that F (y) �
F (x) The set of all Pareto optimal solutions is called the Pareto Front:

PF = {F (x)|x 2 M |@y 2 M,F (y) � F (x)}

Numerous test functions for multi-objective algorithms have been proposed
in the literature (Zitzler et al., 2000; Deb et al., 2005; Huband et al., 2006).
The true Pareto front (i.e., ground truth) of these functions is usually known
– the quality of a solution set returned by any MOO algorithm can therefore
easily be compared to the ground truth – and they are designed such that
Pareto front approximation by algorithms is di�cult. To illustrate our work and
some of its related concepts, we consider the Fonseca-Fleming function (Fonseca
and Fleming, 1995) that implies 3 descriptive variables from {x1, x2, x3} and 2
objective functions f1 and f2 that both need to be minimized:

f1(p) = 1� exp

 
�

3X

i=1

✓
xi �

1p
3

◆!
, xi 2 [�4, 4]

f2(p) = 1� exp

 
�

3X

i=1

✓
xi +

1p
3

◆!
, xi 2 [�4, 4]

We generate 5000 random objects using the Fonseca-Fleming function and
we retrieve the true Pareto front of the function from jMetal2. Fonseca is
the name of the corresponding dataset. Table 1 provides a toy dataset – with
discretized numerical attributes using equal-width with 5 bins – that is a subset
of the 5000 random objects of Fonseca.

Table 1: Toy dataset related to the Fonseca-Fleming function.
x1 x2 x3 f1 f2

g1 [-4,-2.4] [2.4,4] [-0.8,0.8] 0.99 0.99
g2 [-2.4,-0.8] [-0.8,0.8] [-2.4,-0.8] 0.99 0.89
g3 [-0.8,0.8] [-2.4,-0.8] [0.8,2.4] 0.99 0.99
g4 [-0.8,0.8] [-0.8,0.8] [-2.4,-0.8] 0.90 0.50
g5 [-0.8,0.8] [-0.8,0.8] [-2.4,-0.8] 0.99 0.60

Figure 1 depicts the Pareto front (i.e., the non-dominated solutions) of the
Fonseca-Fleming function. Very few points lie close to the Pareto front. This
is due to (i) the Pareto front of the Fonseca-Fleming function being hard to
approximate, (ii) the random sampling method used to generate the data points,
which is not optimal to solve MOO problems.

2http://jmetal.sourceforge.net/problems.html
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Figure 1: True Pareto front of the Fonseca-Fleming function (in black) and
objects of the Fonseca dataset (in grey). A and B are two random objects in
the objective space.

2.2 Exceptional Model Mining

EMM is a generalization of subgroup discovery that can handle more than one
target attribute by using model classes. A subgroup p can be described either
by its intent – the description of the subgroup in terms of attribute values – or by
its extent – the coverage of the subgroup in the dataset. The intent of a subgroup
p is given by pd = h'1, . . . ,'n

↵
where each 'i is a restriction on the domain value

of mi 2 M . A restriction for a nominal attribute mi is given by mi = v with
v 2 Dom(mi). The intent pd of subgroup p covers the set of objects denoted
ext(pd) ✓ G. For example, given the toy dataset in Table 1, we could find a
subgroup whose intent is hx1 = [�0.8, 0.8], x2 = [�0.8, 0.8], x3 = [�2.4,�0.8]i
and whose extent is {g4, g5}.

In subgroup discovery, we have only one target. The quality of a subgroup is
usually defined as the di↵erence between the distribution of the target variable
in the subgroup and its distribution over the entire dataset. Since important
discrepancies can easily be achieved with small subsets of objects, a factor that
takes into account the size of the subgroup can be used as well (see, e.g., the
popular Weighted Relative Accuracy measure (Lavrac et al., 2004)).

Exceptional Model Mining enables for two or more target variables depend-
ing on the chosen model class. In the standard EMM setting, the interestingness
of a subgroup p is measured by a numerical value that quantifies the deviation
between the model fitted on the subgroup and the model fitted on another sub-
set of the data. There are usually two options for which subset is chosen for
comparison: we can compare the model of the subgroup either to the model of
its complement or to the model of the whole dataset. Choosing one or the other
can lead to very di↵erent results and may depend on the considered application
scenario. Duivesteijn et al. (2016) show that there is not always a clear-cut best
solution.

From an algorithmic perspective, subgroups are explored by progressively
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specializing their intents, from general to more specific descriptions. At each
stage, a specialization operator is applied to create more complex subgroups by
addition of a restriction on an attribute.

3 Related Work

We investigate possibilities for cross-fertilization between EMM andMOO thanks
to the computation of Pareto fronts on objects of the dataset. To the best of
our knowledge, we were the first to consider EMM based on this concept (Mil-
lot et al., 2021). However, closely related topics involving pattern mining and
multi-objective optimization have been investigated in the past few years.

3.1 Pattern Discovery and Exceptional Model Mining

Subgroup discovery (SD) has been introduced 25 years ago (Klösgen, 1996) in
the Explora discovery assistant. Since then, numerous approaches involving
exhaustive (Atzmueller and Puppe, 2006) and heuristic algorithms (Mampaey
et al., 2012) were introduced. Early on, research was mainly focused on produc-
ing e�cient enumeration methods for binary and nominal data (Herrera et al.,
2011). Works on numerical concepts, be it for attributes or target variables,
were few and far between. The usual way to deal with such data is to discretize
the data as a preprocessing step (see, e.g., Fayyad and Irani, 1993) even though
it leads to loss of information.

Over 20 years ago, Aumann and Lindell (1999) introduced the concept of
Quantitative Association Rules where a rule consequent is the mean or the
variance of a numerical attribute. A rule is then defined as interesting if its
mean or variance significantly deviates from that of the overall dataset. Later
on, Webb (2001) proposed an extension of such rules called Impact Rules.
Jorge et al. (2006) introduced Distribution Rules, a type of association rules
that involves a statistical distribution on the consequent. In this work, a rule is
deemed interesting if its target distribution is significantly di↵erent from that
of the overall dataset. Their approach however only considers one target and
the Kolmogorov-Smirnov test as an interestingness measure.

In the past few years, interest for numerical data took o↵. Lemmerich et al.
(2016) proposes an exhaustive algorithm for subgroup discovery with numeri-
cal target concepts. They introduce several quality measures, algorithms and
bounds to mine for high quality subgroups in numerical data. However, the ap-
proach is only exhaustive with prior discretization of the numerical attributes,
leading to non-optimal results. Meeng et al. (2020) introduced a new type of
interestingness measure for numerical targets. They explain that using simple
statistical measures such as the mean or the variance is inadequate, and that
interesting subgroups can be missed. They argue for the use of probability den-
sity models – using techniques such as kernel density estimation and histograms
– to discover more diverse types of deviations in the distribution of the tar-
gets. Recently, we introduced a new algorithm for optimal subgroup discovery
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in purely numerical data (i.e., data where both the attributes and the target are
numerical) (Millot et al., 2020a). No discretization is needed and the approach
provides a guarantee on the optimality of the returned subgroup, at the cost
of scalability in certain applications. While much has been done for numerical
data with a unique target variable, these approaches cannot deal with complex
models involving multiple targets.

Exceptional Model Mining (Leman et al., 2008; Duivesteijn et al., 2016) was
introduced as a generalization of subgroup discovery for multi-target problems.
Several approaches, both heuristic (Krak and Feelders, 2015; Moens and Boley,
2014) and exhaustive (Lemmerich et al., 2012) have been developed. In EMM,
each problem is linked to a model class and requires a tailored search algorithm.
For instance, considering the mining of exceptional correlations (Downar and
Duivesteijn, 2017) and the mining of exceptional Bayesian networks (Duivesteijn
et al., 2010) require specific quality measures and search algorithms.

Duivesteijn et al. (2012a) take on what they call the “workhorse” of data
analysis problems: linear regression. They introduce a new model class for ex-
ceptional regression model mining relying on a quality measure based on Cook’s
distance. Other interesting EMM instances have been investigated. Among
them, Duivesteijn and Thaele (2014) and Duivesteijn et al. (2012b) both work
with model classes for classification problems. The former approach aims to
identify subspaces where a given classifier performs particularly well or badly,
giving the user insights on which parts of their classifier they must focus on in
the context of model diagnosis and interpretable machine learning. The latter
approach aims to identify and exploit exceptional interdependencies between
labels in a multi-label classification setting, allowing the improvement of the
classifier overall quality. More recently, we also find proposals about the dis-
covery of exceptional (dis-) agreements between groups (Belfodil et al., 2019),
exceptional mediation models (Lemmerich et al., 2020) and exceptional spatio-
temporal behavior (Du et al., 2020).

3.2 Multi-Objective Optimization

EMM deals with complex interactions between multiple targets, and Multi-
objective Optimization (see, e.g., (Deb et al., 2002)) is a nice example of a
task that involves such complex interactions. While some MOO problems can
be solved by transforming them into uni-objective ones, most problems require
methods based on Pareto optimization (Roijers et al., 2013). The goal is then
to design algorithms that approximate the true Pareto front of a given problem
as well as possible. Most common approaches resort to generic nature-inspired
heuristics (Zhou et al., 2011), including the well-known NSGA-II genetic algo-
rithm (Deb, 2014). However, their genericity can also be their downfall: finding
proper values for the numerous parameters is di�cult and mostly involves trial
and error, which restricts their usage to settings where the model of the objective
functions is known and numerous experiments can be carried out. It is worth
noting that since we work with limited data and unknown underlying models,
our methods do not compare multi-objective algorithms per se, but rather the
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end results of MOO processes (i.e., the Pareto fronts).
While algorithms are able to create sets of solutions, quality indicators that

allow for the comparison of di↵erent sets of solutions are needed (Li and Yao,
2019). Generally speaking, we find quality indicators that need a reference set
of solutions (Schutze et al., 2012) to compare new solution sets against, and
quality indicators that require a reference point (Hansen and Jaszkiewicz, 1998)
– such as the Nadir point or the anti-ideal point – to be computed. The compar-
ison of algorithms and quality indicators for MOO approaches is important and
numerous benchmark functions with various constraints, such as the Fonseca-
Fleming function (Fonseca and Fleming, 1995), have been proposed. It is worth
noting that our problem is di↵erent from the selection of a single good solution
from a Pareto front as in Fuente et al. (2018), since we are interested in iden-
tifying exceptional deviations and approximations of Pareto fronts thanks to a
description in the attribute space.

Although the literature on Pareto-based MOO is well-supplied, current ex-
isting MOO methods have several limitations (i) when the underlying model of
the objective functions is unknown, existing approaches can not be used, since
new points can not easily be generated, and (ii) typical MOO algorithms require
a large number of points to be generated at each iteration, which is antinomic
to many real-life scenarios where experiments are limited due to time and cost
constraints. There is therefore a need for MOO-based methods that would not
su↵er from such limitations.

3.3 Cross-Fertilization between EMM and MOO

While both MOO and pattern mining, including both SD and EMM, have been
seriously investigated, contributions at the intersection of the two subfields have
been few and far between (Srinivasan and Ramakrishnan, 2011). Recently, we
introduced a generic framework using actionable subgroup discovery to solve
optimization problems when the underlying model is unknown (Millot et al.,
2020b). However, this was intrinsically dedicated to uni-objective problems.
Carmona et al. (2010) introduced an evolutionary fuzzy system named NMEEF-
SD based on the NSGA-II algorithm to discover interpretable and high quality
subgroups. While their approach is interesting, it lacks genericity: it allows
for the discovery of subgroups with a good trade-o↵ between a few pre-defined
objectives and it focuses on computing the Pareto front at the subgroup level
(i.e., they consider the Pareto front of subgroups and not the Pareto front of
objects of the dataset).

Soulet et al. (2011) have exploited the notion of skyline queries, introducing
the notion of skyline patterns. They focus on mining useful patterns, according
to a set of user preferences. Since skyline queries involve multiple constraints
of equal importance, a trade-o↵ has to be found between these constraints,
which is exactly the subject of MOO. They use the notion of dominance be-
tween patterns to look for those that are non-dominated according to the set
of constraints. These non-dominated patterns are called skyline patterns, and
in MOO terms, they correspond to the set of patterns which lie on the Pareto

9



front. Their approach presents several advantages: (i) it finds patterns which
are non-dominated by any other pattern, (ii) it is generic, as it naturally extends
to any kind of pattern which can be queried through a skyline query, (iii) the
study of the relationships between condensed representations of patterns and
skyline pattern mining enables them to compute the set of skyline patterns in
an e�cient way. Ugarte et al. (2017) build on this work, further investigating
the relationships between the so-called condensed representations of patterns
and skyline pattern mining. As a result, they can build an interesting skypat-
tern mining algorithm based on a dynamic constraint satisfaction problem. The
concept of skyline was also exploited in Van Leeuwen and Ukkonen (2013) to
mine for skylines of subgroup sets. They present an exhaustive and a heuristic
algorithm for the discovery of top-K subgroup sets that o↵er the best trade-o↵
between quality and diversity. A common thread between all these approaches is
the computation of Pareto optimal patterns at the subgroup – and rule/pattern
– level (i.e., they consider the Pareto front of subgroups and not the Pareto
front of objects of the dataset), while we are interested in the computation of
exceptional models whose interestingness is at the object level.

Finally, in Millot et al. (2021), we introduced a first approach to Exceptional
Pareto Front Mining (EPFM). Here, we discuss the limits of this preliminary
approach – renamed EPFDM – both in terms of quality measure and appli-
cations scenarios. We aim to build better, more generic quality measures, and
show that the mining of other types of exceptional Pareto front patterns beyond
EPFDM can be interesting.

4 Mining Exceptional Pareto Front Deviations

We want to build a model class for EMM in a MOO setting and we propose
to look for exceptional Pareto front deviations. In a given dataset, we define
the true Pareto front – denoted PFdataset – as the set of all non-dominated
objects over the whole data. In typical EMM approaches, an exceptional model
is computed directly on the objects of the subgroup. Then a quality measure
is used to measure the deviation between the model built on the subgroup and
the same model built on the whole dataset. We assume that we have to work
with objective minimization only. When a maximization problem occurs, it is
transformed into a minimization one by multiplying the function by -1.

Our goal hereafter is to capture subgroups representing local phenomena
with the highest influence on the shape of PFdataset, meaning that we need
to measure the e↵ects on PFdataset of removing these objects from the data.
Therefore, when a subgroup is generated, we remove all its objects from the
dataset. Then, we compute the new Pareto front PFmodel on the remaining
data, called the complement of the subgroup. Finally, we can compute the
deviation between PFdataset, the Pareto front for the dataset, and PFmodel.
This first approach to EPFM, based on the discovery of subgroups creating
large deviations in the shape of the true Pareto front, is called Exceptional
Pareto Front Deviation Mining (EPFDM).
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Let us first define which objects of each Pareto front are taken into account
when computing distances between Pareto fronts. Given two Pareto fronts
PFtarget and PFreference, the Partial Pareto Front PPF (PFtarget, PFreference)
is equal to:

PFtarget \ PFreference

The PPF is defined as the subset of objects of a Pareto front that are not in
the set of objects of the other Pareto front.

A PPF can be computed either for PFdataset or for PFmodel. We have
PPFmodel = PFmodel \ PFdataset and PPFdataset = PFdataset \ PFmodel. Fig-
ure 2 depicts the PPFs of PFmodel (left) and PFdataset (right). In our figures,
ND stands for normal data point, SG denotes a subgroup, PF dataset repre-
sents the best known Pareto front and PF model represents the Pareto front of
a subgroup.

4.1 Designing Quality Measures for EPFDM

Multi-objective optimization requires algorithms that approximate as well as
possible the true Pareto front for any given problem. Many quality measures
have been introduced to estimate the quality of the computed Pareto front
compared to the true Pareto front or to an ideal point (Li and Yao, 2019).
Thanks to some of these measures, the distance between two Pareto fronts can
be computed.

In traditional MOO measures, only the non-symmetrical distance from either
the true Pareto front to the approximate Pareto front (e.g., Inverted Genera-
tional Distance (Li and Yao, 2019)) or from the approximate Pareto front to the
true Pareto front (e.g., Generational Distance (Li and Yao, 2019)) is computed.
However, Schutze et al. (2012) show that taking into account both distances
provides measures that are more resilient to outliers and uncommonly shaped
Pareto fronts. Therefore, we exploit measures that consider both the distance
between the partial Pareto front of the subgroup PPFmodel and the Pareto front

Figure 2: Partial Pareto fronts of PFmodel (left) and PFdataset (right) in
Fonseca.
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of the overall dataset PFdataset, and the distance between the partial Pareto
front of the overall dataset PPFdataset and the Pareto front of the subgroup
PFmodel. Then, the largest one is kept as the true distance.

It is important to normalize each of the targets such that they contribute
equally to the measure. We normalize each of them to get a value between 0 and
1 using the standard scaling x

0

j = (xj �minj)/(maxj �minj), where minj and
maxj are respectively the minimum and maximum of Target j in the dataset.

Our measures are based on the popular Hausdor↵ Distance that estimates
how far two subsets of points in a metric space are from each other using Eu-
clidean distances: informally, it is defined as the largest of all the distances from
a point in one subset to its closest point in the other subset.

The Hausdor↵ Distance (HD) between PFmodel and PFdataset is defined as:

HD(PFmodel, PFdataset) = max(max(mind(PPFmodel, PFdataset)),

max(mind(PPFdataset, PFmodel)))

The Median Hausdor↵ Distance (MHD) between PFmodel and PFdataset is
defined as:

MHD(PFmodel, PFdataset) = max(med(mind(PPFmodel, PFdataset)),

med(mind(PPFdataset, PFmodel)))

where mind computes the minimal Euclidean distance from each point of the
partial Pareto front to the other Pareto front, max returns the largest value in
a set of distances and med returns the median value in a set of distances.

Let us now consider a modified version of the Hausdor↵ Distance, called
Averaged Hausdor↵ Distance (AHD) and introduced in Schutze et al. (2012).
The Averaged Hausdor↵ Distance AHD(PFmodel, PFdataset) between PFmodel

and PFdataset is:

max

 
1

N

NX

i=1

(mind(PPF
i
model, PFdataset)),

1

M

MX

i=1

(mind(PPF
i
dataset, PFmodel))

!

where N is the number of objects of PPFmodel and M is the number of objects
of PPFdataset. mind computes the minimal Euclidean distance from object i of
the partial Pareto front to the other Pareto front. The average of all minimal
distances is then computed. Finally, max takes the largest distance of the two.

Although our work has lead us to investigate measures that consider the
distance between solution sets, the MOO literature presents numerous ways
of estimating the quality of a solution set, including dominance-based, region-
division based and volume-based quality indicators (Li and Yao, 2019). We
propose to exploit a volume-based measure taken from the MOO literature, the
so-called Hypervolume (HV ) (Zitzler and Thiele, 1998). Contrary to previously
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introduced distance-based measures, HV does not need a reference set, but a
reference point to compute the quality of a given Pareto front. In other words,
the concept of Partial Pareto Front is only relevant for distance-based measures,
and will not be used with HV .

The Hypervolume HV (PF ) between a given Pareto front PF and its refer-
ence point r is:

HV (PF, r) = �

 
[

a2PF

{x|a � x � r}
!

where � is the Lebesgue measure.
Informally, the Hypervolume value of a Pareto front is the area (in two

dimensions) or volume (in three or more dimensions) of the area enclosed by
the Pareto front and the specified reference point. HV usually takes values
between 0 and 1. Typically, the reference point corresponds to the Nadir point.
The Nadir point is defined as the vector of the worst possible value of each
objective according to the optimal true Pareto front. One issue with the Nadir
point is that it cannot be precisely estimated in most scenarios. Indeed, it
requires an optimal or near optimal Pareto front to get a good estimate of the
worst value of each objective, which is rarely computable in real-life scenarios
where the underlying model is known, and clearly impossible to compute when
the model is unknown. Figure 3 (left) depicts an example of the Nadir point
defined according to the Pareto front in Fonseca. The figure also depicts an
example of HV computed between the Pareto front of the dataset and the Nadir
point. One issue arises from estimating the reference point this way: numerous
objects of the dataset lie outside the area enclosed by the Pareto front and the
Nadir point. This is problematic for us since when we mine for subgroups, any
object could be part of the Pareto front of a model, even those that lie outside
the enclosed area in Figure 3. For this reason, we define our own version of a
reference point, that ensures that no object lies outside the enclosed area.

The reference point r((G,M, T )) of a given dataset is defined by:

r((G,M, T )) =
⌦
max(Ti)

↵
i2{1,...,|T |}

Informally, the reference point of a dataset is the vector composed of the
worst value for each target in the overall dataset. Figure 3 (right) depicts a
comparison between our reference point and the typical Nadir point. This novel
reference point ensures that the HV can be properly computed for any subset
of a given dataset.

Let us now detail how the HV of a given subgroup is computed in EPFDM.
We look for subgroups whose removal produce exceptional deviations of the
Pareto front. Therefore, we need to look for subgroups that create the largest
di↵erences between the HV of the dataset, and the HV of the complement of
the subgroups.

The HV of a given subgroup, denoted by HVdev, is defined as:

HVdev(PFmodel, PFdataset) = 1� HV (PFmodel)

HV (PFdataset)
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This way, higher values of HVdev mean larger deviations of the Pareto front
and the measure is normalized with values between 0 and 1.

Figure 3: Hypervolume of Fonseca with the Nadir point (left) and our reference
point (right).

4.2 Algorithm

The source code is available at https://bit.ly/3EwnWUi. Detailed explana-
tions of the algorithm are available at Millot (2021). Our enumeration algorithm
is based on a top-K beam search (Duivesteijn et al., 2016). In a simple imple-
mentation of beam search, subgroups can be evaluated multiple times due to its
candidate generation process. In our beam search, candidates in the beam can
only be evaluated once, leading to a small gain in e�ciency.

The evaluation part of the process is by far the most costly here. To compute
the Pareto front of a subgroup, we employ a greedy approach where each object
not in the subgroup is compared to all the objects not in the subgroup to check
whether it is dominated by at least one other object. If it is not dominated by
any other object, we add it to the Pareto front.

Finally, we implement a simple pruning technique that leads to a large re-
duction in the number of subgroups that need to be evaluated. For a subgroup
to be interesting, its removal has to create a deviation in the shape of the true
Pareto front. Due to the nature of the dominance relation, the removal of any
object not on the true Pareto front cannot lead to a change in the Pareto front.
It means that only subgroups that contain at least one object that belongs to
the true Pareto front are of interest. As a result, during our search, we ignore
any subgroup and its specializations if it does not contain an object that belongs
to the true Pareto front.
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5 Mining Exceptional Pareto Front Approxima-

tions

Although EPFDM can be used as an exploratory data analysis tool to discover
interesting pieces of knowledge, such as (i) subspaces of the current Pareto front
where data could be missing, (ii) subsets of better or worse solutions of the
Pareto front, (iii) anomalous parts of the Pareto front, it lacks the capability of
providing information that directly enables the design of better solutions. There-
fore, we would like a method that can better support the discovery of actionable
insights to generate higher quality solutions for MOO problems. We investigate
the discovery of exceptionally good approximations of the true Pareto front,
called Exceptional Pareto Front Approximation Mining (EPFAM). It provides
a nice solution to our problem: with exceptional approximations supported by
subgroups and their understandable descriptions, we can generate new, close to
Pareto optimal, solutions for a given MOO problem. When we lack expertise,
instead of exploring new solutions more or less randomly, hoping for them to
o↵er good trade-o↵s, we can exploit a given subgroup description to generate
high quality solutions with a higher probability. We once again assume that
we have to work with objective minimization, and any maximization problem is
transformed into a minimization one. For numerical attributes, we also assume
that they have been discretized a priori such that all attributes are binary or
categorical.

Our goal hereafter is to discover subgroups whose Pareto front shape is
as similar as possible to that of PFdataset. To do this, when a subgroup is
generated, we compute its Pareto front PFmodel. Then, we can assess how
good an approximation PFmodel is with regard to PFdataset. Now that we have
defined how models are computed in EPFAM, we need measures to assess their
quality.

5.1 Designing Quality Measures for EPFAM

While the use of distance-based measures makes sense in the case of EPFDM,
it is not always relevant for EPFAM. Indeed, in critical cases where the Pareto
front of the subgroup lies entirely on the true Pareto front, the computed dis-
tance between the two would either be 0 (e.g., if we do not use the concept
of Partial Pareto Front) or it would be an irrelevant value (e.g., in the case
where we use Partial Pareto Fronts) non-representative of the actual distance
between the fronts. Therefore, we discard distance-based measures and we focus
on volume-based measures like HV , that can better represent how similar two
Pareto fronts are. The HV of the true Pareto front and its reference point are
calculated as detailed in Section 4. Let us detail how the HV of a given sub-
group is computed in EPFAM. We now look for subgroups whose Pareto front
is an exceptional approximation of the true Pareto front. Therefore, we need to
look for subgroups whose HV is as close as possible to that of the dataset.
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The HV of a given subgroup, denoted HVapprox, is defined as:

HVapprox(PFmodel, PFdataset) =
HV (PFmodel)

HV (PFdataset)

This way, higher values of HVapprox mean better approximations of the
Pareto front and the measure is normalized with values between 0 and 1.

5.2 Algorithm

The source code is available at https://bit.ly/3EwnWUi. Detailed explana-
tions of the algorithm are available at Millot (2021). For the computation of
top-K EPFAM, a slightly modified strategy from the one introduced in Section 4
for EPFDM can be used. First, instead of computing the Pareto front of the
complement for each subgroup, we compute the Pareto front of the subgroups
themselves. Second, in EPFAM, the pruning of the subgroups which do not
contain any object that belong to the true Pareto front is only applied if a
minimum support constraint is used.

6 A Generic Quality Measure

Being able to measure the deviation from the true Pareto front may not be
enough to mine interesting subgroups. In the literature about EMM quality
measures, we usually get measures with the following form: the quality of the
subgroup is multiplied by its generality. Indeed, in a typical EMM setting,
discovering unusual distributions is easily achieved with small subgroups, there-
fore there is a need to optimize the generality (i.e., cover) of the discovered
subgroups. In the context of EPFDM, we face the opposite problem: unusual
distributions are easily achieved with large subsets of the data (e.g., if we find a
subgroup covering 80% of the data, it is very likely that its removal will create a
large deviation in the Pareto front). Despite the large distance, such subgroups
are not interesting. Figure 4 (left) depicts an example of this phenomenon.
Therefore, we need to optimize the locality of the subgroups. Furthermore,
small subgroups that modify only a small part of the true Pareto front when
removed are also not desirable. Indeed, an issue can arise when either outliers
are apart of the true Pareto front or when the density of objects is very low close
to some part of the Pareto front. In such cases, the removal of subgroups with
very few objects on the true Pareto front can create unwanted large deviations in
the Pareto front of the model leading to overfitting and trivial subgroups. Fig-
ure 4 (right) depicts an example of this phenomenon. Therefore, in EPFDM, we
might also be interested in the optimization of the generality of the subgroup
with regard to the true Pareto front, i.e., the generality of the model. To sum-
marize, given the previously defined deviation measures, we can get either very
large or very small subgroups.

To deal with the first issue (i.e., unwanted large subgroups), let us introduce
a locality indicator.
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Figure 4: Examples of undesirable subgroups whose removal creates a large
deviation from the true Pareto front: a large subgroup that covers most of the
dataset (left), a low entropy subgroup that only a↵ects one object of the true
Pareto front (right).

The locality indicator of a subgroup p is:

Locality(p) = 1�
⇣
m

M

⌘

where M is the total number of objects of the dataset and m is the number
of objects of p. This locality indicator favors smaller subgroups over larger
ones. It is especially useful for cases where objects can be removed from a
subgroup without modifying the Pareto fronts. However, this indicator might
be too strict in some application cases where larger subgroups might be more
interesting. Therefore, we add a factor that tunes the importance of the locality
indicator.

The locality indicator of a subgroup p, with its importance factor, is:

Locality
a(p) =

✓
1�

⇣
m

M

⌘◆a

, a 2 [0, 1]

where M is the total number of objects of the dataset, m is the number of
objects of p, and a an importance factor.

To deal with the issue of subgroups with few objects on the true Pareto front
creating unwanted large deviations in the Pareto front of the model, we propose
several solutions. First, let us use the entropy of the split between the objects
of the true Pareto front which are not part of the subgroup, and those who are.
We also want control over the importance of the entropy, therefore we introduce
a factor that tunes its importance.

The weighted entropy of a subgroup p is:

Entropy
b(p) =

 
� n

N
lg
⇣
n

N

⌘
� N � n

N
lg

✓
N � n

N

◆!b

, b 2 [0, 1]

where lg denotes the binary logarithm, N is the total number of objects on the
true Pareto front, n is the number of objects of p that belong to the true Pareto
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front, and b an importance factor. The weighted entropy favors balanced splits
over unbalanced ones. It returns 0 when the subgroup has no point on the true
Pareto front or the subgroup covers the whole true Pareto front. It returns 1
when a perfect 50/50 split is achieved. This way, our quality measure is driven
toward finding more relevant subgroups with enough objects on the true Pareto
front. Notice that it introduces a bias against subgroups that cover most of the
true Pareto front (or the whole Pareto front) although it can be controlled by
tuning the importance factor b.

Next, as a second way, let us consider how to use the coverage of the subgroup
with regard to the global model. Informally, we compute the percentage of
objects of the true Pareto front which are covered by the subgroup. Again, an
importance factor can be used to control the weight of the generality.

The coverage of a subgroup p is:

Coverage
c(p) =

⇣
n

N

⌘c
, c 2 [0, 1]

where N is the total number of objects on the true Pareto front, n is the number
of objects of p that belong to the true Pareto front, and c an importance factor.

Finally, we can suggest a third way to take into account the generality of the
model. We can exploit a minimum support for the percentage of objects of the
true Pareto front which are covered by the subgroup. If the minimal support
constraint is not satisfied, the subgroup should be discarded.

For a given subgroup p and a minimum support minSupp, we compute the
following function MSV :

MSV (p,minSupp) =

(
0, if n

N < minSupp

1, if n
N � minSupp

where N is the total number of objects on the true Pareto front, n is the number
of objects of p that belong to the true Pareto front, and minSupp is the user-
defined minimum support. The function returns 0 if the minimum support
constraint is not satisfied by the subgroup, and 1 otherwise.

We can now define an aggregated measure to take into account the quality
of the model, the locality of the subgroup, and the generality of the model.

Our aggregated quality measure qEPFDM for a subgroup p is defined as:

qEPFDM (p) = Deviation(p)⇥ Locality
a(p)⇥Generality(p)

where Deviation(p) can be any measure of the deviation quality of p with
regard to the true Pareto front, Locality

a(p) denotes the locality indicator,
and Generality(p) denotes the chosen indicator for the generality of the model
(i.e., Entropy

b, Coverage
c, or MSV ).

The generic quality introduced for EPFDM is applicable to EPFAM, pro-
vided that we use an approximation measure instead of a deviation measure in
the aggregated measure.

Our aggregated quality measure qEPFAM for a subgroup p is defined as:

qEPFAM (p) = Approximation(p)⇥ Locality
a(p)⇥Generality(p)
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where Approximation(p) can be any measure of the approximation quality of p
with regard to the true Pareto front, Localitya(p) denotes the locality indicator,
and Generality(p) denotes the chosen indicator for the generality of the model
(i.e., Entropy

b, Coverage
c, or MSV ).

Although we chose to take an interest in distance-based and volume-based
measures for the exceptionality of the Pareto fronts in both EPFDM and EP-
FAM, other quality indicators from the MOO literature, like the dominance-
based C indicator (Zitzler and Thiele, 1999) could be considered as well.

It is interesting to note that instead of using an aggregated quality measure,
we can also exploit the concept of skyline patterns (Soulet et al., 2011) to mine
for subgroups that o↵er the best trade-o↵ between deviation (resp. approxima-
tion), locality and generality. This alternative method is empirically evaluated
in Section 8.3.

7 Experiments

Let us now consider experiments on both synthetic and real life datasets. The
source code and datasets used in our experiments are available at https://bit.
ly/3EwnWUi. In the following experiments (i.e., for both EPFDM and EPFAM)
and unless specified otherwise, the beam width was set to 10, the search depth to
5, the locality factor to 1, and the MSV function was employed with a minimum
support of 0.1. These parameters were chosen to explore the search space as
much as possible while favoring the small subgroups and keeping the running
times in an acceptable range. When it comes to discretization of the numerical
attributes, we apply equal-width, equal-frequency, and binary representations
(Meeng and Knobbe, 2021) using 2, 3, 5, 10, 15 and 20 bins on each dataset
– except Obesity for which the algorithm could not return results in less than
24 hours when using binary representations with over 3 bins – and we retain
only the one that leads to the best models. The numerical descriptive attribute
values are then replaced with nominals of cardinality equal to the number of
bins. In the figures, both red and orange objects belong to the best subgroup.

7.1 Relevance of EPFDM

The goal of this experiment is to show the relevance of our approach to discover
exceptional Pareto front deviations. Here, it means finding subgroups whose
descriptions in the attribute space provide insights on interesting local parts of
the Pareto Front. Let us first use the synthetic dataset Fonseca – based on the
Fonseca-Fleming function – introduced in Section 2.1. We compute the best
subgroup found by our algorithm with HVdev, HD, AHD and MHD. On this
dataset, equal-width discretization was found to be the best method, likely due
to the uniform distributions of the variables. Figure 5 depicts the best model for
each measure. The best deviation is almost the same for all measures, although
the size of the subgroup is quite di↵erent. WithHD, we find a model with a large
deviation supported by a small subgroup whose description is hx1 = [�0.8, 0.8],
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x2 = [�0.8, 0.8], x3 = [�0.8, 0.8]i. Exploiting this subgroup allows for the
generation of new objects with a good trade-o↵ between both functions. Since
HD, AHD and MHD mine very similar models – likely due to the fact that
all 3 measures are based on the Hausdor↵ distance –, we only report the best
models found with HVdev and HD for the other experiments.

Figure 5: EPFDM best deviations on Fonseca with respectively HVdev, HD,
AHD and MHD.

Next, we want to see if EPFDM is able to discover a planted subgroup, i.e., a
subgroup known a priori that has been purposefully inserted into the data. We
first generate 10 objects whose attribute values belong to the following domains:
hx1 2 [0.15, 0.25], x3 2 [0, 0.03], x2 2 [0.45, 0.55]i. This way, we generate a small
subset of objects that are all close to each other in the objective space. We
then generate a new Fonseca dataset – named FonsecaPlanted – made of 1000
random objects, although we generate the objects so that none of them can a↵ect
our planted subgroup. The goal is to see if our algorithm is able to discover a
subgroup that not only creates a large deviation when removed, but is also very
local Pareto front wise, i.e., all objects are grouped around a small part of the
Pareto front. We run our EPFDM method with HVdev and HD, and we report
the results in Figure 6.

As can be seen, using EPFDM with HVdev, we were able to retrieve a small
subgroup, which actually corresponds to the planted subset. However, withHD,
we find a larger subgroup. Although the subgroup also contains the planted sub-
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Figure 6: Best deviations found in FonsecaPlanted using EPFDM with HVdev

(left) and HD (right).

set, it also contains numerous other objects that were not expected. Therefore,
the HVdev measure might be better suited to discover small local subgroups.

Let us now consider use cases that are less familiar within the MOO com-
munity. Here, the data is limited to the available set (i.e., it cannot be easily
extended) and the underlying model is unknown, making it impossible to run
something else than a Pareto front computation.

The first dataset – named Obesity – records eating habits and physical
conditions of people from Mexico, Peru and Colombia. It was downloaded from
the UCI repository (Dua and Gra↵, 2017). It is made of 2111 observations,
14 descriptive variables and 2 objective variables to be optimized: the height
that needs to be minimized and the weight that needs to be maximized. In
doing so, we want to identify individuals with a worse height-weight trade-o↵.
On this dataset, equal-width discretization was found to be the best method.
We compute the best models found with HVdev and HD, and we report the
results in Figure 7. The deviations found by the two measures look relatively
di↵erent, although the objects from their subgroup are similar. It can be seen
when looking at their respective subgroup descriptions:

h Number main meals = 3, Frequency consumption vegetables = 3, Age
2 [13.953, 23.4], family history with overweight = ‘yes’, Consumption alcohol
= ‘Sometimes’ i

for HVdev, and

h Number main meals = 3, Frequency consumption vegetables = 3, Trans-
portation used = ‘Public Transportation’, family history with overweight
= ‘yes’, Consumption alcohol = ‘Sometimes’ i

for HD.
Indeed, we notice that the two descriptions di↵er on only one attribute that

can create a large di↵erence in the Pareto front deviation models. We can
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summarize this di↵erence as follows: the first subgroup represents young people
with bad height/weight trade-o↵s, while the second subgroup concerns poor
people who use public transportation and have a worse height/weight trade-o↵
than the rest of the population.

Figure 7: EPFDM best deviations on Obesity with HVdev (left) and HD

(right).

Let us now consider a third experiment about the trade-o↵ between physical
and chemical defense in plant seeds. The dataset named Plant is made of 163
observations. It was extracted from the Datadryad website3. Each observation
is described by two variables: the family and the mass of the plant seed. The
objective variables are the fiber – physical defense – and the tannin – chemical
defense – contents that both need to be maximized. Again, we compute the best
subgroup found with the same measures as for Obesity. Here, binary represen-
tations was found to be the best discretization method. The results, reported
in Figure 8, show two substantially di↵erent deviation models, supported by
subgroup descriptions. For HVdev, the subgroup description is hmass < 0.146’
i, while for HD, the description is hmass > 0.006, mass < 0.0708i. The
first subgroup represents a large subset of plants with no particular observable
characteristic, while the second is smaller and involves plants with a restricted
weight.

Although we have only considered mining for the best subgroup (i.e., top-1),
a relevant task could involve looking for the top-K subgroups. We therefore
computed the top-5 subgroups on the Plant dataset with both HVdev and HD,
and studied their descriptions. While the first two subgroups were significantly
di↵erent for both measures, the others represented slightly modified versions of
the first two. This underlines the diversity issue of top-K EMM, and motivates
the exploitation of skyline patterns (Soulet et al., 2011) to discover more diverse
sets of patterns.

The last dataset named RealEstate has been downloaded from the UCI
repository (Dua and Gra↵, 2017). It concerns over 400 sales of houses in Taiwan
between 2012 and 2013. It is made of 4 descriptive variables (latitude, longitude,

3https://datadryad.org/stash/dataset/doi:10.5061/dryad.bv5ht
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Figure 8: EPFDM best deviations on Plants with HVdev (left) and HD (right).

house age, and number of convenience stores within walking distance) and 2 ob-
jective variables: the price of the house and the distance to the closest massive
rapid transit station that both need to be minimized. We compute the best sub-
group found by our algorithm with HVdev and HD, and we report the results in
Figure 9. Binary representations was found to be the best discretization method
here. The measures found di↵erent deviation models. The subgroup descrip-
tion for HVdev is hlatitude < 24.963, longitude < 121.5386, house age > 11.89i
while the subgroup description for HD is hlatitude < 24.963, house age > 6.6,
number of convenience stores > 5i. The exploitation of these subgroups –
i.e., using the constraints on attribute values provided by the description – can
lead to finding houses (including their location and characteristics) that o↵er an
interesting trade-o↵ between price and distance to the nearest transport station.

Figure 9: EPFDM best deviations on RealEstate with HVdev (left) and HD

(right).
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7.2 Quantitative Evaluation of EPFDM

As the quality measure introduced o↵ers multiple degrees of freedom, it makes
sense to look at the running time issues of our process. We first carry out a run-
ning time comparison of EPFDM between the 4 proposed deviation measures.
To do this, we run our algorithm with standard parameters on the four previous
datasets for each measure and we report the results in Table 2. The di↵er-
ence in running time between quality measures is small to non-existent on small
datasets. However, on a larger dataset like Obesity, HVdev seems to be faster
than other measures, while MHD and AHD are closer in running time and HD

has the highest execution time. We studied the size of the subgroups, as well
as the number of subgroups evaluated by each measure, and found that neither
could explain the time discrepancies. The running time di↵erences between
measures seem to be pretty small, might not be statistically significant, and
could simply be related to more or less e�cient implementations. To conclude,
choosing one measure or another should not be made according to expected
running time e�ciency.

Table 2: Running time comparison (in seconds) of EPFDM on 4 deviation
measures.

Measure Fonseca Obesity Plants RealEstate

HVdev 175.4 15426 2.37 40.31
HD 176.1 17866 2.39 41.79
AHD 175.7 16690 2.39 41.69
MHD 175.9 16215 2.38 41.70

Let us now discuss the running time e�ciency when looking for the locality
and the generality. Here, we carry out a comparison on our 4 datasets. For each
dataset, we use di↵erent configurations for the evaluation of both the locality
and the generality. For the locality of the subgroup, possible values for the im-
portance factor are taken in {0.1,0.5,1}. It is expected that lower (resp. higher)
values for the locality factor favor large (resp. small) subgroups. Regarding the
MSV function for the generality of the model, possible minimum support values
are taken in {0.1,0.3,0.5}. When Coverage or Entropy is selected instead of
MSV , the values for the factor that controls the importance of the generality of
the model are taken in {0.1,0.5,1}. Results of the empirical study are in Table 3
where loc denotes Locality.

First, we can see that using Entropy or Coverage, regardless of their factor
value, seems to yield the worst results in terms of running time. Furthermore, for
larger datasets like Obesity, the execution could not finish within 24 hours when
using either Entropy or Coverage. Second, it seems that there is no running
time di↵erence between algorithm configurations that use either Entropy or
Coverage. Configurations using MSV with minimum support of 0.5 yield the
fastest execution times: this is indeed expected because the number of potential
subgroups to explore gets lower when the minimum support value goes up. We
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find no notable running time di↵erences between configurations of the locality
factor for small datasets. However, with a larger dataset like Obesity, we can
see that depending on the chosen minimum support, di↵erent values for the
locality factor yield significant running time disparities.

Table 3: Running time comparison (in seconds) of quality measure parameters
on 4 datasets using HVdev. “-” means that the execution was not completed
after 24 hours (86400 seconds).

Dataset
Gen. MSV Entropy Coverage

0.1 0.3 0.5 0.1 0.5 1 0.1 0.5 1

Fonseca

loc
0.1 179 128 128 178 177 177 177 177 177

loc
0.5 177 127 127 177 177 177 177 177 177

loc
1 182 128 128 178 178 177 177 179 178

Obesity

loc
0.1 23189 11188 5213 - - - - - -

loc
0.5 16595 11021 6350 - - - - - -

loc
1 15426 13159 6443 - - - - - -

Plants

loc
0.1 2.4 0.5 0.5 6.7 6.7 6.6 6.6 6.6 6.7

loc
0.5 2.4 0.5 0.5 6.6 6.6 6.6 6.6 6.6 6.6

loc
1 2.4 0.5 0.5 6.7 6.7 6.6 6.6 6.6 6.7

RealEstate

loc
0.1 41 6 3 108 109 109 113 113 112

loc
0.5 41 6 3 108 109 109 113 113 112

loc
1 41 6 3 100 107 109 108 113 113

7.3 Relevance of EPFAM

The goal here is to investigate the relevance of EPFAM on the same datasets as
EPFDM, using HVapprox. For each dataset, we report the best approximation
of the true Pareto front found according to the algorithm configuration. The
best model found for each dataset is depicted in Figure 11.

On Fonseca, we can see that the approximation found fits almost perfectly
the true Pareto front and the subgroup is very small. Furthermore, the subgroup
description which is hx1 = [�0.8, 0.8], x2 = [�0.8, 0.8], x3 = [�0.8, 0.8]i sup-
ports the easy generation of very high quality solutions close to the true Pareto
front. Indeed, if one wanted to generated new high quality solutions with a high
probability, he could sample new data points whose attributes values lie in the
intervals of values provided by the subgroup description.

Next, we want to see if we can discover a planted subgroup using EPFAM.
We first generate 10 objects whose attribute values belong to the following
domains: hx1 2 [�0.8, 0.8], x2 2 [�0.8, 0.8], x3 2 [�0.8, 0.8]i. This way, we
generate a small subset of objects with high quality that we want to retrieve.
We then generate a new Fonseca dataset – named FonsecaPlanted2 – made of
1000 random objects, although we generate the objects so that none of them
can a↵ect our planted subgroup. The goal is to see if our algorithm is able to
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discover a subgroup that approximates well the true Pareto front. We run our
EPFAM method with HVapprox and we report the results in Figure 10.

Figure 10: Best approximation found in FonsecaPlanted2 using EPFAM with
HVapprox.

As can be seen, with EPFAM we easily discover the planted subgroup, which
is the subgroup whose Pareto front best approximates the true Pareto front.

Regarding Obesity, we also find a very good approximation of the true
Pareto front, supported by the following description:

h Gender = ‘Female’, Frequency consumption vegetables = 3, Age 2
[13.953, 23.4], family history with overweight = ‘yes’, Consumption alcohol
= ‘Sometimes’ i

This approximation corresponds to young women with a family history of obe-
sity and alcohol consumption despite their young age. It is however interesting
to note that these women have a high frequency of vegetable consumption.

When looking for the best approximation in Plant, we find a good approxi-
mation of the Pareto front, supported by the description hfamily = ‘Combretaceae’,mass >

0.00251i. Therefore, the family of plants known as ‘Combretaceae’ with a min-
imum weight of 0.00251 appears as representative for a high quality trade-o↵
between physical and chemical defense in plant seeds.

Finally, we study the best model found on the RealEstate dataset. We
again find a very good approximation of the true Pareto front, supported by a
very small subgroup whose description is:
hlatitude > 24.955, latitude < 24.963, house age > 3.5,
number of convenience stores > 5, number of convenience stores < 7i.
Exploiting such a subgroup can allow for the easy discovery of houses that o↵er
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more interesting trade-o↵s between price and distance to the nearest transport
station.

It is interesting to note that both EPFDM and EPFAM can find the same
exceptional model, but for di↵erent reasons. Indeed, it sometimes happens that
the subgroup which creates the largest deviation of the true Pareto front is also
the subgroup which best approximates it. Please note that this could be due
to us using the same locality and generality parameters for both EPFDM and
EPFAM. While this makes sense for fairness of comparison and working without
a priori knowledge, using configurations of EPFAM where the generality of the
model needs to be maximized could lead to much di↵erent results from those
found with EPFDM.

Figure 11: EPFAM best approximations with HVapprox on Fonseca, Obesity,
Plants and RealEstate respectively.

7.4 Quantitative Comparison of EPFDM and EPFAM

Since di↵erent configurations of the algorithm have already been considered
in Section 4 for several datasets, the same study is not needed for EPFAM.
However, studying the running time of EPFAM using HVapprox on di↵erent
datasets and comparing it to EPFDM using HVdev is relevant. The results
of these evaluations are available in Table 4. EPFAM is 2 to 7 times faster
than EPFDM on all datasets. It makes sense as the most expensive part of
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the process is the Pareto front computation of each subgroup, and the Pareto
fronts in EPFAM are typically much easier to compute than in EPFDM. Indeed,
in EPFDM, the Pareto front is computed on the complement of the dataset
once the subgroup has been removed, while for EPFAM the Pareto front is
computed on the subgroup itself. Since we generally favor small subgroups, the
complement is much larger than the subgroup, hence the computation is faster
for EPFDM than for EPFAM.

Table 4: Running time comparison (in seconds) of EPFDM using HVdev and
EPFAM using HVapprox on 4 datasets.

Dataset Fonseca Obesity Plants RealEstate

EPFDM 175.4 15426 2.37 40.31
EPFAM 23.5 2320 0.88 7.69

8 Optimizing Plant Growth Recipes in Controlled

Environments

8.1 Vertical Urban Farms and Plant Growth Recipes

Urban farming enables the growth of plants in fully controlled environments
close to the end-consumers (Harper and Siller, 2015). These farms allow for the
removal of pesticides and a significant reduction in water consumption, while
being able to optimize both the quantity and quality of plants (e.g., improving
the flavor (Johnson et al., 2019), their chemical proportions (Wojciechowska
et al., 2015) or their yield (Millot et al., 2020b)). The number of parameters in-
fluencing plant growth can be fairly large (e.g., temperature, hygrometry, water
pH level, nutrient concentration, LED lighting intensity, CO2 concentration).

In urban farm environments, these parameters can all be controlled from
the moment the crops are planted up to the day of harvest. Not only can
experts specify a priori the expected values for these descriptive attributes but
the actual values can also be recorded through sensors during the whole plant
growth process. There are numerous ways of measuring the relevance of the
crop end-product (e.g., cost, yield, size, flavor or chemical properties). In other
words, the value of a given crop can be quantified with respect to a few di↵erent
numerical objectives. Given the di↵erent growth stages for a given plant, the
concept of growth recipe consists in the aggregation of the growth conditions set
at each stage, and it can be evaluated by one or several numerical objectives.
Our goal is to discover the characteristics of an optimized growth. Experts can
then exploit these characteristics to improve recipes. It is worth noting that
in the context of plant growth optimization, the underlying model is unknown,
preventing the use of traditional genetic or evolutionary methods. Moreover,
experiments have to be run in batch (i.e., sets of recipes are tested in parallel)
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and in very limited occurrences (i.e., the number of recipes for each test set is
low) due to time and cost constraints.

8.2 Plant Growth Recipe Optimization

Earlier, we tackled the problem of recipe optimization with a single objective,
the yield, using subgroup discovery (Millot et al., 2020b). Notice however that
looking for better recipes that optimize only the yield in a fully controlled en-
vironment may be fairly easy (i.e., using more light, enforcing higher temper-
atures, etc). It makes little sense to optimize the yield while ignoring other
aspects like, for instance, the cost: the recipe optimization problem is intrin-
sically multi-objective. Here we investigate the optimization of plant growth
recipes for any number of objectives by leveraging our contributions on EMM.
We expect to extract interesting pieces of information on the Pareto front of
recipes, such as hollow parts of the objective space (i.e., zones where more
data on recipes is needed), interesting local zones containing very good recipes,
anomalous recipes, and subsets of recipes representing a good approximation of
the overall model.

8.2.1 A Synthetic Data Generator

We consider urban farm recipe optimization as a main application of our meth-
ods, as this research is partially funded by a project on urban farms optimiza-
tion. However, the project is still in early development and we therefore do not
yet have access to real farming data. Yet, we were able to perform an empiri-
cal study of our proposed approach on this use-case thanks to a crop simulation
model, the Python Crop Simulation Environment PCSE4 simulator. The PCSE
was originally designed to build crop simulation models for conventional farm-
ing (i.e., crops growing outside in fields, in non-controlled environments). The
PCSE process is depicted in Figure 12.

Figure 12: Illustration of the PCSE simulation process. The process takes a set
of files as input data, then simulates the growth of the crops, and outputs a file
with the day by day evolution of the yield.

4https://pcse.readthedocs.io/en/stable/index.html
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To simulate the growth of a given crop, the model needs several files as input.
First, the soil file contains information on the physical properties of the soil,
such as water retention, hydraulic conductivity and soil workability. Second,
it needs a crop file that defines which crop is simulated: it describes the crop
growth process according to numerous parameters. Notice that we selected the
sugar beet as reference crop for all our experiments hereafter. Next, it needs an
agromanagement file, that contains the schedule for agromanagement processes
such as irrigation, weeding, nutrient application and pest control. Finally and
most importantly for us, it requires a weather file that provides daily values
for several weather variables. This file defines important growing conditions of
the plants day by day. Normally, it would contain real weather data extracted
from one of the sources supported by PCSE. Since we have full control on the
Weather file that is used as input of the simulator, we can set our own values
for each variable and each day, making it possible to simulate plant growth
in controlled conditions. The complete list of variables which can be used to
control the environment can be found in Table 5.

Table 5: Weather file variable description.
Name Description Unit

RAIN Precipitation (rainfall or water equivalent in case of snow or hail) cm · day�1

IRRAD Daily global radiation J ·m�2 · day�1

WIND Mean daily wind speed at 2 m above ground level m · sec�1

VAP Mean daily vapour pressure hPa

TMIN Daily minimum temperature °C
TMAX Daily maximum temperature °C

We can control some of the most important variables that drive the plant
growth process. We need to be able to set values for each variable and each
day of the plant development. After in-depth investigation of each variable
according to the PCSE documentation, we choose values for each variable as
follows: IRRAD takes values in [10000,30000], RAIN takes values in [5,30],
WIND is taken in [0,20], VAP takes values in [1.1,1.6], TMIN is taken in [15,22]
and finally, TMAX takes values in [23,30]. Table 6 depicts an example of recipe
considering each day between the planting of the crop and its harvest as a
distinct growth stage.

Table 6: Example of Weather file: growing conditions for a given plant day by
day.

Day RAIN IRRAD WIND VAP TMIN TMAX

d1 10 23250 15 1.2 15 27
d2 12 18250 12 1.4 16.5 23.4
d3 14 24560 7 1.35 17.8 21.5
... ... ... ... ... ... ...
dn 8 14950 22 1.1 21.1 29.9
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Having that many growth stages does not make sense since (i) the growth
process for most plants takes weeks to months, (ii) we know from the literature
that the growth process of many plants can be split into just three stages. For
this reason, we have been splitting the Weather file to consider 3 stages using
the following method: (i) we define the number of days of the growth process
until harvesting, (ii) we divide this number by 3 (i.e., 3 stages) which defines
the length of a stage, (iii) for each stage, we define a unique value for each
variable, that will be repeated for as many days as needed in the weather file.
An example of the end result of this process for a crop whose growth process
takes 300 days is available in Table 7.

Table 7: Example of Weather file: growing conditions for a given plant stage by
stage.

Stage RAIN IRRAD WIND VAP TMIN TMAX

P1 (d1 - d100) 11 13250 19 1.39 18 26
P2 (d101 - d200) 14 15976 9 1.26 15 21
P3 (d201 - d300) 24 28390 18 1.42 19 29

The PCSE process outputs as result the state of the plant day by day from
the time of planting (d1,y1), up to its harvest (dn,yn) – see Figure 12. However,
while the simulator provides us with the yield, it was not built to output the cost
of a given crop. We decide to consider the cost as being an energy cost for each
recipe. Thanks to expertise from our partner designing urban farms, we were
given access to the detailed energy consumption of their pilot farm for each
environment variable. From this data, we were able to apportion the energy
consumption among the environment variables of the farm (which are di↵erent
from, but close enough to the PCSE variables). However, this information is
confidential and cannot be reported here. It was then possible to define an
approximate percentage of total energy consumption for each variable of the
PCSE model. The results are as follows : RAIN represents 24.61% of the energy
cost of a recipe, IRRAD 49.22%, WIND 5.15%, VAP 10.74%, TMIN 5.14% and
TMAX 5.14% too. The cost of a recipe is then computed the following way:
(i) we normalize variables so that their values fall between 0 and 1, (ii) each
variable of the recipe is multiplied by its share of the total energy consumption,
(iii) we add the values obtained for each variable and divide the total by the
number of stages, such that the final cost of the recipe falls between 0 and 1.

8.2.2 Exploiting EPFM to Optimize Recipes

To apply our EMM approaches to plant growth optimization, we randomly
generated 300 recipes of sugar beet using the simulator. Recipes are described
by 6 variables (RAIN, IRRAD, WIND, VAP, TMIN, TMAX) and are split into
3 stages (P1, P2, P3), for a total of 18 descriptive variables for each recipe. For
each recipe, we extract its yield and compute its cost according to the detailed
method. Randomly generated examples of such recipes can be found in Table 8.
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We kept the number of recipes low on purpose to simulate a real life urban farm
where the number of experiments is limited by numerous constraints. To speed
up the computation, we discretize the numerical descriptive attribute values and
replace them with nominals of cardinality equal to the number of bins. We use
a discretization by means of equal-width with 2 cut points (i.e., 3 bins), as it
was the discretization that yielded the best results in terms of quality measure
when dealing with datasets involving variables with uniform distributions.

Table 8: Examples of growth recipes split in 3 stages (P1, P2, P3), 6 attributes,
and 2 objectives (Yield and Cost).

R RAINP1 IRRADP1 ...P1 RAINP2 IRRADP2 ...P2 RAINP3 IRRADP3 ...P3 Yield Cost

r1 10 23250 ... 10 23250 ... 15 21000 ... 22000 0.56
r2 35 10000 ... 5 25000 ... 16 19500 ... 20500 0.60
r3 15 17500 ... 22 15000 ... 30 4000 ... 8600 0.65
r4 18 22800 ... 38 17000 ... 38 12000 ... 14200 0.7

In the following experiments, we compute the best models returned by our
algorithm for EPFDM with HD and HVdev. Figure 13 depicts the best model
found for each measure. The model found with HD is composed of recipes that
highly optimize the yield, but show poor performance cost-wise. The description
of the subgroup is the following : hIRRAD

P3 = [20000, 30000], TPMAX
P2 =

[23, 26.5], IRRAD
P2 = [20000, 30000], TPMAX

P3 = [23, 26.5]i. It supports
what can be observed in the figure: with high values of solar irradiation and
maximal temperature during most of the growth process, the yield will be opti-
mized, at the price of a very high cost for the recipes. This exceptional model is
interesting since it represents a locally interesting part of the Pareto front that
can be exploited. Indeed, it seems that this part of the Pareto front contains
recipes whose trade-o↵ between yield and cost might not be optimal compared
to other parts of the front. This is confirmed by the severe deviation in the
Pareto front shape once the subgroup is removed. This information can be ex-
ploited: when generating new recipes, we can make sure that they do not fall in
the description space of the subgroup, lowering the chances of generating recipes
with sub-optimal trade-o↵s. With HVdev, we find a model that creates a large
deviation that a↵ects most of the Pareto front. This subgroup is interesting as
well. Its description can be exploited to generate new recipes that will provide
good trade-o↵s between yield and cost. The models found with HD and HVdev

are complementary when generating new recipes: the first one can be used to
exclude parts of the search space where bad recipes exist while the second helps
to focus on promising parts.

EPFDM is more useful as an exploratory tool that enables the discovery of
interesting knowledge for MOO problems and it cannot be relied upon to design
new, more optimized growth recipes. EPFAM was designed to directly answer
this kind of problem.

Let us now consider the exploitation of EPFAM to iteratively optimize the
yield-cost trade-o↵ of recipes. We will use the following method to optimize
recipes: (i) we first run EPFAM to find a good approximation of the overall
Pareto front of the original set of recipes (ii) we retrieve the description of the
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Figure 13: EPFDM best models using HD (left) and HVdev (right).

corresponding subgroup (iii) we use the description to apply new restrictions on
the domain of values of the corresponding variables (iv) we generate a new set
of recipes, and back to (i) if the quality has improved su�ciently. This simple
iterative process exploiting EPFAM can be applied successively until no further
optimization can be made. It can be seen as a generic virtuous circle, where
each new iteration uses information previously gathered to iteratively improve
the targeted process. In this application scenario, we decided to apply this
process until we either found two iterations in a row with no improvement in
the hypervolume of the dataset or until we reached 10 iterations. Please note
that for fair comparison, the hypervolume of each dataset of recipes has to be
recalculated after each iteration, since the reference point (built out of the worst
values found for each objective out of all the recipes encountered) can change
at each generation of a new set of recipes.

The best approximation found can be observed in Figure 14 (left). We find
a subgroup whose Pareto front covers a large part of the Pareto front of the
dataset. Furthermore, the subgroup covers very few recipes. Its description
is hIRRAD

P1 = [10000, 20000], TPMAX
P1 = [23, 26.5], WIND

P2 = [0, 10],
TPMAX

P2 = [23, 26.5], WIND
P3 = [0, 10]i.

It is concise and understandable, making it easy to exploit when designing
new and hopefully better recipes. We use the description of the best subgroup
previously found with EPFAM to apply restrictions on the generation of new
recipes. For each environment variable that occurs in the subgroup description,
the corresponding restrictions are applied to the values of the newly designed
recipes. Then, we generate 300 random new recipes using these restrictions
and compute their corresponding yield and cost (in a real-life scenario, it would
be equivalent to planting the crops, letting them grow fully according to their
new recipes, and then retrieving their yield and cost). The hypervolume of
the new dataset is then computed and we check whether it has improved from
the previous iteration, which is the case. Following the process, we once again
apply EPFAM on the dataset of the second iteration, and so on until we reach
10 iterations or 2 consecutive iterations with no improvement.

In this case, the process reached 10 iterations, and let us have an in-depth
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Figure 14: Best approximation found using EPFAM in the original dataset (left)
and comparison of the Pareto fronts of the 10 iterations of our EPFAM process
(right).

discussion about its results. Figure 14 (right) depicts a comparison between
the Pareto front of each of the 10 iterations. First, we can see that the Pareto
front improves iteration after iteration, and seems to converge after the ninth
or tenth iteration. The improvement during the first iterations is substantial,
and then, as we get closer to the hidden true Pareto front, the improvement
slows down but continues until the last iteration. The only iteration where no
improvement was observed is the fourth iteration, which could be due to the
inherent randomness of the recipe generation.

These observations are confirmed by the numbers available in Table 9. When
studying the hypervolume of the di↵erent iterations, we can clearly see a large
improvement iteration after iteration, putting aside Iteration 4 where a slight
decrease was observed. In the end, the improvement from the first to the last
iteration is substantial: the first iteration had a hypervolume of 0.57, while the
last iteration of recipes features a hypervolume of 0.88, which represents an
improvement of 54% of the quality of the Pareto front. We also observe that
the final set of recipes features much better trade-o↵s than the original set, with
the average yield going from 0.62 to 0.35, and the average cost going from 0.60
to 0.19. It is interesting to note that while the standard deviation of the cost
improves throughout the process, the standard deviation of the yield remains
unchanged.

Let us now discuss the improvement of the yield and cost between the start
and the end of our optimization process. Table 10 depicts the results. We
transformed the normalized values back into their original form, i.e., the yield
needs to be maximized and the cost needs to be minimized. As can be seen, the
average yield between the original recipes and the final recipes has improved by
over 70%. Furthermore, the average cost of each recipe has been lowered by over
30%, allowing us to easily generate recipes with substantially better yield-cost
trade-o↵s than originally. Finally, the standard deviation of both variables has
decreased, allowing us to generate very good recipes at a higher rate (i.e., less
randomness). It confirms the relevance and actionability of our iterative process
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Table 9: Comparison of the average, median and standard deviation values of
both the yield and the cost, and comparison of the hypervolume between the
original set of recipes and the sets of recipes generated at each iteration.

Y ieldavg Costavg Y ieldmed Costmed Y ieldstd Coststd Hypervolume

Original recipes 0.62 0.60 0.60 0.59 0.26 0.15 0.57
Iteration 2 0.55 0.54 0.49 0.51 0.24 0.13 0.61
Iteration 3 0.61 0.35 0.60 0.35 0.23 0.1 0.73
Iteration 4 0.54 0.32 0.49 0.33 0.25 0.1 0.70
Iteration 5 0.48 0.26 0.42 0.26 0.25 0.09 0.76
Iteration 6 0.44 0.24 0.37 0.24 0.27 0.09 0.80
Iteration 7 0.41 0.23 0.32 0.22 0.27 0.09 0.84
Iteration 8 0.36 0.22 0.30 0.22 0.25 0.08 0.86
Iteration 9 0.38 0.19 0.29 0.19 0.26 0.08 0.87
Iteration 10 0.35 0.19 0.26 0.19 0.26 0.08 0.88

to solve MOO problems.

Table 10: Comparison of the average, median and standard deviation non-
normalized values of both the yield and the cost between the original and the
last set of recipes.

Y ieldavg Costavg Y ieldmed Costmed Y ieldstd Coststd

Original recipes 10055 0.54 10640 0.54 7074 0.07
Iteration 10 17338 0.36 19727 0.36 6849 0.04

Although we have demonstrated that our contributions can be exploited to
substantially improve the growth of recipes in a multi-objective optimization
context, we now want to compare it to a random search method to prove its
relevance compared to a well-known search model. Indeed, random search is
widely used in numerous optimization applications, such as hyperparameter
optimization, and is known for being very simple to understand and providing
good results with a relatively limited amount of objects.

To compare those methods, we generate 3000 random recipes, using for each
variable the domain of values that were used for the first iteration of our own
process. We choose the number 3000 since, in our own process, we ended up
generating 3000 recipes (i.e., 300 recipes ⇥ 10 iterations). The goal is then to
compare the quality of the 3000 randomly generated recipes with that of the
last set of recipes of our process.

Figure 15 depicts the comparison between those 2 sets of recipes. As can be
seen, the set of recipes created through our method o↵ers significantly better
results than those generated through random search. Moreover, every single
recipe generated through our method is better than the Pareto front of the
random search (i.e., our 300 recipes are non-dominated by the 3000 random
search recipes).

These observations are confirmed by the numbers available in Table 11.
Indeed, as can be seen, both the average yield (0.37 vs 0.65) and the average
cost (0.18 vs 0.55) of our recipes are much more optimized than those of the
random search. Finally, the superiority of our approach is also confirmed by the
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Figure 15: Comparison of the yield-cost trade-o↵s of the recipes generated
through the exploitation of EPFAM with the recipes generated through ran-
dom search.

much better hypervolume of our Pareto front (0.86 vs 0.68). Through this in-
depth application scenario to plant growth recipe optimization, we have shown
(i) the relevance of our method to solve such problems (ii) the actionability of
EPFAM (iii) the superiority of our EMM-based approach compared to a random
search model.

Table 11: Comparison of the average, median and standard deviation values of
both the yield and the cost between our optimized set of recipes and the set of
recipes generated through random search.

Y ieldavg Costavg Y ieldmed Costmed Y ieldstd Coststd Hypervolume

Iteration 10 0.37 0.18 0.28 0.18 0.25 0.08 0.86
Random recipes 0.65 0.55 0.64 0.55 0.25 0.14 0.68

Let us go further on recipe optimization by considering now more than two
objectives. We generate 300 new recipes using the same process as described
before, but this time we also exploit a third objective provided by the PCSE
model for each recipe: the total weight of unusable plants (TWP). Indeed, for
each recipe, the model computes the amount of usable (that we call the yield,
but it actually corresponds to the total weight of storage organs) and unusable
produced plants (that we call TWP, and it actually corresponds to the sum of
the weights of leaves and stems).

Once our new recipes generated, we run our EPFDM algorithm with HVdev

and we report the best computed model. When dealing with Pareto fronts
that are more than two-dimensional, one way to study their characteristics is
to use scatter plots and visualize the pair-wise relationship of objectives (see
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Figure 16). As can be seen on each of the 3 scatter plots, the removal of the
subgroup leads to large deviations in all 3 pair-wise relationships that compose
the overall Pareto front. It is particularly clear in the yield/cost scatter plot
where the removal of the subgroup leads to a worse trade-o↵ between yield and
cost. The subgroup can be exploited to generate new recipes that not only o↵er
good trade-o↵s between yield, cost and TWP, but also o↵er a better trade-o↵
between yield and cost.

Figure 16: Scatter plots of the EPFDM best model with HVdev showing the
pair-wise relationship between objectives.

Let us use the EPFAM method also. It is used with HVapprox and we report
the best computed model in Figure 17. We are able to find a small subgroup
that approximates very well the overall Pareto front of the problem. It can be
used to support the design of new recipes whose trade-o↵ between yield, cost
and TWP will be close to or even on the optimal Pareto front.

Figure 17: Scatter plots of the EPFAM best model with HVapprox showing the
pair-wise relationship between objectives.

8.3 Exploiting Skyline Patterns for EPFDM

Although we have been using an aggregated quality measure (qEPFDM or qEPFAM )
up to this point, it can be argued that when a quality measure consists in the
multiplication of several objectives (deviation or approximation, locality, gener-
ality), loss of information and sub-optimal subgroups may be discovered. Fur-
thermore, when using top-K EMM, the value of K can be di�cult to choose,
and the top subgroups usually lack diversity.

To remedy this problem, we can exploit the concept of skyline patterns

(Soulet et al., 2011) to mine for subgroups that o↵er the best trade-o↵ between
the di↵erent objectives of our quality measure. Using this method, the optimal
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number of subgroups returned does not have to be pre-defined, but will instead
be a learned parameter of the model. We want to find the skyline of subgroups
for EPFDM using HVdev. We choose HVdev since it has shown the best ability
to find interesting and actionable subgroups. Furthermore, we choose EPFDM
since looking for multiple subgroups in EPFAM makes little sense. Indeed,
EPFAM exploits the aggregated measure to support the discovery of very good
approximations of the Pareto front: mining a skyline of approximations seems
of low interest in that case.

The skyline of subgroups cannot be computed using the algorithm discussed
in Section 4. Indeed, since no order can be defined on the quality of subgroups
that belong to a skyline, a typical beam search strategy where the best q patterns
of each level need to be retrieved would not work. Instead, like in Van Leeuwen
and Ukkonen (2013), we explore the specializations of the best q patterns at
each search level, we compute the skyline of patterns of each level, and only the
specializations of the skyline patterns of the current level are to be explored
in the next level. Throughout the exploration, we add only the overall non-
dominated patterns to the global skyline, which should not be confused with
the local skyline of each level.

We use this modified version of beam search with a “dynamic beam–width”
to mine for the skyline of exceptional models. The locality factor is set to 1 and
the MSV function is used with a minimum support of 0.1, such that we have 2
objectives to maximize: the quality and the locality of the subgroup. Since we
expect functions that need to be minimized, we transform each maximization
into a minimization one. Figure 18 depicts the skyline of patterns found using
this configuration. Most of the discovered skyline patterns have a high locality
and a relatively low quality, while some patterns possess a higher quality at the
cost of a poorer locality.

Next, we want to compare the quality and the locality of the skyline patterns
with the quality and the locality of the top-K subgroups that are found accord-
ing to our aggregated measure qEPFDM . To do this, we compute the top-K
subgroups using the aggregated measure, and we record the subgroup quality
and locality values before multiplying them. To make the comparison as fair as
possible, we choose K to be the same as the number of previously found skyline

patterns, 18 in this case. As can be seen in Figure 18, the found subgroups
with the aggregated measure lack diversity between quality and locality and are
mostly grouped in the same subspace of the objective space. Furthermore, only
one subgroup found by using the aggregated measure dominates the skyline of
patterns: it confirms the relevance of skyline pattern mining to find diverse
subgroups of high quality.

Finally, we want to estimate the cost of the diversity of patterns mined using
Skyline EMM compared to typical top-K EMM in terms of running time. To do
this, we record the running time of several configurations of top-K EMM using
di↵erent values of beam-width. The results are available in Table 12. We see
that the running times of Skyline EMM and top-K EMM cross each other when
the beam-width is set to 10, that is the most common configuration used in our
experiments throughout this paper. It shows that the diversity of Skyline EMM
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Figure 18: Skyline of EPFDM and comparison between Skyline and qEPFDM .

is obtained without a negative impact on running time.

Table 12: Running time comparison (in seconds) of EPFDM between qEPFDM

denoted q and Skyline. bw is the chosen beam width when using qEPFDM .
Skyline q, bw = 1 q, bw = 3 q, bw = 5 q, bw = 10 q, bw = 20 q, bw = 50
878 121 308 485 917 1713 3631

9 Limitations

9.1 Pareto Compliance of Quality Measures

In this work we have considered indicators that enable the comparison of Pareto
fronts. We worked with distance-based and volume-based quality measures,
that have been inspired by the MOO literature on quality indicators for Pareto
fronts comparison (Li and Yao, 2019). A well-known limitation of many quality
indicators in MOO is their non compliance with the dominance relation. A
quality indicator is said to be Pareto compliant (Knowles et al., 2006), if and
only if, when comparing two Pareto fronts, the Pareto front that dominates
the other also has a better value in terms of the quality indicator. A quality
indicator that is Pareto compliant guarantees that it does not contradict the
order of Pareto fronts induced by the dominance relation. Given two Pareto
fronts A, B and a Pareto compliant indicator, if A is better than B, then B can
never dominate A.

Most distance measures are Pareto non-compliant, including the Genera-
tional Distance, the Inverted Generational Distance and the Hausdor↵ Distance,
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which were used in our work for EPFDM. In EPFDM, we considered distance
maximization, i.e., the farther the Pareto front is from the true Pareto front,
the better the quality measure value. According to the Pareto non-compliance
of our measures, a given Pareto front could have a larger distance to the true
Pareto front than an other front, even though it dominates that same front.

Fortunately, the hypervolume, which has been considered for both EPFDM
and EPFAM is one of the few existing quality indicators that is Pareto compli-
ant. We therefore advise to use the volume-based measures.

9.2 Scaling Dependence of Quality Measures

When the considered objectives possess ranges of values that are incommensu-
rable, most quality indicators require a transformation of the objectives so that
they can be comparable, i.e., roughly in the same range. This property is called
scaling dependence, and distance-based measures are subject to it. Indeed,
without scaling of the objectives, some objectives could contribute more than
others to the quality indicator values.

This is the case for our distance-based measures, which are scaling depen-
dent, meaning that applying a monotone transformation on at least one of the
targets could a↵ect the order of solutions (i.e., subgroups) according to our qual-
ity measures. This is a known limitation of distance-based indicators in MOO,
which is why scaling of the objectives is advised when using EPFDM with these
measures. Please note that, to the best of our knowledge, using scaled targets
with distance-based quality measures to compare Pareto fronts is relevant, in
line with state-of-the-art MOO, and not comparable to treating the problem as
single-objective where a unique solution is optimal.

The hypervolume is scaling independent, meaning that no scaling is needed
a priori, and that applying monotone transformations on one or more targets
would have no e↵ect on the order of the resulting solutions. Once again, the
use of our volume-based measures seems more relevant than the distance-based
measures for EPFM.

To verify those claims, we ran a scaling dependence analysis of the HD

and HV measures on our synthetic plant recipes dataset. For each measure,
we retrieved the top 3 subgroups on the two following datasets: (i) the plant
recipes dataset used in our other experiments, which includes a scaling (i.e.,
a monotonic transformation) of the targets according to our proposed method
in Section 4, and (ii) the original plant recipes dataset, with the targets left
untouched (i.e., no normalization).

With EPFDM, using HD, all 3 subgroups are di↵erent from each other. For
example, the best subgroup found on the normalized dataset is:
hIRRAD

P2 = [20000, 30000], IRRAD
P3 = [20000, 30000], TPMAX

P2 = [23, 26.5],
TPMAX

P3 = [23, 26.5]i
While the best subgroup found on the non-normalized data is:
hIRRAD

P1 = [10000, 20000], IRRAD
P3 = [10000, 20000], TPMAX

P1 = [26.5, 30],
V AP

P1 = [1.1, 1.35], RAIN
P3 = [5, 17.5]i. This confirms the claim that nor-
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malization of the targets is crucial for distance-based measures, and that apply-
ing monotonic transformations can lead to di↵erent results.

With EPFDM and EPFAM, using respectively HVdev and HVapprox, we find
the exact same top 3 subgroups for both datasets. This confirms the claim that
the hypervolume is scaling independent, which makes it more versatile than
distance-based measures.

10 Conclusion

We investigate cross-fertilization between Exceptional Model Mining and Multi-
objective Optimization. Doing so, we extend our preliminary results published
in Millot et al. (2021). We build a new model class called Exceptional Pareto
Front Mining. While other approaches that link pattern mining to MOO work
at the pattern level (Carmona et al., 2010; Soulet et al., 2011), EPFM is able
to find relevant patterns at the object level. Our first approach EPFDM looks
for deviations in the shape of the Pareto front created by the absence of a
subgroup of objects, compared to the same Pareto front computed on the whole
dataset. Our second approach EPFAM looks for subgroups whose Pareto front
approximates exceptionally well the true Pareto front.

Through experiments on both synthetic and real life data, we show the
relevance of our methods on several di↵erent use cases. EPFDM can be used as
an exploratory analysis tool to discover interesting pieces of knowledge about
MOO problems. Notably, it can be used (i) to identify a subspace of the current
Pareto front where data might be missing, (ii) to select a subset of better or
worse solutions of the Pareto front with an explicit and concise description in
the attribute description space, (iii) to identify anomalous parts of the Pareto
front. EPFAM can be exploited to find exceptionally good approximations of
the true Pareto front. In other words, EPFAM enables the generation of high
quality solutions with a higher probability.

We present a promising application of EPFM to plant growth recipe opti-
mization in controlled environments like urban farms. This is a relevant context
where (i) data can be collected about many descriptive attributes that trace
the recipe application (ii) farmer expectation are intrinsically multi-objective.
Indeed, optimizing a single objective, say the yield, is rather easy because we
can control the climate and thus, for instance, use more light or increase the
temperature. In practice, we also need to minimize the cost and/or the needed
energy. Both EPFDM and EPFAM have been applied on a simulated recipe
optimization scenario, and we have shown how EPFAM can be e↵ectively ex-
ploited in a virtuous circle framework to iteratively and e�ciently optimize a
given process. When considering this use case, we have also considered Skyline
Exceptional Model Mining. It o↵ers a better diversity of subgroups over top-
K Exceptional Model Mining, and it does not require the number of returned
subgroups to be fixed a priori.

As future work, it seems interesting to integrate our method in a fully devel-
oped EMM-based iterative optimization process, as it was done in Millot et al.
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(2020b) for the case of a unique objective. It seems like a logical next step to
fully exploit EPFM potential for multi-objective optimization.

This research is partially funded by the FUI DUF 4.0 French programme
(2017-2021) and a CAF America grant (2020-2021).
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