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Abstract

Thermoacoustic amplifiers are analyzed in the framework of non-reciprocal Willis coupling. The

closed form expressions of the effective properties are derived, showing that an applied temperature

gradient causes the appearance of a non-reciprocal Willis coupling. Even and non-reciprocal Willis

couplings are exhibited already in the first-order Taylor expansion of the solution and are of equal

modulus but opposite sign, thus suggesting that the even Willis coupling is a reaction to the non-

reciprocity introduced by the temperature gradients. These Willis couplings cause a coalescence

point in the k-space, which deviates from Re(k) = 0 (with k the wavenumber) and is thus a zero-

group-velocity point, as well as the opening of an amplification gap at low frequency. Effective

parameters and scattering properties are found in excellent agreement with experimental results.

This article paves the way to further control the acoustic waves at very low frequencies with non-

reciprocal systems.
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I. INTRODUCTION

Swapping source and receiver has long provided identical frequency responses due to

reciprocity features, thus preventing the possible tuning of the transmission coefficient in

opposite directions. In acoustics and elasticity, the reciprocity of wave propagation can

be broken via three means: by using spatiotemporal dependent material properties1, by

combining nonlinear properties with an asymmetry2–4, or by introducing an external bias5,6.

Non-reciprocal devices and their applications have recently been reviewed in Ref. [7]. Among

the various possibilities offered by the introduction of an external bias in acoustic systems,

thermoacoustics, although effective8,9, is often neglected. Thermoacoustics is concerned with

the thermal interaction between an acoustic wave and the surrounding waveguide wall10,11.

Although research in thermoacoustics has mostly been oriented towards the development of

thermodynamic machines and the understanding of the phenomena controlling their behav-

ior – on the one hand, the thermoacoustic prime-movers (or engines)12,13; on the other hand,

thermoacoustic heat-pumps and refrigerators14,15 – more fundamental research has relied

on the thermoacoustic amplification or damping of acoustic waves in recent years. Quasi-

periodic and chaotic oscillations16,17 or synchronization phenomena involved in thermally

driven autonomous oscillators18,19, thermoacoustic shock waves20,21 and solitary waves22,

thermoacoustic diode8 or a PT -symmetric system23 have been the focus of a growing in-

terest. Thermoacoustics still appears to be overlooked as far as non-reciprocal systems are

concerned.

Meanwhile, Willis materials have received an increasing interest since the publication

of the seminal work24, thanks to their analogy with bi-isotropic electromagnetic metama-

terials25. The Willis coupling parameters couple the potential and kinetic energies in the

acoustic conservation relations, therefore enhancing the ability to control waves in these

metamaterials compared to other materials that do not exhibit such coupling. Three cat-

egories of Willis coupling parameters have been highlighted: the even coupling related to

the structure asymmetry, the odd coupling related to non-local effect (although its existence

is questioned for one-dimensional systems), and the non-reciprocal coupling26. Only a few

non-reciprocal systems1,27–29 have been modeled and analyzed as Willis materials so far. In-

terestingly, non-reciprocal Willis coupling was found to be non zero already in the first-order

Taylor expansion of the solution, while even Willis coupling was found to be non zero in the
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second-order Taylor expansion of the solution. None of these articles derived closed form

expressions of the coupling parameters and investigated the possible induced asymmetry by

the non-reciprocity.

In this article, we derive the closed form expressions of the effective properties of a

one-dimensional periodic arrangement of thermoacoustic amplifier following Ref. [30]. The

procedure relies on the Padé’s approximation of the total transfer matrix that links the state

vectors at both sides of the unit cell and directly provides both even and non-reciprocal

Willis coupling terms. The analysis of the effective parameters as well as the dispersion

relation show that the system possesses a coalescence point in the k-space31 that resembles

a PT -broken phase and yields to zero-group-velocity for given temperature differences.

II. GENERAL STATEMENT

A. Wave propagation in a duct submitted to a temperature gradient

Assuming an implicit time dependence e−iωt and following Refs. [10] and [32], the equa-

tions that describe the acoustic wave propagation in a duct of cross-sectional area S in the

presence of a longitudinal temperature gradient ∂Tm/∂x are:

∂p

∂x
=

iωρm
Sφ(1− fν)

V ,

∂V

∂x
=

iωSφ

γpm
[1 + (γ − 1)fκ]p+

fκ − fν
(1− fν)(1− Pr)

1

Tm

∂Tm
∂x

V ,

(1)

where p is the acoustic pressure, V = SφV is the volume flow rate, with V the particle

velocity and φ the porosity across the waveguide, ρm, pm, and Tm are the mean-state values

(across the section) of the density, pressure (atmospheric pressure), and temperature respec-

tively, fν and fκ are complex frequency-dependent functions, which account respectively for

viscous and thermal losses10 (see also Appendix A), γ is the specific heat ratio, and Pr is

the Prandtl number. Introducing the state vector W =< p,V >T , where T is the transpose

operator, these equations can thus be cast in the matrix form

∂

∂x
W =

 0 iωρ(x)

iωC(x) G (x)

W = A(x)W, (2)

where ρ(x) is the effective density, C(x) is the effective compressibility, i.e., the inverse of

the effective bulk modulus K(x), and G (x) is a ’gain’ term depending on the temperature

4



gradient ∂Tm/∂x, that represents the thermoacoustic amplification/attenuation. The choice

of the volume flow rate as second component of the state vector instead of the particle

velocity is motivated by the continuity conditions (continuity of pressure and volume flow

rate) at interfaces between different materials and ducts of different cross-sections. Note that

the effective bulk modulus and density are thus both divided by the waveguide cross-section

because of the use of the volume flow rate as second component of the state vector. Thus,

the effective bulk modulus and density are bulk modulus per unit area (given in Pa.m−2) and

density per unit area (given in kg.m−5). Note in addition that the effective bulk modulus

and density are spatially-dependent in an implicit way (but obviously frequency-dependent),

notably because the fluid constants that appear in both functions fν and fκ depend on

the temperature distribution Tm(x). The propagation matrix A depending on x and not

commuting for different values of x, the solution of the system Eq. (2), which relates the

state vector at a position l to that at a position 0 via W(l) = MlW(0) involves a matricant

Ml that is evaluated through Peano series expansion33

Ml =Id +

∫ l

0

A(x)dx+

∫ l

0

A(x)

(∫ x

0

A(ζ)dζ

)
dx+ · · · . (3)

Of particular interest is the first-order expansion, which reads as

M
(1)
l = Id +

∫ l

0

A(x)dx =

 1 iωρ̄l

iωC̄l 1 + Ḡ l

 , (4)

where ρ̄, C̄, and Ḡ are the mean values of ρ(x), C(x), and G (x) over the length l, i.e.,

·̄ = 1
l

∫ l
0
·dx. This first-order iteration corresponds to a first-order Taylor expansion of

exp(Al), when A does not depend on x. Introducing k̄ = ω
√
ρ̄C̄, the determinant of M

(1)
l

reads in the first-order expansion

det
(
M

(1)
l

)
= 1 + Ḡ l +O

(
(k̄l)2

)
, (5)

which clearly shows that the system is not reciprocal in the presence of the ’gain’ term,

i.e., when ∂Tm/∂x 6= 0. The term Ḡ l is a marker of the non-reciprocity that makes

det
(
M

(1)
l

)
6= 1. When Ḡ = 0 (i.e., ∂Tm/∂x = 0), the system falls back to reciprocal

with det
(
M

(1)
l

)
= 1. The term G = 1 + Ḡ l is thus called non-reciprocity term in the follow-

ing. In reality, Eq. (4) relies on two assumptions and is O
(
(k̄l)2

)
, i.e., the system length is

much smaller than the wavelength, but also O
(
(Ḡ l)2

)
, i.e., the ’gain’ per unit length is weak.
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Effectively, the dimensionless term Ḡ l mainly depends on the temperature gradient and is

thus driven independently of k̄l. Note that Eq. (5) turns out to be O
(
(k̄l)

)
but O

(
(Ḡ l)2

)
.

The determinant does not depend on k̄l and only depends on Ḡ l, thus emphasizing the

central role of Ḡ l in the system non-reciprocity.

B. Calculation of the effective properties from the knowledge of the transfer ma-

trix of the unit cell

We assume a one-dimensional non-reciprocal and asymmetric system composed of a d-

periodic repetition of a unit cell of respective propagation matrix Ae. The system is homoge-

nized and Ae does not depend on x. The state vectors at both sides of the unit cell W(d) and

W(0) are related to each other through the 2×2 transfer matrix T = exp (Aed) of elements

tij, (i, j) ∈ [1, 2]. Following Ref. [30], the propagation matrix is correctly approximated by

the inversion of the first-order Padé’s approximation of the matrix exponential,

Ae ≈
2

d
(T + Id)−1(T− Id)

≈ 2

d

1

Tr(T) + det(T) + 1

t11 − t22 + det(T)− 1 2t12

2t21 t22 − t11 + det(T)− 1

 , (6)

with Tr(T) = t11 +t22. Equation (6) directly provides the elements of a non-reciprocal Willis

material

Ae = iω

χae + χnr
e ρe

Ce −χae + χnr
e

 , (7)

where ρe is the effective density, Ce is the effective compressiblity, χae is the even Willis

coupling, and χnr
e is the non-reciprocal Willis coupling respectively equal to

ρe =
−4i

ωd

t12

1 + Tr(T) + det(T)
, Ce =

−4i

ωd

t21

1 + Tr(T) + det(T)
,

χae =
−2i

ωd

t11 − t22

1 + Tr(T) + det(T)
, χnr

e =
−2i

ωd

det(T)− 1

1 + Tr(T) + det(T)
.

(8)

When considering reciprocal systems, det(T) = 1 and thus χnr
e = 0. The expressions of the

effective parameters then reduce to those provided in Ref. [30]. In addition, for symmetric

systems t11 = t22 and as a consequence χae = 0.
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III. EXPRESSION OF THE EFFECTIVE PROPERTIES OF A PERIODIC THER-

MOACOUSTIC AMPLIFIER

We consider a d-periodic thermoacoustic amplifier, the unit cell of which consists of five

elements in series of respective lengths lj, j = 1, · · · , 5, such that d =
∑5

j=1 lj, see Fig. 1(a).

The l2-long porous material, where the thermoacoustic effect takes place (customarily called

stack), is subjected to a temperature gradient applied with the help of an ambient and a

hot heat exchangers (denoted AHX and HHX) of respective lengths l1 and l3. The heat

exchangers impose a temperature difference ∆T = TH − TC , between the hot TH and the

ambient TC temperatures. The HHX is followed by an empty tube of total length l4 +

l5. The temperature distribution loops back to the temperature of the AHX along the l4-

long portion, which is therefore called the thermal buffer tube (TBT). In this study, the

resulting temperature distribution is considered one-dimensional, homogeneous in the heat

exchangers, and varies linearly in the stack and the TBT, as depicted on Fig. 1(a). The

temperature gradient ∂Tm/∂x is thus positive along the stack, while it is negative along

the TBT, here also with reference to Fig. 1(a). No temperature gradient is applied on the

elements 1, 3, and 5. These elements are thus reciprocal.
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FIG. 1. (Color online) (a) Scaled representation of the unit cell together with the temperature dis-

tribution along the unit cell. The length of the experimental cell is d = 195 mm . (b) Photography

of the elements of the thermoacoustic cell and (c) schematic view of the experimental setup for

measuring the scattering matrix of the thermoacoustic amplifier.

The state vector at the end of the unit cell W(d) is related to that at the other end W(0)

via the full transfer matrix T which is the multiplication of the five matrices modeling the

propagation along the five elements of the unit cell

W(d) = TW(0) = Tl5M
(1)
l4

Tl3M
(1)
l2

Tl1W(0), (9)

where Tl = exp (Al) is the usual transfer matrix along a distance l with A the propagation

matrix of the element, the first-order Taylor expansion of which takes the form

Tl =

 cos(kl) iZ sin(kl)

i sin(kl)/Z cos(kl)

 ≈
 1 iωρl

iωCl 1

+O
(
(kl)2

)
, (10)

where k is the wavenumber and Z is the impedance (divided by the duct cross-sectional

area in our case). Equation (10) formally corresponds to Eq. (4) in the absence of ’gain’

term. Viscothermal losses are accounted for in each element, see Appendix A. Considering
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the first-order Taylor expansion of the total transfer matrix elements, we end up with

ρe =
2

d [1 + G2G4]
(ρ1l1 + ρ̄2l2 + [ρ3l3 + ρ̄4l4 + ρ5l5G4)]G2) ,

Ce =
2

d [1 + G2G4]

(
C5l5 + C̄4l4 +

[
C3l3 + C̄2l2 + C1l1G2

]
G4

)
,

χae =
−i [1− G2G4]

dω [1 + G2G4]
,

χnre =
i [1− G2G4]

dω [1 + G2G4]
,

(11)

where all the effective parameters are in O ((kd)2).

This result calls for several comments.

First, all the effective parameters are impacted by the non-reciprocal terms, notably

via a common denominator 1 + G2G4. This denominator arises from the assumption that

both Ḡ2 and Ḡ4 are O ((kd)). This implies that ρeS/ρ0 < 1 and KeS/γP0 < 1 at low

frequencies, where ρ0 and P0 are respectively the ambient (air) density and atmospheric

pressure. Please note that Eqs. (11) also rely on the assumption that Eq. (4) is O
(
(Ḡ d)2

)
.

Thus, G2G4 = 1 + Ḡ2l2 + Ḡ4l4 +O
(
(Ḡ d)2

)
rigorously.

Second, the thermoacoustic amplifier appears as a Willis material and exhibits both even

and non-reciprocal coupling parameters at the first-order Taylor expansion. This constitutes

a major difference with respect to laminate or resonant Willis materials, which require

second-order Taylor expansion to exhibit Willis coupling26,30.

Third, χae = −χnr
e , which implies that the top left element of the effective propagation

matrix is null in the first-order expansion. The propagation matrix thus strongly resembles

Eq. (2). This suggests that the thermoacoustic fundamental equations, Eq. (1), are a specific

form of those of a non-reciprocal Willis material. Together with the second comment, we

conclude that the even Willis coupling arises from the asymmetry of the temperature gradient

and appears in reaction to the non-reciprocity. This becomes clear when both temperature

gradients are of opposite sign so as to lead to Ḡ2l2 = −Ḡ4l4. In this case, G2G4 = 1+O
(
(Ḡ d)2

)
and thus χae = −χnr

e = 0 in the first-order expansion, while the system material organization

is asymmetric. Both Willis coupling parameters only depend on the temperature gradient

and not on the material asymmetry in the first-order expansion.

Fourth, when Ḡ2 and Ḡ4 are both equal to zero, the effective parameters collapse to those

of a usual laminate fluid in the first-order expansion, with χae = χnr
e = 0. Note that the
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Willis even coupling term does not vanish in that case when second-order expansions are

used because the unit cell involves different materials and is asymmetric30.

Fifth, the form of both ρe and Ce exhibits different cumulative impacts of the temper-

ature gradients. While the temperature gradient impacts the following density terms, i.e.,

the density terms following a non-reciprocal element are multiplied by the product of all

the preceding non-reciprocity terms, it impacts the preceding compressibility terms, i.e.,

the effective compressibility terms preceding a non-reciprocal element are multiplied by all

the following non-reciprocity terms. The effect of the temperature gradient on the density

derives directly from its flow source nature. Its effect on the compressibility is more complex

and can be analyzed in the way that the temperature gradient acts as a volume flow am-

plifier rather than a pure flow source, with the volume flow rate depending on the previous

compressibilities.

Sixth, both the even and non-reciprocal coupling parameters are almost purely imaginary

and non-zero at low frequency for a thermoacoustic amplifier. The dispersion relation thus

exhibits at first glance a band gap at zero frequency that is shifted along the imaginary

wavenumber axis, i.e., k±e = −iω|χnre | ± ω
√
−|χae |2 + ρeCe, see Appendix B.

IV. EXPERIMENTAL AND NUMERICAL VALIDATIONS OF THE EFFECTIVE

PARAMETERS AND DISCUSSION

The experimental set-up consists of a waveguide of rectangular cross-section (2a × 2b =

1 cm × 5 cm) containing either a single thermoacoustic cell or 15 identical thermoacoustic

cells of length d = 19.5 cm in both cases, as depicted in Fig. 1(a-c). Only the results for the

single-unit cell are discussed in this section, while those for the 15 identical cells are discussed

in Appendix D. The stack is a cordierite substrate with a pore density of 400 CPSI, of length

l2 = 15 mm. Its pores are square of half-width rs = 585 µm and its porosity is φ = 0.85.

The ambient heat exchanger is made of a section of 1/8 ” aluminum honeycomb (porosity

φ = 0.945), with l1 = 15 mm, used to ensure a uniform temperature distribution over the

cross-section. The hot heat exchanger is a section of the stack material of length l3 = 3 mm

supporting a resistive wire providing sufficient heating power to maintain temperature up to

TH = 373 K. The TBT is assumed to be of length l4 = 23 mm. The thermoacoustic system

is placed between two waveguides of the same cross section for the measurement of the
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scattering matrix by means of the two-source method34. As illustrated in Fig. 1, each of these

measurement sections consists of a straight 1.2 m duct, on which a pair of 1/4 ” microphones

are flush mounted, a moving coil loudspeaker is side mounted in a small enclosure, and ends

with an anechoic termination. Each microphone pair is separated by a distance of 65 cm,

allowing measurements in the 10 Hz to 200 Hz range, provided that they have been precisely

calibrated (both in amplitude and phase) to limit the errors on the measured and calculated

quantities35. A relative calibration is therefore realized using a homemade small cavity

coupler. The low frequency anechoic terminations attached to the measurement sections

consist of a larger cavity (1.5 cm× 7 cm) with an adjustable length closed by stainless steel

wire mesh screens36. The reflection coefficient of such terminations has an amplitude lower

than 5% in the frequency range of interest, which is a sufficiently low value for the needs

of this study. The sources are driven at amplitudes that generate sufficiently low acoustic

pressures to ensure a linear system behavior during all measurements.
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FIG. 2. (Color online) Real and imaginary parts of the even Willis coupling parameter (a,b), nor-

malized density (c,d), normalized bulk modulus (e,f), and non-reciprocal Willis coupling parameter

(g,h) for ∆T = 0 K (blue curves), ∆T = 22 K (cyan curves), ∆T = 42 K (green curves), ∆T = 75 K

(orange curves), ∆T = 100 K (red curves). Real and imaginary parts of the dispersion relations

(i-j). The inset of the subfigure (i) shows a zoom on the real part of the dispersion relation at

low frequency. The results depicted with solid curves are calculated with the expressions given in

Eq. (11), the dashed curves represent the numerical evaluation with the Tranfer Matrix method,

and the circles depict the measurements.

Figures 2(a-h) depict the real and imaginary parts of the even and non-reciprocal Willis

coupling parameters, normalized density and bulk modulus as evaluated from the expressions
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given in Eq. (11) -solid curves-, from the direct calculation with the Transfer Matrix Method

(see Appendix C and indexed by num) -dashed curves-, and as measured (see Appendix B)

-open circles- for ∆T = 0 K (blue curves), ∆T = 22 K (cyan curves), ∆T = 42 K (green

curves), ∆T = 75 K (orange curves), and ∆T = 100 K (red curves). Note that the direct

calculation with the Transfer Matrix Method is conducted by discretizing the stack and

the TBT (subjected to temperature gradients) in piecewise constant elements. All curves

are found in good agreement. Slight discrepancies are nevertheless noticed, notably for the

normalized bulk modulus (see Fig. 2(e)), which are attributed to the assumption of the

linear variation of the temperature distribution, but also to the measurement difficulties

at very low frequency. As pointed out in the previous section, the two Willis couplings

are almost purely imaginary at low frequencies and are of equal modulus but opposite

sign. Interestingly, the Willis coupling parameters do not vanish at low frequency as it

is the case for laminate structures or detuned Helmholtz resonators30. When ∆T = 0 K,

χnre = χae = χnrnum = 0, but χanum 6= 0 although very small. This comes from the fact

that χanum captures the second-order expansion element which accounts for the material

asymmetry30. While the numerically evaluated effective parameters are in good agreement

with the measured parameters whatever the temperature gradient, the parameters given

in Eq. (11) slightly deviate from both numerical and experimental results with increased

temperature differences, mainly at low frequencies. This is particularly visible on the Willis

coupling and is due to the use of the first-order Peano series expansion, for which the ’gain’

term is approximated by its mean value. Effectively, the only use of the mean value can

become too harsh an approximation when the temperature gradient becomes large. This is a

direct translation of the assumption that Eq. (4) is O
(
(Ḡ l)2

)
. Nevertheless, the overall trend

is correctly captured. This is also visible in Figs. 3(a-d), which depict the absolute values of

the reflection and transmission coefficients for each incidence, i.e., that where amplification

occurs T+ and R+ and that where attenuation occurs T− and R−. Note that the transfer

matrix is calculated via Padé’s approximation when Ae is used, thus validating the derivation

of the expressions given in Eqs. (11), i.e., (I−Aed/2)−1 (I + Aed/2). When ∆T = 0 K, the

structure is symmetricR = R+ = R− and reciprocal T = T+ = T− and is almost acoustically

transparent, i.e., |R| ≈ 0 and |T | ≈ 1. As the temperature difference increases, |R+| is

different from |R−| which translates the asymmetry of the configuration and emphasizes the

need for even Wills coupling parameters. Note that the even Willis coupling parameter is
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mainly driven by the asymmetric temperature gradient. Nevertheless, the amplitudes of

both reflection coefficients are low, although increasing with the temperature difference. As

a corollary, the amplitude of the transmission coefficients is quite large, the structure being

almost acoustically transparent in the absence of a temperature gradient. Interestingly, the

amplitude of |T+| is greater than unity, the larger the temperature difference. Conversely,

the amplitude of |T−| is smaller than unity, the larger the temperature difference. This is a

direct indication of the non-reciprocity and of the amplification and attenuation directions.

This difference highlights the need for the non-reciprocal Willis coupling parameter.
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FIG. 3. (Color online) Transmission and reflection coefficients along the amplification, T+ and

R+ (a,c), and attenuation, T− and R− (b,d), directions, for ∆T = 0 K (blue curves), ∆T = 22 K

(cyan curves), ∆T = 42 K (green curves), ∆T = 75 K (orange curves), ∆T = 100 K (red curves).

The results as calculated with the expressions given in Eq. (11) are depicted with solid curves, as

numerically evaluated from the Transfer Matrix method are depicted with dashed curves, and as

measured are depicted with the curves marked with circles.

The real and imaginary parts of the dispersion relations are depicted in Figs. 2(i-j) respec-

tively. The higher the temperature difference, the more asymmetric k±e , which translates

the non-reciprocal nature of the configuration. The trajectories of both k±e are modified
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when a temperature gradient is applied. In particular, both k±e are shifted in the negative

Im(k)-space at low frequencies. Thus, k+
e is amplified while k−e is attenuated. When Im(k+

e )

crosses back to the positive half Im(k)-space, i.e., no amplification is observed anymore,

|T+| moves from values larger than 1 to values lower than 1 because the structure is almost

acoustically transparent. This is highlighted by the magenta arrows, Figs. 2(j) and 3(a),

when ∆T = 75 K, for example. A coalescence point in the k-space, where both k±e are

equal, is reached for a temperature difference around ∆T = 75 K as pointed out by the

black arrows in Figs. 2(i,j). A zero-group-velocity point is reached at this frequency, where

both modes are amplified, i.e., Re (k±e ) > 0, while Im (k±e ) < 0 at this frequency. This is

due to the almost purely imaginary nature of both Willis coupling parameters as explained

in Section III. This zero-group-velocity point is purely due to the even and non recipro-

cal Willis coupling parameters and does not translate into the effective compressibility and

density, as assumed in Ref. [9]. In practice, the even Willis coupling parameter is usually

purely imaginary at low frequency, see Ref. [30] for example, and thus a band gap can be

opened at zero frequency. Nevertheless, the even Willis coupling is usually non zero in the

second-order Taylor expansion for purely asymmetric laminated or resonant structures and

usually vanishes notably in the case of Helmholtz resonators. This bandgap is thus rarely

or never noticed. The story is completely different in non-reciprocal systems, in which the

even coupling is non zero already in the first-order expansion and does not necessarily vanish

at low frequencies. It is also accompanied by the non-reciprocal Willis coupling that shifts

the mode in the Im(k)-space. This behavior was already noticed at much higher frequencies

and at a higher pass band in Ref. [27]. This coalescence point in the k-space does not seem

to translate into a particular behavior of the scattering matrix, although the reflection and

transmission coefficients present inflection points at a frequency that is close. Interestingly,

the k−e branch presents infinite group velocity points for lower frequencies and higher tem-

perature differences, which find translation neither in the effective parameters, nor in the

scattering elements.

V. CONCLUSION

A periodic one-dimensional thermoacoustic amplifier is analyzed as a Willis material.

The closed form expressions of the effective properties are derived from Padé’s approxi-
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mation of the total transfer matrix that links the state vectors at both sides of the unit

cell. A first-order Taylor expansion of the transfer matrix elements is sufficient to derive

the effective properties notably both the even and non-reciprocal Willis couplings. The odd

Willis coupling is absent, while the even Willis coupling is found to be only related to the

asymmetry of ’gain’, i.e., the temperature gradient that is applied to the unit cell, already

in the first-order expansion. Even and non-reciprocal Willis couplings are found of equal

modulus but opposite sign, which suggests that the even coupling appears as a counter re-

action to the non-reciprocal coupling and that the thermoacoustics fundamental equations

describe specific forms of Willis materials. We show that both Willis couplings are almost

purely imaginary at low frequencies, thus enabling a zero-group-velocity point and more

importantly the opening of an amplification band at vanishing frequency. The effective

parameters and scattering properties of a single unit and a 15 units system are validated

against experimental results. These results pave the way for a better physical understanding

of Willis couplings in non-reciprocal systems, for easing the engineering application of Willis

materials, and for various applications of such systems to further control the acoustic waves

at very low frequencies. Concurrently, this article also aims at promoting thermoacoustics

as an excellent mean to design non-reciprocal systems.
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Appendix A: Expression of the effective properties in presence of viscothermal

losses

The viscothermal losses are accounted for in the different elements composing the unit

cell through the complex functions fν and fκ. These functions describe the viscous and
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thermal couplings between the oscillating gas and the surrounding solid walls10,37 and are

defined for various geometries of the waveguide channels (i.e., the waveguide itself in the

case of an empty duct such as the TBT, or the pores of a porous material, as in the case

of the stack or the heat exchangers). Considering δν,κ the frequency-dependent viscous

and thermal acoustic boundary layer thicknesses given respectively by δκ =
√

2κ/ω and

δν =
√

Prδκ, classical results for cylindrical channels of radius r (adequate approximation

for the honeycomb heat exchangers) yield

fν,κ =
2

(i + 1)r/δν,κ

J1 ((i + 1)r/δν,κ)

J0 ((i + 1)r/δν,κ)
, (A1)

where Jn is the n-th order Bessel function of the first kind and for rectangle channels of

dimension 2a×2b (such is the case of the empty waveguide and for the stack square channels

where a = b = rs)

fν,κ =

(
8

π2

)2∑
m

∑
n

F ν,κ
m,n, (A2)

with m,n = 1, 3, 5, . . . and where

F ν,κ
m,n =

(
m2n2

{
1 + i

π2

2

(
δν,κ
r

)2 [
b2m2 + a2n2

(a+ b)2

]})−1

, (A3)

with r = 2ab/(a+ b) the characteristic length of the channel. The temperature dependence

of the fluid (in this instance air) is accounted for through the variations of its viscosity and

thermal conductivity following Ref. [38].

Appendix B: Recovery procedure of the effective parameters from the measured

reflection and transmission coefficients

The two state vectors at both sides of the L-thick sample, whose propagation matrix is

assumed to be independent of x by definition, are related by

W(L) = exp(AeL)W(0)

= V diag
(
eΣ±L

)
V−1W(0),

(B1)

where diag is the diagonal matrix, Σ± are the eigenvalues of Ae and V the corresponding

eigenvector matrix. For an asymmetric and non-reciprocal Willis material, the constitutive
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matrix of which is given by Eq. (7), Σ± = ik± = iωχnr ± iω
√

(χa)2 + ρ/K = iωχnr ± iωσ,

and

V−1 =
1√
2

 1/Kσ (σ − χa)/σ
−1/Kσ (σ + χa)/σ

 . (B2)

From the expression of Σ±, the link with anisotropic fluid39 becomes clear via the terms

iωχnr . Introducing Z± = K(σ ± χa), left-multiplying Eq. (B1) by V−1, and expressing the

state vectors in terms of the scattering coefficients R+, T+, R−, and T− (see Fig. 1(b)),

leads to the 2 following systems of equations 1 Z−

−1 Z+

 T+

T+/Z0

 =

 eΣ+L Z−eΣ+L

−eΣ−d Z+eΣ−L

 1 +R+

(1−R+)/Z0

 ,

 1 Z−

−1 Z+

 R− + 1

(R− − 1)/Z0

 =

 eΣ+L Z−eΣ+L

−eΣ−L Z+eΣ−L

 T−

−T−/Z0

 ,

(B3)

where Z0 is the impedance (divided by the duct cross-sectional area in our case) of the

surrounding fluid. Introducing r± = (Z0 + Z±)/(Z0 − Z±), these equations can be inverted

to yield

r+ =
− (R+R− − T+T− + 1)±

√
(R+R− − T+T− + 1)2 − 4R+R−

2R+
,

r− =
− (R+R− − T+T− + 1)±

√
(R+R− − T+T− + 1)2 − 4R+R−

2R− ,

e2iωσL =
r− (R+r+ + 1)

R+ + r+
,

e2iωχnrL =
(R− + r+) (R−r− + 1)

(T−)2 r+
.

(B4)

When T+ = T− = T , this set of equations collapses to that derived in30 for reciprocal

system. From these equations, χaexp, χ
nr
exp, Kexp, and ρexp are subsequently recovered. Special

attention must be paid to the choice of the sign in the first two equations and to folding

arising when L = Nd, N ∈ N.

Appendix C: Direct numerical calculation of the effective properties from the total

transfer matrix

Once the total transfer matrix T is calculated, it is directly assimilated to exp(Aed),

Ae being homogenized. From Eq. (B1), it is clear that the eigenvectors of T and Ae are

18



identical and that the exponential of the eigenvalues of Aed are the eigenvalues of T. We

immediately end up with

Anume =
1

d
V diag(log

(
Λ±))V−1, (C1)

where Λ± are the eigenvalues of T and V the associated eigenvector matrix. The four

quantities χnr
num, χanum, ρnum, and Knum are subsequently evaluated.

Appendix D: Experimental and numerical validation in case of a sample comprising

15 unit cells

Experimental validation was also conducted with a sample comprising 15 unit cells, see

Fig. 1. In this case, the construction of the unit cell is slightly different from that considered

in Section IV. The stacks are the same as in the single cell system. Both ambient and

hot heat exchangers are made of a l1 = l3 = 15 mm section of the same 1/8 ” aluminum

honeycomb (porosity φ = 0.945), used to ensure a uniform temperature distribution over

the cross-section. The ambient TC and hot TH temperatures are imposed on the heat

exchangers through the 1 mm-thick stainless steel walls of the waveguide, thanks to Peltier

cooler modules for the cold side and polyimide heaters for the hot side, applied on each face

of the waveguide. Due to the different heating system, the TBT is here considered of length

l4 = 11.3 cm, the overall length of the cell remaining d = 19.5 cm. The sample total length

is thus L = 15d = 292.5 cm.

Figures 4(a-h) depict the real and imaginary parts of the even and non-reciprocal Willis

coupling parameters, normalized density and bulk modulus as evaluated from the expressions

given in Eq. (11) -solid curves-, from the direct calculation with the Transfer Matrix method

(see Appendix C) -dashed curves-, and as measured (see Appendix B) -curves marked with

circles- for ∆T = 0 K (blue curves), ∆T = 25 K (cyan curves), ∆T = 60 K (orange curves),

and ∆T = 90 K. Note again that the direct calculation with the Transfer Matrix Method

is conducted by discretizing the stack and the TBT (subjected to temperature gradients)

in piecewise constant elements. Some drops are visible, notably on the normalized density

and bulk modulus, which are due to Farby-Perot resonances, which blur the reconstruction

around 60 Hz, 120 Hz and 180 Hz. Figures 4(i-l) depict the absolute values of the reflection

and transmission coefficients for each incidence, i.e., that where amplification occurs T+

and R+ and that where attenuation occurs T− and R−. The Fabry-Perot resonances are
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clearly visible around 60 Hz, 120 Hz and 180 Hz. Note that the transfer matrix is this time

calculated via exp (AeL) when Ae is used, because L is no longer small with respect to the

wavelength. The real and imaginary parts of the dispersion relations are depicted in Figs.

4(m-n) respectively. Slight discrepancies are again noticed for each subfigure, notably for

the normalized bulk modulus and for large ∆T , which are attributed to the assumption of

the linear variation temperature distribution, but also to the very low frequency range of

the measurements. Comments are similar to those already reported for the case of a single

cell, notably with the presence of the coalescence point. Note that the amplification and

attenuation are more pronounced and more visible on T+ and T− this time and that the

amplitude of the reflection coefficients are not small this time. This result validates the

effective properties derived in Eqs. (11) and assumption of one-dimensional system.
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FIG. 4. (Color online) Real and imaginary parts of the even Willis coupling parameter (a,b),

normalized density (c,d), normalized bulk modulus (e,f), and non-reciprocal Willis coupling pa-

rameter (g,h) for ∆T = 0 K (blue curves), ∆T = 22 K (cyan curves), ∆T = 42 K (green curves),

∆T = 45 K (orange curves), ∆T = 100 K (red curves). Corresponding transmission and reflection

coefficients along the amplification, T+ and R+ (i,k), and attenuation, T− and R− (j,l), directions.

Real and imaginary parts of the dispersion relations (m-n). The results depicted with solid curves

are calculated with the expressions given in Eq. (11), the dashed curves represent the numerical

evaluation with the Tranfer Matrix method, and the circles depict the measurements.
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New J. Phys. 23, 53020 (2021).

31 K. Ding, Z. Q. Zhang, and C. T. Chan, Phys. Rev. B 92, 235310 (2015).

32 N. Rott, Z. Angew. Math. Phys. 20, 230 (1969).

33 M. C. Pease, “Methods of Matrix Algebra,” (Academic Press, Cambridge, 1965) Chap. 6 and

7.

34 M. L. Munjal and A. G. Doige, J. Sound Vib. 141, 323 (1990).
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Phys. 125, 025114 (2019).

23


